
Workgroup: DNSOP Working Group

Internet-Draft: draft-ietf-dnsop-svcb-https-06

Published: 16 June 2021

Intended Status: Standards Track

Expires: 18 December 2021

Authors: B. Schwartz

Google

M. Bishop

Akamai Technologies

E. Nygren

Akamai Technologies

Service binding and parameter specification via the DNS (DNS SVCB and

HTTPS RRs)

Abstract

This document specifies the "SVCB" and "HTTPS" DNS resource record

(RR) types to facilitate the lookup of information needed to make

connections to network services, such as for HTTPS origins. SVCB

records allow a service to be provided from multiple alternative

endpoints, each with associated parameters (such as transport

protocol configuration and keys for encrypting the TLS ClientHello).

They also enable aliasing of apex domains, which is not possible

with CNAME. The HTTPS RR is a variation of SVCB for HTTPS and HTTP

origins. By providing more information to the client before it

attempts to establish a connection, these records offer potential

benefits to both performance and privacy.

TO BE REMOVED: This document is being collaborated on in Github at:

https://github.com/MikeBishop/dns-alt-svc. The most recent working

version of the document, open issues, etc. should all be available

there. The authors (gratefully) accept pull requests.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 December 2021.

¶

¶

¶

¶

¶

¶

https://github.com/MikeBishop/dns-alt-svc
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Goals of the SVCB RR

1.2. Overview of the SVCB RR

1.3. Parameter for Encrypted ClientHello

1.4. Terminology

2. The SVCB record type

2.1. Zone file presentation format

2.2. RDATA wire format

2.3. SVCB query names

2.4. Interpretation

2.4.1. SvcPriority

2.4.2. AliasMode

2.4.3. ServiceMode

2.5. Special handling of "." in TargetName

2.5.1. AliasMode

2.5.2. ServiceMode

3. Client behavior

3.1. Handling resolution failures

3.2. Clients using a Proxy

4. DNS Server Behavior

4.1. Authoritative servers

4.2. Recursive resolvers

4.3. General requirements

4.4. EDNS Client Subnet (ECS)

5. Performance optimizations

5.1. Optimistic pre-connection and connection reuse

5.2. Generating and using incomplete responses

6. Initial SvcParamKeys

6.1. "alpn" and "no-default-alpn"

6.2. "port"

6.3. "ech"

6.4. "ipv4hint" and "ipv6hint"

¶

¶

https://trustee.ietf.org/license-info

7. ServiceMode RR compatibility and mandatory keys

8. Using SVCB with HTTPS and HTTP

8.1. Query names for HTTPS RRs

8.2. Relationship to Alt-Svc

8.2.1. ALPN usage

8.2.2. Untrusted channel

8.2.3. Cache lifetime

8.2.4. Granularity

8.3. Interaction with Alt-Svc

8.4. Requiring Server Name Indication

8.5. HTTP Strict Transport Security

8.6. HTTP-based protocols

9. SVCB/HTTPS RR parameter for ECH configuration

9.1. Client behavior

9.2. Deployment considerations

10. Zone Structures

10.1. Structuring zones for flexibility

10.2. Structuring zones for performance

10.3. Examples

10.3.1. Protocol enhancements

10.3.2. Apex aliasing

10.3.3. Parameter binding

10.3.4. Multi-CDN

10.3.5. Non-HTTPS uses

11. Interaction with other standards

12. Security Considerations

13. Privacy Considerations

14. IANA Considerations

14.1. SVCB RRType

14.2. HTTPS RRType

14.3. New registry for Service Parameters

14.3.1. Procedure

14.3.2. Initial contents

14.4. Registry updates

15. Acknowledgments and Related Proposals

16. References

16.1. Normative References

16.2. Informative References

Appendix A. Decoding text in zone files

A.1. Decoding a comma-separated list

Appendix B. HTTP Mapping Summary

Appendix C. Comparison with alternatives

C.1. Differences from the SRV RR type

C.2. Differences from the proposed HTTP record

C.3. Differences from the proposed ANAME record

C.4. Comparison with separate RR types for AliasMode and

ServiceMode

Appendix D. Test vectors

D.1. AliasForm

D.2. ServiceForm

D.3. Failure cases

Appendix E. Change history

Authors' Addresses

1. Introduction

The SVCB ("Service Binding") and HTTPS RRs provide clients with

complete instructions for access to a service. This information

enables improved performance and privacy by avoiding transient

connections to a sub-optimal default server, negotiating a preferred

protocol, and providing relevant public keys.

For example, when clients need to make a connection to fetch

resources associated with an HTTPS URI, they currently resolve only

A and/or AAAA records for the origin hostname. This is adequate for

services that use basic HTTPS (fixed port, no QUIC, no [ECH]). Going

beyond basic HTTPS confers privacy, performance, and operational

advantages, but it requires the client to learn additional

information, and it is highly desirable to minimize the number of

round-trips and lookups required to learn this additional

information.

The SVCB and HTTPS RRs also help when the operator of a service

wishes to delegate operational control to one or more other domains,

e.g. delegating the origin "https://example.com" to a service

operator endpoint at "svc.example.net". While this case can

sometimes be handled by a CNAME, that does not cover all use-cases.

CNAME is also inadequate when the service operator needs to provide

a bound collection of consistent configuration parameters through

the DNS (such as network location, protocol, and keying

information).

This document first describes the SVCB RR as a general-purpose

resource record that can be applied directly and efficiently to a

wide range of services (Section 2). The HTTPS RR is then defined as

a special case of SVCB that improves efficiency and convenience for

use with HTTPS (Section 8) by avoiding the need for an Attrleaf

label [Attrleaf] (Section 8.1). Other protocols with similar needs

may follow the pattern of HTTPS and assign their own SVCB-compatible

RR types.

All behaviors described as applying to the SVCB RR also apply to the

HTTPS RR unless explicitly stated otherwise. Section 8 describes

additional behaviors specific to the HTTPS RR. Apart from Section 8

and introductory examples, much of this document refers only to the

SVCB RR, but those references should be taken to apply to SVCB,

HTTPS, and any future SVCB-compatible RR types.

¶

¶

¶

¶

¶

The SVCB RR has two modes: 1) "AliasMode" simply delegates

operational control for a resource; 2) "ServiceMode" binds together

configuration information for a service endpoint. ServiceMode

provides additional key=value parameters within each RDATA set.

1.1. Goals of the SVCB RR

The goal of the SVCB RR is to allow clients to resolve a single

additional DNS RR in a way that:

Provides alternative endpoints that are authoritative for the

service, along with parameters associated with each of these

endpoints.

Does not assume that all alternative endpoints have the same

parameters or capabilities, or are even operated by the same

entity. This is important as DNS does not provide any way to tie

together multiple RRs for the same name. For example, if

www.example.com is a CNAME alias that switches between one of

three CDNs or hosting environments, successive queries for that

name may return records that correspond to different

environments.

Enables CNAME-like functionality at a zone apex (such as

"example.com") for participating protocols, and generally enables

delegation of operational authority for an origin within the DNS

to an alternate name.

Additional goals specific to HTTPS RRs and the HTTPS use-case

include:

Connect directly to HTTP3 (QUIC transport) alternative endpoints

[HTTP3]

Obtain the Encrypted ClientHello [ECH] keys associated with an

alternative endpoint

Support non-default TCP and UDP ports

Enable SRV-like benefits (e.g. apex delegation, as mentioned

above) for HTTP(S), where SRV [SRV] has not been widely adopted

Provide an HSTS-like indication [HSTS] signaling that the HTTPS

scheme should be used instead of HTTP for this request (see

Section 8.5).

1.2. Overview of the SVCB RR

This subsection briefly describes the SVCB RR in a non-normative

manner. (As mentioned above, this all applies equally to the HTTPS

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

RR which shares the same encoding, format, and high-level

semantics.)

The SVCB RR has two modes: AliasMode, which aliases a name to

another name, and ServiceMode, which provides connection information

bound to a service endpoint domain. Placing both forms in a single

RR type allows clients to fetch the relevant information with a

single query.

The SVCB RR has two mandatory fields and one optional. The fields

are:

SvcPriority: The priority of this record (relative to others,

with lower values preferred). A value of 0 indicates AliasMode.

(Described in Section 2.4.1.)

TargetName: The domain name of either the alias target (for

AliasMode) or the alternative endpoint (for ServiceMode).

SvcParams (optional): A list of key=value pairs describing the

alternative endpoint at TargetName (only used in ServiceMode

and otherwise ignored). Described in Section 2.1.

Cooperating DNS recursive resolvers will perform subsequent record

resolution (for SVCB, A, and AAAA records) and return them in the

Additional Section of the response. Clients either use responses

included in the additional section returned by the recursive

resolver or perform necessary SVCB, A, and AAAA record resolutions.

DNS authoritative servers can attach in-bailiwick SVCB, A, AAAA, and

CNAME records in the Additional Section to responses for a SVCB

query.

In ServiceMode, the SvcParams of the SVCB RR provide an extensible

data model for describing alternative endpoints that are

authoritative for the origin, along with parameters associated with

each of these alternative endpoints.

For the HTTPS use-case, the HTTPS RR enables many of the benefits of

Alt-Svc [AltSvc] without waiting for a full HTTP connection

initiation (multiple roundtrips) before learning of the preferred

alternative, and without necessarily revealing the user's intended

destination to all entities along the network path.

1.3. Parameter for Encrypted ClientHello

This document also defines a parameter for Encrypted ClientHello

[ECH] keys. See Section 9.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

1.4. Terminology

Our terminology is based on the common case where the SVCB record is

used to access a resource identified by a URI whose authority field

contains a DNS hostname as the host.

The "service" is the information source identified by the

authority and scheme of the URI, capable of providing access to

the resource. For HTTPS URIs, the "service" corresponds to an

HTTPS "origin" [RFC6454].

The "service name" is the host portion of the authority.

The "authority endpoint" is the authority's hostname and a port

number implied by the scheme or specified in the URI.

An "alternative endpoint" is a hostname, port number, and other

associated instructions to the client on how to reach an instance

of service.

Additional DNS terminology intends to be consistent with [DNSTerm].

SVCB is a contraction of "service binding". The SVCB RR, HTTPS RR,

and future RR types that share SVCB's format and registry are

collectively known as SVCB-compatible RR types.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. The SVCB record type

The SVCB DNS resource record (RR) type (RR type 64) is used to

locate alternative endpoints for a service.

The algorithm for resolving SVCB records and associated address

records is specified in Section 3.

Other SVCB-compatible resource record types can also be defined as-

needed. In particular, the HTTPS RR (RR type 65) provides special

handling for the case of "https" origins as described in Section 8.

SVCB RRs are extensible by a list of SvcParams, which are pairs

consisting of a SvcParamKey and a SvcParamValue. Each SvcParamKey

has a presentation name and a registered number. Values are in a

format specific to the SvcParamKey. Their definition should specify

both their presentation format and wire encoding (e.g., domain

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

names, binary data, or numeric values). The initial SvcParamKeys and

formats are defined in Section 6.

2.1. Zone file presentation format

The presentation format of the record is:

The SVCB record is defined specifically within the Internet ("IN")

Class ([RFC1035]).

SvcPriority is a number in the range 0-65535, TargetName is a

<domain-name> ([RFC1035], Section 5.1), and the SvcParams are a

whitespace-separated list, with each SvcParam consisting of a

SvcParamKey=SvcParamValue pair or a standalone SvcParamKey.

SvcParamKeys are subject to IANA control (Section 14.3).

Each SvcParamKey SHALL appear at most once in the SvcParams. In

presentation format, SvcParamKeys are lower-case alphanumeric

strings. Key names should contain 1-63 characters from the ranges

"a"-"z", "0"-"9", and "-". In ABNF [RFC5234],

The SvcParamValue is parsed using the character-string decoding

algorithm (Appendix A), producing a value. The value is then

validated and converted into wire-format in a manner specific to

each key.

When the "=" is omitted, the value is interpreted as empty.

Unrecognized keys are represented in presentation format as

"keyNNNNN" where NNNNN is the numeric value of the key type without

leading zeros. A SvcParam in this form SHALL be parsed as specified

above, and the decoded value SHALL be used as its wire format

encoding.

For some SvcParamKeys, the value corresponds to a list or set of

items. Presentation formats for such keys SHOULD use a comma-

separated list (Appendix A.1).

