
Network Working Group C. Huitema
Internet-Draft
Intended status: Standards Track D. Kaiser
Expires: April 30, 2017 University of Konstanz
 October 27, 2016

Device Pairing Using Short Authentication Strings
draft-ietf-dnssd-pairing-00.txt

Abstract

 This document proposes a device pairing mechanism that establishes a
 relationship between two devices by agreeing on a secret and manually
 verifying the secret's authenticity using an SAS (short
 authentication string). Pairing has to be performed only once per
 pair of devices, as for a re-discovery at any later point in time,
 the exchanged secret can be used for mutual authentication.

 The proposed pairing method is suited for each application area where
 human operated devices need to establish a relation that allows
 configurationless and privacy preserving re-discovery at any later
 point in time. Since privacy preserving applications are the main
 suitors, we especially care about privacy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Huitema & Kaiser Expires April 30, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Device Pairing October 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements . 3

2. Problem Statement and Requirements 4
2.1. Secure Pairing Over Internet Connections 4
2.2. Identity Assurance 4
2.3. Adequate User Interface 4
2.3.1. Short PIN Proved Inadequate 5
2.3.2. Push Buttons Just Work, But Are Insecure 6
2.3.3. Short Range Communication 6
2.3.4. Short Authentication Strings 7

2.4. Resist Cryptographic Attacks 7
2.5. Privacy Requirements 10
2.6. Using TLS . 11
2.7. QR codes . 11

3. Design of the Pairing Mechanism 12
3.1. Discovery . 13
3.2. Agreement . 13
3.3. Authentication . 14
3.4. Intra User Pairing 14
3.5. Pairing Data Synchronization 14
3.6. Public Authentication Keys 14

4. Solution . 15
4.1. Discovery . 15
4.2. Agreement and Authentication 15

5. Security Considerations 18
6. IANA Considerations . 18
7. Acknowledgments . 18
8. References . 18
8.1. Normative References 18
8.2. Informative References 19

 Authors' Addresses . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Huitema & Kaiser Expires April 30, 2017 [Page 2]

Internet-Draft Device Pairing October 2016

1. Introduction

 To engage in secure and privacy preserving communication, hosts need
 to differentiate between authorized peers, which must both know about
 the host's presence and be able to decrypt messages sent by the host,
 and other peers, which must not be able to decrypt the host's
 messages and ideally should not be aware of the host's presence. The
 necessary relationship between host and peer can be established by a
 centralized service, e.g. a certificate authority, by a web of trust,
 e.g. PGP, or -- without using global identities -- by device
 pairing.

 This document proposes a device pairing mechanism that provides human
 operated devices with pairwise authenticated secrets, allowing mutual
 automatic re-discovery at any later point in time along with mutual
 private authentication. We especially care about privacy and user-
 friendliness.

 The proposed pairing mechanism consists of three steps needed to
 establish a relationship between a host and a peer:

 1. Discovery of the peer device. The host needs a means to discover
 network parameters necessary to establish a connection to the
 peer. During this discovery process, neither the host nor the
 peer must disclose its presence.

 2. Agreeing on pairing data. The devices have to agree on pairing
 data, which can be used by both parties at any later point in
 time to generate identifiers for re-discovery and to prove the
 authenticity of the pairing. The pairing data can e.g. be a
 shared secret agreed upon via a Diffie-Hellman key exchange.

 3. Authenticate pairing data. Since in most cases the messages
 necessary to agree upon pairing data are send over an insecure
 channel, means that guarantee the authenticity of these messages
 are necessary; otherwise the pairing data is in turn not suited
 as a means for a later proof of authenticity. For the proposed
 pairing mechanism we use manual interaction involving an SAS
 (short authentication string) to proof the authenticity of the
 pairing data.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Huitema & Kaiser Expires April 30, 2017 [Page 3]

Internet-Draft Device Pairing October 2016

2. Problem Statement and Requirements

 The general pairing requirement is easy to state: establish a trust
 relation between two entities in a secure manner. But details
 matter, and in this section we explore the detailed requirements that
 guide our design.

