
DOTS M. Boucadair, Ed.
Internet-Draft Orange
Intended status: Standards Track T. Reddy, Ed.
Expires: January 28, 2019 McAfee
 K. Nishizuka
 NTT Communications
 L. Xia
 Huawei
 P. Patil
 Cisco
 A. Mortensen
 Arbor Networks, Inc.
 N. Teague
 Verisign, Inc.
 July 27, 2018

Distributed Denial-of-Service Open Threat Signaling (DOTS) Data Channel
 Specification

draft-ietf-dots-data-channel-18

Abstract

 The document specifies a Distributed Denial-of-Service Open Threat
 Signaling (DOTS) data channel used for bulk exchange of data that
 cannot easily or appropriately communicated through the DOTS signal
 channel under attack conditions.

 This is a companion document to the DOTS signal channel
 specification.

Editorial Note (To be removed by RFC Editor)

 Please update these statements within the document with the RFC
 number to be assigned to this document:

 o "This version of this YANG module is part of RFC XXXX;"

 o "RFC XXXX: Distributed Denial-of-Service Open Threat Signaling
 (DOTS) Data Channel Specification";

 o reference: RFC XXXX

 Please update these statements with the RFC number to be assigned to
 the following documents:

Boucadair, et al. Expires January 28, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dots-data-channel-18

Internet-Draft DOTS Data Channel Protocol July 2018

 o "RFC YYYY: Distributed Denial-of-Service Open Threat Signaling
 (DOTS) Signal Channel Specification" (used to be
 [I-D.ietf-dots-signal-channel])

 o "RFC ZZZZ: Network Access Control List (ACL) YANG Data Model"
 (used to be [I-D.ietf-netmod-acl-model])

 Please update the "revision" date of the YANG module.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 28, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Boucadair, et al. Expires January 28, 2019 [Page 2]

Internet-Draft DOTS Data Channel Protocol July 2018

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. DOTS Data Channel . 6
3.1. Design Overview . 6
3.2. DOTS Server(s) Discovery 8
3.3. NAT Considerations 8
3.4. DOTS Gateways . 8
3.5. Detect and Prevent Infinite Loops 9
3.6. Stale Entries . 10

4. DOTS Data Channel YANG Module 10
4.1. Tree Structure . 10
4.2. Filtering Fields . 14
4.3. YANG Module . 21

5. Managing DOTS Clients . 36
5.1. Registering DOTS Clients 36
5.2. Uregistering DOTS Clients 39

6. Managing DOTS Aliases . 39
6.1. Create Aliases . 39
6.2. Retrieve Installed Aliases 43
6.3. Delete Aliases . 45

7. Managing DOTS Filtering Rules 45
7.1. Retrieve DOTS Filtering Capabilities 45
7.2. Install Filtering Rules 47
7.3. Retrieve Installed Filtering Rules 50
7.4. Remove Filtering Rules 56

8. IANA Considerations . 57
9. Security Considerations 57
10. Contributors . 59
11. Acknowledgements . 59
12. References . 59
12.1. Normative References 59
12.2. Informative References 60

Appendix A. Sample Examples: Filtering Fragments 62
 Authors' Addresses . 65

1. Introduction

 A distributed denial-of-service (DDoS) attack is an attempt to make
 machines or network resources unavailable to their intended users.
 In most cases, sufficient scale can be achieved by compromising
 enough end-hosts and using those infected hosts to perpetrate and
 amplify the attack. The victim of such attack can be an application
 server, a router, a firewall, an entire network, etc.

 As discussed in [I-D.ietf-dots-requirements], the lack of a common
 method to coordinate a real-time response among involved actors and

Boucadair, et al. Expires January 28, 2019 [Page 3]

Internet-Draft DOTS Data Channel Protocol July 2018

 network domains inhibits the speed and effectiveness of DDoS attack
 mitigation. From that standpoint, DDoS Open Threat Signaling (DOTS)
 defines an architecture that allows a DOTS client to send requests to
 a DOTS server for DDoS attack mitigation
 [I-D.ietf-dots-architecture]. The DOTS approach is thus meant to
 minimize the impact of DDoS attacks, thereby contributing to the
 enforcement of more efficient defensive if not proactive security
 strategies. To that aim, DOTS defines two channels: the signal and
 the data channels (Figure 1).

 +---------------+ +---------------+
	<------- Signal Channel ------>	
DOTS Client		DOTS Server
	<======= Data Channel ======>	
 +---------------+ +---------------+

 Figure 1: DOTS Channels

 The DOTS signal channel is used to carry information about a device
 or a network (or a part thereof) that is under a DDoS attack. Such
 information is sent by a DOTS client to an upstream DOTS server so
 that appropriate mitigation actions are undertaken on traffic deemed
 suspicious. The DOTS signal channel is further elaborated in
 [I-D.ietf-dots-signal-channel].

 As for the DOTS data channel, it is used for infrequent bulk data
 exchange between DOTS agents to significantly improve the
 coordination of all the parties involved in the response to the
 attack. Section 2 of [I-D.ietf-dots-architecture] mentions that the
 DOTS data channel is used to perform the following tasks:

 o Creating aliases for resources for which mitigation may be
 requested.

 A DOTS client may submit to its DOTS server a collection of
 prefixes which it would like to refer to by an alias when
 requesting mitigation. The DOTS server can respond to this
 request with either a success or failure response (see Section 2
 in [I-D.ietf-dots-architecture]).

 Refer to Section 6 for more details.

 o Filter management, which enables a DOTS client to request the
 installation or withdrawal of traffic filters, dropping or rate-
 limiting unwanted traffic, and permitting white-listed traffic. A
 DOTS client is entitled to instruct filtering rules only on IP
 resources that belong to its domain.

Boucadair, et al. Expires January 28, 2019 [Page 4]

Internet-Draft DOTS Data Channel Protocol July 2018

 Sample use cases for populating black- or white-list filtering
 rules are detailed hereafter:

 * If a network resource (DOTS client) detects a potential DDoS
 attack from a set of IP addresses, the DOTS client informs its
 servicing DOTS gateway of all suspect IP addresses that need to
 be blocked or black-listed for further investigation. The DOTS
 client could also specify a list of protocols and port numbers
 in the black-list rule.

 The DOTS gateway then propagates the black-listed IP addresses
 to a DOTS server which will undertake appropriate actions so
 that traffic originated by these IP addresses to the target
 network (specified by the DOTS client) is blocked.

 * A network, that has partner sites from which only legitimate
 traffic arrives, may want to ensure that the traffic from these
 sites is not subjected to DDoS attack mitigation. The DOTS
 client uses the DOTS data channel to convey the white-listed IP
 prefixes of the partner sites to its DOTS server.

 The DOTS server uses this information to white-list flows
 originated by such IP prefixes and which reach the network.

 Refer to Section 7 for more details.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader should be familiar with the terms defined in
 [I-D.ietf-dots-requirements].

 The terminology for describing YANG data modules is defined in
 [RFC7950]. The meaning of the symbols in tree diagrams is defined in
 [RFC8340].