SvcParams in presentation format MAY appear in any order, but keys

MUST NOT be repeated.

¶

¶

Name TTL IN SVCB SvcPriority TargetName SvcParams¶

¶

¶

¶

alpha-lc = %x61-7A ; a-z

SvcParamKey = 1*63(alpha-lc / DIGIT / "-")

SvcParam = SvcParamKey ["=" SvcParamValue]

SvcParamValue = char-string

value = *OCTET

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc1035#section-5.1

2.2. RDATA wire format

The RDATA for the SVCB RR consists of:

a 2 octet field for SvcPriority as an integer in network byte

order.

the uncompressed, fully-qualified TargetName, represented as a

sequence of length-prefixed labels as in Section 3.1 of

[RFC1035].

the SvcParams, consuming the remainder of the record (so smaller

than 65535 octets and constrained by the RDATA and DNS message

sizes).

When the list of SvcParams is non-empty (ServiceMode), it contains a

series of SvcParamKey=SvcParamValue pairs, represented as:

a 2 octet field containing the SvcParamKey as an integer in

network byte order. (See Section 14.3.2 for the defined values.)

a 2 octet field containing the length of the SvcParamValue as an

integer between 0 and 65535 in network byte order (but

constrained by the RDATA and DNS message sizes).

an octet string of this length whose contents are in a format

determined by the SvcParamKey.

SvcParamKeys SHALL appear in increasing numeric order.

Clients MUST consider an RR malformed if:

the end of the RDATA occurs within a SvcParam.

SvcParamKeys are not in strictly increasing numeric order.

the SvcParamValue for an SvcParamKey does not have the expected

format.

Note that the second condition implies that there are no duplicate

SvcParamKeys.

If any RRs are malformed, the client MUST reject the entire RRSet

and fall back to non-SVCB connection establishment.

2.3. SVCB query names

When querying the SVCB RR, a service is translated into a QNAME by

prepending the service name with a label indicating the scheme,

prefixed with an underscore, resulting in a domain name like

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc1035#section-3.1

"_examplescheme.api.example.com.". This follows the Attrleaf naming

pattern [Attrleaf], so the scheme MUST be registered appropriately

with IANA (see Section 11).

Protocol mapping documents MAY specify additional underscore-

prefixed labels to be prepended. For schemes that specify a port

(Section 3.2.3 of [URI]), one reasonable possibility is to prepend

the indicated port number if a non-default port number is specified.

We term this behavior "Port Prefix Naming", and use it in the

examples throughout this document.

See Section 8.1 for the HTTPS RR behavior.

When a prior CNAME or SVCB record has aliased to a SVCB record, each

RR shall be returned under its own owner name.

Note that none of these forms alter the origin or authority for

validation purposes. For example, TLS clients MUST continue to

validate TLS certificates for the original service name.

As an example, the owner of example.com could publish this record:

to indicate that "foo://api.example.com:8443" is aliased to

"svc4.example.net". The owner of example.net, in turn, could publish

this record:

to indicate that these services are served on port number 8004,

which supports the protocol "bar" and its associated transport in

addition to the default transport protocol for "foo://".

(Parentheses are used to ignore a line break

([RFC1035], Section 5.1).)

2.4. Interpretation

2.4.1. SvcPriority

When SvcPriority is 0 the SVCB record is in AliasMode (Section

2.4.2). Otherwise, it is in ServiceMode (Section 2.4.3).

Within a SVCB RRSet, all RRs SHOULD have the same Mode. If an RRSet

contains a record in AliasMode, the recipient MUST ignore any

ServiceMode records in the set.

¶

¶

¶

¶

¶

¶

_8443._foo.api.example.com. 7200 IN SVCB 0 svc4.example.net.¶

¶

svc4.example.net. 7200 IN SVCB 3 svc4.example.net. (

 alpn="bar" port="8004" ech="...")

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.2.3
https://rfc-editor.org/rfc/rfc1035#section-5.1

RRSets are explicitly unordered collections, so the SvcPriority

field is used to impose an ordering on SVCB RRs. SVCB RRs with a

smaller SvcPriority value SHOULD be given preference over RRs with a

larger SvcPriority value.

When receiving an RRSet containing multiple SVCB records with the

same SvcPriority value, clients SHOULD apply a random shuffle within

a priority level to the records before using them, to ensure uniform

load-balancing.

2.4.2. AliasMode

In AliasMode, the SVCB record aliases a service to a TargetName.

SVCB RRSets SHOULD only have a single resource record in AliasMode.

If multiple are present, clients or recursive resolvers SHOULD pick

one at random.

The primary purpose of AliasMode is to allow aliasing at the zone

apex, where CNAME is not allowed. In AliasMode, the TargetName will

be the name of a domain that resolves to SVCB (or other SVCB-

compatible record such as HTTPS), AAAA, and/or A records. The

TargetName SHOULD NOT be equal to the owner name, as this would

result in a loop.

In AliasMode, records SHOULD NOT include any SvcParams, and

recipients MUST ignore any SvcParams that are present.

For example, the operator of foo://example.com:8080 could point

requests to a service operating at foosvc.example.net by publishing:

Using AliasMode maintains a separation of concerns: the owner of

foosvc.example.net can add or remove ServiceMode SVCB records

without requiring a corresponding change to example.com. Note that

if foosvc.example.net promises to always publish a SVCB record, this

AliasMode record can be replaced by a CNAME, which would likely

improve performance.

AliasMode is especially useful for SVCB-compatible RR types that do

not require an underscore prefix, such as the HTTPS RR type. For

example, the operator of https://example.com could point requests to

a server at svc.example.net by publishing this record at the zone

apex:

Note that the SVCB record's owner name MAY be the canonical name of

a CNAME record, and the TargetName MAY be the owner of a CNAME

¶

¶

¶

¶

¶

¶

_8080._foo.example.com. 3600 IN SVCB 0 foosvc.example.net.¶

¶

¶

example.com. 3600 IN HTTPS 0 svc.example.net.¶

record. Clients and recursive resolvers MUST follow CNAMEs as

normal.

To avoid unbounded alias chains, clients and recursive resolvers

MUST impose a limit on the total number of SVCB aliases they will

follow for each resolution request. This limit MUST NOT be zero,

i.e. implementations MUST be able to follow at least one AliasMode

record. The exact value of this limit is left to implementations.

For compatibility and performance, zone owners SHOULD NOT configure

their zones to require following multiple AliasMode records.

As legacy clients will not know to use this record, service

operators will likely need to retain fallback AAAA and A records

alongside this SVCB record, although in a common case the target of

the SVCB record might offer better performance, and therefore would

be preferable for clients implementing this specification to use.

AliasMode records only apply to queries for the specific RR type.

For example, a SVCB record cannot alias to an HTTPS record, nor

vice-versa.

2.4.3. ServiceMode

In ServiceMode, the TargetName and SvcParams within each resource

record associate an alternative endpoint for the service with its

connection parameters.

Each protocol scheme that uses SVCB MUST define a protocol mapping

that explains how SvcParams are applied for connections of that

scheme. Unless specified otherwise by the protocol mapping, clients

MUST ignore any SvcParam that they do not recognize.

Some SvcParams impose requirements on other SvcParams in the RR. A

ServiceMode RR is called "self-consistent" if its SvcParams all

comply with each others' requirements. Zone-file implementations

SHOULD enforce self-consistency. Clients MUST reject any RR whose

recognized SvcParams are not self-consistent, and MAY reject the

entire RRSet.

2.5. Special handling of "." in TargetName

If TargetName has the value "." (represented in the wire format as a

zero-length label), special rules apply.

2.5.1. AliasMode

For AliasMode SVCB RRs, a TargetName of "." indicates that the

service is not available or does not exist. This indication is

¶

¶

¶

¶

¶

¶

¶

¶

¶

advisory: clients encountering this indication MAY ignore it and

attempt to connect without the use of SVCB.

2.5.2. ServiceMode

For ServiceMode SVCB RRs, if TargetName has the value ".", then the

owner name of this record MUST be used as the effective TargetName.

For example, in the following example "svc2.example.net" is the

effective TargetName:

3. Client behavior

"SVCB resolution" is the process of enumerating the priority-ordered

endpoints for a service, as performed by the client. SVCB resolution

is implemented as follows:

Let $QNAME be the service name plus appropriate prefixes for

the scheme (see Section 2.3).

Issue a SVCB query for $QNAME.

If an AliasMode SVCB record is returned for $QNAME (after

following CNAMEs as normal), set $QNAME to its TargetName

(without additional prefixes) and loop back to step 2, subject

to chain length limits and loop detection heuristics (see

Section 3.1).

If one or more "compatible" (Section 7) ServiceMode records are

returned, these represent the alternative endpoints.

Otherwise, SVCB resolution has failed, and the list of known

endpoints is empty.

This procedure does not rely on any recursive or authoritative DNS

server to comply with this specification or have any awareness of

SVCB.

Once SVCB resolution has concluded, the client proceeds with

connection establishment. Clients SHOULD try higher-priority

alternatives first, with fallback to lower-priority alternatives.

Clients issue AAAA and/or A queries for the selected TargetName, and

MAY choose between them using an approach such as Happy Eyeballs

[HappyEyeballsV2].

¶

¶

¶

example.com. 7200 IN HTTPS 0 svc.example.net.

svc.example.net. 7200 IN CNAME svc2.example.net.

svc2.example.net. 7200 IN HTTPS 1 . port=8002 ech="..."

svc2.example.net. 300 IN A 192.0.2.2

svc2.example.net. 300 IN AAAA 2001:db8::2

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

¶

¶

A client is called "SVCB-optional" if it can connect without the use

of ServiceMode records, and "SVCB-reliant" otherwise. Clients for

pre-existing protocols (e.g. HTTPS) SHALL implement SVCB-optional

behavior (except as noted in Section 3.1 and Section 9.1).

SVCB-optional clients SHOULD issue in parallel any other DNS queries

that might be needed for connection establishment. SVCB-optional

clients SHALL append an alternative endpoint consisting of the final

value of $QNAME, the authority endpoint's port number, and no

SvcParams, to the list of alternative endpoints, which is attempted

before falling back to non-SVCB connection modes. This ensures that

SVCB-optional clients will make use of an AliasMode record whose

TargetName has A and/or AAAA records but no SVCB records.

Some important optimizations are discussed in Section 5 to avoid

additional latency in comparison to ordinary AAAA/A lookups.

3.1. Handling resolution failures

If SVCB resolution fails due to a SERVFAIL error, transport error,

or timeout, and DNS exchanges between the client and the recursive

resolver are cryptographically protected (e.g. using TLS [DoT] or

HTTPS [DoH]), a SVCB-optional client SHOULD abandon the connection

attempt like a SVCB-reliant client would. Otherwise, an active

attacker could mount a downgrade attack by denying the user access

to the SvcParams.

A SERVFAIL error can occur if the domain is DNSSEC-signed, the

recursive resolver is DNSSEC-validating, and the attacker is between

the recursive resolver and the authoritative DNS server. A transport

error or timeout can occur if an active attacker between the client

and the recursive resolver is selectively dropping SVCB queries or

responses, based on their size or other observable patterns.

Similarly, if the client enforces DNSSEC validation on A/AAAA

responses, it SHOULD terminate the connection if a SVCB response

fails to validate.

If the client is unable to complete SVCB resolution due to its chain

length limit, the client SHOULD fall back to the authority endpoint,

as if the origin's SVCB record did not exist.

3.2. Clients using a Proxy

Clients using a domain-oriented transport proxy like HTTP CONNECT

([RFC7231], Section 4.3.6) or SOCKS5 ([RFC1928]) have the option to

use named destinations, in which case the client does not perform

any A or AAAA queries for destination domains. If the client is

using named destinations with a proxy that does not provide SVCB

query capability (e.g. through an affiliated DNS resolver), the

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7231#section-4.3.6

client would have to perform SVCB resolution separately, likely

disclosing the destinations to additional parties. Clients that

support such proxies SHOULD arrange for a separate SVCB resolution

procedure with appropriate privacy properties, or disable SVCB

resolution entirely if SVCB-optional.

If the client does use SVCB and named destinations, the client

SHOULD follow the standard SVCB resolution process, selecting the

smallest-SvcPriority option that is compatible with the client and

the proxy. When connecting using a SVCB record, clients MUST provide

the final TargetName and port to the proxy, which will perform any

required A and AAAA lookups.