2.1. Secure Pairing Over Internet Connections

 Many pairing protocols have already been developed, in particular for
 the pairing of devices over specific wireless networks. For example,
 the current Bluetooth specifications include a pairing protocol that
 has evolved over several revisions towards better security and
 usability [BTLEPairing]. The Wi-Fi Alliance defined the Wi-Fi
 Protected Setup process to ease the setup of security-enabled Wi-Fi
 networks in home and small office environments [WPS]. Other wireless
 standards have defined or are defining similar protocols, tailored to
 specific technologies.

 This specification defines a pairing protocol that is independent of
 the underlying technology. We simply make the hypothesis that the
 two parties engaged in the pairing can discover each other and then
 establish connections over IP in order to agree a shared secret.

 [[TODO: Should we support certificates besides a shared secret?]]

2.2. Identity Assurance

 The parties in the pairing must be able to identify each other. To
 put it simply, if Alice believes that she is establishing a pairing
 with Bob, she must somehow ensure that the pairing is actually
 established with Bob, and not with some interloper like Eve or
 Nessie. Providing this assurance requires designing both the
 protocol and the user interface (UI) with care.

 Consider for example an attack in which Eve tricks Alice into
 engaging in a pairing process while pretending to be Bob. Alice must
 be able to discover that something is wrong, and refuse to establish
 the pairing. The parties engaged in the pairing must at least be
 able to verify their identities, respectively.

2.3. Adequate User Interface

 Because the pairing protocol is executed without prior knowledge, it
 is typically vulnerable to "Man-in-the-middle" attacks. While Alice
 is trying to establish a pairing with Bob, Eve positions herself in
 the middle. Instead of getting a pairing between Alice and Bob, both
 Alice and Bob get paired with Eve. This requires specific features in

Huitema & Kaiser Expires April 30, 2017 [Page 4]

Internet-Draft Device Pairing October 2016

 the protocol to detect man-in-the-middle attacks, and if possible
 resist them. The reference [NR11] analyzes the various proposals to
 solve this problem, and in this document, we present a layman
 description of these issues in Section 2.4. The various protocols
 proposed in the literature impose diverse constraints on the UI
 interface, which we will review here.

2.3.1. Short PIN Proved Inadequate

 The initial Bluetooth pairing protocol relied on a four digit PIN,
 displayed by one of the devices to be paired. The user would read
 that PIN and provide it to the other device. The PIN would then be
 used in a Password Authenticated Key Exchange. Wi-Fi Protected Setup
 [WPS] offered a similar option. There were various attacks against
 the actual protocol; some of the problems were caused by issues in
 the protocol, but most were tied to the usage of short PINs.

 In the reference implementation, the PIN is picked at random by the
 paired device before the beginning of the exchange. But this
 requires that the paired device is capable of generating and
 displaying a four digit number. It turns out that many devices
 cannot do that. For example, an audio headset does not have any
 display capability. These limited devices ended up using static
 PINs, with fixed values like "0000" or "0001".

 Even when the paired device could display a random PIN, that PIN will
 have to be copied by the user on the pairing device. It turns out
 that users do not like copying long series of numbers, and the
 usability thus dictated that the PINs be short -- four digits in
 practice. But there is only so much assurance as can be derived from
 a four digit key.

 It is interesting to note that the latest revisions of the Bluetooth
 Pairing protocol [BTLEPairing] do not include the short PIN option
 anymore. The PIN entry methods have been superseded by the simple
 "just works" method for devices without displays, and by a procedure
 based on an SAS (short authentication string) when displays are
 available.

 A further problem with these PIN based approaches is that -- in
 contrast to SASes -- the PIN is a secret instrumental in the security
 algorithm. To guarantee security, this PIN had to be transmitted via
 a secure out of band channel.

Huitema & Kaiser Expires April 30, 2017 [Page 5]

Internet-Draft Device Pairing October 2016

2.3.2. Push Buttons Just Work, But Are Insecure

 Some devices are unable to input or display any code. The industry
 more or less converged on a "push button" solution. When the button
 is pushed, devices enter a "pairing" mode, during which they will
 accept a pairing request from whatever other device connects to them.

 The Bluetooth Pairing protocol [BTLEPairing] denotes that as the
 "just works" method. It does indeed work, and if the pairing
 succeeds the devices will later be able to use the pairing keys to
 authenticate connections. However, the procedure does not provide
 any protection against MITM attacks during the pairing process. The
 only protection is that pushing the button will only allow pairing
 for a limited time, thus limiting the opportunities of attacks.