 This document generalizes the notion of Access Control List (ACL) so
 that it is not device-specific [I-D.ietf-netmod-acl-model]. As such,
 this document defines an ACL as an ordered set of rules that is used
 to filter traffic. Each rule is represented by an Access Control
 Entry (ACE). ACLs communicated via the DOTS data channel are not
 bound to a device interface.

 For the sake of simplicity, all of the examples in this document use
 "/restconf" as the discovered RESTCONF API root path. Many protocol

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8340

Boucadair, et al. Expires January 28, 2019 [Page 5]

Internet-Draft DOTS Data Channel Protocol July 2018

 header lines and message-body text within examples throughout the
 document are split into multiple lines for display purposes only.
 When a line ends with backslash ('\') as the last character, the line
 is wrapped for display purposes. It is to be considered to be joined
 to the next line by deleting the backslash, the following line break,
 and the leading whitespace of the next line.

3. DOTS Data Channel

3.1. Design Overview

 Unlike the DOTS signal channel, which must remain operational even
 when confronted with signal degradation due to packets loss, the DOTS
 data channel is not expected to be fully operational at all times,
 especially when a DDoS attack is underway. The requirements for a
 DOTS data channel protocol are documented in
 [I-D.ietf-dots-requirements].

 This specification does not require an order of DOTS signal and data
 channel creations nor mandates a time interval between them. These
 considerations are implementation- and deployment-specific.

 As the primary function of the data channel is data exchange, a
 reliable transport mode is required in order for DOTS agents to
 detect data delivery success or failure. This document uses RESTCONF
 [RFC8040] over TLS [RFC5246] over TCP as the DOTS data channel
 protocol. The abstract layering of DOTS data channel is shown in
 Figure 2.

 +-------------------+
 | DOTS Data Channel |
 +-------------------+
 | RESTCONF |
 +-------------------+
 | TLS |
 +-------------------+
 | TCP |
 +-------------------+
 | IP |
 +-------------------+

 Figure 2: Abstract Layering of DOTS Data Channel

 The HTTP POST, PUT, PATCH, and DELETE methods are used to edit data
 resources represented by DOTS data channel YANG data modules. These
 basic edit operations allow the DOTS data channel running
 configuration to be altered by a DOTS client.

https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc5246

Boucadair, et al. Expires January 28, 2019 [Page 6]

Internet-Draft DOTS Data Channel Protocol July 2018

 DOTS data channel configuration information as well as state
 information can be retrieved with the GET method. An HTTP status-
 line header field is returned for each request to report success or
 failure for RESTCONF operations (Section 5.4 of [RFC8040]). The
 "error-tag" provides more information about encountered errors
 (Section 7 of [RFC8040]).

 DOTS clients perform the root resource discovery procedure discussed
 in Section 3.1 of [RFC8040] to determine the root of the RESTCONF
 API. After discovering the RESTCONF API root, a DOTS client uses
 this value as the initial part of the path in the request URI, in any
 subsequent request to the DOTS server. The DOTS server may support
 the retrieval of the YANG modules it supports (Section 3.7 in
 [RFC8040]). For example, a DOTS client may use RESTCONF to retrieve
 the vendor-specific YANG modules supported by its DOTS server.

 JavaScript Object Notation (JSON) [RFC8259] payload is used to
 propagate the DOTS data channel specific payload messages that carry
 request parameters and response information, such as errors. This
 specification uses the encoding rules defined in [RFC7951] for
 representing DOTS data channel configuration data using YANG
 (Section 4) as JSON text.

 A DOTS client registers itself to its DOTS server(s) in order to set
 up DOTS data channel-related configuration data and receive state
 data (i.e., non-configuration data) from the DOTS server(s)
 (Section 5). Mutual authentication and coupling of signal and data
 channels are specified in [I-D.ietf-dots-signal-channel].

 A single DOTS data channel between DOTS agents can be used to
 exchange multiple requests and multiple responses. To reduce DOTS
 client and DOTS server workload, DOTS clients SHOULD re-use the same
 TLS session. While the communication to the DOTS server is
 quiescent, the DOTS client MAY probe the server to ensure it has
 maintained cryptographic state. Such probes can also keep alive
 firewall and/or NAT bindings. A TLS heartbeat [RFC6520] verifies
 that the DOTS server still has TLS state by returning a TLS message.

 A DOTS server may detect conflicting filtering requests from distinct
 DOTS clients which belong to the same domain. For example, a DOTS
 client could request to blacklist a prefix by specifying the source
 prefix, while another DOTS client could request to whitelist that
 same source prefix, but both having the same destination prefix. It
 is out of scope of this specification to recommend the behavior to
 follow for handling conflicting requests (e.g., reject all, reject
 the new request, notify an administrator for validation). DOTS
 servers SHOULD support a configuration parameter to indicate the
 behavior to follow when a conflict is detected. Section 7.2

https://datatracker.ietf.org/doc/html/rfc8040#section-5.4
https://datatracker.ietf.org/doc/html/rfc8040#section-7
https://datatracker.ietf.org/doc/html/rfc8040#section-3.1
https://datatracker.ietf.org/doc/html/rfc8040#section-3.7
https://datatracker.ietf.org/doc/html/rfc8040#section-3.7
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc6520

Boucadair, et al. Expires January 28, 2019 [Page 7]

Internet-Draft DOTS Data Channel Protocol July 2018

 specifies the behavior when no instruction is supplied to a DOTS
 server.

 How filtering rules instantiated on a DOTS server are translated into
 network configurations actions is out of scope.

3.2. DOTS Server(s) Discovery

 This document assumes that DOTS clients are provisioned with the
 reachability information of their DOTS server(s) using a variety of
 means (e.g., local configuration, or dynamic means such as DHCP).
 The specification of such means are out of scope of this document.

 Likewise, it is out of scope of this document to specify the behavior
 to be followed by a DOTS client to send DOTS requests when multiple
 DOTS servers are provisioned (e.g., contact all DOTS servers, select
 one DOTS server among the list).

3.3. NAT Considerations

 In deployments where one or more translators (e.g., NAT44, NAT64,
 NPTv6) are enabled between the client's network and the DOTS server,
 DOTS data channel messages forwarded to a DOTS server MUST NOT
 include internal IP addresses/prefixes and/or port numbers; external
 addresses/prefixes and/or port numbers as assigned by the translator
 MUST be used instead. This document does not make any recommendation
 about possible translator discovery mechanisms. The following are
 some (non-exhaustive) deployment examples that may be considered:

 o Port Control Protocol (PCP) [RFC6887] or Session Traversal
 Utilities for NAT (STUN) [RFC5389] may be used to retrieve the
 external addresses/prefixes and/or port numbers. Information
 retrieved by means of PCP or STUN will be used to feed the DOTS
 data channel messages that will be sent to a DOTS server.

 o A DOTS gateway may be co-located with the translator. The DOTS
 gateway will need to update the DOTS messages, based upon the
 local translator's binding table.