Providing the proxy with the final TargetName has several benefits:

It allows the client to use the SvcParams, if present, which is

only usable with a specific TargetName. The SvcParams may include

information that enhances performance (e.g. alpn) and privacy

(e.g. ech).

It allows the service to delegate the apex domain.

It allows the proxy to select between IPv4 and IPv6 addresses for

the server according to its configuration, and receive addresses

based on its network geolocation.

4. DNS Server Behavior

4.1. Authoritative servers

When replying to a SVCB query, authoritative DNS servers SHOULD

return A, AAAA, and SVCB records in the Additional Section for any

TargetNames that are in the zone. If the zone is signed, the server

SHOULD also include positive or negative DNSSEC responses for these

records in the Additional section.

See Section 4.4 for exceptions.

4.2. Recursive resolvers

Recursive resolvers that are aware of SVCB SHOULD help the client to

execute the procedure in Section 3 with minimum overall latency, by

incorporating additional useful information into the response. For

the initial SVCB record query, this is just the normal response

construction process (i.e. unknown RR type resolution under

[RFC3597]). For followup resolutions performed during this

procedure, we define incorporation as adding all useful RRs from the

response to the Additional section without altering the response

code.

¶

¶

¶

*

¶

* ¶

*

¶

¶

¶

¶

Upon receiving a SVCB query, recursive resolvers SHOULD start with

the standard resolution procedure, and then follow this procedure to

construct the full response to the stub resolver:

Incorporate the results of SVCB resolution. If the chain length

limit has been reached, terminate successfully (i.e. a NOERROR

response).

If any of the resolved SVCB records are in AliasMode, choose

one of them at random, and resolve SVCB, A, and AAAA records

for its TargetName.

If any SVCB records are resolved, go to step 1.

Otherwise, incorporate the results of A and AAAA resolution,

and terminate.

All the resolved SVCB records are in ServiceMode. Resolve A and

AAAA queries for each TargetName (or for the owner name if

TargetName is "."), incorporate all the results, and terminate.

In this procedure, "resolve" means the resolver's ordinary recursive

resolution procedure, as if processing a query for that RRSet. This

includes following any aliases that the resolver would ordinarily

follow (e.g. CNAME, DNAME [DNAME]).

See Section 2.4.2 for additional safeguards for recursive resolvers

to implement to mitigate loops.

See Section 5.2 for possible optimizations of this procedure.

4.3. General requirements

Recursive resolvers MUST be able to convey SVCB records with

unrecognized SvcParamKeys, and MAY treat the entire SvcParams

portion of the record as opaque. No part of this specification

requires recursive resolvers to alter their behavior based on its

contents, even if the contents are invalid. Recursive resolvers MAY

validate the values of recognized SvcParamKeys and reject records

containing values which are invalid according to the SvcParam

specification. For complex value types whose interpretation might

differ between implementations or have additional future allowed

values added (e.g. URIs or "alpn"), resolvers SHOULD limit

validation to specified constraints.

When responding to a query that includes the DNSSEC OK bit

([RFC3225]), DNSSEC-capable recursive and authoritative DNS servers

MUST accompany each RRSet in the Additional section with the same

DNSSEC-related records that they would send when providing that

RRSet as an Answer (e.g. RRSIG, NSEC, NSEC3).

¶

1.

¶

2.

¶

* ¶

*

¶

3.

¶

¶

¶

¶

¶

¶

According to Section 5.4.1 of [RFC2181], "Unauthenticated RRs

received and cached from ... the additional data section ... should

not be cached in such a way that they would ever be returned as

answers to a received query. They may be returned as additional

information where appropriate.". Recursive resolvers therefore MAY

cache records from the Additional section for use in populating

Additional section responses, and MAY cache them for general use if

they are authenticated by DNSSEC.

4.4. EDNS Client Subnet (ECS)

The EDNS Client Subnet option (ECS, [RFC7871]) allows recursive

resolvers to request IP addresses that are suitable for a particular

client IP range. SVCB records may contain IP addresses (in ipv*hint

SvcParams), or direct users to a subnet-specific TargetName, so

recursive resolvers SHOULD include the same ECS option in SVCB

queries as in A/AAAA queries.

According to Section 7.3.1 of [RFC7871], "Any records from [the

Additional section] MUST NOT be tied to a network". Accordingly,

when processing a response whose QTYPE is SVCB-compatible, resolvers

SHOULD treat any records in the Additional section as having SOURCE

PREFIX-LENGTH zero and SCOPE PREFIX-LENGTH as specified in the ECS

option. Authoritative servers MUST omit such records if they are not

suitable for use by any stub resolvers that set SOURCE PREFIX-LENGTH

to zero. This will cause the resolver to perform a followup query

that can receive properly tailored ECS. (This is similar to the

usage of CNAME with ECS discussed in [RFC7871], Section 7.2.1.)

Authoritative servers that omit Additional records can avoid the

added latency of a followup query by following the advice in Section

10.2.

5. Performance optimizations

For optimal performance (i.e. minimum connection setup time),

clients SHOULD implement a client-side DNS cache. Responses in the

Additional section of a SVCB response SHOULD be placed in cache

before performing any followup queries. With this behavior, and

conforming DNS servers, using SVCB does not add network latency to

connection setup.

To improve performance when using a non-conforming recursive

resolver, clients SHOULD issue speculative A and/or AAAA queries in

parallel with each SVCB query, based on a predicted value of

TargetName (see Section 10.2).

After a ServiceMode RRSet is received, clients MAY try more than one

option in parallel, and MAY prefetch A and AAAA records for multiple

TargetNames.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2181#section-5.4.1
https://rfc-editor.org/rfc/rfc7871#section-7.3.1
https://rfc-editor.org/rfc/rfc7871#section-7.2.1

5.1. Optimistic pre-connection and connection reuse

If an address response arrives before the corresponding SVCB

response, the client MAY initiate a connection as if the SVCB query

returned NODATA, but MUST NOT transmit any information that could be

altered by the SVCB response until it arrives. For example, a TLS

ClientHello can be altered by the "ech" value of a SVCB response

(Section 6.3). Clients implementing this optimization SHOULD wait

for 50 milliseconds before starting optimistic pre-connection, as

per the guidance in [HappyEyeballsV2].

A SVCB record is consistent with a connection if the client would

attempt an equivalent connection when making use of that record. If

a SVCB record is consistent with an active or in-progress connection

C, the client MAY prefer that record and use C as its connection.

For example, suppose the client receives this SVCB RRSet for a

protocol that uses TLS over TCP:

If the client has an in-progress TCP connection to [2001:db8::2]:

1234, it MAY proceed with TLS on that connection using ech="222...",

even though the other record in the RRSet has higher priority.

If none of the SVCB records are consistent with any active or in-

progress connection, clients proceed with connection establishment

as described in Section 3.

5.2. Generating and using incomplete responses

When following the procedure in Section 4.2, recursive resolvers MAY

terminate the procedure early and produce a reply that omits some of

the associated RRSets. This is REQUIRED when the chain length limit

is reached (Section 4.2 step 1), but might also be appropriate when

the maximum response size is reached, or when responding before

fully chasing dependencies would improve performance. When omitting

certain RRSets, recursive resolvers SHOULD prioritize information

for smaller-SvcPriority records.

As discussed in Section 3, clients MUST be able to fetch additional

information that is required to use a SVCB record, if it is not

included in the initial response. As a performance optimization, if

some of the SVCB records in the response can be used without

requiring additional DNS queries, the client MAY prefer those

records, regardless of their priorities.

¶

¶

_1234._bar.example.com. 300 IN SVCB 1 svc1.example.net. (

 ech="111..." ipv6hint=2001:db8::1 port=1234)

 SVCB 2 svc2.example.net. (

 ech="222..." ipv6hint=2001:db8::2 port=1234)

¶

¶

¶

¶

¶

6. Initial SvcParamKeys

A few initial SvcParamKeys are defined here. These keys are useful

for HTTPS, and most are applicable to other protocols as well. Each

new protocol mapping document MUST specify which keys are applicable

and safe to use. Protocol mappings MAY alter the interpretation of

SvcParamKeys but MUST NOT alter their presentation or wire formats.

6.1. "alpn" and "no-default-alpn"

The "alpn" and "no-default-alpn" SvcParamKeys together indicate the

set of Application Layer Protocol Negotiation (ALPN) protocol

identifiers [ALPN] and associated transport protocols supported by

this service endpoint.

As with Alt-Svc [AltSvc], the ALPN protocol identifier is used to

identify the application protocol and associated suite of protocols

supported by the endpoint (the "protocol suite"). Clients filter the

set of ALPN identifiers to match the protocol suites they support,

and this informs the underlying transport protocol used (such as

QUIC-over-UDP or TLS-over-TCP).

ALPNs are identified by their registered "Identification Sequence"

(alpn-id), which is a sequence of 1-255 octets.

The presentation value SHALL be a comma-separated list (Appendix A.

1) of one or more alpn-ids. Zone file implementations MAY disallow

the "," and "\" characters instead of implementing the value-list

escaping procedure, relying on the opaque key format (e.g.

key1=\002h2) in the event that these characters are needed.

The wire format value for "alpn" consists of at least one alpn-id

prefixed by its length as a single octet, and these length-value

pairs are concatenated to form the SvcParamValue. These pairs MUST

exactly fill the SvcParamValue; otherwise, the SvcParamValue is

malformed.

For "no-default-alpn", the presentation and wire format values MUST

be empty. When "no-default-alpn" is specified in an RR, "alpn" must

also be specified in order for the RR to be "self-consistent"

(Section 2.4.3).

Each scheme that uses this SvcParamKey defines a "default set" of

ALPNs that are supported by nearly all clients and servers, which

MAY be empty. To determine the set of protocol suites supported by

an endpoint (the "SVCB ALPN set"), the client adds the default set

to the list of alpn-ids unless the "no-default-alpn" SvcParamKey is

present. The presence of an ALPN protocol in the SVCB ALPN set

¶

¶

¶

¶

alpn-id = 1*255OCTET¶

¶

¶

¶

indicates that this service endpoint, described by TargetName and

the other parameters (e.g. "port") offers service with the protocol

suite associated with this ALPN protocol.

ALPN protocol names that do not uniquely identify a protocol suite

(e.g. an Identification Sequence that can be used with both TLS and

DTLS) are not compatible with this SvcParamKey and MUST NOT be

included in the SVCB ALPN set.

To establish a connection to the endpoint, clients MUST

Let SVCB-ALPN-Intersection be the set of protocols in the SVCB

ALPN set that the client supports.

Let Intersection-Transports be the set of transports (e.g. TLS,

DTLS, QUIC) implied by the protocols in SVCB-ALPN-Intersection.

For each transport in Intersection-Transports, construct a

ProtocolNameList containing the Identification Sequences of all

the client's supported ALPN protocols for that transport,

without regard to the SVCB ALPN set.

For example, if the SVCB ALPN set is ["http/1.1", "h3"], and the

client supports HTTP/1.1, HTTP/2, and HTTP/3, the client could

attempt to connect using TLS over TCP with a ProtocolNameList of

["http/1.1", "h2"], and could also attempt a connection using QUIC,

with a ProtocolNameList of ["h3"].

Once the client has constructed a ClientHello, protocol negotiation

in that handshake proceeds as specified in [ALPN], without regard to

the SVCB ALPN set.

With this procedure in place, an attacker who can modify DNS and

network traffic can prevent a successful transport connection, but

cannot otherwise interfere with ALPN protocol selection. This

procedure also ensures that each ProtocolNameList includes at least

one protocol from the SVCB ALPN set.

Clients SHOULD NOT attempt connection to a service endpoint whose

SVCB ALPN set does not contain any supported protocols. To ensure

consistency of behavior, clients MAY reject the entire SVCB RRSet

and fall back to basic connection establishment if all of the RRs

indicate "no-default-alpn", even if connection could have succeeded

using a non-default alpn.

For compatibility with clients that require default transports, zone

operators SHOULD ensure that at least one RR in each RRSet supports

the default transports.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

6.2. "port"

The "port" SvcParamKey defines the TCP or UDP port that should be

used to reach this alternative endpoint. If this key is not present,

clients SHALL use the authority endpoint's port number.