 As we set up to define a pairing protocol with a broad set of
 applications, we cannot limit ourselves to an insecure "push button"
 method. But we probably need to allow for a mode of operation that
 works for input-limited and display limited devices.

2.3.3. Short Range Communication

 There have been several attempts to define pairing protocols that use
 "secure channels." Most of them are based on short range
 communication systems, where the short range limits the feasibility
 for attackers to access the channels. Example of such limited
 systems include for example:

 o QR codes, displayed on the screen of one device, and read by the
 camera of the other device.

 o Near Field Communication (NFC) systems, which provides wireless
 communication with a very short range.

 o Sound systems, in which one systems emits a sequence of sounds or
 ultrasounds that is picked by the microphone of the other system.

 A common problem with these solutions is that they require special
 capabilities that may not be present in every device. Another
 problem is that they are often one-way channels. Yet another problem
 is that the side channel is not necessarily secret. QR codes could
 be read by third parties. Powerful radios antennas might be able to
 interfere with NFC. Sensitive microphones might pick the sounds. We
 will discuss the specific case of QR codes in Section 2.7.

Huitema & Kaiser Expires April 30, 2017 [Page 6]

Internet-Draft Device Pairing October 2016

2.3.4. Short Authentication Strings

 The evolving pairing protocols seem to converge towards a "display
 and compare" method. This is in line with academic studies, such as
 [KFR09] or [USK11]. This points to a very simple scenario:

 1. Alice initiates pairing

 2. Bob selects Alice's device from a list.

 3. Alice and Bob compare displayed strings that represent a
 fingerprint of the key.

 4. If the strings match, Alice and Bob accept the pairing.

 Most existing pairing protocols display the fingerprint of the key as
 a 6 or 7 digit numbers. Usability studies show that gives good
 results, with little risk that users mistakenly accept two different
 numbers as matching. However, the authors of [USK11] found that
 people had more success comparing computer generated sentences than
 comparing numbers. This is in line with the argument in [XKCD936] to
 use sequences of randomly chosen common words as passwords. On the
 other hand, standardizing strings is more complicated than
 standardizing numbers. We would need to specify a list of common
 words, and the process to go from a binary fingerprint to a set of
 words. We would need to be concerned with internationalization
 issues, such as using different lists of words in German and in
 English. This could require negotiation of word lists or languages
 inside the pairing protocols.

 In contrast, numbers are easy to specify, as in "take a 20 bit number
 and display it as an integer using decimal notation."

2.4. Resist Cryptographic Attacks

 It is tempting to believe that once two peers are connected, they
 could create a secret with a few simple steps, such as for example
 exchange two nonces, hash the concatenation of these nonces with the
 shared secret that is about to be established, display a short
 authentication string composed of a short version of that hash on
 each device, and verify that the two values match. The sequence of
 messages would be something like:

Huitema & Kaiser Expires April 30, 2017 [Page 7]

Internet-Draft Device Pairing October 2016

 Alice Bob
 g^xA -->
 <-- g^xB
 nA -->
 <-- nB
 Computes Computes
 s = g^xAxB s = g^xAxB
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 If the two short hashes match, Alice and Bob are supposedly assured
 that they have computed the same secret, but there is a problem. The
 exchange may not deter a smart attacker in the middle. Let's redraw
 the same message flow, this time involving Eve:

 Alice Eve Bob
 g^xA -->
 g^xA'-->
 <-- g^xB
 <--g^xB'
 nA -->
 nA -->
 <-- nB
 Picks nB'
 smartly
 <--nB'
 Computes Computes
 s' = g^xAxB' s" = g^xA'xB
 h' = hash(s|nA|nB') h" = hash(s"|nA|nB)
 Displays short Displays short
 version of h' version of h"

 Let's now assume that to pick the nonce nB' smartly, Eve runs the
 following algorithm:

 s' = g^xAxB'
 s" = g^xA'xB
 repeat
 pick a new version of nB'
 h' = hash(s|nA|nB')
 h" = hash(s"|nA|nB)
 until the short version of h'
 matches the short version of h"

