
Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Standards Track D. Kaiser
Expires: September 8, 2017 University of Konstanz
 March 7, 2017

Device Pairing Using Short Authentication Strings
draft-ietf-dnssd-pairing-01.txt

Abstract

 This document proposes a device pairing mechanism that establishes a
 relationship between two devices by agreeing on a secret and manually
 verifying the secret's authenticity using an SAS (short
 authentication string). Pairing has to be performed only once per
 pair of devices, as for a re-discovery at any later point in time,
 the exchanged secret can be used for mutual authentication.

 The proposed pairing method is suited for each application area where
 human operated devices need to establish a relation that allows
 configurationless and privacy preserving re-discovery at any later
 point in time. Since privacy preserving applications are the main
 suitors, we especially care about privacy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Huitema & Kaiser Expires September 8, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Device Pairing March 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements . 3
1.2. Document Organization 4

2. Problem Statement and Requirements 4
2.1. Secure Pairing Over Internet Connections 4
2.2. Identity Assurance 5
2.3. Adequate User Interface 5
2.3.1. Short PIN Proved Inadequate 5
2.3.2. Push Buttons Just Work, But Are Insecure 6
2.3.3. Short Range Communication 6
2.3.4. Short Authentication Strings 7

2.4. Resist Cryptographic Attacks 8
2.5. Privacy Requirements 10
2.6. Using TLS . 11
2.7. QR codes . 12
2.8. Intra User Pairing and Transitive Pairing 13

3. Design of the Pairing Mechanism 14
3.1. Discovery . 14
3.2. Agreement . 15
3.3. Authentication . 15
3.4. Public Authentication Keys 16

4. Solution . 16
4.1. Discovery . 16
4.2. Agreement and Authentication 16

5. Security Considerations 19
6. IANA Considerations . 20
7. Acknowledgments . 20
8. References . 20
8.1. Normative References 20
8.2. Informative References 20

 Authors' Addresses . 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Huitema & Kaiser Expires September 8, 2017 [Page 2]

Internet-Draft Device Pairing March 2017

1. Introduction

 To engage in secure and privacy preserving communication, hosts need
 to differentiate between authorized peers, which must both know about
 the host's presence and be able to decrypt messages sent by the host,
 and other peers, which must not be able to decrypt the host's
 messages and ideally should not be aware of the host's presence. The
 necessary relationship between host and peer can be established by a
 centralized service, e.g. a certificate authority, by a web of trust,
 e.g. PGP, or -- without using global identities -- by device
 pairing.

 This document proposes a device pairing mechanism that provides human
 operated devices with pairwise authenticated secrets, allowing mutual
 automatic re-discovery at any later point in time along with mutual
 private authentication. We especially care about privacy and user-
 friendliness.

 The proposed pairing mechanism consists of three steps needed to
 establish a relationship between a host and a peer:

 1. Discovering the peer device. The host needs a means to discover
 network parameters necessary to establish a connection to the
 peer. During this discovery process, neither the host nor the
 peer must disclose its presence.

 2. Agreeing on pairing data. The devices have to agree on pairing
 data, which can be used by both parties at any later point in
 time to generate identifiers for re-discovery and to prove the
 authenticity of the pairing. The pairing data can e.g. be a
 shared secret agreed upon via a Diffie-Hellman key exchange.

 3. Authenticating pairing data. Since in most cases the messages
 necessary to agree upon pairing data are send over an insecure
 channel, means that guarantee the authenticity of these messages
 are necessary; otherwise the pairing data is in turn not suited
 as a means for a later proof of authenticity. For the proposed
 pairing mechanism we use manual interaction involving an SAS
 (short authentication string) to proof the authenticity of the
 pairing data.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Huitema & Kaiser Expires September 8, 2017 [Page 3]

Internet-Draft Device Pairing March 2017

1.2. Document Organization

 NOTE TO RFC EDITOR: remove or rewrite this section before
 publication.

 This document is organized in two parts. The first part, composed of
Section 1, Section 2, and Section 3 presents the pairing need, the

 list of requirements that shall be met, and the general design of the
 solution. This first part is informational in nature. The second
 part, composed of Section 4 and Section 5, is the actual
 specification of the protocol.

 In his early review, Steve Kent observed that the style of the first
 part seems inappropriate for a standards track document, and
 suggested that the two parts should be split into two documents, the
 first part becoming an informational document, and the second
 focusing on standard track specification of the protocol, making
 reference to the informational document as appropriate. We, the
 authors, will seek working group approval before performing this
 split.

2. Problem Statement and Requirements

 The general pairing requirement is easy to state: establish a trust
 relation between two entities in a secure manner. But details
 matter, and in this section we explore the detailed requirements that
 guide our design.