The presentation value of the SvcParamValue is a single decimal

integer between 0 and 65535 in ASCII. Any other value (e.g. an empty

value) is a syntax error. To enable simpler parsing, this SvcParam

MUST NOT contain escape sequences.

The wire format of the SvcParamValue is the corresponding 2 octet

numeric value in network byte order.

If a port-restricting firewall is in place between some client and

the service endpoint, changing the port number might cause that

client to lose access to the service, so operators should exercise

caution when using this SvcParamKey to specify a non-default port.

6.3. "ech"

The SvcParamKey to enable Encrypted ClientHello (ECH) is "ech". Its

value is defined in Section 9. It is applicable to most TLS-based

protocols.

When publishing a record containing an "ech" parameter, the

publisher MUST ensure that all IP addresses of TargetName correspond

to servers that have access to the corresponding private key or are

authoritative for the public name. (See Section 7.2.2 of [ECH] for

more details about the public name.) This yields an anonymity set of

cardinality equal to the number of ECH-enabled server domains

supported by a given client-facing server. Thus, even with an

encrypted ClientHello, an attacker who can enumerate the set of ECH-

enabled domains supported by a client-facing server can guess the

correct SNI with probability at least 1/K, where K is the size of

this ECH-enabled server anonymity set. This probability may be

increased via traffic analysis or other mechanisms.

6.4. "ipv4hint" and "ipv6hint"

The "ipv4hint" and "ipv6hint" keys convey IP addresses that clients

MAY use to reach the service. If A and AAAA records for TargetName

are locally available, the client SHOULD ignore these hints.

Otherwise, clients SHOULD perform A and/or AAAA queries for

TargetName as in Section 3, and clients SHOULD use the IP address in

those responses for future connections. Clients MAY opt to terminate

any connections using the addresses in hints and instead switch to

the addresses in response to the TargetName query. Failure to use A

and/or AAAA response addresses could negatively impact load

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-tls-esni-11#section-7.2.2

balancing or other geo-aware features and thereby degrade client

performance.

The presentation value SHALL be a comma-separated list (Appendix A.

1) of one or more IP addresses of the appropriate family in standard

textual format [RFC5952]. To enable simpler parsing, this

SvcParamValue MUST NOT contain escape sequences.

The wire format for each parameter is a sequence of IP addresses in

network byte order. Like an A or AAAA RRSet, the list of addresses

represents an unordered collection, and clients SHOULD pick

addresses to use in a random order. An empty list of addresses is

invalid.

When selecting between IPv4 and IPv6 addresses to use, clients may

use an approach such as Happy Eyeballs [HappyEyeballsV2]. When only

"ipv4hint" is present, IPv6-only clients may synthesize IPv6

addresses as specified in [RFC7050] or ignore the "ipv4hint" key and

wait for AAAA resolution (Section 3). Recursive resolvers MUST NOT

perform DNS64 ([RFC6147]) on parameters within a SVCB record. For

best performance, server operators SHOULD include an "ipv6hint"

parameter whenever they include an "ipv4hint" parameter.

These parameters are intended to minimize additional connection

latency when a recursive resolver is not compliant with the

requirements in Section 4, and SHOULD NOT be included if most

clients are using compliant recursive resolvers. When TargetName is

the origin hostname or the owner name (which can be written as "."),

server operators SHOULD NOT include these hints, because they are

unlikely to convey any performance benefit.

7. ServiceMode RR compatibility and mandatory keys

In a ServiceMode RR, a SvcParamKey is considered "mandatory" if the

RR will not function correctly for clients that ignore this

SvcParamKey. Each SVCB protocol mapping SHOULD specify a set of keys

that are "automatically mandatory", i.e. mandatory if they are

present in an RR. The SvcParamKey "mandatory" is used to indicate

any mandatory keys for this RR, in addition to any automatically

mandatory keys that are present.

A ServiceMode RR is considered "compatible" with a client if the

client recognizes all the mandatory keys, and their values indicate

that successful connection establishment is possible. If the SVCB

RRSet contains no compatible RRs, the client will generally act as

if the RRSet is empty.

The presentation value SHALL be a comma-separated list (Appendix A.

1) of one or more valid SvcParamKeys, either by their registered

name or in the unknown-key format (Section 2.1). Keys MAY appear in

¶

¶

¶

¶

¶

¶

¶

any order, but MUST NOT appear more than once. For self-consistency

(Section 2.4.3), listed keys MUST also appear in the SvcParams.

To enable simpler parsing, this SvcParamValue MUST NOT contain

escape sequences.

For example, the following is a valid list of SvcParams:

In wire format, the keys are represented by their numeric values in

network byte order, concatenated in ascending order.

This SvcParamKey is always automatically mandatory, and MUST NOT

appear in its own value-list. Other automatically mandatory keys

SHOULD NOT appear in the list either. (Including them wastes space

and otherwise has no effect.)

8. Using SVCB with HTTPS and HTTP

Use of any protocol with SVCB requires a protocol-specific mapping

specification. This section specifies the mapping for HTTPS and

HTTP.

To enable special handling for the HTTPS and HTTP use-cases, the

HTTPS RR type is defined as a SVCB-compatible RR type, specific to

the https and http schemes. Clients MUST NOT perform SVCB queries or

accept SVCB responses for "https" or "http" schemes.

The HTTPS RR wire format and presentation format are identical to

SVCB, and both share the SvcParamKey registry. SVCB semantics apply

equally to HTTPS RRs unless specified otherwise. The presentation

format of the record is:

As with SVCB, the record is defined specifically within the Internet

("IN") Class [RFC1035].

All the SvcParamKeys defined in Section 6 are permitted for use in

HTTPS RRs. The default set of ALPN IDs is the single value "http/

1.1". The "automatically mandatory" keys (Section 7) are "port" and

"no-default-alpn". (As described in Section 7, clients must either

implement these keys or ignore any RR in which they appear.) Clients

that restrict the HTTPS destination port (e.g. using the "bad ports"

list from [FETCH]) SHOULD apply the same restriction to the "port"

SvcParam.

The presence of an HTTPS RR for an origin also indicates that all

HTTP resources are available over HTTPS, as discussed in Section

¶

¶

¶

ech=... key65333=ex1 key65444=ex2 mandatory=key65444,ech¶

¶

¶

¶

¶

¶

Name TTL IN HTTPS SvcPriority TargetName SvcParams¶

¶

¶

8.5. This allows HTTPS RRs to apply to pre-existing "http" scheme

URLs, while ensuring that the client uses a secure and authenticated

HTTPS connection.

The HTTPS RR parallels the concepts introduced in the HTTP

Alternative Services proposed standard [AltSvc]. Clients and servers

that implement HTTPS RRs are not required to implement Alt-Svc.

8.1. Query names for HTTPS RRs

The HTTPS RR uses Port Prefix Naming (Section 2.3), with one

modification: if the scheme is "https" and the port is 443, then the

client's original QNAME is equal to the service name (i.e. the

origin's hostname), without any prefix labels.

By removing the Attrleaf labels [Attrleaf] used in SVCB, this

construction enables offline DNSSEC signing of wildcard domains,

which are commonly used with HTTPS. Reusing the service name also

allows the targets of existing CNAME chains (e.g. CDN hosts) to

start returning HTTPS RR responses without requiring origin domains

to configure and maintain an additional delegation.

Following of HTTPS AliasMode RRs and CNAME aliases is unchanged from

SVCB.

Clients always convert "http" URLs to "https" before performing an

HTTPS RR query using the process described in Section 8.5, so domain

owners MUST NOT publish HTTPS RRs with a prefix of "_http".

Note that none of these forms alter the HTTPS origin or authority.

For example, clients MUST continue to validate TLS certificate

hostnames based on the origin.

8.2. Relationship to Alt-Svc

Publishing a ServiceMode HTTPS RR in DNS is intended to be similar

to transmitting an Alt-Svc field value over HTTPS, and receiving an

HTTPS RR is intended to be similar to receiving that field value

over HTTPS. However, there are some differences in the intended

client and server behavior.

8.2.1. ALPN usage

Unlike Alt-Svc Field Values, HTTPS RRs can contain multiple ALPN

IDs, and clients are encouraged to offer additional ALPNs that they

support.

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.2.2. Untrusted channel

SVCB does not require or provide any assurance of authenticity.

(DNSSEC signing and verification, which would provide such

assurance, are OPTIONAL.) The DNS resolution process is treated as

an untrusted channel that learns only the QNAME, and is prevented

from mounting any attack beyond denial of service.

Alt-Svc parameters that cannot be safely received in this model MUST

NOT have a corresponding defined SvcParamKey. For example, there is

no SvcParamKey corresponding to the Alt-Svc "persist" parameter,

because this parameter is not safe to accept over an untrusted

channel.

8.2.3. Cache lifetime

There is no SvcParamKey corresponding to the Alt-Svc "ma" (max age)

parameter. Instead, server operators encode the expiration time in

the DNS TTL.

The appropriate TTL value might be different from the "ma" value

used for Alt-Svc, depending on the desired efficiency and agility.

Some DNS caches incorrectly extend the lifetime of DNS records

beyond the stated TTL, so server operators cannot rely on HTTPS RRs

expiring on time. Shortening the TTL to compensate for incorrect

caching is NOT RECOMMENDED, as this practice impairs the performance

of correctly functioning caches and does not guarantee faster

expiration from incorrect caches. Instead, server operators SHOULD

maintain compatibility with expired records until they observe that

nearly all connections have migrated to the new configuration.

8.2.4. Granularity

Sending Alt-Svc over HTTP allows the server to tailor the Alt-Svc

Field Value specifically to the client. When using an HTTPS RR,

groups of clients will necessarily receive the same SvcParams.

Therefore, HTTPS RRs are not suitable for uses that require single-

client granularity.

8.3. Interaction with Alt-Svc

Clients that implement support for both Alt-Svc and HTTPS records

SHOULD retrieve any HTTPS records for the Alt-Svc alt-authority, and

ensure that their connection attempts are consistent with both the

Alt-Svc parameters and any received HTTPS SvcParams. If present, the

HTTPS record's TargetName and port override the alt-authority. For

example, suppose that "https://example.com" sends an Alt-Svc field

value of:

Alt-Svc: h2="alt.example:443", h2="alt2.example:443", h3=":8443"

¶

¶

¶

¶

¶

¶

The client would retrieve the following HTTPS records:

Based on these inputs, the following connection attempts would

always be allowed:

HTTPS over TCP to alt.example:443 (Consistent with both Alt-Svc

and its HTTPS record)

HTTP/3 to alt3.example:9443 (Consistent with both Alt-Svc and its

HTTPS record)

Fallback to the the client's non-Alt-Svc connection behavior

ECH-capable clients would use ECH when establishing any of these

connections.

The following connection attempts would not be allowed:

HTTP/3 to alt.example:443 (not consistent with Alt-Svc)

Any connection to alt2b.example (no ALPN consistent with both the

HTTPS record and Alt-Svc)

HTTPS over TCP to any port on alt3.example (not consistent with

Alt-Svc)

The following connection attempts would be allowed only if the

client does not support ECH, as they rely on SVCB-optional fallback

behavior that is disabled when the "ech" SvcParam is present

(Section 9.1):

HTTPS over TCP to alt2.example:443 (Alt-Svc only)

HTTP/3 to example.com:8443 (Alt-Svc only)

Origins that publish an "ech" SvcParam in their HTTPS record SHOULD

also publish an "ech" SvcParam for any alt-authorities. Otherwise,

clients might reveal the name of the server in an unencrypted

ClientHello. Similar consistency considerations could apply to

future SvcParamKeys, so alt-authorities SHOULD carry the same

SvcParams as the origin unless a deviation is specifically known to

be safe.

¶

¶

alt.example. IN HTTPS 1 . alpn=h2,h3 ech=...

alt2.example. IN HTTPS 1 alt2b.example. alpn=h3 ech=...

_8443._https.example.com. IN HTTPS 1 alt3.example. (

 port=9443 alpn=h2,h3 ech=...)

¶

¶

*

¶

*

¶

* ¶

¶

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

¶

As noted in Section 2.4 of [AltSvc], clients MAY disallow any Alt-

Svc connection according to their own criteria, e.g. disallowing

Alt-Svc connections that lack ECH support when there is an active

ECH-protected connection for this origin.

