
DNSOP Working Group R. Bellis
Internet-Draft ISC
Updates: RFC 7766, RFC 1035 (if S. Cheshire
 approved) Apple Inc.
Intended status: Standards Track J. Dickinson
Expires: July 30, 2018 S. Dickinson
 Sinodun
 A. Mankin
 Salesforce
 T. Pusateri
 Unaffiliated
 January 26, 2018

DNS Stateful Operations
draft-ietf-dnsop-session-signal-05

Abstract

 This document defines a new DNS OPCODE for DNS Stateful Operations
 (DSO). DSO messages communicate operations within persistent
 stateful sessions, using type-length-value (TLV) syntax. Three TLVs
 are defined that manage session timeouts, termination, and encryption
 padding, and a framework is defined for extensions to enable new
 stateful operations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Bellis, et al. Expires July 30, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7766
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft DNS Stateful Operations January 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Discussion . 8
4. Protocol Details . 9
4.1. DSO Session Establishment 9
4.1.1. Connection Sharing 11
4.1.2. Zero Round-Trip Operation 12
4.1.3. Middlebox Considerations 12

4.2. Message Format . 13
4.2.1. DNS Header Fields in DSO Messages 14
4.2.2. DSO Data . 16
4.2.3. EDNS(0) and TSIG 21

4.3. Message Handling . 22
4.4. DSO Response Generation 23
4.5. Responder-Initiated Operation Cancellation 24

5. DSO Session Lifecycle and Timers 25
5.1. DSO Session Initiation 25
5.2. DSO Session Timeouts 25
5.3. Inactive DSO Sessions 26
5.4. The Inactivity Timeout 26
5.4.1. Closing Inactive DSO Sessions 27
5.4.2. Values for the Inactivity Timeout 27

5.5. The Keepalive Interval 29
5.5.1. Keepalive Interval Expiry 29
5.5.2. Values for the Keepalive Interval 29

5.6. Server-Initiated Session Termination 31
5.6.1. Server-Initiated Session Termination on Error 31
5.6.2. Server-Initiated Session Termination on Overload . . 32
5.6.3. Server-Initiated Retry Delay Request Message 33

6. Base TLVs for DNS Stateful Operations 35
6.1. Keepalive TLV . 35

 6.1.1. Client handling of received Session Timeout values . 37
6.1.2. Relation to EDNS(0) TCP Keepalive Option 38

6.2. Retry Delay TLV . 39
6.2.1. Retry Delay TLV used as a Primary TLV 39
6.2.2. Retry Delay TLV used as a Response Additional TLV . . 40

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bellis, et al. Expires July 30, 2018 [Page 2]

Internet-Draft DNS Stateful Operations January 2018

6.2.3. Retry Delay TLV is used by server only 40
6.3. Encryption Padding TLV 41

7. Summary . 42
7.1. MESSAGE ID . 42
7.2. TLV Usage . 43
7.3. Inactivity Timeout 44
7.4. Keepalive Interval 44

8. IANA Considerations . 45
8.1. DSO OPCODE Registration 45
8.2. DSO RCODE Registration 45
8.3. DSO Type Code Registry 45

9. Security Considerations 46
10. Acknowledgements . 46
11. References . 47
11.1. Normative References 47
11.2. Informative References 48

 Authors' Addresses . 49

1. Introduction

 The use of transports for DNS other than UDP is being increasingly
 specified, for example, DNS over TCP [RFC1035][RFC7766] and DNS over
 TLS [RFC7858]. Such transports can offer persistent, long-lived
 sessions and therefore when using them for transporting DNS messages
 it is of benefit to have a mechanism that can establish parameters
 associated with those sessions, such as timeouts. In such situations
 it is also advantageous to support server initiated messages.

 The existing EDNS(0) Extension Mechanism for DNS [RFC6891] is
 explicitly defined to only have "per-message" semantics. Whilst
 EDNS(0) has been used to signal at least one session-related
 parameter (the EDNS(0) TCP Keepalive option [RFC7828]) the result is
 less than optimal due to the restrictions imposed by the EDNS(0)
 semantics and the lack of server-initiated signalling. For example,
 a server cannot arbitrarily instruct a client to close a connection
 because the server can only send EDNS(0) options in responses to
 queries that contained EDNS(0) options.

 This document defines a new DNS OPCODE, DSO (tentatively 6), for DNS
 Stateful Operations. DSO messages are used to communicate operations
 within persistent stateful sessions, expressed using type-length-
 value (TLV) syntax. This document defines an initial set of three
 TLVs, used to manage session timeouts, termination, and encryption
 padding.

 All three of the TLVs defined here are mandatory for all
 implementations of DSO. Further TLVs may be defined in additional
 specifications.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc7828

Bellis, et al. Expires July 30, 2018 [Page 3]

Internet-Draft DNS Stateful Operations January 2018

 The format for DSO messages (see Section 4.2) differs somewhat from
 the traditional DNS message format used for standard queries and
 responses. The standard twelve-octet header is used, but the four
 count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero and
 accordingly their corresponding sections are not present. The actual
 data pertaining to DNS Stateful Operations (expressed in TLV syntax)
 is appended to the end of the DNS message header. When displayed
 using packet analyzer tools that have not been updated to recognize
 the DSO format, this will result in the DSO data being displayed as
 unknown additional data after the end of the DNS message. It is
 likely that future updates to these tools will add the ability to
 recognize, decode, and display the DSO data.

 This new format has distinct advantages over an RR-based format
 because it is more explicit and more compact. Each TLV definition is
 specific to its use case, and as a result contains no redundant or
 overloaded fields. Importantly, it completely avoids conflating DNS
 Stateful Operations in any way with normal DNS operations or with
 existing EDNS(0)-based functionality. A goal of this approach is to
 avoid the operational issues that have befallen EDNS(0), particularly
 relating to middlebox behaviour.

 With EDNS(0), multiple options may be packed into a single OPT
 pseudo-RR, and there is no generalized mechanism for a client to be
 able to tell whether a server has processed or otherwise acted upon
 each individual option within the combined OPT RR. The
 specifications for each individual option need to define how each
 different option is to be acknowledged, if necessary.

 In contrast to EDNS(0), with DSO there is no compelling motivation to
 pack multiple operations into a single message for efficiency
 reasons, because DSO always operates using a connection-oriented
 transport protocol. Each Stateful operation is communicated in its
 own separate DNS message, and the transport protocol can take care of
 packing separate DNS messages into a single IP packet if appropriate.
 For example, TCP can pack multiple small DNS messages into a single
 TCP segment. This simplification allows for clearer semantics. Each
 DSO request message communicates just one primary operation, and the
 RCODE in the corresponding response message indicates the success or
 failure of that operation.

Bellis, et al. Expires July 30, 2018 [Page 4]

Internet-Draft DNS Stateful Operations January 2018

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

 "DSO" is used to mean DNS Stateful Operation.

 The term "connection" means a bidirectional byte stream of reliable,
 in-order messages, such as provided by using DNS over TCP
 [RFC1035][RFC7766] or DNS over TLS [RFC7858].

 The unqualified term "session" in the context of this document means
 the exchange of DNS messages over a connection where:

 o The connection between client and server is persistent and
 relatively long-lived (i.e., minutes or hours, rather than
 seconds).

 o Either end of the connection may initiate messages to the other.

 A "DSO Session" is established between two endpoints that acknowledge
 persistent DNS state via the exchange of DSO messages over the
 connection. This is distinct from a DNS-over-TCP session as
 described in the previous specification for DNS over TCP [RFC7766].

 A "DSO Session" is terminated when the underlying connection is
 closed. The underlying connection can be closed in two ways.

 Where this specification says, "close gracefully," that means sending
 a TLS close_notify followed by a TCP FIN, or the equivalents for
 other protocols. Where this specification requires a connection to
 be closed gracefully, the requirement to initiate that graceful close
 is placed on the client, to place the burden of TCP's TIME-WAIT state
 on the client rather than the server.

 Where this specification says, "forcibly abort," that means sending a
 TCP RST, or the equivalent for other protocols. In the BSD Sockets
 API this is achieved by setting the SO_LINGER option to zero before
 closing the socket.

 The term "server" means the software with a listening socket,
 awaiting incoming connection requests.

 The term "client" means the software which initiates a connection to
 the server's listening socket.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7766

Bellis, et al. Expires July 30, 2018 [Page 5]

Internet-Draft DNS Stateful Operations January 2018

 The terms "initiator" and "responder" correspond respectively to the
 initial sender and subsequent receiver of a DSO request message,
 regardless of which was the "client" and "server" in the usual DNS
 sense.

 The term "sender" may apply to either an initiator (when sending a
 DSO request message) or a responder (when sending a DSO response
 message).

 Likewise, the term "receiver" may apply to either a responder (when
 receiving a DSO request message) or an initiator (when receiving a
 DSO response message).

 The term "long-lived operations" refers to operations such as Push
 Notification subscriptions [I-D.ietf-dnssd-push], Discovery Relay
 interface subscriptions [I-D.sctl-dnssd-mdns-relay], and other future
 long-lived DNS operations that choose to use DSO as their basis, that
 establish state that persists beyond the lifetime of a traditional
 brief request/response transaction. This document, the base
 specification for DNS Stateful Operations, defines a framework for
 supporting long-lived operations, but does not itself define any
 long-lived operations. Nonetheless, to appreciate the design
 rationale behind DNS Stateful Operations, it is helpful to understand
 the long-lived operations that it is intended to support.

 DNS Stateful Operations uses "DSO request messages" and "DSO response
 messages". DSO request messages are further subdivided into two
 variants, "acknowledged request messages" (which generate a
 corresponding response message) and "unacknowledged request messages"
 (which do not generate any corresponding response message).

 The content of DSO messages is expressed using type-length-value
 (TLV) syntax.

 In a DSO request message the first TLV is referred to as the "Primary
 TLV" and determines the nature of the operation being performed,
 including whether it is an acknowledged or unacknowledged operation;
 any other TLVs in a DSO request message are referred to as
 "Additional TLVs" and serve additional non-primary purposes, which
 may be related to the primary purpose, or not, as in the case of the
 encryption padding TLV.