3.4. DOTS Gateways

 When a server-domain DOTS gateway is involved in DOTS data channel
 exchanges, the same considerations for manipulating the 'cdid'
 (client domain identifier) parameter specified in
 [I-D.ietf-dots-signal-channel] MUST be followed by DOTS agents. As a
 reminder, 'cdid' is meant to assist the DOTS server to enforce some
 policies (e.g., limit the number of filtering rules per DOTS client

https://datatracker.ietf.org/doc/html/rfc6887
https://datatracker.ietf.org/doc/html/rfc5389

Boucadair, et al. Expires January 28, 2019 [Page 8]

Internet-Draft DOTS Data Channel Protocol July 2018

 or per DOTS client domain). A loop detect mechanism for DOTS
 gateways is specified in Section 3.5.

 If a DOTS gateway is involved, the DOTS gateway verifies that the
 DOTS client is authorized to undertake a data channel action (e.g.,
 instantiate filtering rules). If the DOTS client is authorized, it
 propagates the rules to the upstream DOTS server. Likewise, the DOTS
 server verifies that the DOTS gateway is authorized to relay data
 channel actions. For example, to create or purge filters, a DOTS
 client sends its request to its DOTS gateway. The DOTS gateway
 validates the rules in the request and proxies the requests
 containing the filtering rules to its DOTS server. When the DOTS
 gateway receives the associated response from the DOTS server, it
 propagates the response back to the DOTS client.

3.5. Detect and Prevent Infinite Loops

 In order to detect and prevent infinite loops, DOTS gateways MUST
 support the procedure defined in Section 5.7.1 of [RFC7230]. In
 particular, each intermediate DOTS gateway MUST check that none of
 its own information (e.g., server names, literal IP addresses) is
 present in the "Via" header of a DOTS message it receives:

 o If it detects that its own information is present in the "Via"
 header, the DOTS gateway MUST NOT forward the DOTS message.
 Messages that cannot be forwarded because of a loop SHOULD be
 logged with a "508 Loop Detected" status-line returned sent back
 to the DOTS peer. The structure of the reported error is depicted
 in Figure 3.

 error-tag: loop-detected
 error-type: transport, application
 error-severity: error
 error-info: <via-header> : A copy of the Via header when
 the loop was detected.
 Description: An infinite loop has been detected when forwarding
 a requests via a proxy.

 Figure 3: Loop Detected Error

 It is RECOMMENDED that DOTS clients and gateways support means to
 alert administrators about loop errors so that appropriate actions
 are undertaken.

 o Otherwise, the DOTS agent MUST update or insert the "Via" header
 by appending its own information.

https://datatracker.ietf.org/doc/html/rfc7230#section-5.7.1

Boucadair, et al. Expires January 28, 2019 [Page 9]

Internet-Draft DOTS Data Channel Protocol July 2018

 Unless configured otherwise, DOTS gateways at the boundaries of a
 DOTS client domain SHOULD remove the previous "Via" header
 information after checking for a loop before forwarding. This
 behavior is required for topology hiding purposes but also to
 minimizing potential conflicts that may arise if overlapping
 information is used in distinct DOTS domains (e.g., private IPv4
 addresses, non globally unique aliases).

3.6. Stale Entries

 In order to avoid stale entries, a lifetime is associated with alias
 and filtering entries created by DOTS clients. Also, DOTS servers
 may track the inactivity timeout of DOTS clients to detect stale
 entries.

4. DOTS Data Channel YANG Module

4.1. Tree Structure

 The DOTS data channel YANG module (ietf-dots-data-channel) allows a
 DOTS client to manage aliases for resources for which mitigation may
 be requested. Such aliases may be used in subsequent DOTS signal
 channel exchanges to refer more efficiently to the resources under
 attack.

 The tree structure for the DOTS alias is depicted in Figure 4.

Boucadair, et al. Expires January 28, 2019 [Page 10]

Internet-Draft DOTS Data Channel Protocol July 2018

 module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | +--rw cuid string
 | +--rw cdid? string
 | +--rw aliases
 | | +--rw alias* [name]
 | | +--rw name string
 | | +--rw target-prefix* inet:ip-prefix
 | | +--rw target-port-range* [lower-port upper-port]
 | | | +--rw lower-port inet:port-number
 | | | +--rw upper-port inet:port-number
 | | +--rw target-protocol* uint8
 | | +--rw target-fqdn* inet:domain-name
 | | +--rw target-uri* inet:uri
 | | +--ro pending-lifetime? int32
 | +--rw acls
 | ...
 +--ro capabilities
 ...

 Figure 4: DOTS Alias Subtree

 Also, the 'ietf-dots-data-channel' module allows DOTS clients to
 manage filtering rules. Examples of filtering management in a DOTS
 context include, but not limited to:

 o Black-list management, which enables a DOTS client to inform a
 DOTS server about sources from which traffic should be discarded.

 o White-list management, which enables a DOTS client to inform a
 DOTS server about sources from which traffic should always be
 accepted.

 o Filter management, which enables a DOTS client to request the
 installation or withdrawal of traffic filters, dropping or rate-
 limiting unwanted traffic and permitting white-listed traffic.

 The tree structure for the DOTS filtering entries is depicted in
 Figure 5.

 Early versions of this document investigated to what extent
 augmenting 'ietf-access-control-list' meet DOTS requirements, but
 that design approach was abandoned because it does not support
 meeting many of DOTS requirements, e.g.,

 o Retrieve a filtering entry (or all entries) created by a DOTS
 client.

Boucadair, et al. Expires January 28, 2019 [Page 11]

Internet-Draft DOTS Data Channel Protocol July 2018

 o Delete a filtering entry that was instantiated by a DOTS client.

 DOTS filtering entries (i.e., Access Control List (ACL)) mimic the
 structure specified in [I-D.ietf-netmod-acl-model]. Concretely, DOTS
 agents are assumed to manipulate an ordered list of ACLs; each ACL
 contains a separately ordered list of Access Control Entries (ACEs).
 Each ACE has a group of match and a group of action criteria.

 Once all the ACE entries have been iterated though with no match,
 then all the following ACL's ACE entries are iterated through until
 the first match at which point the specified action is applied. If
 there is no match, then there is no action to be taken against the
 packet.

Boucadair, et al. Expires January 28, 2019 [Page 12]

Internet-Draft DOTS Data Channel Protocol July 2018

 module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | +--rw cuid string
 | +--rw cdid? string
 | +--rw aliases
 | | ...
 | +--rw acls
 | +--rw acl* [name]
 | +--rw name string
 | +--rw type? ietf-acl:acl-type
 | +--rw activation-type? enumeration
 | +--ro pending-lifetime? int32
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | ...
 | | | +--:(ipv6)
 | | | ...
 | | +--rw (l4)?
 | | +--:(tcp)
 | | | ...
 | | +--:(udp)
 | | | ...
 | | +--:(icmp)
 | | ...
 | +--rw actions
 | | +--rw forwarding identityref
 | | +--rw rate-limit? decimal64
 | +--ro statistics
 | +--ro matched-packets? yang:counter64
 | +--ro matched-octets? yang:counter64
 +--ro capabilities
 ...

 Figure 5: DOTS ACLs Subtree

 Filtering rules instructed by a DOTS client assumes a default
 direction: the destination is the DOTS client domain.