8.4. Requiring Server Name Indication

Clients MUST NOT use an HTTPS RR response unless the client supports

TLS Server Name Indication (SNI) and indicates the origin name when

negotiating TLS. This supports the conservation of IP addresses.

Note that the TLS SNI (and also the HTTP "Host" or ":authority")

will indicate the origin, not the TargetName.

8.5. HTTP Strict Transport Security

By publishing a usable HTTPS RR, the server operator indicates that

all useful HTTP resources on that origin are reachable over HTTPS,

similar to HTTP Strict Transport Security [HSTS].

Prior to making an "http" scheme request, the client SHOULD perform

a lookup to determine if any HTTPS RRs exist for that origin. To do

so, the client SHOULD construct a corresponding "https" URL as

follows:

Replace the "http" scheme with "https".

If the "http" URL explicitly specifies port 80, specify port

443.

Do not alter any other aspect of the URL.

This construction is equivalent to Section 8.3 of [HSTS], point 5.

If an HTTPS RR query for this "https" URL returns any AliasMode

HTTPS RRs, or any compatible ServiceMode HTTPS RRs (see Section 7),

the client SHOULD act as if it has received an HTTP "307 Temporary

Redirect" redirect to this "https" URL. (Receipt of an incompatible

ServiceMode RR does not trigger the redirect behavior.) Because

HTTPS RRs are received over an often insecure channel (DNS), clients

MUST NOT place any more trust in this signal than if they had

received a 307 redirect over cleartext HTTP.

When an HTTPS connection fails due to an error in the underlying

secure transport, such as an error in certificate validation, some

clients currently offer a "user recourse" that allows the user to

bypass the security error and connect anyway. When making an "https"

scheme request to an origin with an HTTPS RR, either directly or via

the above redirect, such a client MAY remove the user recourse

option. Origins that publish HTTPS RRs therefore MUST NOT rely on

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

¶

¶

https://rfc-editor.org/rfc/rfc7838#section-2.4
https://rfc-editor.org/rfc/rfc6797#section-8.3

user recourse for access. For more information, see Section 8.4 and

Section 12.1 of [HSTS].

8.6. HTTP-based protocols

All protocols employing "http://" or "https://" URLs SHOULD respect

HTTPS RRs. For example, clients that support HTTPS RRs and implement

the altered WebSocket [WebSocket] opening handshake from the W3C

Fetch specification [FETCH] SHOULD use HTTPS RRs for the requestURL.

An HTTP-based protocol MAY define its own SVCB mapping. Such

mappings MAY be defined to take precedence over HTTPS RRs.

9. SVCB/HTTPS RR parameter for ECH configuration

The SVCB "ech" parameter is defined for conveying the ECH

configuration of an alternative endpoint. In wire format, the value

of the parameter is an ECHConfigList [ECH], including the redundant

length prefix. In presentation format, the value is a single

ECHConfigList encoded in Base64 [base64]. Base64 is used here to

simplify integration with TLS server software. To enable simpler

parsing, this SvcParam MUST NOT contain escape sequences.

When ECH is in use, the TLS ClientHello is divided into an

unencrypted "outer" and an encrypted "inner" ClientHello. The outer

ClientHello is an implementation detail of ECH, and its contents are

controlled by the ECHConfig in accordance with [ECH]. The inner

ClientHello is used for establishing a connection to the service, so

its contents may be influenced by other SVCB parameters. For

example, the requirements on the ProtocolNameList in Section 6.1

apply only to the inner ClientHello. Similarly, it is the inner

ClientHello whose Server Name Indication identifies the desired

service.

9.1. Client behavior

The SVCB-optional client behavior specified in Section 3 permits

clients to fall back to a direct connection if all SVCB options

fail. This behavior is not suitable for ECH, because fallback would

negate the privacy benefits of ECH. Accordingly, ECH-capable SVCB-

optional clients MUST switch to SVCB-reliant connection

establishment if SVCB resolution succeeded (following Section 3) and

all alternative endpoints have an "ech" key.

As a latency optimization, clients MAY prefetch DNS records that

will only be used in SVCB-optional mode.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6797#section-8.4
https://rfc-editor.org/rfc/rfc6797#section-12.1

9.2. Deployment considerations

An HTTPS RRSet containing some RRs with "ech" and some without is

vulnerable to a downgrade attack. This configuration is NOT

RECOMMENDED. Zone owners who do use such a mixed configuration

SHOULD mark the RRs with "ech" as more preferred (i.e. smaller

SvcPriority) than those without, in order to maximize the likelihood

that ECH will be used in the absence of an active adversary.

10. Zone Structures

10.1. Structuring zones for flexibility

Each ServiceForm RRSet can only serve a single scheme. The scheme is

indicated by the owner name and the RR type. For the generic SVCB RR

type, this means that each owner name can only be used for a single

scheme. The underscore prefixing requirement (Section 2.3) ensures

that this is true for the initial query, but it is the

responsibility of zone owners to choose names that satisfy this

constraint when using aliases, including CNAME and AliasMode

records.

When using the generic SVCB RR type with aliasing, zone owners

SHOULD choose alias target names that indicate the scheme in use

(e.g. foosvc.example.net for foo:// schemes). This will help to

avoid confusion when another scheme needs to be added to the

configuration.

10.2. Structuring zones for performance

To avoid a delay for clients using a nonconforming recursive

resolver, domain owners SHOULD minimize the use of AliasMode

records, and SHOULD choose TargetName according to a predictable

convention that is known to the client, so that clients can issue A

and/or AAAA queries for TargetName in advance (see Section 5).

Unless otherwise specified, the convention is to set TargetName to

the service name for an initial ServiceMode record, or to "." if it

is reached via an alias. For foo://foo.example.com:8080, this might

look like:

Domain owners SHOULD avoid using a TargetName that is below a DNAME,

as this is likely unnecessary and makes responses slower and larger.

¶

¶

¶

¶

$ORIGIN example.com. ; Origin

foo 3600 IN CNAME foosvc.example.net.

_8080._foo.foo 3600 IN CNAME foosvc.example.net.

$ORIGIN example.net. ; Service provider zone

foosvc 3600 IN SVCB 1 . key65333=...

foosvc 300 IN AAAA 2001:db8::1

¶

Also, zone structures that require following more than 8 aliases

(counting both AliasMode and CNAME records) are NOT RECOMMENDED.

10.3. Examples

10.3.1. Protocol enhancements

Consider a simple zone of the form:

The domain owner could add this record:

to indicate that https://simple.example supports QUIC in addition to

HTTPS over TCP (an implicit default). The record could also include

other information (e.g. non-standard port, ECH configuration). For

https://simple.example:8443, the record would be:

These records also respectively tell clients to replace the scheme

with "https" when loading http://simple.example or http://

simple.example:8443.

10.3.2. Apex aliasing

Consider a zone that is using CNAME aliasing:

With HTTPS RRs, the owner of aliased.example could alias the apex by

adding one additional record:

With this record in place, HTTPS-RR-aware clients will use the same

server pool for aliased.example and www.aliased.example. (They will

also upgrade to HTTPS on aliased.example.) Non-HTTPS-RR-aware

clients will just ignore the new record.

¶

¶

$ORIGIN simple.example. ; Simple example zone

@ 300 IN A 192.0.2.1

 AAAA 2001:db8::1

¶

¶

@ 7200 IN HTTPS 1 . alpn=h3¶

¶

_8443._https 7200 IN HTTPS 1 . alpn=h3¶

¶

¶

$ORIGIN aliased.example. ; A zone that is using a hosting service

; Subdomain aliased to a high-performance server pool

www 7200 IN CNAME pool.svc.example.

; Apex domain on fixed IPs because CNAME is not allowed at the apex

@ 300 IN A 192.0.2.1

 IN AAAA 2001:db8::1

¶

¶

@ 7200 IN HTTPS 0 pool.svc.example.¶

¶

Similar to CNAME, HTTPS RRs have no impact on the origin name. When

connecting, clients will continue to treat the authoritative origins

as "https://www.aliased.example" and "https://aliased.example",

respectively, and will validate TLS server certificates accordingly.

10.3.3. Parameter binding

Suppose that svc.example's default server pool supports HTTP/2, and

it has deployed HTTP/3 on a new server pool with a different

configuration. This can be expressed in the following form:

This configuration is entirely compatible with the "Apex aliasing"

example, whether the client supports HTTPS RRs or not. If the client

does support HTTPS RRs, all connections will be upgraded to HTTPS,

and clients will use HTTP/3 if they can. Parameters are "bound" to

each server pool, so each server pool can have its own protocol, ECH

configuration, etc.

10.3.4. Multi-CDN

The HTTPS RR is intended to support HTTPS services operated by

multiple independent entities, such as different Content Delivery

Networks (CDNs) or different hosting providers. This includes the

case where a service is migrated from one operator to another, as

well as the case where the service is multiplexed between multiple

operators for performance, redundancy, etc.

This example shows such a configuration, with www.customer.example

having different DNS responses to different queries, either over

time or due to logic within the authoritative DNS server:

¶

¶

$ORIGIN svc.example. ; A hosting provider.

pool 7200 IN HTTPS 1 h3pool alpn=h2,h3 ech="123..."

 HTTPS 2 . alpn=h2 ech="abc..."

pool 300 IN A 192.0.2.2

 AAAA 2001:db8::2

h3pool 300 IN A 192.0.2.3

 AAAA 2001:db8::3

¶

¶

¶

¶

 ; This zone contains/returns different CNAME records

 ; at different points-in-time. The RRset for "www" can

 ; only ever contain a single CNAME.

 ; Sometimes the zone has:

 $ORIGIN customer.example. ; A Multi-CDN customer domain

 www 900 IN CNAME cdn1.svc1.example.

 ; and other times it contains:

 $ORIGIN customer.example.

 www 900 IN CNAME customer.svc2.example.

 ; and yet other times it contains:

 $ORIGIN customer.example.

 www 900 IN CNAME cdn3.svc3.example.

 ; With the following remaining constant and always included:

 $ORIGIN customer.example. ; A Multi-CDN customer domain

 ; The apex is also aliased to www to match its configuration

 @ 7200 IN HTTPS 0 www

 ; Non-HTTPS-aware clients use non-CDN IPs

 A 203.0.113.82

 AAAA 2001:db8:203::2

 ; Resolutions following the cdn1.svc1.example

 ; path use these records.

 ; This CDN uses a different alternative service for HTTP/3.

 $ORIGIN svc1.example. ; domain for CDN 1

 cdn1 1800 IN HTTPS 1 h3pool alpn=h3 ech="123..."

 HTTPS 2 . alpn=h2 ech="123..."

 A 192.0.2.2

 AAAA 2001:db8:192::4

 h3pool 300 IN A 192.0.2.3

 AAAA 2001:db8:192:7::3

 ; Resolutions following the customer.svc2.example

 ; path use these records.

 ; Note that this CDN only supports HTTP/2.

 $ORIGIN svc2.example. ; domain operated by CDN 2

 customer 300 IN HTTPS 1 . alpn=h2 ech="xyz..."

 60 IN A 198.51.100.2

 A 198.51.100.3

 A 198.51.100.4

 AAAA 2001:db8:198::7

 AAAA 2001:db8:198::12

 ; Resolutions following the customer.svc2.example

 ; path use these records.

 ; Note that this CDN has no HTTPS records

 ; and thus no ECH support.

 $ORIGIN svc3.example. ; domain operated by CDN 3

 cdn3 60 IN A 203.0.113.8

 AAAA 2001:db8:113::8

¶

Note that in the above example, the different CDNs have different

ECH configurations and different capabilities, but clients will use

HTTPS RRs as a bound-together unit.

Domain owners should be cautious when using a multi-CDN

configuration, as it introduces a number of complexities highlighted

by this example:

If CDN 1 supports ECH, and CDN 2 does not, the client is

vulnerable to ECH downgrade by a network adversary who forces

clients to get CDN 2 records.

Aliasing the apex to its subdomain simplifies the zone file but

likely increases resolution latency, especially when using a non-

HTTPS-aware recursive resolver. An alternative would be to alias

the zone apex directly to a name managed by a CDN.

The A, AAAA, HTTPS resolutions are independent lookups so clients

may observe and follow different CNAMEs to different CDNs.

Clients may thus find a SvcDomainName pointing to a name other

than the one which returned along with the A and AAAA lookups and

will need to do an additional resolution for them. Including

ipv6hint and ipv4hint will reduce the performance impact of this

case.