2.1. Secure Pairing Over Internet Connections

 Many pairing protocols have already been developed, in particular for
 the pairing of devices over specific wireless networks. For example,
 the current Bluetooth specifications include a pairing protocol that
 has evolved over several revisions towards better security and
 usability [BTLEPairing]. The Wi-Fi Alliance defined the Wi-Fi
 Protected Setup process to ease the setup of security-enabled Wi-Fi
 networks in home and small office environments [WPS]. Other wireless
 standards have defined or are defining similar protocols, tailored to
 specific technologies.

 This specification defines a pairing protocol that is independent of
 the underlying technology. We simply make the hypothesis that the
 two parties engaged in the pairing can discover each other and then
 establish connections over IP in order to agree on a shared secret.

 [[TODO: Should we support certificates besides a shared secret?]]

Huitema & Kaiser Expires September 8, 2017 [Page 4]

Internet-Draft Device Pairing March 2017

2.2. Identity Assurance

 The parties in the pairing must be able to identify each other. To
 put it simply, if Alice believes that she is establishing a pairing
 with Bob, she must somehow ensure that the pairing is actually
 established with Bob, and not with some interloper like Eve or
 Nessie. Providing this assurance requires designing both the
 protocol and the user interface (UI) with care.

 Consider for example an attack in which Eve tricks Alice into
 engaging in a pairing process while pretending to be Bob. Alice must
 be able to discover that something is wrong, and refuse to establish
 the pairing. The parties engaged in the pairing must at least be
 able to verify their identities, respectively.

2.3. Adequate User Interface

 Because the pairing protocol is executed without prior knowledge, it
 is typically vulnerable to "Man-in-the-middle" attacks. While Alice
 is trying to establish a pairing with Bob, Eve positions herself in
 the middle. Instead of getting a pairing between Alice and Bob, both
 Alice and Bob get paired with Eve. This requires specific features in
 the protocol to detect man-in-the-middle attacks, and if possible
 resist them. The reference [NR11] analyzes the various proposals to
 solve this problem, and in this document, we present a layman
 description of these issues in Section 2.4. The various protocols
 proposed in the literature impose diverse constraints on the UI
 interface, which we will review here.

2.3.1. Short PIN Proved Inadequate

 The initial Bluetooth pairing protocol relied on a four digit PIN,
 displayed by one of the devices to be paired. The user would read
 that PIN and provide it to the other device. The PIN would then be
 used in a Password Authenticated Key Exchange. Wi-Fi Protected Setup
 [WPS] offered a similar option. There were various attacks against
 the actual protocol; some of the problems were caused by issues in
 the protocol, but most were tied to the usage of short PINs.

 In the reference implementation, the PIN is picked at random by the
 paired device before the beginning of the exchange. But this
 requires that the paired device is capable of generating and
 displaying a four digit number. It turns out that many devices
 cannot do that. For example, an audio headset does not have any
 display capability. These limited devices ended up using static
 PINs, with fixed values like "0000" or "0001".

Huitema & Kaiser Expires September 8, 2017 [Page 5]

Internet-Draft Device Pairing March 2017

 Even when the paired device could display a random PIN, that PIN will
 have to be copied by the user on the pairing device. It turns out
 that users do not like copying long series of numbers, and the
 usability thus dictated that the PINs be short -- four digits in
 practice. But there is only so much assurance as can be derived from
 a four digit key.

 It is interesting to note that the latest revisions of the Bluetooth
 Pairing protocol [BTLEPairing] do not include the short PIN option
 anymore. The PIN entry methods have been superseded by the simple
 "just works" method for devices without displays, and by a procedure
 based on an SAS (short authentication string) when displays are
 available.

 A further problem with these PIN based approaches is that -- in
 contrast to SASes -- the PIN is a secret instrumental in the security
 algorithm. To guarantee security, this PIN would have to be
 transmitted via a secure out of band channel.

2.3.2. Push Buttons Just Work, But Are Insecure

 Some devices are unable to input or display any code. The industry
 more or less converged on a "push button" solution. When the button
 is pushed, devices enter a "pairing" mode, during which they will
 accept a pairing request from whatever other device connects to them.

 The Bluetooth Pairing protocol [BTLEPairing] denotes that as the
 "just works" method. It does indeed work, and if the pairing
 succeeds the devices will later be able to use the pairing keys to
 authenticate connections. However, the procedure does not provide
 any protection against MITM attacks during the pairing process. The
 only protection is that pushing the button will only allow pairing
 for a limited time, thus limiting the opportunities of attacks.

 As we set up to define a pairing protocol with a broad set of
 applications, we cannot limit ourselves to an insecure "push button"
 method. But we probably need to allow for a mode of operation that
 works for input-limited and display limited devices.