 A DSO response message may contain no TLVs, or it may contain one or
 more TLVs as appropriate to the information being communicated. In
 the context of DSO response messages, one or more TLVs with the same
 DSO-TYPE as the Primary TLV in the corresponding DSO request message
 are referred to as "Response Primary TLVs". Any other TLVs with
 different DSO-TYPEs are referred to as "Response Additional TLVs".

Bellis, et al. Expires July 30, 2018 [Page 6]

Internet-Draft DNS Stateful Operations January 2018

 The Response Primary TLV(s), if present, MUST occur first in the
 response message, before any Response Additional TLVs.

 Two timers (elapsed time since an event) are defined in this
 document:

 o an inactivity timer (see Section 6.1 and Section 5.3)

 o a keepalive timer (see Section 6.1 and Section 5.5)

 The timeouts associated with these timers are called the inactivity
 timeout and the keepalive interval, respectively. The term "Session
 Timeouts" is used to refer to this pair of timeout values.

 Resetting a timer means resetting the timer value to zero and
 starting the timer again. Clearing a timer means resetting the timer
 value to zero but NOT starting the timer again.

Bellis, et al. Expires July 30, 2018 [Page 7]

Internet-Draft DNS Stateful Operations January 2018

3. Discussion

 There are several use cases for DNS Stateful operations that can be
 described here.

 Firstly, establishing session parameters such as server-defined
 timeouts is of great use in the general management of persistent
 connections. For example, using DSO sessions for stub to recursive
 DNS-over-TLS [RFC7858] is more flexible for both the client and the
 server than attempting to manage sessions using just the EDNS(0) TCP
 Keepalive option [RFC7828]. The simple set of TLVs defined in this
 document is sufficient to greatly enhance connection management for
 this use case.

 Secondly, DNS-SD [RFC6763] has evolved into a naturally session based
 mechanism where, for example, long-lived subscriptions lend
 themselves to 'push' mechanisms as opposed to polling. Long-lived
 stateful connections and server initiated messages align with this
 use case [I-D.ietf-dnssd-push].

 A general use case is that DNS traffic is often bursty but session
 establishment can be expensive. One challenge with long-lived
 connections is to maintain sufficient traffic to maintain NAT and
 firewall state. To mitigate this issue this document introduces a
 new concept for the DNS, that is DSO "Keepalive traffic". This
 traffic carries no DNS data and is not considered 'activity' in the
 classic DNS sense, but serves to maintain state in middleboxes, and
 to assure client and server that they still have connectivity to each
 other.

 There are a myriad of other potential use cases for DSO given the
 versatility and extensibility of this specification.

Section 4 of this document describes the protocol details of DNS
 Stateful Operations including definitions of three TLVs for session
 management and encryption padding. Section 5 presents a detailed
 discussion of the DSO Session lifecycle including an in-depth
 discussion of keepalive traffic and session termination.

https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7828
https://datatracker.ietf.org/doc/html/rfc6763

Bellis, et al. Expires July 30, 2018 [Page 8]

Internet-Draft DNS Stateful Operations January 2018

4. Protocol Details

4.1. DSO Session Establishment

 DSO messages MUST only be carried in protocols and in environments
 where a session may be established according to the definition above.
 Standard DNS over TCP [RFC1035][RFC7766], and DNS over TLS [RFC7858]
 are suitable protocols.

 DNS over plain UDP [RFC0768] is not appropriate since it fails on the
 requirement for in-order message delivery, and, in the presence of
 NAT gateways and firewalls with short UDP timeouts, it fails to
 provide a persistent bi-directional communication channel unless an
 excessive amount of keepalive traffic is used.

 In some environments it may be known in advance by external means
 that both client and server support DSO, and in these cases either
 client or server may initiate DSO messages at any time.

 However, in the typical case a server will not know in advance
 whether a client supports DSO, so in general, unless it is known in
 advance by other means that a client does support DSO, a server MUST
 NOT initiate DSO request messages until a DSO Session has been
 mutually established, as described below. Similarly, unless it is
 known in advance by other means that a server does support DSO, a
 client MUST NOT initiate non-response-requiring DSO request messages
 until after a DSO Session has been mutually established.

 Whether or not a given DSO request message elicits a response is
 determined by whether or not the first DSO TLV (see Section 4.2.2.1)
 in the message (the Primary TLV) is one that is specified to generate
 a response. Whether a Primary TLV will be specified to elicit a
 response will depend on the intended use pattern for that particular
 TLV.

 A DSO Session is established over a connection by the client sending
 a DSO request message of a kind that requires a response, such as the
 DSO Keepalive TLV (see Section 6.1), and receiving a response, with
 matching MESSAGE ID, and RCODE set to NOERROR (0), indicating that
 the DSO request was successful.

 If the RCODE is set to DSONOTIMP (tentatively 11) this indicates that
 the server does support DSO, but does not support the particular
 operation the client requested. A server MUST NOT return DSONOTIMP
 for the DSO Keepalive TLV, but a DSONOTIMP response could happen in
 the future, if a client attempts to establish a DSO Session using a
 future response-requiring DSO TLV that the server does not
 understand. If the server returns DSONOTIMP then a DSO Session is

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc0768

Bellis, et al. Expires July 30, 2018 [Page 9]

Internet-Draft DNS Stateful Operations January 2018

 not considered established, but the client is permitted to continue
 sending DNS messages on the connection, including other response-
 requiring DSO messages such as the DSO Keepalive, which may result in
 a successful NOERROR response, yielding the establishment of a DSO
 Session.

 If the RCODE is set to any value other than NOERROR (0) or DSONOTIMP
 (tentatively 11), then the client should assume that the server does
 not support DSO. In this case the client is permitted to continue
 sending DNS messages on that connection, but the client SHOULD NOT
 issue further DSO messages on that connection.

 When the server receives a response-requiring DSO request message
 from a client, and transmits a successful NOERROR response to that
 request, the server considers the DSO Session established.

 When the client receives the server's NOERROR response to its DSO
 request message, the client considers the DSO Session established.

 Once a DSO Session has been established, either end may unilaterally
 send DSO messages at any time, and therefore either client or server
 may be the initiator of a message.

 Once a DSO Session has been established, clients and servers should
 behave as described in this specification with regard to inactivity
 timeouts and session termination, not as previously prescribed in the
 earlier specification for DNS over TCP [RFC7766].

https://datatracker.ietf.org/doc/html/rfc7766

Bellis, et al. Expires July 30, 2018 [Page 10]

Internet-Draft DNS Stateful Operations January 2018

4.1.1. Connection Sharing

 As previously specified for DNS over TCP [RFC7766], to mitigate the
 risk of unintentional server overload, DNS clients MUST take care to
 minimize the number of concurrent TCP connections made to any
 individual server. It is RECOMMENDED that for any given client/
 server interaction there SHOULD be no more than one connection for
 regular queries, one for zone transfers, and one for each protocol
 that is being used on top of TCP (for example, if the resolver was
 using TLS). However, it is noted that certain primary/secondary
 configurations with many busy zones might need to use more than one
 TCP connection for zone transfers for operational reasons (for
 example, to support concurrent transfers of multiple zones).

 A single server may support multiple services, including DNS Updates
 [RFC2136], DNS Push Notifications [I-D.ietf-dnssd-push], and other
 services, for one or more DNS zones. When a client discovers that
 the target server for several different operations is the same target
 hostname and port, the client SHOULD use a single shared DSO Session
 for all those operations. A client SHOULD NOT open multiple
 connections to the same target host and port just because the names
 being operated on are different or happen to fall within different
 zones. This is to reduce unnecessary connection load on the DNS
 server.

 However, server implementers and operators should be aware that
 connection sharing may not be possible in all cases. A single host
 device may be home to multiple independent client software instances
 that don't coordinate with each other. Similarly, multiple
 independent client devices behind the same NAT gateway will also
 typically appear to the DNS server as different source ports on the
 same client IP address. Because of these constraints, a DNS server
 MUST be prepared to accept multiple connections from different source
 ports on the same client IP address.

https://datatracker.ietf.org/doc/html/rfc7766
https://datatracker.ietf.org/doc/html/rfc2136

Bellis, et al. Expires July 30, 2018 [Page 11]

Internet-Draft DNS Stateful Operations January 2018

4.1.2. Zero Round-Trip Operation

 There is increased awareness today of the performance benefits of
 eliminating round trips in session establishment. Technologies like
 TCP Fast Open [RFC7413] and TLS 1.3 [I-D.ietf-tls-tls13] provide
 mechanisms to reduce or eliminate round trips in session
 establishment.

 Similarly, DSO supports zero round-trip operation.

 Having initiated a connection to a server, possibly using zero round-
 trip TCP Fast Open and/or zero round-trip TLS 1.3, a client MAY send
 multiple response-requiring DSO request messages to the server in
 succession without having to wait for a response to the first request
 message to confirm successful establishment of a DSO session.

 However, a client MUST NOT send non-response-requiring DSO request
 messages until after a DSO Session has been mutually established.

 Similarly, a server MUST NOT send DSO request messages until it has
 received a response-requiring DSO request message from a client and
 transmitted a successful NOERROR response for that request.

4.1.3. Middlebox Considerations

 Where an application-layer middlebox (e.g., a DNS proxy, forwarder,
 or session multiplexer) is in the path the middlebox MUST NOT blindly
 forward DSO messages in either direction, and MUST treat the inbound
 and outbound connections as separate sessions. This does not
 preclude the use of DSO messages in the presence of an IP-layer
 middlebox, such as a NAT that rewrites IP-layer and/or transport-
 layer headers but otherwise preserves the effect of a single session
 between the client and the server.

 To illustrate the above, consider a network where a middlebox
 terminates one or more TCP connections from clients and multiplexes
 the queries therein over a single TCP connection to an upstream
 server. The DSO messages and any associated state are specific to
 the individual TCP connections. A DSO-aware middlebox MAY in some
 circumstances be able to retain associated state and pass it between
 the client and server (or vice versa) but this would be highly TLV-
 specific. For example, the middlebox may be able to maintain a list
 of which clients have made Push Notification subscriptions
 [I-D.ietf-dnssd-push] and make its own subscription(s) on their
 behalf, relaying any subsequent notifications to the client (or
 clients) that have subscribed to that particular notification.

https://datatracker.ietf.org/doc/html/rfc7413

Bellis, et al. Expires July 30, 2018 [Page 12]

Internet-Draft DNS Stateful Operations January 2018

4.2. Message Format

 A DSO message begins with the standard twelve-octet DNS message
 header [RFC1035] with the OPCODE field set to the DSO OPCODE
 (tentatively 6). However, unlike standard DNS messages, the question
 section, answer section, authority records section and additional
 records sections are not present. The corresponding count fields
 (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) MUST be set to zero on
 transmission.