 DOTS forwarding actions can be 'accept' (i.e., accept matching
 traffic) or 'drop' (i.e., drop matching traffic without sending any
 ICMP error message). Accepted traffic can be subject to rate
 limiting 'rate-limit'. Note that 'reject' action (i.e., drop
 matching traffic and send an ICMP error message to the source) is not

Boucadair, et al. Expires January 28, 2019 [Page 13]

Internet-Draft DOTS Data Channel Protocol July 2018

 supported in 'ietf-dots-data-channel' because it is not appropriate
 in the context of DDoS mitigation. Generating ICMP messages to
 notify drops when mitigating a DDoS attack will exacerbate the DDoS
 attack. Furthermore, these ICMP messages will be used by an attacker
 as an explicit signal that the traffic is being blocked.

4.2. Filtering Fields

 The 'ietf-dots-data-channel' module reuses the packet fields module
 'ietf-packet-fields' [I-D.ietf-netmod-acl-model] which defines
 matching on fields in the packet including IPv4, IPv6, and transport
 layer fields.

 This specification defines a new IPv4/IPv6 matching field called
 'fragment' to efficiently handle fragment-related filtering rules.
 Indeed, [I-D.ietf-netmod-acl-model] does not support such capability
 for IPv6 but offers a partial support for IPv4 by means of 'flags'.
 Nevertheless, the use of 'flags' is problematic since it does not
 allow to define a bitmask. For example, setting other bits not
 covered by the 'flags' filtering clause in a packet will allow that
 packet to get through (because it won't match the ACE). Sample
 examples to illustrate how 'fragment' can be used are provided in

Appendix A.

 Figure 6 shows the IPv4 match subtree.

Boucadair, et al. Expires January 28, 2019 [Page 14]

Internet-Draft DOTS Data Channel Protocol July 2018

module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | +--rw ipv4
 | | | | +--rw dscp? inet:dscp
 | | | | +--rw ecn? uint8
 | | | | +--rw length? uint16
 | | | | +--rw ttl? uint8
 | | | | +--rw protocol? uint8
 | | | | +--rw ihl? uint8
 | | | | +--rw flags? bits
 | | | | +--rw offset? uint16
 | | | | +--rw identification? uint16
 | | | | +--rw (destination-network)?
 | | | | | +--:(destination-ipv4-network)
 | | | | | +--rw destination-ipv4-network?
 | | | | | inet:ipv4-prefix
 | | | | +--rw (source-network)?
 | | | | | +--:(source-ipv4-network)
 | | | | | +--rw source-ipv4-network?
 | | | | | inet:ipv4-prefix
 | | | | +--rw fragment
 | | | | +--rw operator? operator
 | | | | +--rw type fragment-type
 | | | +--:(ipv6)
 | | | ...
 | | +--rw (l4)?
 | | ...
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 6: DOTS ACLs Subtree (IPv4 Match)

 Figure 7 shows the IPv6 match subtree.

Boucadair, et al. Expires January 28, 2019 [Page 15]

Internet-Draft DOTS Data Channel Protocol July 2018

module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | ...
 | | | +--:(ipv6)
 | | | +--rw ipv6
 | | | +--rw dscp? inet:dscp
 | | | +--rw ecn? uint8
 | | | +--rw length? uint16
 | | | +--rw ttl? uint8
 | | | +--rw protocol? uint8
 | | | +--rw (destination-network)?
 | | | | +--:(destination-ipv6-network)
 | | | | +--rw destination-ipv6-network?
 | | | | inet:ipv6-prefix
 | | | +--rw (source-network)?
 | | | | +--:(source-ipv6-network)
 | | | | +--rw source-ipv6-network?
 | | | | inet:ipv6-prefix
 | | | +--rw flow-label?
 | | | | inet:ipv6-flow-label
 | | | +--rw fragment
 | | | +--rw operator? operator
 | | | +--rw type fragment-type
 | | +--rw (l4)?
 | | ...
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 7: DOTS ACLs Subtree (IPv6 Match)

 Figure 8 shows the TCP match subtree. In addition to the fields
 defined in [I-D.ietf-netmod-acl-model], this specification defines a

Boucadair, et al. Expires January 28, 2019 [Page 16]

Internet-Draft DOTS Data Channel Protocol July 2018

 new TCP matching field, called 'flags-bitmask', to efficiently handle
 TCP flags filtering rules.

module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | ...
 | | +--rw (l4)?
 | | +--:(tcp)
 | | | +--rw tcp
 | | | +--rw sequence-number? uint32
 | | | +--rw acknowledgement-number? uint32
 | | | +--rw data-offset? uint8
 | | | +--rw reserved? uint8
 | | | +--rw flags? bits
 | | | +--rw window-size? uint16
 | | | +--rw urgent-pointer? uint16
 | | | +--rw options? uint32
 | | | +--rw flags-bitmask
 | | | | +--rw operator? operator
 | | | | +--rw bitmask uint16
 | | | +--rw (source-port)?
 | | | | +--:(source-port-range-or-operator)
 | | | | +--rw source-port-range-or-operator
 | | | | +--rw (port-range-or-operator)?
 | | | | +--:(range)
 | | | | | +--rw lower-port
 | | | | | | inet:port-number
 | | | | | +--rw upper-port
 | | | | | inet:port-number
 | | | | +--:(operator)
 | | | | +--rw operator?
 | | | | | operator
 | | | | +--rw port
 | | | | inet:port-number
 | | | +--rw (destination-port)?
 | | | +--:(destination-port-range-or-operator)
 | | | +--rw destination-port-range-or-
operator

 | | | +--rw (port-range-or-operator)?

Boucadair, et al. Expires January 28, 2019 [Page 17]

Internet-Draft DOTS Data Channel Protocol July 2018

 | | | +--:(range)
 | | | | +--rw lower-port
 | | | | | inet:port-number
 | | | | +--rw upper-port
 | | | | inet:port-number
 | | | +--:(operator)
 | | | +--rw operator?
 | | | | operator
 | | | +--rw port
 | | | inet:port-number
 | | +--:(udp)
 | | | ...
 | | +--:(icmp)
 | | ...
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 8: DOTS ACLs Subtree (TCP Match)

 Figure 9 shows the UDP and ICMP match subtree.

module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | ...
 | | +--rw (l4)?
 | | +--:(tcp)
 | | | ...
 | | +--:(udp)
 | | | +--rw udp
 | | | +--rw length? uint16
 | | | +--rw (source-port)?
 | | | | +--:(source-port-range-or-operator)
 | | | | +--rw source-port-range-or-operator
 | | | | +--rw (port-range-or-operator)?