2.3.3. Short Range Communication

 There have been several attempts to define pairing protocols that use
 "secure channels." Most of them are based on short range
 communication systems, where the short range limits the feasibility
 for attackers to access the channels. Example of such limited
 systems include for example:

Huitema & Kaiser Expires September 8, 2017 [Page 6]

Internet-Draft Device Pairing March 2017

 o QR codes, displayed on the screen of one device, and read by the
 camera of the other device.

 o Near Field Communication (NFC) systems, which provides wireless
 communication with a very short range.

 o Sound systems, in which one systems emits a sequence of sounds or
 ultrasounds that is picked by the microphone of the other system.

 A common problem with these solutions is that they require special
 capabilities that may not be present in every device. Another
 problem is that they are often one-way channels. Yet another problem
 is that the side channel is not necessarily secret. QR codes could
 be read by third parties. Powerful radio antennas might be able to
 interfere with NFC. Sensitive microphones might pick the sounds. We
 will discuss the specific case of QR codes in Section 2.7.

2.3.4. Short Authentication Strings

 The evolving pairing protocols seem to converge towards a "display
 and compare" method. This is in line with academic studies, such as
 [KFR09] or [USK11], and points to a very simple scenario:

 1. Alice initiates pairing

 2. Bob selects Alice's device from a list.

 3. Alice and Bob compare displayed strings that represent a
 fingerprint of the key.

 4. If the strings match, Alice and Bob accept the pairing.

 Most existing pairing protocols display the fingerprint of the key as
 a 6 or 7 digit numbers. Usability studies show that this method
 gives good results, with little risk that users mistakenly accept two
 different numbers as matching. However, the authors of [USK11] found
 that people had more success comparing computer generated sentences
 than comparing numbers. This is in line with the argument in
 [XKCD936] to use sequences of randomly chosen common words as
 passwords. On the other hand, standardizing strings is more
 complicated than standardizing numbers. We would need to specify a
 list of common words, and the process to go from a binary fingerprint
 to a set of words. We would need to be concerned with
 internationalization issues, such as using different lists of words
 in German and in English. This could require the negotiation of word
 lists or languages inside the pairing protocols.

Huitema & Kaiser Expires September 8, 2017 [Page 7]

Internet-Draft Device Pairing March 2017

 In contrast, numbers are easy to specify, as in "take a 20 bit number
 and display it as an integer using decimal notation".

2.4. Resist Cryptographic Attacks

 It is tempting to believe that once two peers are connected, they
 could create a secret with a few simple steps, such as for example
 (1) exchange two nonces, (2) hash the concatenation of these nonces
 with the shared secret that is about to be established, (3) display a
 short authentication string composed of a short version of that hash
 on each device, and (4) verify that the two values match. This naive
 approach might yield the following sequence of messages:

 Alice Bob
 g^xA -->
 <-- g^xB
 nA -->
 <-- nB
 Computes Computes
 s = g^xAxB s = g^xAxB
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 If the two short hashes match, Alice and Bob are supposedly assured
 that they have computed the same secret, but there is a problem. The
 exchange may not deter a smart attacker in the middle. Let's redraw
 the same message flow, this time involving Eve:

 Alice Eve Bob
 g^xA -->
 g^xA'-->
 <-- g^xB
 <--g^xB'
 nA -->
 nA -->
 <-- nB
 Picks nB'
 smartly
 <--nB'
 Computes Computes
 s' = g^xAxB' s" = g^xA'xB
 h' = hash(s|nA|nB') h" = hash(s"|nA|nB)
 Displays short Displays short
 version of h' version of h"

 Let's now assume that, in order to pick the nonce nB' smartly, Eve
 runs the following algorithm:

Huitema & Kaiser Expires September 8, 2017 [Page 8]

Internet-Draft Device Pairing March 2017

 s' = g^xAxB'
 s" = g^xA'xB
 repeat
 pick a new version of nB'
 h' = hash(s|nA|nB')
 h" = hash(s"|nA|nB)
 until the short version of h'
 matches the short version of h"

 Of course, running this algorithm will, in theory, require as many
 iterations as there are possible values of the short hash. But hash
 algorithms are fast, and it is possible to try millions of values in
 less than a second. If the short string is made up of fewer than 6
 digits, Eve will find a matching nonce quickly, and Alice and Bob
 will hardly notice the delay. Even if the matching string is as long
 as 8 letters, Eve will probably find a value where the short versions
 of h' and h" are close enough, e.g. start and end with the same two
 or three letters. Alice and Bob may well be fooled.