If not all CDNs publish HTTPS records, clients will sometimes

receive NODATA for HTTPS queries (as with cdn3.svc3.example

above), and thus no "ech" SvcParam, but could receive A/AAAA

records from a different CDN which does support ECH. Clients will

be unable to use ECH in this case.

10.3.5. Non-HTTPS uses

For services other than HTTPS, the SVCB RR and an Attrleaf label

[Attrleaf] will be used. For example, to reach an example resource

of "baz://api.example.com:8765", the following SVCB record would be

used to alias it to "svc4-baz.example.net." which in-turn could

return AAAA/A records and/or SVCB records in ServiceMode:

HTTPS RRs use similar Attrleaf labels if the origin contains a non-

default port.

11. Interaction with other standards

This standard is intended to reduce connection latency and improve

user privacy. Server operators implementing this standard SHOULD

also implement TLS 1.3 [RFC8446] and OCSP Stapling [RFC6066], both

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

_8765._baz.api.example.com. 7200 IN SVCB 0 svc4-baz.example.net.¶

¶

of which confer substantial performance and privacy benefits when

used in combination with SVCB records.

To realize the greatest privacy benefits, this proposal is intended

for use over a privacy-preserving DNS transport (like DNS over TLS

[DoT] or DNS over HTTPS [DoH]). However, performance improvements,

and some modest privacy improvements, are possible without the use

of those standards.

Any specification for use of SVCB with a protocol MUST have an entry

for its scheme under the SVCB RR type in the IANA DNS Underscore

Global Scoped Entry Registry [Attrleaf]. The scheme SHOULD have an

entry in the IANA URI Schemes Registry [RFC7595]. The scheme SHOULD

have a defined specification for use with SVCB.

12. Security Considerations

SVCB/HTTPS RRs are intended for distribution over untrusted

channels, and clients are REQUIRED to verify that the alternative

endpoint is authoritative for the service (similar to Section 2.1 of

[AltSvc]). Therefore, DNSSEC signing and validation are OPTIONAL for

publishing and using SVCB and HTTPS RRs.

Clients MUST ensure that their DNS cache is partitioned for each

local network, or flushed on network changes, to prevent a local

adversary in one network from implanting a forged DNS record that

allows them to track users or hinder their connections after they

leave that network.

An attacker who can prevent SVCB resolution can deny clients any

associated security benefits. A hostile recursive resolver can

always deny service to SVCB queries, but network intermediaries can

often prevent resolution as well, even when the client and recursive

resolver validate DNSSEC and use a secure transport. These downgrade

attacks can prevent the HTTPS upgrade provided by the HTTPS RR

(Section 8.5), and disable the encryption enabled by the "ech"

SvcParamKey (Section 9). To prevent downgrades, Section 3.1

recommends that clients abandon the connection attempt when such an

attack is detected.

A hostile DNS intermediary might forge AliasForm "." records

(Section 2.5.1) as a way to block clients from accessing particular

services. Such an adversary could already block entire domains by

forging erroneous responses, but this mechanism allows them to

target particular protocols or ports within a domain. Clients that

might be subject to such attacks SHOULD ignore AliasForm "."

records.

A hostile DNS intermediary or origin can return SVCB records

indicating any IP address and port number, including IP addresses

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7838#section-2.1

inside the local network and port numbers assigned to internal

services. If the attacker can influence the client's payload (e.g.

TLS session ticket contents), and an internal service has a

sufficiently lax parser, it's possible that the attacker could gain

unintended access. (The same concerns apply to SRV records, HTTP

Alt-Svc, and HTTP redirects.) As a mitigation, SVCB mapping

documents SHOULD indicate any port number restrictions that are

appropriate for the supported transports.

13. Privacy Considerations

Standard address queries reveal the user's intent to access a

particular domain. This information is visible to the recursive

resolver, and to many other parties when plaintext DNS transport is

used. SVCB queries, like queries for SRV records and other specific

RR types, additionally reveal the user's intent to use a particular

protocol. This is not normally sensitive information, but it should

be considered when adding SVCB support in a new context.

14. IANA Considerations

14.1. SVCB RRType

This document defines a new DNS RR type, SVCB, whose value 64 has

been allocated by IANA from the "Resource Record (RR) TYPEs"

subregistry of the "Domain Name System (DNS) Parameters" registry:

Type: SVCB

Value: 64

Meaning: General Purpose Service Endpoints

Reference: This document

14.2. HTTPS RRType

This document defines a new DNS RR type, HTTPS, whose value 65 has

been allocated by IANA from the "Resource Record (RR) TYPEs"

subregistry of the "Domain Name System (DNS) Parameters" registry:

Type: HTTPS

Value: 65

Meaning: HTTPS Specific Service Endpoints

Reference: This document

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

14.3. New registry for Service Parameters

The "Service Binding (SVCB) Parameter Registry" defines the

namespace for parameters, including string representations and

numeric SvcParamKey values. This registry is shared with other SVCB-

compatible RR types, such as the HTTPS RR.

ACTION: create and include a reference to this registry.

14.3.1. Procedure

A registration MUST include the following fields:

Number: wire format numeric identifier (range 0-65535)

Name: unique presentation name

Meaning: a short description

Format Reference: pointer to specification text

The characters in the registered Name MUST be lower-case

alphanumeric or "-" (Section 2.1). The name MUST NOT start with

"key" or "invalid".

Entries in this registry are subject to a First Come First Served

registration policy ([RFC8126], Section 4.4). The Format Reference

MUST specify how to convert the SvcParamValue's presentation format

to wire format and MAY detail its intended meaning and use. An entry

MAY specify a Format Reference of the form "Same as (other key

Name)" if it uses the same presentation and wire formats as an

existing key.

This arrangement supports the development of new parameters while

ensuring that zone files can be made interoperable.

14.3.2. Initial contents

The "Service Binding (SVCB) Parameter Registry" shall initially be

populated with the registrations below:

Number Name Meaning Format Reference

0 mandatory
Mandatory keys in

this RR

(This document)

Section 7

1 alpn
Additional

supported protocols

(This document)

Section 6.1

2
no-default-

alpn

No support for

default protocol

(This document)

Section 6.1

3 port
(This document)

Section 6.2

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.4

Number Name Meaning Format Reference

Port for

alternative

endpoint

4 ipv4hint IPv4 address hints
(This document)

Section 6.4

5 ech
Encrypted

ClientHello info

(This document)

Section 6.3

6 ipv6hint IPv6 address hints
(This document)

Section 6.4

65280-65534 N/A Private Use (This document)

65535 N/A
Reserved ("Invalid

key")
(This document)

Table 1

14.4. Registry updates

Per [RFC6895], please add the following entries to the data type

range of the Resource Record (RR) TYPEs registry:

TYPE Meaning Reference

SVCB Service Location and Parameter Binding (This document)

HTTPS HTTPS Service Location and Parameter Binding (This document)

Table 2

Per [Attrleaf], please add the following entry to the DNS Underscore

Global Scoped Entry Registry:

RR TYPE _NODE NAME Meaning Reference

HTTPS _https HTTPS SVCB info (This document)

Table 3

15. Acknowledgments and Related Proposals

There have been a wide range of proposed solutions over the years to

the "CNAME at the Zone Apex" challenge proposed. These include [I-

D.bellis-dnsop-http-record], [I-D.ietf-dnsop-aname], and others.

Thank you to Ian Swett, Ralf Weber, Jon Reed, Martin Thomson, Lucas

Pardue, Ilari Liusvaara, Tim Wicinski, Tommy Pauly, Chris Wood,

David Benjamin, Mark Andrews, Emily Stark, Eric Orth, Kyle Rose,

Craig Taylor, Dan McArdle, Brian Dickson, Willem Toorop, Pieter

Lexis, Puneet Sood, Olivier Poitrey, Mashooq Muhaimen, Tom Carpay,

and many others for their feedback and suggestions on this draft.

16. References

16.1. Normative References

¶

¶

¶

¶

[ALPN]

[Attrleaf]

[base64]

[DNAME]

[DoH]

[DoT]

[ECH]

[HappyEyeballsV2]

[HSTS]

[HTTP3]

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://doi.org/10.17487/RFC7301>.

Crocker, D., "Scoped Interpretation of DNS Resource

Records through "Underscored" Naming of Attribute

Leaves", BCP 222, RFC 8552, DOI 10.17487/RFC8552, March

2019, <https://doi.org/10.17487/RFC8552>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://doi.org/10.17487/RFC4648>.

Rose, S. and W. Wijngaards, "DNAME Redirection in the

DNS", RFC 6672, DOI 10.17487/RFC6672, June 2012,

<https://doi.org/10.17487/RFC6672>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://doi.org/10.17487/RFC8484>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

and P. Hoffman, "Specification for DNS over Transport

Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,

May 2016, <https://doi.org/10.17487/RFC7858>.

Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS

Encrypted Client Hello", Work in Progress, Internet-

Draft, draft-ietf-tls-esni-11, 14 June 2021, <https://

tools.ietf.org/html/draft-ietf-tls-esni-11>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version

2: Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://doi.org/

10.17487/RFC8305>.

Hodges, J., Jackson, C., and A. Barth, "HTTP Strict

Transport Security (HSTS)", RFC 6797, DOI 10.17487/

RFC6797, November 2012, <https://doi.org/10.17487/

RFC6797>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

https://doi.org/10.17487/RFC7301
https://doi.org/10.17487/RFC8552
https://doi.org/10.17487/RFC4648
https://doi.org/10.17487/RFC6672
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC7858
https://tools.ietf.org/html/draft-ietf-tls-esni-11
https://tools.ietf.org/html/draft-ietf-tls-esni-11
https://doi.org/10.17487/RFC8305
https://doi.org/10.17487/RFC8305
https://doi.org/10.17487/RFC6797
https://doi.org/10.17487/RFC6797

[RFC1035]

[RFC1928]

[RFC2119]

[RFC2181]

[RFC3225]

[RFC3597]

[RFC5234]

[RFC5952]

[RFC6066]

[RFC6147]

[RFC7050]

http-34, 2 February 2021, <https://tools.ietf.org/html/

draft-ietf-quic-http-34>.

Mockapetris, P.V., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://doi.org/10.17487/RFC1035>.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D.,

and L. Jones, "SOCKS Protocol Version 5", RFC 1928, DOI

10.17487/RFC1928, March 1996, <https://doi.org/10.17487/

RFC1928>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://doi.org/10.17487/RFC2119>.

Elz, R. and R. Bush, "Clarifications to the DNS

Specification", RFC 2181, DOI 10.17487/RFC2181, July

1997, <https://doi.org/10.17487/RFC2181>.

Conrad, D., "Indicating Resolver Support of DNSSEC", RFC

3225, DOI 10.17487/RFC3225, December 2001, <https://

doi.org/10.17487/RFC3225>.

Gustafsson, A., "Handling of Unknown DNS Resource Record

(RR) Types", RFC 3597, DOI 10.17487/RFC3597, September

2003, <https://doi.org/10.17487/RFC3597>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://doi.org/

10.17487/RFC5234>.

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6

Address Text Representation", RFC 5952, DOI 10.17487/

RFC5952, August 2010, <https://doi.org/10.17487/RFC5952>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://doi.org/

10.17487/RFC6066>.

Bagnulo, M., Sullivan, A., Matthews, P., and I. van

Beijnum, "DNS64: DNS Extensions for Network Address

Translation from IPv6 Clients to IPv4 Servers", RFC 6147,

DOI 10.17487/RFC6147, April 2011, <https://doi.org/

10.17487/RFC6147>.

Savolainen, T., Korhonen, J., and D. Wing, "Discovery of

the IPv6 Prefix Used for IPv6 Address Synthesis", RFC

https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://doi.org/10.17487/RFC1035
https://doi.org/10.17487/RFC1928
https://doi.org/10.17487/RFC1928
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC2181
https://doi.org/10.17487/RFC3225
https://doi.org/10.17487/RFC3225
https://doi.org/10.17487/RFC3597
https://doi.org/10.17487/RFC5234
https://doi.org/10.17487/RFC5234
https://doi.org/10.17487/RFC5952
https://doi.org/10.17487/RFC6066
https://doi.org/10.17487/RFC6066
https://doi.org/10.17487/RFC6147
https://doi.org/10.17487/RFC6147

[RFC7231]

[RFC7595]

[RFC7871]

[RFC8126]

[RFC8174]

[RFC8446]

[WebSocket]

7050, DOI 10.17487/RFC7050, November 2013, <https://

doi.org/10.17487/RFC7050>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://doi.org/

10.17487/RFC7231>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, DOI 10.17487/RFC7595, June 2015, <https://doi.org/

10.17487/RFC7595>.