Boucadair, et al. Expires January 28, 2019 [Page 18]

Internet-Draft DOTS Data Channel Protocol July 2018

 | | | | +--:(range)
 | | | | | +--rw lower-port
 | | | | | | inet:port-number
 | | | | | +--rw upper-port
 | | | | | inet:port-number
 | | | | +--:(operator)
 | | | | +--rw operator?
 | | | | | operator
 | | | | +--rw port
 | | | | inet:port-number
 | | | +--rw (destination-port)?
 | | | +--:(destination-port-range-or-operator)
 | | | +--rw destination-port-range-or-
operator
 | | | +--rw (port-range-or-operator)?
 | | | +--:(range)
 | | | | +--rw lower-port
 | | | | | inet:port-number
 | | | | +--rw upper-port
 | | | | inet:port-number
 | | | +--:(operator)
 | | | +--rw operator?
 | | | | operator
 | | | +--rw port
 | | | inet:port-number
 | | +--:(icmp)
 | | +--rw icmp
 | | +--rw type? uint8
 | | +--rw code? uint8
 | | +--rw rest-of-header? uint32
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 9: DOTS ACLs Subtree (UDP and ICMP Match)

 DOTS implementations MUST support the following matching criteria:

 match based on the IP header (IPv4 and IPv6), match based on the
 transport header (TCP, UDP, and ICMP), and any combination
 thereof. The same matching fields are used for both ICMP and
 ICMPv6.

 The following match fields MUST be supported by DOTS implementations
 (Table 1):

Boucadair, et al. Expires January 28, 2019 [Page 19]

Internet-Draft DOTS Data Channel Protocol July 2018

 ACL Mandatory Fields
 Match
 ------- ---
 ipv4 length, protocol, destination-ipv4-network, source-
 ipv4-network, and fragment
 ipv6 length, protocol, destination-ipv6-network, source-
 ipv6-network, and fragment
 tcp flags-bitmask, source-port-range-or-operator, and
 destination-port-range-or-operator
 udp length, source-port-range-or-operator, and destination-port-
 range-or-operator
 icmp type and code

 Table 1: Mandatory DOTS Channel Match Fields

 Implementations MAY support other filtering match fields and actions.
 The 'ietf-dots-data-channel' allows an implementation to expose its
 filtering capabilities. The tree structure of the 'capabilities' is
 shown in Figure 10.

 module: ietf-dots-data-channel
 +--rw dots-data
 ...
 +--ro capabilities
 +--ro address-family* enumeration
 +--ro forwarding-actions* identityref
 +--ro rate-limit? boolean
 +--ro transport-protocols* uint8
 +--ro ipv4
 | +--ro dscp? boolean
 | +--ro ecn? boolean
 | +--ro length? boolean
 | +--ro ttl? boolean
 | +--ro protocol? boolean
 | +--ro ihl? boolean
 | +--ro flags? boolean
 | +--ro offset? boolean
 | +--ro identification? boolean
 | +--ro source-prefix? boolean
 | +--ro destination-prefix? boolean
 | +--ro fragment? boolean
 +--ro ipv6
 | +--ro dscp? boolean
 | +--ro ecn? boolean
 | +--ro flow-label? boolean
 | +--ro length? boolean
 | +--ro protocol? boolean
 | +--ro hoplimit? boolean

Boucadair, et al. Expires January 28, 2019 [Page 20]

Internet-Draft DOTS Data Channel Protocol July 2018

 | +--ro source-prefix? boolean
 | +--ro destination-prefix? boolean
 | +--ro fragment? boolean
 +--ro tcp
 | +--ro sequence-number? boolean
 | +--ro acknowledgement-number? boolean
 | +--ro data-offset? boolean
 | +--ro reserved? boolean
 | +--ro flags? boolean
 | +--ro flags-bitmask? boolean
 | +--ro window-size? boolean
 | +--ro urgent-pointer? boolean
 | +--ro options? boolean
 | +--ro source-port? boolean
 | +--ro destination-port? boolean
 | +--ro port-range? boolean
 +--ro udp
 | +--ro length? boolean
 | +--ro source-port? boolean
 | +--ro destination-port? boolean
 | +--ro port-range? boolean
 +--ro icmp
 +--ro type? boolean
 +--ro code? boolean
 +--ro rest-of-header? boolean

 Figure 10: Filtering Capabilities Sub-Tree

4.3. YANG Module

 <CODE BEGINS> file "ietf-dots-data-channel@2018-07-25.yang"

 module ietf-dots-data-channel {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-dots-data-channel";
 prefix data-channel;

 import ietf-access-control-list {
 prefix ietf-acl;
 }
 import ietf-packet-fields {
 prefix packet-fields;
 }
 import ietf-dots-signal-channel {
 prefix dots-signal;
 }

 organization

Boucadair, et al. Expires January 28, 2019 [Page 21]

Internet-Draft DOTS Data Channel Protocol July 2018

 "IETF DDoS Open Threat Signaling (DOTS) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/dots/>
 WG List: <mailto:dots@ietf.org>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

 Editor: Konda, Tirumaleswar Reddy
 <mailto:TirumaleswarReddy_Konda@McAfee.com>

 Author: Jon Shallow
 <mailto:jon.shallow@nccgroup.trust>

 Author: Kaname Nishizuka
 <mailto:kaname@nttv6.jp>

 Author: Liang Xia
 <mailto:frank.xialiang@huawei.com>

 Author: Prashanth Patil
 <mailto:praspati@cisco.com>

 Author: Andrew Mortensen
 <mailto:amortensen@arbor.net>

 Author: Nik Teague
 <mailto:nteague@verisign.com>";
 description
 "This module contains YANG definition for configuring
 aliases for resources and filtering rules using DOTS
 data channel.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision 2018-07-25 {
 description

https://datatracker.ietf.org/wg/dots/
http://trustee.ietf.org/license-info

Boucadair, et al. Expires January 28, 2019 [Page 22]

Internet-Draft DOTS Data Channel Protocol July 2018

 "Initial revision.";
 reference
 "RFC XXXX: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Data Channel Specification";
 }

 typedef operator {
 type bits {
 bit not {
 position 0;
 description
 "If set, logical negation of operation.";
 }
 bit match {
 position 1;
 description
 "Match bit. If set, this is a bitwise match operation
 defined as '(data & value) == value'; if unset, (data &
 value) evaluates to TRUE if any of the bits in the value
 mask are set in the data.";
 }
 }
 description
 "How to apply the defined bitmask.";
 }

 grouping tcp-flags {
 leaf operator {
 type operator;
 default match;
 description
 "How to interpret the TCP flags.";
 }
 leaf bitmask {
 type uint16;
 mandatory true;
 description
 "Bitmask values can be encoded as a 1- or 2-byte bitmask.
 When a single byte is specified, it matches byte 13
 of the TCP header, which contains bits 8 though 15
 of the 4th 32-bit word. When a 2-byte encoding is used,
 it matches bytes 12 and 13 of the TCP header with
 the data offset field having a 'don't care' value.";
 }
 description
 "Operations on TCP flags.";
 }

Boucadair, et al. Expires January 28, 2019 [Page 23]

Internet-Draft DOTS Data Channel Protocol July 2018

 typedef fragment-type {
 type bits {
 bit df {
 position 0;
 description
 "Don't fragment bit for IPv4.
 This bit must be set to 0 for IPv6.";
 }
 bit isf {
 position 1;
 description
 "Is a fragment.";
 }
 bit ff {
 position 2;
 description
 "First fragment.";
 }
 bit lf {
 position 3;
 description
 "Last fragment.";
 }
 }
 description
 "Different fragment types to match against.";
 }

 grouping fragment-fields {
 leaf operator {
 type operator;
 default match;
 description
 "How to interpret the fragment type.";
 }
 leaf type {
 type fragment-type;
 mandatory true;
 description
 "What fragment type to look for.";
 }
 description
 "Operations on fragment types.";
 }

 grouping aliases {
 description
 "Top level container for aliases";