 If a DSO message is received where any of the count fields are not
 zero, then a FORMERR MUST be returned, unless a future IETF Standard
 specifies otherwise.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | MESSAGE ID |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 |QR | OPCODE | Z | RCODE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | QDCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ANCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | NSCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ARCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / DSO Data /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

https://datatracker.ietf.org/doc/html/rfc1035

Bellis, et al. Expires July 30, 2018 [Page 13]

Internet-Draft DNS Stateful Operations January 2018

4.2.1. DNS Header Fields in DSO Messages

 In an unacknowledged request message the MESSAGE ID field MUST be set
 to zero. In an acknowledged request message the MESSAGE ID field
 MUST be set to a unique nonzero value, that the initiator is not
 currently using for any other active operation on this connection.
 For the purposes here, a MESSAGE ID is in use in this DSO Session if
 the initiator has used it in a request for which it is still awaiting
 a response, or if the client has used it to setup a long-lived
 operation that has not yet been cancelled. For example, a long-lived
 operation could be a Push Notification subscription
 [I-D.ietf-dnssd-push] or a Discovery Relay interface subscription
 [I-D.sctl-dnssd-mdns-relay].

 Whether a message is acknowledged or unacknowledged is determined
 only by the specification for the Primary TLV. An acknowledgment
 cannot be requested by including a nonzero message ID in a message
 the primary TLV of which is specified to be unacknowledged, nor can
 an acknowledgment be prevented by sending a message ID of zero in a
 message with a primary TLV that is specified to be acknowledged. A
 responder that receives either such malformed message MUST treat it
 as a programming error and terminate the connection.

 In a request message the DNS Header QR bit MUST be zero (QR=0).
 If the QR bit is not zero the message is not a request message.

 In a response message the DNS Header QR bit MUST be one (QR=1).
 If the QR bit is not one the message is not a response message.

 In a response message (QR=1) the MESSAGE ID field MUST contain a copy
 of the value of the MESSAGE ID field in the acknowledged request
 message being responded to. In a response message (QR=1) the MESSAGE
 ID field MUST NOT be zero. If a response message (QR=1) is received
 where the MESSAGE ID is zero this is a fatal error and the receiver
 MUST forcibly abort the connection immediately.

 The DNS Header OPCODE field holds the DSO OPCODE value (tentatively
 6).

 The Z bits are currently unused in DSO messages, and in both DSO
 requests and DSO responses the Z bits MUST be set to zero (0) on
 transmission and MUST be silently ignored on reception, unless a
 future IETF Standard specifies otherwise.

Bellis, et al. Expires July 30, 2018 [Page 14]

Internet-Draft DNS Stateful Operations January 2018

 In a request message (QR=0) the RCODE is generally set to zero on
 transmission, and silently ignored on reception, except where
 specified otherwise (for example, the Retry Delay request message
 (see Section 5.6.3), where the RCODE indicates the reason for
 termination).

 The RCODE value in a response message (QR=1) may be one of the
 following values:

 +------+-----------+--+
 | Code | Mnemonic | Description |
 +------+-----------+--+
0	NOERROR	Operation processed successfully
1	FORMERR	Format error
2	SERVFAIL	Server failed to process request due to a
		problem with the server
3	NXDOMAIN	Name Error -- Named entity does not exist
		(TLV-dependent)
4	NOTIMP	DSO not supported
5	REFUSED	Operation declined for policy reasons
9	NOTAUTH	Not Authoritative (TLV-dependent)
11	DSONOTIMP	DSO type code not supported
 +------+-----------+--+

 Use of the above RCODEs is likely to be common in DSO but does not
 preclude the definition and use of other codes in future documents
 that make use of DSO.

 If a document defining a new DSO TLV makes use of NXDOMAIN (Name
 Error) or NOTAUTH (Not Authoritative) then that document MUST specify
 the specific interpretation of these RCODE values in the context of
 that new DSO TLV.

Bellis, et al. Expires July 30, 2018 [Page 15]

Internet-Draft DNS Stateful Operations January 2018

4.2.2. DSO Data

 The standard twelve-octet DNS message header with its zero-valued
 count fields is followed by the DSO Data, expressed using TLV syntax,
 as described below Section 4.2.2.1.

 A DSO message may be either a request message or a response message,
 as indicated by the QR bit in the DNS message header. DSO request
 messages are further subdivided into two variants, acknowledged
 request messages (which generate a corresponding response message)
 and unacknowledged request messages (which do not generate any
 corresponding response message).

 A DSO request message MUST contain at least one TLV. The first TLV
 in a DSO request message is referred to as the "Primary TLV" and
 determines the nature of the operation being performed, including
 whether it is an acknowledged or unacknowledged operation. In some
 cases it may be appropriate to include other TLVs in a request
 message, such as the Encryption Padding TLV (Section 6.3), and these
 extra TLVs are referred to as the "Additional TLVs".

 A DSO response message may contain no TLVs, or it may be specified to
 contain one or more TLVs appropriate to the information being
 communicated.

 A DSO response message may contain one or more TLVs with DSO-TYPE the
 same as the Primary TLV from the corresponding DSO request message,
 in which case those TLV(s) are referred to as "Response Primary
 TLVs". A DSO response message is not required to carry Response
 Primary TLVs. The MESSAGE ID field in the DNS message header is
 sufficient to identify to which DSO request message this response
 message relates.

 A DSO response message may contain one or more TLVs with DSO-TYPEs
 different from the Primary TLV from the corresponding DSO request
 message, in which case those TLV(s) are referred to as "Response
 Additional TLVs".

 Response Primary TLV(s), if present, MUST occur first in the response
 message, before any Response Additional TLVs.

 It is anticipated that by default most DSO request messages will be
 specified to be acknowledged request messages, which generate
 corresponding responses. In some specialized high-traffic use cases,
 it may be appropriate to specify unacknowledged request messages.
 Unacknowledged request messages can be more efficient on the network,
 because they don't generate a stream of corresponding reply messages.
 Using unacknowledged request messages can also simplify software in

Bellis, et al. Expires July 30, 2018 [Page 16]

Internet-Draft DNS Stateful Operations January 2018

 some cases, by removing need for an initiator to maintain state while
 it waits to receive replies it doesn't care about. When the
 specification for a particular TLV states that, when used as a
 Primary TLV (i.e., first) in a request message, that request message
 is to be unacknowledged, the MESSAGE ID field MUST be set to zero and
 the receiver MUST NOT generate any response message corresponding to
 this unacknowledged request message.

 The previous point, that the receiver MUST NOT generate responses to
 unacknowledged request messages, applies even in the case of errors.
 When a DSO request message is received with the MESSAGE ID field set
 to zero, the receiver MUST NOT generate any response. For example,
 if the DSO-TYPE in the Primary TLV is unrecognized, then a DSONOTIMP
 error MUST NOT be returned; instead the receiver MUST forcibly abort
 the connection immediately.

 Unacknowledged request messages MUST NOT be used "speculatively" in
 cases where the sender doesn't know if the receiver supports the
 Primary TLV in the message, because there is no way to receive any
 response to indicate success or failure of the request message (the
 request message does not contain a unique MESSAGE ID with which to
 associate a response with its corresponding request). Unacknowledged
 request messages are only appropriate in cases where the sender
 already knows that the receiver supports and wishes to receive these
 messages.

 For example, after a client has subscribed for Push Notifications
 [I-D.ietf-dnssd-push], the subsequent event notifications are then
 sent as unacknowledged messages, and this is appropriate because the
 client initiated the message stream by virtue of its Push
 Notification subscription, thereby indicating its support of Push
 Notifications, and its desire to receive those notifications.

 Similarly, after an mDNS Relay client has subscribed to receive
 inbound mDNS traffic from an mDNS Relay, the subsequent stream of
 received packets is then sent using unacknowledged messages, and this
 is appropriate because the client initiated the message stream by
 virtue of its mDNS Relay link subscription, thereby indicating its
 support of mDNS Relay, and its desire to receive inbound mDNS packets
 over that DSO session [I-D.sctl-dnssd-mdns-relay].

Bellis, et al. Expires July 30, 2018 [Page 17]

Internet-Draft DNS Stateful Operations January 2018

4.2.2.1. TLV Syntax

 All TLVs, whether used as "Primary", "Additional", "Response
 Primary", or "Response Additional", use the same encoding syntax.

 The specification for a TLV determines whether, when used as the
 Primary (i.e., first) TLV in a request message, that request message
 is to be acknowledged. If the request message is to be acknowledged,
 the specification also states which TLVs, if any, are to be included
 in the response. The Primary TLV may or may not be contained in the
 response, depending on what is stated in the specification for that
 TLV.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO-TYPE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO DATA LENGTH |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / TYPE-DEPENDENT DATA /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 DSO-TYPE: A 16-bit unsigned integer in network (big endian) byte
 order giving the type of the current DSO TLV per the IANA DSO Type
 Code Registry.

 DSO DATA LENGTH: A 16-bit unsigned integer in network (big endian)
 byte order giving the size in octets of the TYPE-DEPENDENT DATA.

 TYPE-DEPENDENT DATA: Type-code specific format.

 Where domain names appear within TYPE-DEPENDENT DATA, they MAY
 be compressed using standard DNS name compression [RFC1035].
 However, the compression offsets MUST be relative to the start of the
 TYPE-DEPENDENT DATA and MUST NOT extend beyond the end of the TYPE-
 DEPENDENT DATA.

https://datatracker.ietf.org/doc/html/rfc1035

Bellis, et al. Expires July 30, 2018 [Page 18]

Internet-Draft DNS Stateful Operations January 2018

4.2.2.2. Request TLVs

 The first TLV in a DSO request message is the "Primary TLV" and
 indicates the operation to be performed. A DSO request message MUST
 contain at at least one TLV, the Primary TLV.