 The classic solution to such problems is to "commit" a possible
 attacker to a nonce before sending it. This commitment can be
 realized by a hash. In the modified exchange, Alice sends a secure
 hash of her nonce before sending the actual value:

 Alice Bob
 g^xA -->
 <-- g^xB

 Computes Computes
 s = g^xAxB s = g^xAxB
 h_a = hash(s|nA) -->
 <-- nB
 nA -->
 verifies h_a == hash(s|nA)
 Computes Computes
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 Alice will only disclose nA after having confirmation from Bob that
 hash(nA) has been received. At that point, Eve has a problem. She
 can still forge the values of the nonces but she needs to pick the
 nonce nA' before the actual value of nA has been disclosed. Eve
 would still have a random chance of fooling Alice and Bob, but it
 will be a very small chance: one in a million if the short
 authentication string is made of 6 digits, even fewer if that string
 is longer.

Huitema & Kaiser Expires September 8, 2017 [Page 9]

Internet-Draft Device Pairing March 2017

 Nguyen et al. [NR11] survey these protocols and compare them with
 respect to the amount of necessary user interaction and the
 computation time needed on the devices. The authors state that such
 a protocol is optimal with respect to user interaction if it suffices
 for users to verify a single b-bit SAS while having a one-shot attack
 success probability of 2^-b. Further, n consecutive attacks on the
 protocol must not have a better success probability then n one-shot
 attacks.

 There is still a theoretical problem, if Eve has somehow managed to
 "crack" the hash function. We build some "defense in depth" by some
 simple measures. In the design presented above, the hash "h_a"
 depends on the shared secret "s", which acts as a "salt" and reduces
 the effectiveness of potential attacks based on pre-computed
 catalogs. For simplicity, the design used a simple concatenation
 mechanism, but we could instead use a keyed-hash message
 authentication code (HMAC [RFC2104], [RFC6151]), using the shared
 secret as a key, since the HMAC construct has proven very robust over
 time. Then, we can constrain the size of the random numbers to be
 exactly the same as the output of the hash function. Hash attacks
 often require padding the input string with arbitrary data;
 restraining the size limits the likelyhood of such padding.

2.5. Privacy Requirements

 Pairing exposes a relation between several devices and their owners.
 Adversaries may attempt to collect this information, for example in
 an attempt to track devices, their owners, or their "social graph".
 It is often argued that pairing could be performed in a safe place,
 from which adversaries are assumed absent, but experience shows that
 such assumptions are often misguided. It is much safer to
 acknowledge the privacy issues and design the pairing process
 accordingly.

 In order to start the pairing process, devices must first discover
 each other. We do not have the option of using the private discovery
 protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol
 depends on a pre-existing pairing. In the simplest design, one of
 the devices will announce a "friendly name" using DNS-SD.
 Adversaries could monitor the discovery protocol, and record that
 name. An alternative would be for one device to announce a random
 name, and communicate it to the other device via some private
 channel. There is an obvious tradeoff here: friendly names are
 easier to use but less private than random names. We anticipate that
 different users will choose different tradeoffs, for example using
 friendly names if they assume that the environment is "safe," and
 using random names in public places.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc6151

Huitema & Kaiser Expires September 8, 2017 [Page 10]

Internet-Draft Device Pairing March 2017

 During the pairing process, the two devices establish a connection
 and validate a pairing secret. As discussed in Section 2.3, we have
 to assume that adversaries can mount MITM attacks. The pairing
 protocol can detect such attacks and resist them, but the attackers
 will have access to all messages exchanged before validation is
 performed. It is important to not exchange any privacy sensitive
 information before that validation. This includes, for example, the
 identities of the parties or their public keys.

2.6. Using TLS

 The pairing algorithms typically combine the establishment of a
 shared secret through an [EC]DH exchange with the verification of
 that secret through displaying and comparison of a "short
 authentication string" (SAS). As explained in Section 2.4, the
 secure comparison requires a "commit before disclose" mechanism.

 We have three possible designs: (1) create a pairing algorithm from
 scratch, specifying our own crypto exchanges; (2) use an [EC]DH
 version of TLS to negotiate a shared secret, export the key to the
 application as specified in [RFC5705], and implement the "commit
 before disclose" and SAS verification as part of the pairing
 application; or, (3) use TLS, integrate the "commit before disclose"
 and SAS verification as TLS extensions, and export the verified key
 to the application as specified in [RFC5705].

 When faced with the same choice, the designers of ZRTP [RFC6189]
 chose to design a new protocol integrated in the general framework of
 real time communications. We don't want to follow that path, and
 would rather not create yet another protocol. We would need to
 reinvent a lot of the negotiation capabilities that are part of TLS,
 not to mention algorithm agility, post quantum, and all that sort of
 things. It is thus pretty clear that we should use TLS.