Boucadair, et al. Expires January 28, 2019 [Page 24]

Internet-Draft DOTS Data Channel Protocol July 2018

 list alias {
 key "name";
 description
 "List of aliases";
 leaf name {
 type string;
 description
 "The name of the alias";
 }
 uses dots-signal:target;
 leaf pending-lifetime {
 type int32;
 units "minutes";
 config false;
 description
 "Indicates the pending validity lifetime of the alias
 entry.";
 }
 }
 }

 grouping ports {
 choice source-port {
 container source-port-range-or-operator {
 uses packet-fields:port-range-or-operator;
 description
 "Source port definition.";
 }
 description
 "Choice of specifying the source port or referring to
 a group of source ports.";
 }
 choice destination-port {
 container destination-port-range-or-operator {
 uses packet-fields:port-range-or-operator;
 description
 "Destination port definition.";
 }
 description
 "Choice of specifying a destination port or referring
 to a group of destination ports.";
 }
 description
 "Choice of specifying a source or destination ports.";
 }

 grouping access-lists {
 description

Boucadair, et al. Expires January 28, 2019 [Page 25]

Internet-Draft DOTS Data Channel Protocol July 2018

 "Specifies the ordered set of Access Control Lists.";
 list acl {
 key "name";
 ordered-by user;
 description
 "An Access Control List (ACL) is an ordered list of
 Access Control Entries (ACE). Each Access Control Entry
 has a list of match criteria and a list of actions.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "The name of the access list.";
 reference
 "RFC ZZZZ: Network Access Control List (ACL)
 YANG Data Model";
 }
 leaf type {
 type ietf-acl:acl-type;
 description
 "Type of access control list. Indicates the primary intended
 type of match criteria (e.g., IPv4, IPv6) used in the list
 instance.";
 reference
 "RFC ZZZZ: Network Access Control List (ACL)
 YANG Data Model";
 }
 leaf activation-type {
 type enumeration {
 enum "activate-when-mitigating" {
 value 1;
 description
 "The ACL is installed only when a mitigation is active.
 The ACL is specific to this DOTS client.";
 }
 enum "immediate" {
 value 2;
 description
 "The ACL is immediately activated.";
 }
 }
 description
 "Indicates whether an ACL is to be installed immediately
 or when a mitigation is active.";
 }
 leaf pending-lifetime {
 type int32;

Boucadair, et al. Expires January 28, 2019 [Page 26]

Internet-Draft DOTS Data Channel Protocol July 2018

 units "minutes";
 config false;
 description
 "Indicates the pending validity lifetime of the alias
 entry.";
 }
 container aces {
 description
 "The Access Control Entries container contains
 a list of ACEs.";
 list ace {
 key "name";
 ordered-by user;
 description
 "List of access list entries.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "A unique name identifying this Access List
 Entry (ACE).";
 reference
 "RFC ZZZZ: Network Access Control List (ACL)
 YANG Data Model";
 }
 container matches {
 description
 "The rules in this set determine what fields will be
 matched upon before any action is taken on them.

 If no matches are defined in a particular container,
 then any packet will match that container.

 If no matches are specified at all in an ACE, then any
 packet will match the ACE.";
 reference
 "RFC ZZZZ: Network Access Control List (ACL)
 YANG Data Model";

 choice l3 {
 container ipv4 {
 when "derived-from(../../../../type," +
 "'ietf-acl:ipv4-acl-type')";
 uses packet-fields:acl-ip-header-fields;
 uses packet-fields:acl-ipv4-header-fields;
 container fragment {
 description

Boucadair, et al. Expires January 28, 2019 [Page 27]

Internet-Draft DOTS Data Channel Protocol July 2018

 "Indicates how to handle IPv4 fragments.";
 uses fragment-fields;
 }
 description
 "Rule set that matches IPv4 header.";
 }
 container ipv6 {
 when "derived-from(../../../../type," +
 "'ietf-acl:ipv6-acl-type')";
 uses packet-fields:acl-ip-header-fields;
 uses packet-fields:acl-ipv6-header-fields;
 container fragment {
 description
 "Indicates how to handle IPv6 fragments.";
 uses fragment-fields;
 }
 description
 "Rule set that matches IPv6 header.";
 }
 description
 "Either IPv4 or IPv6.";
 }
 choice l4 {
 container tcp {
 uses packet-fields:acl-tcp-header-fields;
 container flags-bitmask {
 description
 "Indicates how to handle TCP flags.";
 uses tcp-flags;
 }
 uses ports;
 description
 "Rule set that matches TCP header.";
 }
 container udp {
 uses packet-fields:acl-udp-header-fields;
 uses ports;
 description
 "Rule set that matches UDP header.";
 }
 container icmp {
 uses packet-fields:acl-icmp-header-fields;
 description
 "Rule set that matches ICMP/ICMPv6 header.";
 }
 description
 "Can be TCP, UDP, or ICMP/ICMPv6";
 }

Boucadair, et al. Expires January 28, 2019 [Page 28]

Internet-Draft DOTS Data Channel Protocol July 2018

 }
 container actions {
 description
 "Definitions of action for this ACE.";
 leaf forwarding {
 type identityref {
 base ietf-acl:forwarding-action;
 }
 mandatory true;
 description
 "Specifies the forwarding action per ACE.";
 reference
 "RFC ZZZZ: Network Access Control List (ACL)
 YANG Data Model";
 }
 leaf rate-limit {
 when "../forwarding = 'ietf-acl:accept'" {
 description
 "rate-limit valid only when accept action is used";
 }
 type decimal64 {
 fraction-digits 2;
 }
 description
 "rate-limit traffic";
 }
 }
 container statistics {
 config false;
 description
 "Aggregate statistics.";
 uses ietf-acl:acl-counters;
 }
 }
 }
 }
 }

 container dots-data {
 description
 "Main container for DOTS data channel.";
 list dots-client {
 key "cuid";
 description
 "List of DOTS clients.";
 leaf cuid {
 type string;
 description

Boucadair, et al. Expires January 28, 2019 [Page 29]

Internet-Draft DOTS Data Channel Protocol July 2018

 "A unique identifier that is randomly generated by
 a DOTS client to prevent request collisions.";
 reference
 "RFC YYYY: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification";
 }
 leaf cdid {
 type string;
 description
 "A client domain identifier conveyed by a
 server-domain DOTS gateway to a remote DOTS server.";
 reference
 "RFC YYYY: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification";
 }
 container aliases {
 description
 "Set of aliases that are bound to a DOTS client.";
 uses aliases;
 }
 container acls {
 description
 "Access lists that are bound to a DOTS client.";
 uses access-lists;
 }
 }
 container capabilities {
 config false;
 description
 "Match capabilities";
 leaf-list address-family {
 type enumeration {
 enum "ipv4" {
 description
 "IPv4 is supported.";
 }
 enum "ipv6" {
 description
 "IPv6 is supported.";
 }
 }
 description
 "Indicates the IP address families supported by
 the DOTS server.";
 }
 leaf-list forwarding-actions {
 type identityref {
 base ietf-acl:forwarding-action;

Boucadair, et al. Expires January 28, 2019 [Page 30]

Internet-Draft DOTS Data Channel Protocol July 2018

 }
 description
 "Supported forwarding action(s).";
 }
 leaf rate-limit {
 type boolean;
 description
 "Support of rate-limit action.";
 }
 leaf-list transport-protocols {
 type uint8;
 description
 "Upper-layer protocol associated with this mapping.