 Of course, running this algorithm will require in theory as many
 iterations as the possible values of the short hash. But hash
 algorithms are fast, and it is possible to try millions of values in

Huitema & Kaiser Expires April 30, 2017 [Page 8]

Internet-Draft Device Pairing October 2016

 less than a second. If the short string is made up of fewer than 6
 digits, Eve will find a matching nonce quickly, and Alice and Bob
 will hardly notice the delay. Even if the matching string is as long
 as 8 letters, Eve will probably find a value where the short versions
 of h' and h" are close enough, e.g. start and end with the same two
 or three letters. Alice and Bob may well be fooled.

 The classic solution to such problems is to "commit" a possible
 attacker to a nonce before sending it. This commitment can be
 realized by a hash. In the modified exchange, Alice sends a secure
 hash of her nonce before sending the actual value:

 Alice Bob
 g^xA -->
 <-- g^xB

 Computes Computes
 s = g^xAxB s = g^xAxB
 h_a = hash(s|nA) -->
 <-- nB
 nA -->
 verifies h_a == hash(s|nA)
 Computes Computes
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 Alice will only disclose nA after having confirmation from Bob that
 hash(nA) has been received. At that point, Eve has a problem. She
 can still forge the values of the nonces but she needs to pick the
 nonce nA' before the actual value of nA has been disclosed. Eve
 would still have a random chance of fooling Alice and Bob, but it
 will be a very small chance: one in a million if the short
 authentication string is made of 6 digits, even fewer if that string
 is longer.

 Nguyen et al. [NR11] survey these protocols and compare them with
 respect to the amount of necessary user interaction and the
 computation time needed on the devices. The authors state that such
 a protocol is optimal with respect to user interaction if it suffices
 for users to verify a single b-bit SAS while having a one-shot attack
 success probability of 2^-b. Further, n consecutive attacks on the
 protocol must not have a better success probability then n one-shot
 attacks.

 There is still a theoretical problem, if Eve has somehow managed to
 "crack" the hash function. We build some "defense in depth" by some
 simple measures. In the design presented above, the hash "h_a"

Huitema & Kaiser Expires April 30, 2017 [Page 9]

Internet-Draft Device Pairing October 2016

 depends on the shared secret "s", which acts as a "salt" and reduces
 the effectiveness of potential attacks based on pre-computed
 catalogs. For simplicity, the design used a simple concatenation
 mechanism, but we could instead use a keyed-hash message
 authentication code (HMAC, [RFC2104], [RFC6151]), using the shared
 secret as a key, since the HMAC construct has proven very robust over
 time. Then, we can constrain the size of the random numbers to be
 exactly the same as the output of the hash function. Hash attacks
 often require padding the input string with arbitrary data;
 restraining the size limits the likelyhood of such padding.

2.5. Privacy Requirements

 Pairing exposes a relation between several devices and their owners.
 Adversaries may attempt to collect this information, for example in
 an attempt to track devices, their owners, or their "social graph."
 It is often argued that pairing could be performed in a safe place,
 from which adversaries are assumed absent, but experience shows that
 such assumptions are often misguided. It is much safer to
 acknowledge the privacy issues and design the pairing process
 accordingly.

 In order to start the pairing process, devices must first discover
 each other. We do not have the option of using the private discovery
 protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol
 depends on the pre-existing pairing. In the simplest design, one of
 the devices will announce a "friendly name" using DNS-SD.
 Adversaries could monitor the discovery protocol, and record that
 name. An alternative would be for one device to announce a random
 name, and communicate it to the other device via some private
 channel. There is an obvious tradeoff here: friendly names are
 easier to use but less private than random names. We anticipate that
 different users will choose different tradeoffs, for example using
 friendly names if they assume that the environment is "safe," and
 using random names in public places.