 Immediately following the Primary TLV, a DSO request message MAY
 contain one or more "Additional TLVs", which specify additional
 parameters relating to the operation.

4.2.2.3. Response TLVs

 Depending on the operation, a DSO response message MAY contain no
 TLVs, because it is simply a response to a previous request message,
 and the MESSAGE ID in the header is sufficient to identify the
 request in question. Or it may contain a single response TLV, with
 the same DSO-TYPE as the Primary TLV in the request message.
 Alternatively it may contain one or more TLVs of other types, or a
 combination of the above, as appropriate for the information that
 needs to be communicated. The specification for each DSO TLV
 determines what TLVs are required in a response to a request using
 that TLV.

 If a DSO response is received for an operation where the
 specification requires that the response carry a particular TLV or
 TLVs, and the required TLV(s) are not present, then this is a fatal
 error and the recipient of the defective response message MUST
 forcibly abort the connection immediately.

Bellis, et al. Expires July 30, 2018 [Page 19]

Internet-Draft DNS Stateful Operations January 2018

4.2.2.4. Unrecognized TLVs

 If DSO request is received containing an unrecognized Primary TLV,
 with a nonzero MESSAGE ID (indicating that a response is expected),
 then the receiver MUST send a response with matching MESSAGE ID, and
 RCODE DSONOTIMP (tentatively 11). The response MUST NOT contain a
 copy of the unrecognized Primary TLV.

 If DSO request is received containing an unrecognized Primary TLV,
 with a zero MESSAGE ID (indicating that no response is expected), the
 receiver MUST silently ignore the message. A response MUST NOT be
 sent.

 If a DSO request message is received where the Primary TLV is
 recognized, containing one or more unrecognized Additional TLVs, the
 unrecognized Additional TLVs MUST be silently ignored, and the
 remainder of the message is interpreted and handled as if the
 unrecognized parts were not present.

 Similarly, if a DSO response message is received containing one or
 more unrecognized TLVs, the unrecognized TLVs MUST be silently
 ignored, and the remainder of the message is interpreted and handled
 as if the unrecognized parts were not present.

Bellis, et al. Expires July 30, 2018 [Page 20]

Internet-Draft DNS Stateful Operations January 2018

4.2.3. EDNS(0) and TSIG

 Since the ARCOUNT field MUST be zero, a DSO message MUST NOT contain
 an EDNS(0) option in the additional records section. If
 functionality provided by current or future EDNS(0) options is
 desired for DSO messages, one or more new DSO TLVs need to be defined
 to carry the necessary information.

 For example, the EDNS(0) Padding Option [RFC7830] used for security
 purposes is not permitted in a DSO message, so if message padding is
 desired for DSO messages then the Encryption Padding TLV described in

Section 6.3 MUST be used.

 Similarly, a DSO message MUST NOT contain a TSIG record. A TSIG
 record in a conventional DNS message is added as the last record in
 the additional records section, and carries a signature computed over
 the preceding message content. Since DSO data appears after the
 additional records section, it would not be included in the signature
 calculation. If use of signatures with DSO messages becomes
 necessary in the future, a new DSO TLV needs to be defined to perform
 this function.

 Note however that, while DSO *messages* cannot include EDNS(0) or
 TSIG records, a DSO *session* is typically used to carry a whole
 series of DNS messages of different kinds, including DSO messages,
 and other DNS message types like Query [RFC1034] [RFC1035] and Update
 [RFC2136], and those messages can carry EDNS(0) and TSIG records.

 This specification explicitly prohibits use of the EDNS(0) TCP
 Keepalive Option [RFC7828] in *any* messages sent on a DSO Session
 (because it is obsoleted by the functionality provided by the DSO
 Keepalive operation), but messages may contain other EDNS(0) options
 as appropriate.

https://datatracker.ietf.org/doc/html/rfc7830
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc7828

Bellis, et al. Expires July 30, 2018 [Page 21]

Internet-Draft DNS Stateful Operations January 2018

4.3. Message Handling

 The initiator MUST set the value of the QR bit in the DNS header to
 zero (0), and the responder MUST set it to one (1). Every DSO
 request message (QR=0) with a nonzero MESSAGE ID field MUST elicit a
 corresponding response (QR=1), which MUST have the same MESSAGE ID in
 the DNS message header as in the corresponding request. DSO request
 messages sent by the client with a nonzero MESSAGE ID field elicit a
 response from the server, and DSO request messages sent by the server
 with a nonzero MESSAGE ID field elicit a response from the client.

 A DSO request message (QR=0) with a zero MESSAGE ID field MUST NOT
 elicit a response.

 The namespaces of 16-bit MESSAGE IDs are disjoint in each direction.
 For example, it is *not* an error for both client and server to send
 a request message with the same ID. In effect, the 16-bit MESSAGE ID
 combined with the identity of the initiator (client or server) serves
 as a 17-bit unique identifier for a particular operation on a DSO
 Session.

 As described in Section 4.2.1 An initiator MUST NOT reuse a MESSAGE
 ID that is already in use for an outstanding request, unless
 specified otherwise by the relevant specification for the DSO in
 question. At the very least, this means that a MESSAGE ID MUST NOT
 be reused in a particular direction on a particular DSO Session while
 the initiator is waiting for a response to a previous request using
 that MESSAGE ID on that DSO Session, unless specified otherwise by
 the relevant specification for the DSO in question. (For a long-
 lived operation the MESSAGE ID for the operation MUST NOT be reused
 whilst that operation remains active.)

 If a client or server receives a response (QR=1) where the MESSAGE ID
 is zero, or any other value that does not match the MESSAGE ID of any
 of its outstanding operations, this is a fatal error and the
 recipient MUST forcibly abort the connection immediately.

Bellis, et al. Expires July 30, 2018 [Page 22]

Internet-Draft DNS Stateful Operations January 2018

4.4. DSO Response Generation

 With most TCP implementations, for DSO requests that generate a
 response, the TCP data acknowledgement (generated because data has
 been received by TCP), the TCP window update (generated because TCP
 has delivered that data to the receiving software), and the DSO
 response (generated by the receiving application-layer software
 itself) are all combined into a single IP packet. Combining these
 three elements into a single IP packet gives a potentially
 significant improvement in network efficiency.

 For DSO requests that do not generate a response, the TCP
 implementation generally doesn't have any way to know that no
 response will be forthcoming, so it waits fruitlessly for the
 application-layer software to generate a response, until the Delayed
 ACK timer fires [RFC1122] (typically 200 milliseconds) and only then
 does it send the TCP ack and window update. In conjunction with
 Nagle's Algorithm at the sender, this can delay the sender's
 transmission of its next (non-full-sized) TCP segment, while the
 sender is waiting for its previous (non-full-sized) TCP segment to be
 acknowledged, which won't happen until the Delayed ACK timer fires.
 Nagle's Algorithm exists to combine multiple small application writes
 into more efficient large TCP segments, to guard against wasteful use
 of the network by applications that would otherwise transmit a stream
 of small TCP segments, but in this case Nagle's Algorithm (created to
 improve network efficiency) can interact badly with TCP's Delayed ACK
 feature (also created to improve network efficiency) [NagleDA] with
 the result of delaying some messages by up to 200 milliseconds.

 Possible mitigations for this problem include:

 o Disabling Nagle's Algorithm at the sender.
 This is not great, because it results
 in less efficient use of the network.

 o Disabling Delayed ACK at the receiver.
 This is not great, because it results
 in less efficient use of the network.

 o Using a networking API that lets the receiver signal to the TCP
 implementation that the receiver has received and processed a
 client request for which it will not be generating any immediate
 response. This allows the TCP implementation to operate
 efficiently in both cases; for requests that generate a response,
 the TCP ack, window update, and DSO response are transmitted
 together in a single TCP segment, and for requests that do not
 generate a response, the application-layer software informs the
 TCP implementation that it should go ahead and send the TCP ack

https://datatracker.ietf.org/doc/html/rfc1122

Bellis, et al. Expires July 30, 2018 [Page 23]

Internet-Draft DNS Stateful Operations January 2018

 and window update immediately, without waiting for the Delayed ACK
 timer. Unfortunately it is not known at this time which (if any)
 of the widely-available networking APIs currently include this
 capability.

4.5. Responder-Initiated Operation Cancellation

 This document, the base specification for DNS Stateful Operations,
 does not itself define any long-lived operations, but it defines a
 framework for supporting long-lived operations such as Push
 Notification subscriptions [I-D.ietf-dnssd-push] and Discovery Relay
 interface subscriptions [I-D.sctl-dnssd-mdns-relay].

 Generally speaking, a long-lived operation is initiated by the
 initiator, and, if successful, remains active until the initiator
 terminates the operation.

 However, it is possible that a long-lived operation may be valid at
 the time it was initiated, but then a later change of circumstances
 may render that previously valid operation invalid.

 For example, a long-lived client operation may pertain to a name that
 the server is authoritative for, but then the server configuration is
 changed such that it is no longer authoritative for that name.

 In such cases, instead of terminating the entire session it may be
 desirable for the responder to be able to cancel selectively only
 those operations that have become invalid.

 The responder performs this selective cancellation by sending a new
 response message, with the MESSAGE ID field containing the MESSAGE ID
 of the long-lived operation that is to be terminated (that it had
 previously acknowledged with a NOERROR RCODE), and the RCODE field of
 the new response message giving the reason for cancellation.

 After a response message with nonzero RCODE has been sent, that
 operation has been terminated from the responder's point of view, and
 the responder sends no more messages relating to that operation.

 After a response message with nonzero RCODE has been received by the
 initiator, that operation has been terminated from the initiator's
 point of view, and its MESSAGE ID is now free for reuse.

Bellis, et al. Expires July 30, 2018 [Page 24]

Internet-Draft DNS Stateful Operations January 2018

5. DSO Session Lifecycle and Timers

5.1. DSO Session Initiation

 A DSO Session begins as described in Section 4.1.

 The client may perform as many DNS operations as it wishes using the
 newly created DSO Session. Operations SHOULD be pipelined (i.e., the
 client doesn't need wait for a response before sending the next
 message). The server MUST act on messages in the order they are
 transmitted, but responses to those messages SHOULD be sent out of
 order when appropriate.