 Values are taken from the IANA protocol registry:
https://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml

 For example, this field contains 6 (TCP) for a TCP
 mapping or 17 (UDP) for a UDP mapping.";
 }
 container ipv4 {
 description
 "Indicates IPv4 header fields that are supported to enforce
 ACLs.";
 leaf dscp {
 type boolean;
 description
 "Support of filtering based on DSCP.";
 }
 leaf ecn {
 type boolean;
 description
 "Support of filtering based on ECN.";
 }
 leaf length {
 type boolean;
 description
 "Support of filtering based on the Total Length.";
 }
 leaf ttl {
 type boolean;
 description
 "Support of filtering based on the TTL.";
 }
 leaf protocol {
 type boolean;
 description

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Boucadair, et al. Expires January 28, 2019 [Page 31]

Internet-Draft DOTS Data Channel Protocol July 2018

 "Support of filtering based on protocol field.";
 }
 leaf ihl {
 type boolean;
 description
 "Support of filtering based on the Internet Header
 Length (IHL).";
 }
 leaf flags {
 type boolean;
 description
 "Support of filtering based on the 'flags'";
 }
 leaf offset {
 type boolean;
 description
 "Support of filtering based on the 'offset'.";
 }
 leaf identification {
 type boolean;
 description
 "Support of filtering based on the 'identification'.";
 }
 leaf source-prefix {
 type boolean;
 description
 "Support of filtering based on the source prefix.";
 }
 leaf destination-prefix {
 type boolean;
 description
 "Support of filtering based on the destination prefix.";
 }
 leaf fragment {
 type boolean;
 description
 "Indicates the capability of a DOTS server to
 enforce filters on IPv4 fragments. That is 'fragment'
 clause is supported.";
 }
 }
 container ipv6 {
 description
 "Indicates IPv6 header fields that are supported to enforce
 ACLs.";
 leaf dscp {
 type boolean;
 description

Boucadair, et al. Expires January 28, 2019 [Page 32]

Internet-Draft DOTS Data Channel Protocol July 2018

 "Support of filtering based on DSCP.";
 }
 leaf ecn {
 type boolean;
 description
 "Support of filtering based on ECN.";
 }
 leaf flow-label {
 type boolean;
 description
 "Support of filtering based on the Flow label.";
 }
 leaf length {
 type boolean;
 description
 "Support of filtering based on the Payload Length.";
 }
 leaf protocol {
 type boolean;
 description
 "Support of filtering based on the Next Header field.";
 }
 leaf hoplimit {
 type boolean;
 description
 "Support of filtering based on the Hop Limit.";
 }
 leaf source-prefix {
 type boolean;
 description
 "Support of filtering based on the source prefix.";
 }
 leaf destination-prefix {
 type boolean;
 description
 "Support of filtering based on the destination prefix.";
 }
 leaf fragment {
 type boolean;
 description
 "Indicates the capability of a DOTS server to
 enforce filters on IPv6 fragments.";
 }
 }
 container tcp {
 description
 "Set of TCP fields that are supported by the DOTS server
 to enfoce filters.";

Boucadair, et al. Expires January 28, 2019 [Page 33]

Internet-Draft DOTS Data Channel Protocol July 2018

 leaf sequence-number {
 type boolean;
 description
 "Support of filtering based on the TCP sequence number.";
 }
 leaf acknowledgement-number {
 type boolean;
 description
 "Support of filtering based on the TCP acknowledgement
 number.";
 }
 leaf data-offset {
 type boolean;
 description
 "Support of filtering based on the TCP data-offset.";
 }
 leaf reserved {
 type boolean;
 description
 "Support of filtering based on the TCP reserved field.";
 }
 leaf flags {
 type boolean;
 description
 "Support of filtering, as defined in RFC ZZZZ, based
 on the TCP flags.";
 }
 leaf flags-bitmask {
 type boolean;
 description
 "Support of filtering based on the TCP flags bitmask.";
 }
 leaf window-size {
 type boolean;
 description
 "Support of filtering based on the TCP window size.";
 }
 leaf urgent-pointer {
 type boolean;
 description
 "Support of filtering based on the TCP urgent pointer.";
 }
 leaf options {
 type boolean;
 description
 "Support of filtering based on the TCP options.";
 }
 leaf source-port {

Boucadair, et al. Expires January 28, 2019 [Page 34]

Internet-Draft DOTS Data Channel Protocol July 2018

 type boolean;
 description
 "Support of filtering based on the source port number.";
 }
 leaf destination-port {
 type boolean;
 description
 "Support of filtering based on the destination port
 number.";
 }
 leaf port-range {
 type boolean;
 description
 "Support of filtering based on a port range.";
 }
 }
 container udp {
 description
 "Set of UDP fields that are supported by the DOTS server
 to enforce filters.";
 leaf length {
 type boolean;
 description
 "Support of filtering based on the UDP length.";
 }
 leaf source-port {
 type boolean;
 description
 "Support of filtering based on the source port number.";
 }
 leaf destination-port {
 type boolean;
 description
 "Support of filtering based on the destination port
 number.";
 }
 leaf port-range {
 type boolean;
 description
 "Support of filtering based on a port range.";
 }
 }
 container icmp {
 description
 "Set of ICMP/ICMPv6 fields that are supported by the DOTS
 server to enforce filters.";
 leaf type {
 type boolean;

Boucadair, et al. Expires January 28, 2019 [Page 35]

Internet-Draft DOTS Data Channel Protocol July 2018

 description
 "Support of filtering based on the ICMP/ICMPv6 type.";
 }
 leaf code {
 type boolean;
 description
 "Support of filtering based on the ICMP/ICMPv6 code.";
 }
 leaf rest-of-header {
 type boolean;
 description
 "Support of filtering based on the ICMP four-bytes
 field.";
 }
 }
 }
 }
 }
 <CODE ENDS>

5. Managing DOTS Clients

5.1. Registering DOTS Clients

 In order to make use of DOTS data channel, a DOTS client MUST
 register to its DOTS server(s) by creating a DOTS client ('dots-
 client') resource. To that aim, DOTS clients SHOULD send a POST
 request (shown in Figure 11).

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "string"
 }
]
 }

 Figure 11: POST to Register

 The 'cuid' (client unique identifier) parameter is described below:

 cuid: A globally unique identifier that is meant to prevent
 collisions among DOTS clients. This attribute has the same
 meaning, syntax, and processing rules as the 'cuid' attribute
 defined in [I-D.ietf-dots-signal-channel].