 It turns out that there was already an attempt to define SAS
 extensions for TLS ([I-D.miers-tls-sas]). It is a very close match
 to our third design option, full integration of SAS in TLS, but the
 draft has expired, and there does not seem to be any support for the
 SAS options in the common TLS packages.

 In our design, we will choose the middle ground option -- use TLS for
 [EC]DH, and implement the SAS verification as part of the pairing
 application. This minimizes dependencies on TLS packages to the
 availability of a key export API following [RFC5705]. We will need
 to specify the hash algorithm used for the SAS computation and
 validation, which carries some of the issues associated with
 "designing our own crypto". One solution would be to use the same
 hash algorithm negotiated by the TLS connection, but common TLS

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6189
https://datatracker.ietf.org/doc/html/rfc5705

Huitema & Kaiser Expires September 8, 2017 [Page 11]

Internet-Draft Device Pairing March 2017

 packages do not always make this algorithm identifier available
 through standard APIs. A fallback solution is to specify a state of
 the art keyed MAC algorithm.

2.7. QR codes

 In Section 2.3.3, we reviewed a number of short range communication
 systems that can be used to facilitate pairing. Out of these, QR
 codes stand aside because most devices that can display a short
 string can also display the image of a QR code, and because many
 pairing scenarios involve cell phones equipped with cameras capable
 of reading a QR code.

 QR codes are displayed as images. An adversary equipped with
 powerful cameras could read the QR code just as well as the pairing
 parties. If the pairing protocol design embedded passwords or pins
 in the QR code, adversaries could access these data and compromise
 the protocol. On the other hand, there are ways to use QR codes even
 without assuming secrecy.

 QR codes could be used at two of the three stages of pairing:
 Discovering the peer device, and authenticating the shared secret.
 Using QR codes provide advantages in both phases:

 o Typical network based discovery involves interaction with two
 devices. The device to be discovered is placed in "server" mode,
 and waits for requests from the network. The device performing
 the discovery retrieves a list of candidates from the network.
 When there is more than one such candidate, the device user is
 expected to select the desired target from a list. In QR code
 mode, the discovered device will display a QR code, which the user
 will scan using the second device. The QR code will embed the
 device's name, its IP address, and the port number of the pairing
 service. The connection will be automatic, without relying on the
 network discovery. This is arguably less error-prone and safer
 than selecting from a network provided list.

 o SAS based agreement involves displaying a short string on each
 device's display, and asking the user to verify that both devices
 display the same string. In QR code mode, one device could
 display a QR code containing this short string. The other device
 could scan it and compare it to the locally computed version.
 Because the procedure is automated, there is no dependency on the
 user diligence at comparing the short strings.

 Offering QR codes as an alternative to discovery and agreement is
 straightforward. If QR codes are used, the pairing program on the
 server side might display something like:

Huitema & Kaiser Expires September 8, 2017 [Page 12]

Internet-Draft Device Pairing March 2017

 Please connect to "Bob's phone 359"
 or scan the following QR code:

 mmmmmmm m m mmmmmmm
 # mmm # ## "m # mmm #
 # ### # m" #" # ### #
 #mmmmm# # m m #mmmmm#
 mm m mm"## m mmm mm
 " ##"mm m"# ####"m""#
 #"mmm mm# m"# ""m" "m
 mmmmmmm #mmm###mm# m
 # mmm # m "mm " " "
 # ### # " m # "## "#
 #mmmmm# ### m"m m m

 If Alice's device is capable of reading the QR code, it will just
 scan it, establishes a connection, and run the pairing protocol.
 After the protocol messages have been exchanged, Bob's device will
 display a new QR code, encoding the hash code that should be matched.
 The UI might look like this:

 Please scan the following QR code,
 or verify that your device displays
 the number: 388125

 mmmmmmm mmm mmmmmmm
 # mmm # ""#m# # mmm #
 # ### # "# # # ### #
 #mmmmm# # m"m #mmmmm#
 mmmmm mmm" m m m m m
 #"m mmm#"#"#"#m m#m
 ""mmmmm"m#""#""m # m
 mmmmmmm # "m"m "m"#"m
 # mmm # mmmm m "# #"
 # ### # #mm"#"#m "
 #mmmmm# #mm"#""m "m"

 Did the number match (Yes/No)?

 With the use of QR code, the pairing is established with little
 reliance on user judgment, which is arguably safer.

2.8. Intra User Pairing and Transitive Pairing

 There are two usage modes for pairing: inter-users, and intra-user.
 Users have multiple devices. The simplest design is to not
 distinguish between pairing devices belonging to two users, e.g.,

Huitema & Kaiser Expires September 8, 2017 [Page 13]

Internet-Draft Device Pairing March 2017

 Alice's phone and Bob's phone, and devices belonging to the same
 user, e.g., Alice's phone and her laptop. This will most certainly
 work, but it raises the problem of transitivity. If Bob needs to
 interact with Alice, should he install just one pairing for "Alice
 and Bob", or should he install four pairings between Alice phone and
 laptop and Bob phone and laptop? Also, what happens if Alice gets a
 new phone?