5.2. DSO Session Timeouts

 Two timeout values are associated with a DSO Session: the inactivity
 timeout, and the keepalive interval.

 The first timeout value, the inactivity timeout, is the maximum time
 for which a client may speculatively keep a DSO Session open in the
 expectation that it may have future requests to send to that server.

 The second timeout value, the keepalive interval, is the maximum
 permitted interval between client messages to the server if the
 client wishes to keep the DSO Session alive.

 The two timeout values are independent. The inactivity timeout may
 be lower, the same, or higher than the keepalive interval, though in
 most cases the inactivity timeout is expected to be shorter than the
 keepalive interval.

 Only when the client has a very long-lived low-traffic operation does
 the keepalive interval come into play, to ensure that a sufficient
 residual amount of traffic is generated to maintain NAT and firewall
 state and to assure client and server that they still have
 connectivity to each other.

 On a new DSO Session, if no explicit DSO Keepalive message exchange
 has taken place, the default value for both timeouts is 15 seconds.
 For both timeouts, lower values of the timeout result in higher
 network traffic and higher CPU load on the server.

Bellis, et al. Expires July 30, 2018 [Page 25]

Internet-Draft DNS Stateful Operations January 2018

5.3. Inactive DSO Sessions

 At both servers and clients, the generation or reception of any
 complete DNS message, including DNS requests, responses, updates, or
 DSO messages, resets both timers for that DSO Session, with the
 exception that a DSO Keepalive message resets only the keepalive
 timer, not the inactivity timeout timer.

 In addition, for as long as the client has an outstanding operation
 in progress, the inactivity timer remains cleared, and an inactivity
 timeout cannot occur.

 For short-lived DNS operations like traditional queries and updates,
 an operation is considered in progress for the time between request
 and response, typically a period of a few hundred milliseconds at
 most. At the client, the inactivity timer is cleared upon
 transmission of a request and remains cleared until reception of the
 corresponding response. At the server, the inactivity timer is
 cleared upon reception of a request and remains cleared until
 transmission of the corresponding response.

 For long-lived DNS Stateful operations (such as a Push Notification
 subscription [I-D.ietf-dnssd-push] or a Discovery Relay interface
 subscription [I-D.sctl-dnssd-mdns-relay]), an operation is considered
 in progress for as long as the operation is active, until it is
 cancelled. This means that a DSO Session can exist, with active
 operations, with no messages flowing in either direction, for far
 longer than the inactivity timeout, and this is not an error. This
 is why there are two separate timers: the inactivity timeout, and the
 keepalive interval. Just because a DSO Session has no traffic for an
 extended period of time does not automatically make that DSO Session
 "inactive", if it has an active operation that is awaiting events.

5.4. The Inactivity Timeout

 The purpose of the inactivity timeout is for the server to balance
 its trade off between the costs of setting up new DSO Sessions and
 the costs of maintaining inactive DSO Sessions. A server with
 abundant DSO Session capacity can offer a high inactivity timeout, to
 permit clients to keep a speculative DSO Session open for a long
 time, to save the cost of establishing a new DSO Session for future
 communications with that server. A server with scarce memory
 resources can offer a low inactivity timeout, to cause clients to
 promptly close DSO Sessions whenever they have no outstanding
 operations with that server, and then create a new DSO Session later
 when needed.

Bellis, et al. Expires July 30, 2018 [Page 26]

Internet-Draft DNS Stateful Operations January 2018

5.4.1. Closing Inactive DSO Sessions

 A client is NOT required to wait until the inactivity timeout expires
 before closing a DSO Session. A client MAY close a DSO Session at
 any time, at the client's discretion. If a client determines that it
 has no current or reasonably anticipated future need for an inactive
 DSO Session, then the client SHOULD close that connection.

 If, at any time during the life of the DSO Session, the inactivity
 timeout value (i.e., 15 seconds by default) elapses without there
 being any operation active on the DSO Session, the client MUST close
 the connection gracefully.

 If, at any time during the life of the DSO Session, twice the
 inactivity timeout value (i.e., 30 seconds by default), or five
 seconds, if twice the inactivity timeout value is less than five
 seconds, elapses without there being any operation active on the DSO
 Session, the server SHOULD consider the client delinquent, and SHOULD
 forcibly abort the DSO Session.

 In this context, an operation being active on a DSO Session includes
 a query waiting for a response, an update waiting for a response, or
 an active long-lived operation, but not a DSO Keepalive message
 exchange itself. A DSO Keepalive message exchange resets only the
 keepalive interval timer, not the inactivity timeout timer.

 If the client wishes to keep an inactive DSO Session open for longer
 than the default duration without having to send traffic every 15
 seconds, then it uses the DSO Keepalive message to request longer
 timeout values, as described in Section 6.1.

5.4.2. Values for the Inactivity Timeout

 For the inactivity timeout value, lower values result in more
 frequent DSO Session teardown and re-establishment. Higher values
 result in lower traffic and lower CPU load on the server, but higher
 memory burden to maintain state for inactive DSO Sessions.

 A server may dictate (in a server-initiated Keepalive message, or in
 a response to a client-initiated Keepalive request message) any value
 it chooses for the inactivity timeout. When a connection's
 inactivity timeout is reached the client MUST begin closing the idle
 connection, but a client is NOT REQUIRED to keep an idle connection
 open until the inactivity timeout is reached -- a client SHOULD begin
 closing the connection sooner if it has no reason to expect future
 operations with that server before the inactivity timeout is reached.

Bellis, et al. Expires July 30, 2018 [Page 27]

Internet-Draft DNS Stateful Operations January 2018

 A shorter inactivity timeout with a longer keepalive interval signals
 to the client that it should not speculatively keep an inactive DSO
 Session open for very long without reason, but when it does have an
 active reason to keep a DSO Session open, it doesn't need to be
 sending an aggressive level of keepalive traffic to maintain that
 session.

 A longer inactivity timeout with a shorter keepalive interval signals
 to the client that it may speculatively keep an inactive DSO Session
 open for a long time, but to maintain that inactive DSO Session it
 should be sending a lot of keepalive traffic. This configuration is
 expected to be less common.

 A server may dictate any value it chooses for the inactivity timeout
 (either in a response to a client-initiated request, or in a server-
 initiated message) including values under one second, or even zero.

 An inactivity timeout of zero informs the client that it should not
 speculatively maintain idle connections at all, and as soon as the
 client has completed the operation or operations relating to this
 server, the client should immediately begin closing this session.

 An inactivity timeout of 0xFFFFFFFF (2^32-1 milliseconds,
 approximately 49.7 days) informs the client that it may keep an idle
 connection open as long as it wishes. Note that after granting an
 unlimited inactivity timeout in this way, at any point the server may
 revise that inactivity timeout by sending a new Keepalive TLV
 dictating new Session Timeout values to the client.

 A server will abort an idle client session after twice the inactivity
 timeout value, or five seconds, whichever is greater. In the case of
 a zero inactivity timeout value, this means that if a client fails to
 close an idle client session then the server will forcibly abort the
 idle session after five seconds.

Bellis, et al. Expires July 30, 2018 [Page 28]

Internet-Draft DNS Stateful Operations January 2018

5.5. The Keepalive Interval

 The purpose of the keepalive interval is to manage the generation of
 sufficient messages to maintain state in middleboxes (such at NAT
 gateways or firewalls) and for the client and server to periodically
 verify that they still have connectivity to each other. This allows
 them to clean up state when connectivity is lost, and attempt re-
 connection if appropriate.

5.5.1. Keepalive Interval Expiry

 If, at any time during the life of the DSO Session, the keepalive
 interval value (i.e., 15 seconds by default) elapses without any DNS
 messages being sent or received on a DSO Session, the client MUST
 take action to keep the DSO Session alive, by sending a DSO Keepalive
 message (see Section 6.1). A DSO Keepalive message exchange resets
 only the keepalive timer, not the inactivity timer.

 If a client disconnects from the network abruptly, without cleanly
 closing its DSO Session, leaving a long-lived operation uncanceled,
 the server learns of this after failing to receive the required
 keepalive traffic from that client. If, at any time during the life
 of the DSO Session, twice the keepalive interval value (i.e., 30
 seconds by default) elapses without any DNS messages being sent or
 received on a DSO Session, the server SHOULD consider the client
 delinquent, and SHOULD forcibly abort the DSO Session.

5.5.2. Values for the Keepalive Interval

 For the keepalive interval value, lower values result in a higher
 volume of keepalive traffic. Higher values of the keepalive interval
 reduce traffic and CPU load, but have minimal effect on the memory
 burden at the server, because clients keep a DSO Session open for the
 same length of time (determined by the inactivity timeout) regardless
 of the level of keepalive traffic required.

 It may be appropriate for clients and servers to select different
 keepalive interval values depending on the nature of the network they
 are on.

 A corporate DNS server that knows it is serving only clients on the
 internal network, with no intervening NAT gateways or firewalls, can
 impose a higher keepalive interval, because frequent keepalive
 traffic is not required.

 A public DNS server that is serving primarily residential consumer
 clients, where it is likely there will be a NAT gateway on the path,

Bellis, et al. Expires July 30, 2018 [Page 29]

Internet-Draft DNS Stateful Operations January 2018

 may impose a lower keepalive interval, to generate more frequent
 keepalive traffic.

 A smart client may be adaptive to its environment. A client using a
 private IPv4 address [RFC1918] to communicate with a DNS server at an
 address outside that IPv4 private address block, may conclude that
 there is likely to be a NAT gateway on the path, and accordingly
 request a lower keepalive interval.

 By default it is RECOMMENDED that clients request, and servers grant,
 a keepalive interval of 60 minutes. This keepalive interval provides
 for reasonably timely detection if a client abruptly disconnects
 without cleanly closing the session, and is sufficient to maintain
 state in firewalls and NAT gateways that follow the IETF recommended
 Best Current Practice that the "established connection idle-timeout"
 used by middleboxes be at least 2 hours 4 minutes [RFC5382].

 Note that the lower the keepalive interval value, the higher the load
 on client and server. For example, a hypothetical keepalive interval
 value of 100ms would result in a continuous stream of at least ten
 messages per second, in both directions, to keep the DSO Session
 alive. And, in this extreme example, a single packet loss and
 retransmission over a long path could introduce a momentary pause in
 the stream of messages, long enough to cause the server to
 overzealously abort the connection.