Contavalli, C., van der Gaast, W., Lawrence, D., and W.

Kumari, "Client Subnet in DNS Queries", RFC 7871, DOI

10.17487/RFC7871, May 2016, <https://doi.org/10.17487/

RFC7871>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

doi.org/10.17487/RFC8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://doi.org/10.17487/RFC8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://doi.org/10.17487/RFC8446>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

doi.org/10.17487/RFC6455>.

https://doi.org/10.17487/RFC7050
https://doi.org/10.17487/RFC7050
https://doi.org/10.17487/RFC7231
https://doi.org/10.17487/RFC7231
https://doi.org/10.17487/RFC7595
https://doi.org/10.17487/RFC7595
https://doi.org/10.17487/RFC7871
https://doi.org/10.17487/RFC7871
https://doi.org/10.17487/RFC8126
https://doi.org/10.17487/RFC8126
https://doi.org/10.17487/RFC8174
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC6455
https://doi.org/10.17487/RFC6455

[AltSvc]

[DNSTerm]

[FETCH]

[I-D.bellis-dnsop-http-record]

[I-D.ietf-dnsop-aname]

[RFC3513]

[RFC6454]

[RFC6895]

[SRV]

[URI]

16.2. Informative References

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://doi.org/10.17487/RFC7838>.

Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://doi.org/10.17487/RFC8499>.

"Fetch Living Standard", May 2020, <https://

fetch.spec.whatwg.org/>.

Bellis, R., "A DNS Resource Record for HTTP", Work in

Progress, Internet-Draft, draft-bellis-dnsop-http-

record-00, 3 November 2018, <https://tools.ietf.org/html/

draft-bellis-dnsop-http-record-00>.

Finch, T., Hunt, E., Dijk, P. V., Eden, A.,

and M. Mekking, "Address-specific DNS aliases (ANAME)",

Work in Progress, Internet-Draft, draft-ietf-dnsop-

aname-04, 8 July 2019, <https://tools.ietf.org/html/

draft-ietf-dnsop-aname-04>.

Hinden, R. and S. Deering, "Internet Protocol Version 6

(IPv6) Addressing Architecture", RFC 3513, DOI 10.17487/

RFC3513, April 2003, <https://doi.org/10.17487/RFC3513>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://doi.org/

10.17487/RFC6454>.

Eastlake 3rd, D., "Domain Name System (DNS) IANA

Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,

April 2013, <https://doi.org/10.17487/RFC6895>.

Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for

specifying the location of services (DNS SRV)", RFC 2782,

DOI 10.17487/RFC2782, February 2000, <https://doi.org/

10.17487/RFC2782>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

doi.org/10.17487/RFC3986>.

https://doi.org/10.17487/RFC7838
https://doi.org/10.17487/RFC8499
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://tools.ietf.org/html/draft-bellis-dnsop-http-record-00
https://tools.ietf.org/html/draft-bellis-dnsop-http-record-00
https://tools.ietf.org/html/draft-ietf-dnsop-aname-04
https://tools.ietf.org/html/draft-ietf-dnsop-aname-04
https://doi.org/10.17487/RFC3513
https://doi.org/10.17487/RFC6454
https://doi.org/10.17487/RFC6454
https://doi.org/10.17487/RFC6895
https://doi.org/10.17487/RFC2782
https://doi.org/10.17487/RFC2782
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC3986

Appendix A. Decoding text in zone files

DNS zone files are capable of representing arbitrary octet sequences

in basic ASCII text, using various delimiters and encodings. The

algorithm for decoding these character-strings is defined in

Section 5.1 of [RFC1035]. Here we summarize the allowed input to

that algorithm, using ABNF:

The decoding algorithm allows char-string to represent any *OCTET.

In this document, this algorithm is referred to as "character-string

decoding". The algorithm is the same as used by <character-string>

in RFC 1035, although the output length in this document is not

limited to 255 octets.

A.1. Decoding a comma-separated list

In order to represent lists of items in zone files, this

specification uses comma-separated lists. When the allowed items in

the list cannot contain "," or "\", this is trivial. (For

simplicity, empty items are not allowed.) A value-list parser that

splits on "," and prohibits items containing "\" is sufficient to

comply with all requirements in this document.

For implementations that allow "," and "\" in item values, the

following escaping syntax applies:

Decoding of value-lists happens after character-string decoding.

For example, consider these char-string SvcParamValues:

¶

; non-special is VCHAR minus DQUOTE, ";", "(", ")", and "\".

non-special = %x21 / %x23-27 / %x2A-3A / %x3C-5B / %x5D-7E

; non-digit is VCHAR minus DIGIT

non-digit = %x21-2F / %x3A-7E

; dec-octet is a number 0-255 as a three-digit decimal number.

dec-octet = ("0" / "1") 2DIGIT /

 "2" ((%x30-34 DIGIT) / ("5" %x30-35))

escaped = "\" (non-digit / dec-octet)

contiguous = 1*(non-special / escaped)

quoted = DQUOTE *(contiguous / (["\"] WSP)) DQUOTE

char-string = contiguous / quoted

¶

¶

¶

¶

item = 1*OCTET

; item-allowed is OCTET minus "," and "\".

item-allowed = %x00-2B / %x2D-5B / %x5D-FF

escaped-item = 1*(item-allowed / "\," / "\\")

comma-separated = [escaped-item *("," escaped-item)]

¶

¶

"part1,part2,part3\\,part4\\\\"

part1\,\p\a\r\t2\044part3\092,part4\092\\

¶

https://rfc-editor.org/rfc/rfc1035#section-5.1

These inputs are equivalent: character-string decoding either of

them would produce the same value:

Applying comma-separated list decoding to this value would produce a

list of three items:

Appendix B. HTTP Mapping Summary

This table serves as a non-normative summary of the HTTP mapping for

SVCB (Section 8). Future protocol mappings may provide a similar

summary table.

Mapped scheme "https"

Other affected schemes "http", "wss", "ws", (other HTTP-based)

RR type HTTPS (65)

Name prefix None for port 443, else _$PORT._https

Automatically Mandatory Keys port, no-default-alpn

SvcParam defaults alpn: ["http/1.1"]

Special behaviors HTTP to HTTPS upgrade

Table 4

This table does not indicate any SvcParamKeys that servers are

required to publish, or that clients are required to implement,

because there are none in this mapping.

Appendix C. Comparison with alternatives

The SVCB and HTTPS RR types closely resemble, and are inspired by,

some existing record types and proposals. A complaint with all of

the alternatives is that web clients have seemed unenthusiastic

about implementing them. The hope here is that by providing an

extensible solution that solves multiple problems we will overcome

the inertia and have a path to achieve client implementation.

C.1. Differences from the SRV RR type

An SRV record [SRV] can perform a similar function to the SVCB

record, informing a client to look in a different location for a

service. However, there are several differences:

SRV records are typically mandatory, whereas clients will always

continue to function correctly without making use of SVCB.

¶

part1,part2,part3\,part4\\¶

¶

part1

part2

part3,part4\

¶

¶

¶

¶

¶

*

¶

SRV records cannot instruct the client to switch or upgrade

protocols, whereas SVCB can signal such an upgrade (e.g. to HTTP/

2).

SRV records are not extensible, whereas SVCB and HTTPS RRs can be

extended with new parameters.

SVCB records use 16 bit for SvcPriority for consistency with SRV

and other RR types that also use 16 bit priorities.

C.2. Differences from the proposed HTTP record

Unlike [I-D.bellis-dnsop-http-record], this approach is extensible

to cover Alt-Svc and Encrypted ClientHello use-cases. Like that

proposal, this addresses the zone apex CNAME challenge.

Like that proposal, it remains necessary to continue to include

address records at the zone apex for legacy clients.

C.3. Differences from the proposed ANAME record

Unlike [I-D.ietf-dnsop-aname], this approach is extensible to cover

Alt-Svc and ECH use-cases. This approach also does not require any

changes or special handling on either authoritative or primary

servers, beyond optionally returning in-bailiwick additional

records.

Like that proposal, this addresses the zone apex CNAME challenge for

clients that implement this.

However, with this SVCB proposal, it remains necessary to continue

to include address records at the zone apex for legacy clients. If

deployment of this standard is successful, the number of legacy

clients will fall over time. As the number of legacy clients

declines, the operational effort required to serve these users

without the benefit of SVCB indirection should fall. Server

operators can easily observe how much traffic reaches this legacy

endpoint, and may remove the apex's address records if the observed

legacy traffic has fallen to negligible levels.

C.4. Comparison with separate RR types for AliasMode and ServiceMode

Abstractly, functions of AliasMode and ServiceMode are independent,

so it might be tempting to specify them as separate RR types.

However, this would result in a serious performance impairment,

because clients cannot rely on their recursive resolver to follow

SVCB aliases (unlike CNAME). Thus, clients would have to issue

queries for both RR types in parallel, potentially at each step of

the alias chain. Recursive resolvers that implement the

specification would, upon receipt of a ServiceMode query, emit both

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

a ServiceMode and an AliasMode query to the authoritative. Thus,

splitting the RR type would double, or in some cases triple, the

load on clients and servers, and would not reduce implementation

complexity.

Appendix D. Test vectors

These test vectors only contain the RDATA portion of SVCB/HTTPS

records in presentation format, generic format ([RFC3597]) and wire

format. The wire format uses hexadecimal (\xNN) for each non-ascii

byte. As the wireformat is long, it is broken into several lines.

D.1. AliasForm

D.2. ServiceForm

The first form is the simple "use the ownername".

This vector only has a port.

¶

¶

example.com. HTTPS 0 foo.example.com.

\# 19 (

00 00 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

)

\x00\x00 # priority

\x03foo\x07example\x03com\x00 # target

¶

¶

example.com. SVCB 1 .

\# 3 (

00 01 ; priority

00 ; target (root label)

)

\x00\x01 # priority

\x00 # target, root label

¶

¶

This example has a key that is not registered, its value is

unquoted.

This example has a key that is not registered, its value is quoted

and contains a decimal-escaped character.

example.com. SVCB 16 foo.example.com. port=53

\# 25 (

00 10 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

00 03 ; key 3

00 02 ; length 2

00 35 ; value

)

\x00\x10 # priority

\x03foo\x07example\x03com\x00 # target

\x00\x03 # key 3

\x00\x02 # length: 2 bytes

\x00\x35 # value

¶

¶

example.com. SVCB 1 foo.example.com. key667=hello

\# 28 (

00 01 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

02 9b ; key 667

00 05 ; length 5

68 65 6c 6c 6f ; value

)

\x00\x01 # priority

\x03foo\x07example\x03com\x00 # target

\x02\x9b # key 667

\x00\x05 # length 5

hello # value

¶

¶

Here, two IPv6 hints are quoted in the presentation format.