 One tempting response is to devise a synchronization mechanism that
 will let devices belonging to the same user share their pairings with
 other users. But it is fairly obvious that such service will have to
 be designed cautiously. The pairing system relies on shared secrets.
 It is much easier to understand how to manage secrets shared between
 exactly two parties than secrets shared with an unspecified set of
 devices.

 Transitive pairing raises similar issues. Suppose that a group of
 users wants to collaborate. Will they need to set up a fully
 connected graph of pairings using the simple peer-to-peer mechanism,
 or could they use some transitive set, so that if Alice is connected
 with Bob and Bob with Carol, Alice automatically gets connected with
 Carol? Such transitive mechanisms could be designed, e.g. using a
 variation of Needham-Scroeder symmetric key protocol [NS1978], but it
 will require some extensive work. Groups can of course use simpler
 solution, e.g., build some star topology.

 Given the time required, intra-user pairing synchronization
 mechanisms and transitive pairing mechanisms are left for further
 study.

3. Design of the Pairing Mechanism

 In this section we discuss the design of pairing protocols that use
 manually verified short authentication strings (SAS), considering
 both security and user experience.

 We divide pairing in three parts: discovery, agreement, and
 authentication, detailed in the following subsections.

3.1. Discovery

 The goal of the discovery phase is establishing a connection, which
 is later used to exchange the pairing data, between the two devices
 that are about to be paired in an IP network without any prior
 knowledge and without publishing any private information. In
 accordance with TLS, we refer to the device initiating the
 cryptographic protocol as client, and to the other device as server;
 the server has to be discoverable by the client.

Huitema & Kaiser Expires September 8, 2017 [Page 14]

Internet-Draft Device Pairing March 2017

 Granting privacy during the discovery phase without relying on prior
 knowledge demands another user interaction (besides the SAS
 verification during the authentication phase). There are two
 possible ways of realizing this user interaction depending on whether
 QR codes are supported or not. If QR codes are supported, the
 discovery process can be independent of DNS-SD, because QR codes
 allow the transmission of a sufficient amount of data. Leveraging QR
 codes, the discovery proceeds as follows.

 1. The server displays a QR code containing the instance name, the
 IPv4 or IPv6 address, and the port number of the service/

 2. The client scans the QR code retrieving the necessary information
 for establishing a connection to the server.

 If QR codes are not supported, the discovery proceeds as follows.

 1. The server displays its chosen instance name on its screen.

 2. The client performs a discovery of all the "pairing" servers
 available on the local network. This may result in the discovery
 of several servers.

 3. Among these available "pairing servers" the client's user selects
 the name that matches the name displayed by the server.

 4. Per DNS-SD, the client then retrieves the SRV records of the
 selected instance, select one of the document servers, retrieves
 its A or AAAA records, and establishes the connection.

3.2. Agreement

 Once the server has been selected, the client connects to it without
 further user intervention. Client and server use this connection for
 exchanging data that allows them to agree on a shared secret by using
 a cryptographic protocol that yields an SAS. We discussed design
 aspects of such protocols in Section 2.4.

3.3. Authentication

 In the authentication phase, the users are asked to validate the
 pairing by comparing the SASes -- typically represented by a number
 encoded over up to 7 decimal digits. If the SASes match, each user
 enters an agreement, for example by pressing a button labeled "OK",
 which results in the pairing being remembered. If they do not match,
 each user should cancel the pairing, for example by pressing a button
 labeled "CANCEL".

Huitema & Kaiser Expires September 8, 2017 [Page 15]

Internet-Draft Device Pairing March 2017

 Depending on whether QR codes are supported, the SAS may also be
 represented as QR code. Despite the fact that using QR codes to
 represent the authentication string renders using longer
 authentication strings feasible, we suggest to always generate an SAS
 during the agreement phase, because this makes realizations of the
 agreement phase and the authentication phase independent. Devices
 may display the "real" name of the other device alongside the SAS.

3.4. Public Authentication Keys

 [[TODO: Should we discuss public authentication keys whose
 fingerprints are verified during pairing?]]

4. Solution

 In the proposed pairing protocol, one of the devices acts as a
 "server", and the other acts as a "client". The server will publish
 a "pairing service". The client will discover the service instance
 during the discovery phase, as explained in Section 4.1. The pairing
 service itself is specified in Section 4.2.

4.1. Discovery

 The discovery uses DNS-SD [RFC6763] over mDNS [RFC6762]. The pairing
 service is identified in DNS SD as "_pairing._tcp". When the pairing
 service starts, the server starts publishing the chosen instance
 name. The client will discover that name and the corresponding
 connection parameters.