 Because of this concern, the server MUST NOT send a Keepalive message
 (either a response to a client-initiated request, or a server-
 initiated message) with a keepalive interval value less than ten
 seconds. If a client receives a Keepalive message specifying a
 keepalive interval value less than ten seconds this is an error and
 the client MUST forcibly abort the connection immediately.

 A keepalive interval value of 0xFFFFFFFF (2^32-1 milliseconds,
 approximately 49.7 days) informs the client that it should generate
 no keepalive traffic. Note that after signaling that the client
 should generate no keepalive traffic in this way, at any point the
 server may revise that keepalive traffic requirement by sending a new
 Keepalive TLV dictating new Session Timeout values to the client.

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc5382

Bellis, et al. Expires July 30, 2018 [Page 30]

Internet-Draft DNS Stateful Operations January 2018

5.6. Server-Initiated Session Termination

 In addition to cancelling individual operations selectively (see
Section 4.5) there are also occasions where a server may need to

 terminate one or more entire sessions wholesale. An entire session
 may need to be terminated if the client is defective in some way, or
 departs from the network without closing its session. Sessions may
 also need to be terminated if the server becomes overloaded, or if
 the server is reconfigured and lacks the ability to be selective
 about which operations need to be cancelled.

 This section discusses various reasons a session may be terminated,
 and the mechanisms for doing so.

5.6.1. Server-Initiated Session Termination on Error

 After sending an error response to a client, the server MAY end the
 DSO Session, or may allow the DSO Session to remain open. For error
 conditions that only affect the single operation in question, the
 server SHOULD return an error response to the client and leave the
 DSO Session open for further operations. For error conditions that
 are likely to make all operations unsuccessful in the immediate
 future, the server SHOULD return an error response to the client and
 then end the DSO Session by sending a Retry Delay request message, as
 described in Section 5.6.3.

 Upon receiving an error response from the server, a client SHOULD NOT
 automatically close the DSO Session. An error relating to one
 particular operation on a DSO Session does not necessarily imply that
 all other operations on that DSO Session have also failed, or that
 future operations will fail. The client should assume that the
 server will make its own decision about whether or not to end the DSO
 Session, based on the server's determination of whether the error
 condition pertains to this particular operation, or would also apply
 to any subsequent operations. If the server does not end the DSO
 Session by sending the client a Retry Delay message (see

Section 5.6.3) then the client SHOULD continue to use that DSO
 Session for subsequent operations.

Bellis, et al. Expires July 30, 2018 [Page 31]

Internet-Draft DNS Stateful Operations January 2018

5.6.2. Server-Initiated Session Termination on Overload

 A server MUST NOT close a DSO Session with a client, except in
 certain exceptional circumstances, as outlined below. In normal
 operation, closing a DSO Session is the client's responsibility. The
 client makes the determination of when to close a DSO Session based
 on an evaluation of both its own needs, and the inactivity timeout
 value dictated by the server.

 Some exceptional situations where a server may terminate a DSO
 Session include:

 o The server application software or underlying operating system is
 shutting down or restarting.

 o The server application software terminates unexpectedly (perhaps
 due to a bug that makes it crash).

 o The server is undergoing a reconfiguration or maintenance
 procedure, that, due to the way the server software is
 implemented, requires clients to be disconnected. For example,
 some software is implemented such that it reads a configuration
 file at startup, and changing the server's configuration entails
 modifying the configuration file and then killing and restarting
 the server software, which generally entails a loss of network
 connections.

 o The client fails to meets its obligation to generate keepalive
 traffic or close an inactive session by the prescribed time (twice
 the time interval dictated by the server, or five seconds,
 whichever is greater, as described in Section 5.2).

 o The client sends a grossly invalid or malformed request that is
 indicative of a seriously defective client implementation (see

Section 5.6.1).

 o The server is over capacity and needs to shed some load (see
Section 5.6.3).

 When a server has to close a DSO Session with a client (because of
 exceptional circumstances such as those outlined above) the server
 SHOULD, whenever possible, send a Retry Delay request message (see
 below) informing the client of the reason for the DSO Session being
 closed, and allow the client five seconds to receive it before the
 server resorts to forcibly aborting the connection.

Bellis, et al. Expires July 30, 2018 [Page 32]

Internet-Draft DNS Stateful Operations January 2018

5.6.3. Server-Initiated Retry Delay Request Message

 There may be rare cases where a server is overloaded and wishes to
 shed load. If a server is low on resources it MAY simply terminate a
 client connection by forcibly aborting it. However, the likely
 behavior of the client may be simply to to treat this as a network
 failure and reconnect immediately, putting more burden on the server.

 Therefore to avoid this reconnection implosion, a server SHOULD
 instead choose to shed client load by sending a Retry Delay request
 message, with an RCODE of SERVFAIL, to inform the client of the
 overload situation. The format of the Retry Delay TLV is described
 in Section 6.2. After sending a Retry Delay request message, the
 server MUST NOT send any further messages on that DSO Session.

 Upon receipt of a Retry Delay request from the server, the client
 MUST make note of the reconnect delay for this server, and then
 immediately close the connection gracefully.

 After sending a Retry Delay request message the server SHOULD allow
 the client five seconds to close the connection, and if the client
 has not closed the connection after five seconds then the server
 SHOULD forcibly abort the connection.

 A Retry Delay request message MUST NOT be initiated by a client. If
 a server receives a Retry Delay request message this is an error and
 the server MUST forcibly abort the connection immediately.

5.6.3.1. Outstanding Operations

 At the moment a server chooses to initiate a Retry Delay request
 message there may be DNS requests already in flight from client to
 server on this DSO Session, which will arrive at the server after its
 Retry Delay request message has been sent. The server MUST silently
 ignore such incoming requests, and MUST NOT generate any response
 messages for them. When the Retry Delay request message from the
 server arrives at the client, the client will determine that any DNS
 requests it previously sent on this DSO Session, that have not yet
 received a response, now will certainly not be receiving any
 response. Such requests should be considered failed, and should be
 retried at a later time, as appropriate.

 In the case where some, but not all, of the existing operations on a
 DSO Session have become invalid (perhaps because the server has been
 reconfigured and is no longer authoritative for some of the names),
 but the server is terminating all DSO Sessions en masse with a
 REFUSED (5) RCODE, the RECONNECT DELAY MAY be zero, indicating that
 the clients SHOULD immediately attempt to re-establish operations.

Bellis, et al. Expires July 30, 2018 [Page 33]

Internet-Draft DNS Stateful Operations January 2018

 It is likely that some of the attempts will be successful and some
 will not, depending on the nature of the reconfiguration.

 In the case where a server is terminating a large number of DSO
 Sessions at once (e.g., if the system is restarting) and the server
 doesn't want to be inundated with a flood of simultaneous retries, it
 SHOULD send different RECONNECT delay values to each client. These
 adjustments MAY be selected randomly, pseudorandomly, or
 deterministically (e.g., incrementing the time value by one tenth of
 a second for each successive client, yielding a post-restart
 reconnection rate of ten clients per second).

5.6.3.2. Client Reconnection

 After a DSO Session is closed by the server, the client SHOULD try to
 reconnect, to that server, or to another suitable server, if more
 than one is available. If reconnecting to the same server, the
 client MUST respect the indicated delay before attempting to
 reconnect.

 If a particular server does not want a client to reconnect (the
 server is being de-commissioned), it SHOULD set the retry delay to
 the maximum value (which is approximately 49.7 days). If the server
 will only be out of service for a maintenance period, it should use a
 value closer to the expected maintenance window and not default to a
 very large delay value or clients may not attempt to reconnect after
 it resumes service.

Bellis, et al. Expires July 30, 2018 [Page 34]

Internet-Draft DNS Stateful Operations January 2018

6. Base TLVs for DNS Stateful Operations

 This section describes the three base TLVs for DNS Stateful
 Operations: Keepalive, Retry Delay, and Encryption Padding.

6.1. Keepalive TLV

 The Keepalive TLV (DSO-TYPE=1) performs two functions: to reset the
 keepalive timer for the DSO Session, and to establish the values for
 the Session Timeouts.

 The TYPE-DEPENDENT DATA for the the Keepalive TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | INACTIVITY TIMEOUT (32 bits) |
 +-+
 | KEEPALIVE INTERVAL (32 bits) |
 +-+

 INACTIVITY TIMEOUT: The inactivity timeout for the current DSO
 Session, specified as a 32-bit unsigned integer in network (big
 endian) byte order in units of milliseconds. This is the timeout
 at which the client MUST begin closing an inactive DSO Session.
 The inactivity timeout can be any value of the server's choosing.
 If the client does not gracefully close an inactive DSO Session,
 then after twice this interval, or five seconds, whichever is
 greater, the server will forcibly abort the connection.

 KEEPALIVE INTERVAL: The keepalive interval for the current DSO
 Session, specified as a 32-bit unsigned integer in network (big
 endian) byte order in units of milliseconds. This is the interval
 at which a client MUST generate keepalive traffic to maintain
 connection state. The keepalive interval MUST NOT be less than
 ten seconds. If the client does not generate the mandated
 keepalive traffic, then after twice this interval the server will
 forcibly abort the connection. Since the minimum allowed
 keepalive interval is ten seconds, the minimum time at which a
 server will forcibly disconnect a client for failing to generate
 the mandated keepalive traffic is twenty seconds.

 The transmission or reception of DSO Keepalive messages (i.e.,
 messages where the Keepalive TLV is the first TLV) reset only the
 keepalive timer, not the inactivity timer. The reason for this is
 that periodic Keepalive messages are sent for the sole purpose of
 keeping a DSO Session alive, when that DSO Session has current or
 recent non-maintenance activity that warrants keeping that DSO

Bellis, et al. Expires July 30, 2018 [Page 35]

Internet-Draft DNS Stateful Operations January 2018

 Session alive. Sending keepalive traffic itself is not considered a
 client activity; it is considered a maintenance activity that is
 performed in service of other client activities. If keepalive
 traffic itself were to reset the inactivity timer, then that would
 create a circular livelock where keepalive traffic would be sent
 indefinitely to keep a DSO Session alive, where the only activity on
 that DSO Session would be the keepalive traffic keeping the DSO
 Session alive so that further keepalive traffic can be sent. For a
 DSO Session to be considered active, it must be carrying something
 more than just keepalive traffic. This is why merely sending or
 receiving a Keepalive message does not reset the inactivity timer.