 During the pairing process, the two devices establish a connection
 and validate a pairing secret. As discussed in Section 2.3, we have
 to assume that adversaries can mount MITM attacks. The pairing
 protocol can detect such attacks and resist them, but the attackers
 will have access to all messages exchanged before validation is
 performed. It is important to not exchange any privacy sensitive
 information before that validation. This includes, for example, the
 identities of the parties or their public keys.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc6151

Huitema & Kaiser Expires April 30, 2017 [Page 10]

Internet-Draft Device Pairing October 2016

2.6. Using TLS

 The pairing algorithms typically combine the establishment of a
 shared secret through an [EC]DH exchange with the verification of
 that secret through displaying and comparison of a "short
 authentication string" (SAS). As explained in Section 2.4, the
 secure comparison requires a "commit before disclose" mechanism.

 We have three possible designs: (1) create a pairing algorithm from
 scratch, specifying our own crypto exchanges; (2) use an [EC]DH
 version of TLS to negotiate a shared secret, export the key to the
 application as specified in [RFC5705], and implement the "commit
 before disclose" and SAS verification as part of the pairing
 application; or, (3) use TLS, integrate the "commit before disclose"
 and SAS verification as TLS extensions, and export the verified key
 to the application as specified in [RFC5705].

 When faced with the same choice, the designers of ZRTP [RFC6189]
 chose to design a new protocol integrated in the general framework of
 real time communications. We don't want to follow that path, and
 would rather not create yet another protocol. We would need to
 reinvent a lot of the negotiation capabilities that are part of TLS,
 not to mention algorithm agility, post quantum, and all that sort of
 things. It is thus pretty clear that we should use TLS.

 It turns out that there was already an attempt to define SAS
 extensions for TLS ([I-D.miers-tls-sas]). It is a very close match
 to our third design option, full integration of SAS in TLS, but the
 draft has expired, and there does not seem to be any support for the
 SAS options in the common TLS packages.

 In our design, we will choose the middle ground option -- use TLS for
 [EC]DH, and implement the SAS verification as part of the pairing
 application. This minimizes dependencies on TLS packages to the
 availability of a key export API following [RFC5705]. We will need
 to specify the hash algorithm used for the SAS computation and
 validation, which carries some of the issues associated with
 "designing our own crypto". One solution would be to use the same
 hash algorithm negotiated by the TLS connection, but common TLS
 packages do not not always make this algorithm identifier available
 through standard APIs. A fallback solution is to specify a state of
 the art keyed MAC algorithm.

2.7. QR codes

 In Section 2.3.3, we reviewed a number of short range communication
 systems that can be used to facilitate pairing. Out of these, QR
 codes stand aside because most devices that can display a short

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6189
https://datatracker.ietf.org/doc/html/rfc5705

Huitema & Kaiser Expires April 30, 2017 [Page 11]

Internet-Draft Device Pairing October 2016

 string can also display the image of a QR code, and because many
 pairing scenarios involve cell phones equipped with cameras capable
 of reading a QR code.

 QR codes could be particularly useful when starting discovery. QR
 codes can encode an alphanumeric string, which could for example
 encode the selected name of the pairing service. This would enable
 automatic discovery, and would be easier to use than reading the
 random name of the day and matching it against the results of DNS-SD.

 In addition to the instance name, a QR code could also be leveraged
 for authentication. It could encode an SAS or even a longer
 authentication string. Transmitting the output of a cryptographic
 hash function or HMAC via the OOB channel would make an offline
 combinatorial search attack infeasible and thus allow to not sent the
 commitment discussed in Section 2.4 saving a message. Further, if a
 single device created both QR codes for discovery and verifcation,
 respecitvely, and the other device scans these, the users could just
 wait while both QRs are scanned subsequently as no user interaction
 is necessary between these two scans (but it needs a QR scanner (app)
 that support this). This could make the process feel like a single
 user interaction.

 But still, from a users point of view, scanning QR codes may not be
 more efficient than visual verification of a short string. The user
 has to take a picture of the QR code, which is arguably not simpler
 than just "look at the number on the screen and tell me whether it is
 the same as yours".

 In the case of a man-in-the-middle attack, the evaluation of the QR
 code will fail. The "client" that took the picture will know that,
 but the "server" will not. The user will still need to click some
 "Cancel" button on the server, which means that the process will not
 be completely automated.

3. Design of the Pairing Mechanism

 In this section we discuss the design of pairing protocols that use
 manually verified short authentication strings (SAS), considering
 both security and user experience.

 We divide pairing in three parts: discovery, agreement, and
 authentication, detailed in the following subsections.