 If QR code scanning is available as OOB channel, the discovery data
 is directly transmitted via QR codes instead of DNS-SD over mDNS.
 The QR data contains connection data otherwise found in the SRV and A
 or AAAA records: IPv4 or IPv6 address, port number, and optionally
 host name.

 [[TODO: We should precisely specify the data layout of this QR code.
 It could either be the wire format of the corresponding resource
 records (which would be easier for us), or a more efficient
 representation. If we chose the wire format, we could use a fix name
 as instance name.]]

4.2. Agreement and Authentication

 The pairing protocol is built using TLS. The following description
 uses the presentation language defined in section 4 of [RFC5246].
 The protocol uses five message types, defined in the following enum:

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc5246#section-4

Huitema & Kaiser Expires September 8, 2017 [Page 16]

Internet-Draft Device Pairing March 2017

 enum {
 ClientHash(1),
 ServerRandom(2),
 ClientRandom(3),
 ServerSuccess(4),
 ClientSuccess(5)
 } PairingMessageType;

 Devices implementing the service MUST support TLS 1.2 [RFC5246], and
 MAY negotiate TLS 1.3 when it becomes available. When using TLS, the
 client and server MUST negotiate a ciphersuite providing forward
 secrecy (PFS), and strong encryption (256 bits symmetric key). All
 implementations using TLS 1.2 MUST be able to negotiate the cipher
 suite TLS_DH_anon_WITH_AES_256_CBC_SHA256.

 Once the TLS connection has been established, each party extracts the
 pairing secret S_p from the connection context per [RFC5705], using
 the following parameters:

 Disambiguating label string: "PAIRING SECRET"

 Context value: empty.

 Length value: 32 bytes (256 bits).

 Once S_p has been obtained, the client picks a random number R_c,
 exactly 32 bytes long. The client then selects a hash algorithm,
 which SHOULD be the same algorithm as negotiated for building the PRF
 in the TLS connection. If there is no suitable API to retrieve that
 algorithm, the client MAY use SHA256 instead. The client then
 computes the hash value H_c as:

 H_c = HMAC_hash(S_p, R_c)

 Where "HMAC_hash" is the HMAC function constructed with the
 selected algorithm.

 The client transmits the selected hash function and the computed
 value of H_c in the Client Hash message, over the TLS connection:

 struct {
 PairingMessageType messageType;
 hashAlgorithm hash;
 uint8 hashLength;
 opaque H_c[hashLength];
 } ClientHashMessage;

 messageType Set to "ClientHash".

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705

Huitema & Kaiser Expires September 8, 2017 [Page 17]

Internet-Draft Device Pairing March 2017

 hash The code of the selected hash algorithm, per definition of
 HashAlgorithm in section 7.4.1.1.1 of [RFC5246].

 hashLength The length of the hash H_c, which MUST be consistent with
 the selected algorithm "hash".

 H_c The value of the client hash.

 Upon reception of this message, the server stores its value. The
 server picks a random number R_s, exactly 32 bytes long, and
 transmits it to the client in the server random message, over the TLS
 connection:

 struct {
 PairingMessageType messageType;
 opaque R_s[32];
 } ServerRandomMessage;

 messageType Set to "ServerRandom".

 R_s The value of the random number chosen by the server.

 Upon reception of this message, the client discloses its own random
 number by transmitting the client random message:

 struct {
 PairingMessageType messageType;
 opaque R_c[32];
 } ClientRandomMessage;

 messageType Set to "ClientRandom".

 R_c The value of the random number chosen by the client.

 Upon reception of this message, the server verifies that the number
 R_c hashes to the previously received value H_c. If the number does
 not match, the server MUST abandon the pairing attempt and abort the
 TLS connection.

 At this stage, both client and server can compute the short hash SAS
 as:

 SAS = first 20 bits of HMAC_hash(S_p, R_c + R_s)

 Where "HMAC_hash" is the HMAC function constructed with the hash
 algorithm selected by the client in the ClientHashMessage.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.1.1

Huitema & Kaiser Expires September 8, 2017 [Page 18]

Internet-Draft Device Pairing March 2017

 Both client and server display the SAS as a decimal integer, and ask
 the user to compare the values. If the server supports QR codes, the
 server displays a QR code encoding the decimal string representation
 of the SAS. If the client is capable of scanning QR codes, it may
 scan the value and compare it to the locally computed value.