 When sent by a client, the Keepalive request message MUST be sent as
 an acknowledged request, with a nonzero MESSAGE ID. If a server
 receives a Keepalive request message with a zero MESSAGE ID then this
 is a fatal error and the server MUST forcibly abort the connection
 immediately. The Keepalive request message resets a DSO Session's
 keepalive timer, and at the same time communicates to the server the
 the client's requested Session Timeout values. In a server response
 to a client-initiated Keepalive request message, the Session Timeouts
 contain the server's chosen values from this point forward in the DSO
 Session, which the client MUST respect. This is modeled after the
 DHCP protocol, where the client requests a certain lease lifetime
 using DHCP option 51 [RFC2132], but the server is the ultimate
 authority for deciding what lease lifetime is actually granted.

 When a client is sending its second and subsequent Keepalive DSO
 requests to the server, the client SHOULD continue to request its
 preferred values each time. This allows flexibility, so that if
 conditions change during the lifetime of a DSO Session, the server
 can adapt its responses to better fit the client's needs.

 Once a DSO Session is in progress (see Section 4) a Keepalive request
 message MAY be initiated by a server. When sent by a server, the
 Keepalive request message MUST be sent as an unacknowledged request,
 with the MESSAGE ID set to zero. The client MUST NOT generate a
 response to a server-initiated DSO Keepalive message. If a client
 receives a Keepalive request message with a nonzero MESSAGE ID then
 this is a fatal error and the client MUST forcibly abort the
 connection immediately. The Keepalive request message from the
 server resets a DSO Session's keepalive timer, and at the same time
 unilaterally informs the client of the new Session Timeout values to
 use from this point forward in this DSO Session. No client DSO
 response message to this unilateral declaration is required or
 allowed.

 The Keepalive TLV is not used as a request message Additional TLV.

https://datatracker.ietf.org/doc/html/rfc2132

Bellis, et al. Expires July 30, 2018 [Page 36]

Internet-Draft DNS Stateful Operations January 2018

 In response messages the Keepalive TLV is used only as a Response
 Primary TLV, replying to a Keepalive request message from the client.
 A Keepalive TLV MUST NOT be added as to other responses a Response
 Additional TLV. If the server wishes to update a client's Session
 Timeout values other than in response to a Keepalive request message
 from the client, then it does so by sending an unacknowledged
 Keepalive request message of its own, as described above.

 It is not required that the Keepalive TLV be used in every DSO
 Session. While many DNS Stateful operations will be used in
 conjunction with a long-lived session state, not all DNS Stateful
 operations require long-lived session state, and in some cases the
 default 15-second value for both the inactivity timeout and keepalive
 interval may be perfectly appropriate. However, note that for
 clients that implement only the TLVs defined in this document it is
 the only way for a client to initiate a DSO Session.

6.1.1. Client handling of received Session Timeout values

 When a client receives a response to its client-initiated DSO
 Keepalive message, or receives a server-initiated DSO Keepalive
 message, the client has then received Session Timeout values dictated
 by the server. The two timeout values contained in the DSO Keepalive
 TLV from the server may each be higher, lower, or the same as the
 respective Session Timeout values the client previously had for this
 DSO Session.

 In the case of the keepalive timer, the handling of the received
 value is straightforward. The act of receiving the message
 containing the DSO Keepalive TLV itself resets the keepalive timer
 and updates the keepalive interval for the DSO Session. The new
 keepalive interval indicates the maximum time that may elapse before
 another message must be sent or received on this DSO Session, if the
 DSO Session is to remain alive.

Bellis, et al. Expires July 30, 2018 [Page 37]

Internet-Draft DNS Stateful Operations January 2018

 In the case of the inactivity timeout, the handling of the received
 value is a little more subtle, though the meaning of the inactivity
 timeout is unchanged -- it still indicates the maximum permissible
 time allowed without useful activity on a DSO Session. The act of
 receiving the message containing the DSO Keepalive TLV does not
 itself reset the inactivity timer. The time elapsed since the last
 useful activity on this DSO Session is unaffected by exchange of DSO
 Keepalive messages. The new inactivity timeout value in the DSO
 Keepalive TLV in the received message does update the timeout
 associated with the running inactivity timer; that becomes the new
 maximum permissible time without activity on a DSO Session.

 o If the current inactivity timer value is not greater than the new
 inactivity timeout, then the DSO Session may remain open for now.
 When the inactivity timer value exceeds the new inactivity
 timeout, the client MUST then begin closing the DSO Session, as
 described above.

 o If the current inactivity timer value is already greater than the
 new inactivity timeout, then this DSO Session has already been
 inactive for longer than the server permits, and the client MUST
 immediately begin closing this DSO Session.

 o If the current inactivity timer value is already more than twice
 the new inactivity timeout, then the client is immediately
 considered delinquent (this DSO Session is immediately eligible to
 be forcibly terminated by the server) and the client MUST
 immediately begin closing this DSO Session. However if a server
 abruptly reduces the inactivity timeout in this way, then, to give
 the client time to close the connection gracefully before the
 server resorts to forcibly aborting it, the server SHOULD give the
 client an additional grace period of one quarter of the new
 inactivity timeout, or five seconds, whichever is greater.

6.1.2. Relation to EDNS(0) TCP Keepalive Option

 The inactivity timeout value in the Keepalive TLV (DSO-TYPE=1) has
 similar intent to the EDNS(0) TCP Keepalive Option [RFC7828]. A
 client/server pair that supports DSO MUST NOT use the EDNS(0) TCP
 KeepAlive option within any message after a DSO Session has been
 established. Once a DSO Session has been established, if either
 client or server receives a DNS message over the DSO Session that
 contains an EDNS(0) TCP Keepalive option, this is an error and the
 receiver of the EDNS(0) TCP Keepalive option MUST forcibly abort the
 connection immediately.

https://datatracker.ietf.org/doc/html/rfc7828

Bellis, et al. Expires July 30, 2018 [Page 38]

Internet-Draft DNS Stateful Operations January 2018

6.2. Retry Delay TLV

 The Retry Delay TLV (DSO-TYPE=2) can be used as a Primary TLV
 (unacknowledged) in a server-to-client message, or as a Response
 Additional TLV in a server-to-client response to a client-to-server
 request message.

 The TYPE-DEPENDENT DATA for the the Retry Delay TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RETRY DELAY (32 bits) |
 +-+

 RETRY DELAY: A time value, specified as a 32-bit unsigned integer in
 network (big endian) byte order in units of milliseconds, within
 which the client MUST NOT retry this operation, or retry
 connecting to this server.

 The RECOMMENDED value is 10 seconds.

6.2.1. Retry Delay TLV used as a Primary TLV

 When sent in a DSO request message, from server to client, the Retry
 Delay TLV (0) is used as a Primary TLV. It is used by a server to
 instruct a client to close the DSO Session and underlying connection,
 and not to reconnect for the indicated time interval.

 In this case it applies to the DSO Session as a whole, and the client
 MUST begin closing the DSO Session, as described in Section 5.6.3.
 The RCODE in the message header MUST indicate the reason for the
 termination:

 o NOERROR indicates a routine shutdown.

 o SERVFAIL indicates that the server is overloaded due to resource
 exhaustion.

 o REFUSED indicates that the server has been reconfigured and is no
 longer able to perform one or more of the functions currently
 being performed on this DSO Session (for example, a DNS Push
 Notification server could be reconfigured such that is is no
 longer accepting DNS Push Notification requests for one or more of
 the currently subscribed names).

 This document specifies only these three RCODE values for Retry Delay
 request. Servers sending Retry Delay requests SHOULD use one of

Bellis, et al. Expires July 30, 2018 [Page 39]

Internet-Draft DNS Stateful Operations January 2018

 these three values. However, future circumstances may create
 situations where other RCODE values are appropriate in Retry Delay
 requests, so clients MUST be prepared to accept Retry Delay requests
 with any RCODE value.

 A Retry Delay request is an unacknowledged request message; the
 MESSAGE ID MUST be set to zero in the request and the client MUST NOT
 send a response.

6.2.2. Retry Delay TLV used as a Response Additional TLV

 In the case of a client request that returns a nonzero RCODE value,
 the server MAY append a Retry Delay TLV (0) to the response,
 indicating the time interval during which the client SHOULD NOT
 attempt this operation again.

 The indicated time interval during which the client SHOULD NOT retry
 applies only to the failed operation, not to the DSO Session as a
 whole.

6.2.3. Retry Delay TLV is used by server only

 A client MUST NOT send a Retry Delay TLV to a server, either in a DSO
 request message, or in a DSO response message. If a server receives
 a DSO message containing a Retry Delay TLV, this is a fatal error and
 the server MUST forcibly abort the connection immediately.

Bellis, et al. Expires July 30, 2018 [Page 40]

Internet-Draft DNS Stateful Operations January 2018

6.3. Encryption Padding TLV

 The Encryption Padding TLV (DSO-TYPE=3) can only be used as an
 Additional or Response Additional TLV. It is only applicable when
 the DSO Transport layer uses encryption such as TLS.

 The TYPE-DEPENDENT DATA for the the Padding TLV is optional and is a
 variable length field containing non-specified values. A DATA LENGTH
 of 0 essentially provides for 4 octets of padding (the minimum
 amount).

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 / /
 / VARIABLE NUMBER OF OCTETS /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 As specified for the EDNS(0) Padding Option [RFC7830] the PADDING
 octets SHOULD be set to 0x00. Other values MAY be used, for example,
 in cases where there is a concern that the padded message could be
 subject to compression before encryption. PADDING octets of any
 value MUST be accepted in the messages received.

 The Encryption Padding TLV may be included in either a DSO request,
 response, or both. As specified for the EDNS(0) Padding Option
 [RFC7830] if a request is received with an Encryption Padding TLV,
 then the response MUST also include an Encryption Padding TLV.