Huitema & Kaiser Expires April 30, 2017 [Page 12]

Internet-Draft Device Pairing October 2016

3.1. Discovery

 The goal of the discovery phase is establishing a connection, which
 is later used to exchange the pairing data, between the two devices
 that are about to be paired in an IP network without any a priori
 knowledge and without publishing any private information. In
 accordance with TLS, we refer to the device initiating the
 cryptographic protocol as client, and to the other device as server;
 the server has to be discoverable by the client.

 Granting privacy during the discovery phase without relying on a
 priori knowledge demands another user interaction (besides the SAS
 verification during the authentication phase). There are two
 possible ways of realizing this user interaction depending on whether
 QR codes are supported or not. If QR codes are supported, the
 discovery process can be independent of DNS-SD, because QR codes
 allow the transmission of a sufficient amount of data. Leveraging QR
 codes, the discovery proceeds as follows.

 1. The server displays a QR code containing the clients A and AAAA
 resource records, and further the SRV resource record
 corresponding to the pairing service instance. A privacy
 preserving instance name is not necessary, because this instance
 is never published via an unsecured network.

 2. The client scans the QR code retrieving the necessary information
 for establishing a connection to the server.

 If QR codes are not supported, the discovery proceeds as follows.

 1. The server displays its chosen instance name on its screen.

 2. The client performs a discovery of all the "pairing" servers
 available on the local network. This may result in the discovery
 of several servers.

 3. Among these available "pairing servers" the client user selects
 the name that matches the name displayed by the server.

3.2. Agreement

 Once the server has been selected, the client connects to it without
 further user intervention. Client and server use this connection for
 exchanging data that allows them to agree on a shared secret by using
 a cryptographic protocol that yields an SAS. We discussed design
 aspects of such protocols in Section 2.4.

Huitema & Kaiser Expires April 30, 2017 [Page 13]

Internet-Draft Device Pairing October 2016

3.3. Authentication

 In the authentication phase, the users are asked to validate the
 pairing by comparing the SASes -- typically represented by a number
 encoded over up to 7 decimal digits. If the SASes match, each user
 enters an agreement, for example by pressing a button labeled "OK",
 which results in the pairing being remembered. If they do not match,
 each user should cancel the pairing, for example by pressing a button
 labeled "CANCEL".

 Depending on whether QR codes are supported, the SAS may also be
 represented as QR code. Despite the fact that using QR codes to
 represent the authentication string renders using longer
 authentication strings feasible, we suggest to always generate an SAS
 during the agreement phase, because this makes realizations of the
 agreement phase and the authentication phase independent. Devices
 may display the "real" name of the other device alongside the SAS.

3.4. Intra User Pairing

 Users can pair their own devices in secure (home) networks without
 any interaction using a special DNS-SD pairing service. Verification
 methods where a single user holds both devices, e.g. synchronously
 pressing buttons on both devices a few times, are also suitable.
 Further, a secure OOB could be established by connecting two devices
 with an USB channel. Pairing via an USB connection is also used by
 some Bluetooth devices, e.g. when pairing a controller with a gaming
 console.

 [[TODO: elaborate]]

3.5. Pairing Data Synchronization

 To make it sufficient for users to pair only one of their devices to
 one of their friends devices while still being able to engage in
 later communication with all of this friend's devices using any of
 the own devices, we offer the possibility to synchronize pairing data
 among devices of the same user. Pairing data synchronization is
 performed via a special DNS-SD service (_pdsync._tls).

 [[TODO: elaborate]]

3.6. Public Authentication Keys

 [[TODO: Should we discuss public authentication keys whose
 fingerprints are verified during pairing?]]

Huitema & Kaiser Expires April 30, 2017 [Page 14]

Internet-Draft Device Pairing October 2016

4. Solution

 [[TODO: elaborate on all subsections]]

 In the proposed pairing protocol, one of the devices acts as a
 "server", and the other acts as a "client". The server will publish
 a "pairing service". The client will discover the service instance
 during the discovery phase, as explained in Section 4.1. The pairing
 service itself is specified in Section 4.2.