This example shows a single IPv6 hint in IPv4-mapped IPv6

presentation format([RFC3513]).

example.com. SVCB 1 foo.example.com. key667="hello\210qoo"

\# 32 (

00 01 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

02 9b ; key 667

00 09 ; length 9

68 65 6c 6c 6f d2 71 6f 6f ; value

)

\x00\x01 # priority

\x03foo\x07example\x03com\x00 # target

\x02\x9b # key 667

\x00\x09 # length 9

hello\xd2qoo # value

¶

¶

example.com. SVCB 1 foo.example.com. (

 ipv6hint="2001:db8::1,2001:db8::53:1"

)

\# 55 (

00 01 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

00 06 ; key 6

00 20 ; length 32

20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01 ; first address

20 01 0d b8 00 00 00 00 00 00 00 00 00 53 00 01 ; second address

)

\x00\x01 # priority

\x03foo\x07example\x03com\x00 # target

\x00\x06 # key 6

\x00\x20 # length 32

\x20\x01\x0d\xb8\x00\x00\x00\x00

 \x00\x00\x00\x00\x00\x00\x00\x01 # first address

\x20\x01\x0d\xb8\x00\x00\x00\x00

 \x00\x00\x00\x00\x00\x53\x00\x01 # second address

¶

¶

In the next vector, neither the SvcParamValues nor the mandatory

keys are sorted in presentation format, but are correctly sorted in

the wire-format.

example.com. SVCB 1 example.com. ipv6hint="::ffff:198.51.100.100"

\# 35 (

00 01 ; priority

07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ; target

00 06 ; key 6

00 10 ; length 16

00 00 00 00 00 00 00 00 00 00 ff ff c6 33 64 64 ; address

)

\x00\x01 # priority

\x07example\x03com\x00 # target

\x00\x06 # key 6

\x00\x10 # length 16

\x00\x00\x00\x00\x00\x00\x00\x00

 \x00\x00\xff\xff\xc6\x33\x64\x64 # address

¶

¶

This last vector has an alpn value with an escaped comma and an

escaped backslash in two presentation formats.

example.com. SVCB 16 foo.example.org. (

 alpn=h2,h3-19 mandatory=ipv4hint,alpn

 ipv4hint=192.0.2.1

)

\# 48 (

00 10 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 6f 72 67 00 ; target

00 00 ; key 0

00 04 ; param length 4

00 01 ; value: key 1

00 04 ; value: key 4

00 01 ; key 1

00 09 ; param length 9

02 ; alpn length 2

68 32 ; alpn value

05 ; alpn length 5

68 33 2d 31 39 ; alpn value

00 04 ; key 4

00 04 ; param length 4

c0 00 02 01 ; param value

)

\x00\x10 # priority

\x03foo\x07example\x03org\x00 # target

\x00\x00 # key 0

\x00\x04 # param length 4

\x00\x01 # value: key 1

\x00\x04 # value: key 4

\x00\x01 # key 1

\x00\x09 # param length 9

\x02 # alpn length 2

h2 # alpn value

\x05 # alpn length 5

h3-19 # alpn value

\x00\x04 # key 4

\x00\x04 # param length 4

\xc0\x00\x02\x01 # param value

¶

¶

D.3. Failure cases

In this subsection, example resource records are shown which are not

compliant with this document. The various reasons for non-compliance

are explained with each example.

This example has multiple instances of the same SvcParamKey Section

2.1.

In the next examples the SvcParamKeys are missing their values.

The "no-default-alpn" SvcParamKey value MUST be empty (Section 6.1).

In this record a mandatory SvcParam is missing (Section 7).

example.com. SVCB 16 foo.example.org. alpn="f\\\\oo\\,bar,h2"

example.com. SVCB 16 foo.example.org. alpn=f\\\092oo\092,bar,h2

\# 35 (

00 10 ; priority

03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 6f 72 67 00 ; target

00 01 ; key 1

00 0c ; param length 12

08 ; alpn length 8

66 5c 6f 6f 2c 62 61 72 ; alpn value

02 ; alpn length 2

68 32 ; alpn value

)

\x00\x10 # priority

\x03foo\x07example\x03org\x00 # target

\x00\x01 # key 1

\x00\x0c # param length 12

\x08 # alpn length 8

f\oo,bar # alpn value

\x02 # alpn length 2

h2 # alpn value

¶

¶

¶

example.com. SVCB 1 foo.example.com. (

 key123=abc key123=def

)

¶

¶

example.com. SVCB 1 foo.example.com. mandatory

example.com. SVCB 1 foo.example.com. alpn

example.com. SVCB 1 foo.example.com. port

example.com. SVCB 1 foo.example.com. ipv4hint

example.com. SVCB 1 foo.example.com. ipv6hint

¶

¶

example.com. SVCB 1 foo.example.com. no-default-alpn=abc¶

¶

The "mandatory" SvcParamKey MUST not be included in mandatory list

(Section 7).

Here there are multiple instances of the same SvcParamKey in the

mandatory list (Section 7).

Appendix E. Change history

draft-ietf-dnsop-svcb-https-06

Add requirements for HTTPS origins that also use Alt-Svc

Remove requirement for comma-escaping related to unusual ALPN

values

Allow resolvers to reject invalid SvcParamValues, with

additional guidance

draft-ietf-dnsop-svcb-https-05

Specify interaction with EDNS Client Subnet and Additional

section caching

Rename "echconfig" to "ech"

Add a suite of test vectors (both valid and invalid) and more

examples

Clarify requirements for resolvers' (non-)use of SvcParams

Clarify guidance regarding default ALPN values

draft-ietf-dnsop-svcb-https-04

Simplify the IANA instructions (pure First Come First Served)

Recommend against publishing chains of >8 aliases

Clarify requirements for using SVCB with a transport proxy

Adjust guidance for Port Prefix Naming

Minor editorial updates

example.com. SVCB 1 foo.example.com. mandatory=key123¶

¶

example.com. SVCB 1 foo.example.com. mandatory=mandatory¶

¶

example.com. SVCB 1 foo.example.com. (

 mandatory=key123,key123 key123=abc

)

¶

* ¶

- ¶

-

¶

-

¶

* ¶

-

¶

- ¶

-

¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

draft-ietf-dnsop-svcb-https-03

Simplified escaping of comma-separated values

Reorganized client requirements

Added a warning about port filtering for cross-protocol

attacks

Clarified self-consistency rules for SvcParams

Added a non-normative mapping summary table for HTTPS

draft-ietf-dnsop-svcb-https-02

Added a Privacy Considerations section

Adjusted resolution fallback description

Clarified status of SvcParams in AliasMode

Improved advice on zone structuring and use with Alt-Svc

Improved examples, including a new Multi-CDN example

Reorganized text on value-list parsing and SvcPriority

Improved phrasing and other editorial improvements throughout

draft-ietf-dnsop-svcb-https-01

Added a "mandatory" SvcParamKey

Added the ability to indicate that a service does not exist

Adjusted resolution and ALPN algorithms

Major terminology revisions for "origin" and CamelCase names

Revised ABNF

Include allocated RR type numbers

Various corrections, explanations, and recommendations

draft-ietf-dnsop-svcb-https-00

Rename HTTPSSVC RR to HTTPS RR

Rename "an SVCB" to "a SVCB"

* ¶

- ¶

- ¶

-

¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

Removed "design considerations and open issues" section and

some other "to be removed" text

draft-ietf-dnsop-svcb-httpssvc-03

Revised chain length limit requirements

Revised IANA registry rules for SvcParamKeys

Require HTTPS clients to implement SNI

Update terminology for Encrypted ClientHello

Clarifications: non-default ports, transport proxies, HSTS

procedure, WebSocket behavior, wire format, IP hints, inner/

outer ClientHello with ECH

Various textual and ABNF corrections

draft-ietf-dnsop-svcb-httpssvc-02

All changes to Alt-Svc have been removed

Expanded and reorganized examples

Priority zero is now the definition of AliasForm

Repeated SvcParamKeys are no longer allowed

The "=" sign may be omitted in a key=value pair if the value

is also empty

In the wire format, SvcParamKeys must be in sorted order

New text regarding how to handle resolution timeouts

Expanded description of recursive resolver behavior

Much more precise description of the intended ALPN behavior

Match the HSTS specification's language on HTTPS enforcement

Removed 'esniconfig=""' mechanism and simplified ESNI

connection logic

draft-ietf-dnsop-svcb-httpssvc-01

Reduce the emphasis on conversion between HTTPSSVC and Alt-Svc

Make the "untrusted channel" concept more precise.

-

¶

* ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

- ¶

- ¶

- ¶

-

¶

* ¶

- ¶

- ¶

Make SvcFieldPriority = 0 the definition of AliasForm, instead

of a requirement.

draft-ietf-dnsop-svcb-httpssvc-00

Document an optimization for optimistic pre-connection. (Chris

Wood)

Relax IP hint handling requirements. (Eric Rescorla)

draft-nygren-dnsop-svcb-httpssvc-00

Generalize to an SVCB record, with special-case handling for

Alt-Svc and HTTPS separated out to dedicated sections.

Split out a separate HTTPSSVC record for the HTTPS use-case.

Remove the explicit SvcRecordType=0/1 and instead make the

AliasForm vs ServiceForm be implicit. This was based on

feedback recommending against subtyping RR type.

Remove one optimization.

draft-nygren-httpbis-httpssvc-03

Change redirect type for HSTS-style behavior from 302 to 307

to reduce ambiguities.

draft-nygren-httpbis-httpssvc-02

Remove the redundant length fields from the wire format.

Define a SvcDomainName of "." for SvcRecordType=1 as being the

HTTPSSVC RRNAME.

Replace "hq" with "h3".

draft-nygren-httpbis-httpssvc-01

Fixes of record name. Replace references to "HTTPSVC" with

"HTTPSSVC".

draft-nygren-httpbis-httpssvc-00

Initial version

Authors' Addresses

Ben Schwartz

Google

-

¶

* ¶

-

¶

- ¶

* ¶

-

¶

- ¶

-

¶

- ¶

* ¶

-

¶

* ¶

- ¶

-

¶

- ¶

* ¶

-

¶

* ¶

- ¶

Email: bemasc@google.com

Mike Bishop

Akamai Technologies

Email: mbishop@evequefou.be

Erik Nygren

Akamai Technologies

Email: erik+ietf@nygren.org

mailto:bemasc@google.com
mailto:mbishop@evequefou.be
mailto:erik+ietf@nygren.org

	Service binding and parameter specification via the DNS (DNS SVCB and HTTPS RRs)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Goals of the SVCB RR
	1.2. Overview of the SVCB RR
	1.3. Parameter for Encrypted ClientHello
	1.4. Terminology

	2. The SVCB record type
	2.1. Zone file presentation format
	2.2. RDATA wire format
	2.3. SVCB query names
	2.4. Interpretation
	2.4.1. SvcPriority
	2.4.2. AliasMode
	2.4.3. ServiceMode

	2.5. Special handling of "." in TargetName
	2.5.1. AliasMode
	2.5.2. ServiceMode

	3. Client behavior
	3.1. Handling resolution failures
	3.2. Clients using a Proxy

	4. DNS Server Behavior
	4.1. Authoritative servers
	4.2. Recursive resolvers
	4.3. General requirements
	4.4. EDNS Client Subnet (ECS)

	5. Performance optimizations
	5.1. Optimistic pre-connection and connection reuse
	5.2. Generating and using incomplete responses

	6. Initial SvcParamKeys
	6.1. "alpn" and "no-default-alpn"
	6.2. "port"
	6.3. "ech"
	6.4. "ipv4hint" and "ipv6hint"

	7. ServiceMode RR compatibility and mandatory keys
	8. Using SVCB with HTTPS and HTTP
	8.1. Query names for HTTPS RRs
	8.2. Relationship to Alt-Svc
	8.2.1. ALPN usage
	8.2.2. Untrusted channel
	8.2.3. Cache lifetime
	8.2.4. Granularity

	8.3. Interaction with Alt-Svc
	8.4. Requiring Server Name Indication
	8.5. HTTP Strict Transport Security
	8.6. HTTP-based protocols

	9. SVCB/HTTPS RR parameter for ECH configuration
	9.1. Client behavior
	9.2. Deployment considerations

	10. Zone Structures
	10.1. Structuring zones for flexibility
	10.2. Structuring zones for performance
	10.3. Examples
	10.3.1. Protocol enhancements
	10.3.2. Apex aliasing
	10.3.3. Parameter binding
	10.3.4. Multi-CDN
	10.3.5. Non-HTTPS uses

	11. Interaction with other standards
	12. Security Considerations
	13. Privacy Considerations
	14. IANA Considerations
	14.1. SVCB RRType
	14.2. HTTPS RRType
	14.3. New registry for Service Parameters
	14.3.1. Procedure
	14.3.2. Initial contents

	14.4. Registry updates

	15. Acknowledgments and Related Proposals
	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. Decoding text in zone files
	A.1. Decoding a comma-separated list
	Appendix B. HTTP Mapping Summary
	Appendix C. Comparison with alternatives
	C.1. Differences from the SRV RR type
	C.2. Differences from the proposed HTTP record
	C.3. Differences from the proposed ANAME record
	C.4. Comparison with separate RR types for AliasMode and ServiceMode
	Appendix D. Test vectors
	D.1. AliasForm
	D.2. ServiceForm
	D.3. Failure cases
	Appendix E. Change history
	Authors' Addresses