 The length of padding is intentionally not specified in this document
 and is a function of current best practices with respect to the type
 and length of data in the preceding TLVs
 [I-D.ietf-dprive-padding-policy].

https://datatracker.ietf.org/doc/html/rfc7830
https://datatracker.ietf.org/doc/html/rfc7830

Bellis, et al. Expires July 30, 2018 [Page 41]

Internet-Draft DNS Stateful Operations January 2018

7. Summary

 This section summarizes some noteworthy highlights about various
 components of the DSO protocol.

7.1. MESSAGE ID

 In DSO Request Messages the MESSAGE ID may be either nonzero
 (signaling that the responder MUST generate a response) or zero
 (signaling that the responder MUST NOT generate a response).

 In DSO Response Messages the MESSAGE ID MUST NOT be zero (since this
 would be a response to a request that had indicated that a response
 is not allowed).

 The table below illustrates the legal combinations:

 +--------------------+-------------------+
 | Nonzero MESSAGE ID | Zero MESSAGE ID |
 +----------------------+--------------------+-------------------+
 | DSO Request Message | X | X |
 +----------------------+--------------------+-------------------+
 | DSO Response Message | X | |
 +----------------------+--------------------+-------------------+

Bellis, et al. Expires July 30, 2018 [Page 42]

Internet-Draft DNS Stateful Operations January 2018

7.2. TLV Usage

 The table below indicates, for each of the three TLVs defined in this
 document, whether they are valid in each of ten different contexts.

 The first five contexts are requests from client to server, and the
 corresponding responses from server back to client:

 o C-P - Primary TLV, sent in DSO Request message, from client to
 server, with nonzero MESSAGE ID indicating that this request MUST
 generate response message.

 o C-U - Primary TLV (unacknowledged), sent in DSO Request message,
 from client to server, with zero MESSAGE ID indicating that this
 request MUST NOT generate response message.

 o C-A - Additional TLV, optionally added to request message from
 client to server.

 o CRP - Response Primary TLV, included in response message sent to
 back the client (in response to a client "C-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV matches the DSO-TYPE of the
 Primary TLV in the request.

 o CRA - Response Additional TLV, included in response message sent
 to back the client (in response to a client "C-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
 the Primary TLV in the request.

 The second five contexts are the reverse: requests from server to
 client, and the corresponding responses from client back to server.

 +-------------------------+-------------------------+
 | C-P C-U C-A CRP CRA | S-P S-U S-A SRP SRA |
 +------------+-------------------------+-------------------------+
 | KeepAlive | X X | X |
 +------------+-------------------------+-------------------------+
 | RetryDelay | X | X |
 +------------+-------------------------+-------------------------+
 | Padding | X X | X X |
 +------------+-------------------------+-------------------------+

 It is recommended that definitions of future TLVs include a similar
 table summarizing the contexts where the new TLV is valid.

Bellis, et al. Expires July 30, 2018 [Page 43]

Internet-Draft DNS Stateful Operations January 2018

7.3. Inactivity Timeout

 The Inactivity Timeout may have any 32-bit unsigned integer value.

 The value zero informs the client that it should not speculatively
 maintain idle connections at all, and as soon as the client has
 completed the operation or operations relating to this server, the
 client should immediately begin closing this session.

 The maximum possible value, 0xFFFFFFFF (2^32-1 milliseconds,
 approximately 49.7 days), informs the client that it may keep an idle
 connection open as long as it wishes.

 The Inactivity timer is reset by any message *except* the Keepalive
 TLV, and remains cleared any time that an operation is outstanding.

7.4. Keepalive Interval

 The Keepalive Interval is a 32-bit unsigned integer value, with a
 minimum value of 10,000 milliseconds (10 seconds).

 The maximum possible value, 0xFFFFFFFF (2^32-1 milliseconds,
 approximately 49.7 days), informs the client that it should generate
 no keepalive traffic.

 Any message exchange (including the Keepalive TLV) resets the
 Keepalive timer.

Bellis, et al. Expires July 30, 2018 [Page 44]

Internet-Draft DNS Stateful Operations January 2018

8. IANA Considerations

8.1. DSO OPCODE Registration

 The IANA is directed to record the value (tentatively) 6 for the
 DSO OPCODE in the DNS OPCODE Registry.

8.2. DSO RCODE Registration

 The IANA is directed to record the value (tentatively) 11 for the
 DSONOTIMP error code in the DNS RCODE Registry.

8.3. DSO Type Code Registry

 The IANA is directed to create the 16-bit DSO Type Code Registry,
 with initial (hexadecimal) values as shown below:

 +-----------+--------------------------------+----------+-----------+
 | Type | Name | Status | Reference |
 +-----------+--------------------------------+----------+-----------+
0000	Reserved	Standard	RFC-TBD
0001	KeepAlive	Standard	RFC-TBD
0002	RetryDelay	Standard	RFC-TBD
0003	EncryptionPadding	Standard	RFC-TBD
0004-003F	Unassigned, reserved for		
	DSO session-management TLVs		
0040-F7FF	Unassigned		
F800-FBFF	Reserved for		
	experimental/local use		
FC00-FFFF	Reserved for future expansion		
 +-----------+--------------------------------+----------+-----------+

 DSO Type Code zero is reserved and is not currently intended for
 allocation.

 Registrations of new DSO Type Codes in the "Reserved for DSO session-
 management" range 0004-003F and the "Reserved for future expansion"
 range FC00-FFFF require publication of an IETF Standards Action
 document [RFC5226].

https://datatracker.ietf.org/doc/html/rfc5226

Bellis, et al. Expires July 30, 2018 [Page 45]

Internet-Draft DNS Stateful Operations January 2018

 Requests to register additional new DSO Type Codes in the
 "Unassigned" range 0040-F7FF are to be recorded by IANA after
 consultation with the registry's Designated Expert [RFC5226] at that
 time. At the time of publication of this document, the Designated
 Expert for the newly created DSO Type Code registry is [*TBD*].

 DSO Type Codes in the "experimental/local" range F800-FBFF may be
 used as Experimental Use or Private Use values [RFC5226] and may be
 used freely for development purposes, or for other purposes within a
 single site. No attempt is made to prevent multiple sites from using
 the same value in different (and incompatible) ways. There is no
 need for IANA to review such assignments (since IANA does not record
 them) and assignments are not generally useful for broad
 interoperability. It is the responsibility of the sites making use
 of "experimental/local" values to ensure that no conflicts occur
 within the intended scope of use.

9. Security Considerations

 If this mechanism is to be used with DNS over TLS, then these
 messages are subject to the same constraints as any other DNS-over-
 TLS messages and MUST NOT be sent in the clear before the TLS session
 is established.

 The data field of the "Encryption Padding" TLV could be used as a
 covert channel.

10. Acknowledgements

 Thanks to Tim Chown, Ralph Droms, Jan Komissar, Manju Shankar Rao,
 and Ted Lemon for their helpful contributions to this document.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Bellis, et al. Expires July 30, 2018 [Page 46]

Internet-Draft DNS Stateful Operations January 2018

11. References

11.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://www.rfc-editor.org/info/rfc1918
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2132
https://www.rfc-editor.org/info/rfc2132
https://datatracker.ietf.org/doc/html/rfc2136
https://www.rfc-editor.org/info/rfc2136
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
https://www.rfc-editor.org/info/rfc5382
https://datatracker.ietf.org/doc/html/rfc6891
https://www.rfc-editor.org/info/rfc6891

Bellis, et al. Expires July 30, 2018 [Page 47]

Internet-Draft DNS Stateful Operations January 2018

 [RFC7766] Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7828] Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
 edns-tcp-keepalive EDNS0 Option", RFC 7828,
 DOI 10.17487/RFC7828, April 2016,
 <https://www.rfc-editor.org/info/rfc7828>.

 [RFC7830] Mayrhofer, A., "The EDNS(0) Padding Option", RFC 7830,
 DOI 10.17487/RFC7830, May 2016,
 <https://www.rfc-editor.org/info/rfc7830>.

11.2. Informative References

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",

draft-ietf-dnssd-push-13 (work in progress), October 2017.

 [I-D.ietf-dprive-padding-policy]
 Mayrhofer, A., "Padding Policy for EDNS(0)", draft-ietf-

dprive-padding-policy-03 (work in progress), January 2018.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-23 (work in progress),
 January 2018.

 [I-D.sctl-dnssd-mdns-relay]
 Cheshire, S. and T. Lemon, "Multicast DNS Discovery
 Relay", draft-sctl-dnssd-mdns-relay-02 (work in progress),
 November 2017.

 [NagleDA] Cheshire, S., "TCP Performance problems caused by
 interaction between Nagle's Algorithm and Delayed ACK",
 May 2005,
 <http://www.stuartcheshire.org/papers/nagledelayedack/>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

https://datatracker.ietf.org/doc/html/rfc7766
https://www.rfc-editor.org/info/rfc7766
https://datatracker.ietf.org/doc/html/rfc7828
https://www.rfc-editor.org/info/rfc7828
https://datatracker.ietf.org/doc/html/rfc7830
https://www.rfc-editor.org/info/rfc7830
https://datatracker.ietf.org/doc/html/draft-ietf-dnssd-push-13
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-padding-policy-03
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-padding-policy-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-23
https://datatracker.ietf.org/doc/html/draft-sctl-dnssd-mdns-relay-02
http://www.stuartcheshire.org/papers/nagledelayedack/
https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122

Bellis, et al. Expires July 30, 2018 [Page 48]

Internet-Draft DNS Stateful Operations January 2018

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

Authors' Addresses

 Ray Bellis
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City CA 94063
 USA

 Phone: +1 650 423 1200
 Email: ray@isc.org

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino CA 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

 John Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jad@sinodun.com

https://datatracker.ietf.org/doc/html/rfc6763
https://www.rfc-editor.org/info/rfc6763
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7858
https://www.rfc-editor.org/info/rfc7858

Bellis, et al. Expires July 30, 2018 [Page 49]

Internet-Draft DNS Stateful Operations January 2018

 Sara Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: sara@sinodun.com

 Allison Mankin
 Salesforce

 Email: allison.mankin@gmail.com

 Tom Pusateri
 Unaffiliated
 Raleigh NC 27608
 USA

 Phone: +1 919 867 1330
 Email: pusateri@bangj.com

Bellis, et al. Expires July 30, 2018 [Page 50]