4.1. Discovery

 The discovery uses DNS-SD [RFC6763] over mDNS [RFC6762]. The pairing
 service is identified in DNS SD as "_pairing._tcp". When the pairing
 service starts, the server starts publishing the chosen instance
 name. The client will discover that name and the corresponding
 connection parameters.

 If QR code scanning is available as OOB channel, the discovery data
 is directly transmitted via QR codes instead of DNS-SD over mDNS.
 [[TODO: We should precisely specify the data layout of this QR code.
 It could either be the wire format of the corresponding resource
 records (which would be easier for us), or a more efficient
 representation. If we chose the wire format, we could use a fix name
 as instance name.]]

4.2. Agreement and Authentication

 The pairing protocol is built using TLS. The following description
 uses the presentation language defined in section 4 of [RFC5246].
 The protocol uses five message types, defined in the following enum:

 enum {
 ClientHash(1),
 ServerRandom(2),
 ClientRandom(3),
 ServerSuccess(4),
 ClientSuccess(5)
 } PairingMessageType;

 Devices implementing the service MUST support TLS 1.2 [RFC5246], and
 SHOULD support TLS 1.3 as soon as it becomes available. When using
 TLS, the client and server MUST negotiate a ciphersuite providing
 forward secrecy (PFS), and strong encryption (256 bits symmetric
 key). All implementations using TLS 1.2 SHOULD be able to negotiate
 the cipher suite TLS_DH_anon_WITH_AES_256_CBC_SHA256.

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc5246#section-4
https://datatracker.ietf.org/doc/html/rfc5246

Huitema & Kaiser Expires April 30, 2017 [Page 15]

Internet-Draft Device Pairing October 2016

 Once the TLS connection has been established, each party extracts the
 pairing secret S_p from the connection context per [RFC5705], using
 the following parameters:

 Disambiguating label string: "PAIRING SECRET"

 Context value: empty.

 Length value: 32 bytes (256 bits).

 Once S_p has been obtained, the client picks a random number R_c,
 exactly 32 bytes long. The client then selects a hash algorithm,
 which SHOULD be the same algorithm as negotiated for building the PRF
 in the TLS connection. If there is no suitable API to retrieve that
 algorithm, the client MAY use SHA256 instead. The client then
 computes the hash value H_c as:

 H_c = HMAC_hash(S_p, R_c)

 Where "HMAC_hash" is the HMAC function constructed with the
 selected algorithm.

 The client transmits the selected hash function and the computed
 value of H_c in the Client Hash message, over the TLS connection:

 struct {
 PairingMessageType messageType;
 hashAlgorithm hash;
 uint8 hashLength;
 opaque H_c[hashLength];
 } ClientHashMessage;

 messageType Set to "ClientHash".

 hash The code of the selected hash algorithm, per definition of
 HashAlgorithm in section 7.4.1.1.1 of [RFC5246].

 hashLength The length of the hash H_c, which MUST be consistent with
 the selected algorithm "hash".

 H_c The value of the client hash.

 Upon reception of this message, the server stores its value. The
 server picks a random number R_s, exactly 32 bytes long, and
 transmits it to the client in the server random message, over the TLS
 connection:

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.1.1

Huitema & Kaiser Expires April 30, 2017 [Page 16]

Internet-Draft Device Pairing October 2016

 struct {
 PairingMessageType messageType;
 opaque R_s[32];
 } ServerRandomMessage;

 messageType Set to "ServerRandom".

 R_s The value of the random number chosen by the server.

 Upon reception of this message, the client discloses its own random
 number by transmitting the client random message:

 struct {
 PairingMessageType messageType;
 opaque R_c[32];
 } ClientRandomMessage;

 messageType Set to "ClientRandom".

 R_c The value of the random number chosen by the client.

 Upon reception of this message, the server verifies that the number
 R_c hashes to the previously received value H_c. If the number does
 not match, the server MUST abandon the pairing attempt and abort the
 TLS connection.

 At this stage, both client and server can compute the short hash SAS
 as:

 SAS = first 20 bits of HMAC_hash(S_p, R_c + R_s)

 Where "HMAC_hash" is the HMAC function constructed with the hash
 algorithm selected by the client in the ClientHashMessage.