 If the values do not match, the user cancels the pairing. Otherwise,
 the protocol continues with the exchange of names, both server and
 client announcing their own preferred name in a Success message

 struct {
 PairingMessageType messageType;
 uint8 nameLength;
 opaque name[nameLength];
 } ClientSuccessMessage;

 messageType Set to "ClientSuccess" if transmitted by the client,
 "ServerSuccess" if by the server.

 nameLength The length of the string encoding the selected name.

 name The selected name of the client or the server, encoded as a
 string of UTF8 characters.

 After receiving these messages, client and servers can orderly close
 the TLS connection, terminating the pairing exchange.

5. Security Considerations

 We need to consider two types of attacks against a pairing system:
 attacks that occur during the establishment of the pairing relation,
 and attacks that occur after that establishment.

 During the establishment of the pairing system, we are concerned with
 privacy attacks and with MITM attacks. Privacy attacks reveal the
 existence of a pairing between two devices, which can be used to
 track graphs of relations. MITM attacks result in compromised
 pairing keys. The discovery procedures specified in Section 4.1 and
 the authentication procedures specified in Section 4.2 are
 specifically designed to mitigate such attacks, assuming that the
 client and user are in close, physical proximity and thus a human
 user can visually acquire and verify the pairing information.

 The establishment of the pairing results in the creation of a shared
 secret. After the establishment of the pairing relation, attackers
 who compromise one of the devices could access the shared secret.
 This will enable them to either track or spoof the devices. To
 mitigate such attacks, nodes MUST store the secret safely, and MUST

Huitema & Kaiser Expires September 8, 2017 [Page 19]

Internet-Draft Device Pairing March 2017

 be able to quickly revoke a compromised pairing. This is however not
 sufficient, as the compromise of the pairing key could remain
 undetected for a long time. For further safety, nodes SHOULD assign
 a time limit to the validity of pairings, discard the corresponding
 keys when the time has passed, and establish new pairings.

6. IANA Considerations

 This draft does not require any IANA action.

7. Acknowledgments

 We would like to thank Steve Kent for a detailed early review of this
 document.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

8.2. Informative References

 [BTLEPairing]
 Bluetooth SIG, "Bluetooth Low Energy Security Overview",
 2016,
 <https://developer.bluetooth.org/TechnologyOverview/Pages/

LE-Security.aspx>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc6762
http://www.rfc-editor.org/info/rfc6762
https://datatracker.ietf.org/doc/html/rfc6763
http://www.rfc-editor.org/info/rfc6763
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

Huitema & Kaiser Expires September 8, 2017 [Page 20]

Internet-Draft Device Pairing March 2017

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-00 (work in progress),
 October 2016.

 [I-D.miers-tls-sas]
 Miers, I., Green, M., and E. Rescorla, "Short
 Authentication Strings for TLS", draft-miers-tls-sas-00
 (work in progress), February 2014.

 [KFR09] Kainda, R., Flechais, I., and A. Roscoe, "Usability and
 Security of Out-Of-Band Channels in Secure Device Pairing
 Protocols", DOI: 10.1145/1572532.1572547, SOUPS
 09, Proceedings of the 5th Symposium on Usable Privacy and
 Security, Mountain View, CA, January 2009.

 [NR11] Nguyen, L. and A. Roscoe, "Authentication protocols based
 on low-bandwidth unspoofable channels: a comparative
 survey", DOI: 10.3233/JCS-2010-0403, Journal of Computer
 Security, Volume 19 Issue 1, Pages 139-201, January 2011.

 [NS1978] Needham, R. and M. Schroeder, ". Using encryption for
 authentication in large networks of computers",
 Communications of the ACM 21 (12): 993-999,
 DOI: 10.1145/359657.359659, December 1978.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <http://www.rfc-editor.org/info/rfc6151>.

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",

RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <http://www.rfc-editor.org/info/rfc6189>.

 [USK11] Uzun, E., Saxena, N., and A. Kumar, "Pairing devices for
 social interactions: a comparative usability evaluation",
 DOI: 10.1145/1978942.1979282, Proceedings of the
 International Conference on Human Factors in Computing
 Systems, CHI 2011, Vancouver, BC, Canada, May 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-dnssd-privacy-00
https://datatracker.ietf.org/doc/html/draft-miers-tls-sas-00
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/rfc6151
http://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc6189
http://www.rfc-editor.org/info/rfc6189

Huitema & Kaiser Expires September 8, 2017 [Page 21]

Internet-Draft Device Pairing March 2017

 [WPS] Wi-Fi Alliance, "Wi-Fi Protected Setup", 2016,
 <http://www.wi-fi.org/discover-wi-fi/

wi-fi-protected-setup>.

 [XKCD936] Munroe, R., "XKCD: Password Strength", 2011,
 <https://www.xkcd.com/936/>.

Authors' Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

http://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
http://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://www.xkcd.com/936/

Huitema & Kaiser Expires September 8, 2017 [Page 22]