 Both client and server display the SAS as a decimal integer, and ask
 the user to compare the values. If the values do not match, the user
 cancels the pairing. Otherwise, the protocol continues with the
 exchange of names, both server and client announcing their own
 preferred name in a Success message

 struct {
 PairingMessageType messageType;
 uint8 nameLength;
 opaque name[nameLength];
 } ClientSuccessMessage;

 messageType Set to "ClientSuccess" if transmitted by the client,
 "ServerSuccess" if by the server.

Huitema & Kaiser Expires April 30, 2017 [Page 17]

Internet-Draft Device Pairing October 2016

 nameLength The length of the string encoding the selected name.

 name The selected name of the client or the server, encoded as a
 string of UTF8 characters.

 After receiving these messages, client and servers can orderly close
 the TLS connection, terminating the pairing exchange.

5. Security Considerations

 We need to consider two types of attacks against a pairing system:
 attacks that occur during the establishment of the pairing relation,
 and attacks that occur after that establishment.

 During the establishment of the pairing system, we are concerned with
 privacy attacks and with MITM attacks. Privacy attacks reveal the
 existence of a pairing between two devices, which can be used to
 track graphs of relations. MITM attacks result in compromised
 pairing keys. The discovery procedures specified in Section 4.1 and
 the authentication procedures specified in Section 4.2 are
 specifically designed to mitigate such attacks.

 The establishment of the pairing results in the creation of a shared
 secret. After the establishment of the pairing relation, attackers
 who compromise one of the devices could access the shared secret.
 This will enable them to either track or spoof the devices. To
 mitigate such attacks, nodes MUST store the secret safely, and MUST
 be able to quickly revoke a compromised pairing. This is however not
 sufficient, as the compromise of the pairing key could remain
 undetected for a long time. For further safety, nodes SHOULD assign
 a time limit to the validity of pairings, discard the corresponding
 keys when the time has passed, and establish new pairings.

6. IANA Considerations

 This draft does not require any IANA action.

7. Acknowledgments

 TODO

8. References

8.1. Normative References

Huitema & Kaiser Expires April 30, 2017 [Page 18]

Internet-Draft Device Pairing October 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

8.2. Informative References

 [BTLEPairing]
 Bluetooth SIG, "Bluetooth Low Energy Security Overview",
 2016,
 <https://developer.bluetooth.org/TechnologyOverview/Pages/

LE-Security.aspx>.

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-00 (work in progress),
 October 2016.

 [I-D.miers-tls-sas]
 Miers, I., Green, M., and E. Rescorla, "Short
 Authentication Strings for TLS", draft-miers-tls-sas-00
 (work in progress), February 2014.

 [KFR09] Kainda, R., Flechais, I., and A. Roscoe, "Authentication
 protocols based on low-bandwidth unspoofable channels: a
 comparative survey", 2009.

 [NR11] Nguyen, L. and A. Roscoe, "Authentication protocols based
 on low-bandwidth unspoofable channels: a comparative
 survey", 2011.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc6762
http://www.rfc-editor.org/info/rfc6762
https://datatracker.ietf.org/doc/html/rfc6763
http://www.rfc-editor.org/info/rfc6763
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://datatracker.ietf.org/doc/html/draft-ietf-dnssd-privacy-00
https://datatracker.ietf.org/doc/html/draft-miers-tls-sas-00

Huitema & Kaiser Expires April 30, 2017 [Page 19]

Internet-Draft Device Pairing October 2016

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <http://www.rfc-editor.org/info/rfc6151>.

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",

RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <http://www.rfc-editor.org/info/rfc6189>.

 [USK11] Uzun, E., Saxena, N., and A. Kumar, ". Pairing devices for
 social interactions: a comparative usability evaluation",
 2009.

 [WPS] Wi-Fi Alliance, "Wi-Fi Protected Setup", 2016,
 <http://www.wi-fi.org/discover-wi-fi/

wi-fi-protected-setup>.

 [XKCD936] Munroe, R., "XKCD: Password Strength", 2011,
 <https://www.xkcd.com/936/>.

Authors' Addresses

 Christian Huitema
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/rfc6151
http://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc6189
http://www.rfc-editor.org/info/rfc6189
http://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
http://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://www.xkcd.com/936/

Huitema & Kaiser Expires April 30, 2017 [Page 20]