Boucadair, et al. Expires January 28, 2019 [Page 36]

Internet-Draft DOTS Data Channel Protocol July 2018

 DOTS clients MUST use the same 'cuid' for both signal and data
 channels.

 This is a mandatory attribute.

 In deployments where server-domain DOTS gateways are enabled,
 identity information about the origin source client domain SHOULD be
 supplied to the DOTS server. That information is meant to assist the
 DOTS server to enforce some policies. These policies can be enforced
 per-client, per-client domain, or both. Figure 12 shows an example
 of a request relayed by a server-domain DOTS gateway.

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "string",
 "cdid": "string"
 }
]
 }

 Figure 12: POST to Register (DOTS Gateway)

 A server-domain DOTS gateway SHOULD add the following attribute:

 cdid: This attribute has the same meaning, syntax, and processing
 rules as the 'cdid' attribute defined in
 [I-D.ietf-dots-signal-channel].

 In deployments where server-domain DOTS gateways are enabled,
 'cdid' does not need to be inserted when relaying DOTS methods to
 manage aliases (Section 6) or filtering rules (Section 7). DOTS
 servers are responsible for maintaining the association between
 'cdid' and 'cuid' for policy enforcement purposes.

 This is an optional attribute.

 A request example to create a 'dots-client' resource is depicted in
 Figure 13. This request is relayed by a server-domain DOTS gateway
 as hinted by the presence of the 'cdid' attribute.

Boucadair, et al. Expires January 28, 2019 [Page 37]

Internet-Draft DOTS Data Channel Protocol July 2018

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "dz6pHjaADkaFTbjr0JGBpw",
 "cdid": "7eeaf349529eb55ed50113"
 }
]
 }

 Figure 13: POST to Register (DOTS gateway)

 DOTS servers MUST limit the number of 'dots-client' resources to be
 created by the same DOTS client to 1 per request. Requests with
 multiple 'dots-client' resources MUST be rejected by DOTS servers.
 To that aim, the DOTS server MUST rely on the same procedure to
 unambiguously identify a DOTS client as discussed in Section 4.4.1 of
 [I-D.ietf-dots-signal-channel].

 The DOTS server indicates the result of processing the POST request
 using status-line codes. Status codes in the range "2xx" codes are
 success, "4xx" codes are some sort of invalid requests and "5xx"
 codes are returned if the DOTS server has erred or is incapable of
 accepting the creation of the 'dots-client' resource. In particular,

 o "201 Created" status-line is returned in the response, if the DOTS
 server has accepted the request.

 o "400 Bad Request" status-line is returned by the DOTS server, if
 the request does not include a 'cuid' parameter. The error-tag
 "missing-attribute" is used in this case.

 o "409 Conflict" status-line is returned to the requesting DOTS
 client, if the data resource already exists. The error-tag
 "resource-denied" is used in this case.

 Once a DOTS client registers itself to a DOTS server, it can
 create/delete/retrieve aliases (Section 6) and filtering rules
 (Section 7).

 A DOTS client MAY use the PUT request (Section 4.5 in [RFC8040]) to
 register a DOTS client within the DOTS server. An example is shown
 in Figure 14.

https://datatracker.ietf.org/doc/html/rfc8040#section-4.5

Boucadair, et al. Expires January 28, 2019 [Page 38]

Internet-Draft DOTS Data Channel Protocol July 2018

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "dz6pHjaADkaFTbjr0JGBpw"
 }
]
 }

 Figure 14: PUT to Register

 The DOTS gateway that inserted a 'cdid' in a PUT request, MUST strip
 the 'cdid' parameter in the corresponding response before forwarding
 the response to the DOTS client.

5.2. Uregistering DOTS Clients

 A DOTS client de-registers from its DOTS server by deleting the
 'cuid' resource. Resources bound to this DOTS client will be deleted
 by the DOTS server. An example of de-register request is shown in
 Figure 15.

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}

 Figure 15: De-register a DOTS Client

6. Managing DOTS Aliases

 The following sub-sections define means for a DOTS client to create
 aliases (Section 6.1), retrieve one or a list of aliases
 (Section 6.2), and delete an alias (Section 6.3).

6.1. Create Aliases

 A POST or PUT request is used by a DOTS client to create aliases, for
 resources for which a mitigation may be requested. Such aliases may
 be used in subsequent DOTS signal channel exchanges to refer more
 efficiently to the resources under attack.

 DOTS clients within the same domain can create different aliases for
 the same resource.

Boucadair, et al. Expires January 28, 2019 [Page 39]

Internet-Draft DOTS Data Channel Protocol July 2018

 The structure of POST requests used to create aliases is shown in
 Figure 16.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:aliases": {
 "alias": [
 {
 "name": "string",
 "target-prefix": [
 "string"
],
 "target-port-range": [
 {
 "lower-port": integer,
 "upper-port": integer
 }
],
 "target-protocol": [
 integer
],
 "target-fqdn": [
 "string"
],
 "target-uri": [
 "string"
]
 }
]
 }
 }

 Figure 16: POST to Create Aliases

 The parameters are described below:

 name: Name of the alias.

 This is a mandatory attribute.

 target-prefix: Prefixes are separated by commas. Prefixes are
 represented using Classless Inter-domain Routing (CIDR) notation
 [RFC4632]. As a reminder, the prefix length must be less than or
 equal to 32 (resp. 128) for IPv4 (resp. IPv6).

https://datatracker.ietf.org/doc/html/rfc4632

Boucadair, et al. Expires January 28, 2019 [Page 40]

Internet-Draft DOTS Data Channel Protocol July 2018

 The prefix list MUST NOT include broadcast, loopback, or multicast
 addresses. These addresses are considered as invalid values. In
 addition, the DOTS server MUST validate that these prefixes are
 within the scope of the DOTS client's domain. Other validation
 checks may be supported by DOTS servers.

 This is an optional attribute.

 target-port-range: A range of port numbers.

 The port range is defined by two bounds, a lower port number
 (lower-port) and an upper port number (upper-port).

 When only 'lower-port' is present, it represents a single port
 number.

 For TCP, UDP, Stream Control Transmission Protocol (SCTP)
 [RFC4960], or Datagram Congestion Control Protocol (DCCP)
 [RFC4340], the range of port numbers can be, for example,
 1024-65535.

 This is an optional attribute.

 target-protocol: A list of protocols. Values are taken from the
 IANA protocol registry [proto_numbers].

 The value '0' has a special meaning for 'all protocols'.

 This is an optional attribute.

 target-fqdn: A list of Fully Qualified Domain Names (FQDNs). An
 FQDN is the full name of a resource, rather than just its
 hostname. For example, "venera" is a hostname, and
 "venera.isi.edu" is an FQDN [RFC1983].

 How a name is passed to an underlying name resolution library is
 implementation- and deployment-specific. Nevertheless, once the
 name is resolved into one or multiple IP addresses, DOTS servers
 MUST apply the same validation checks as those for 'target-
 prefix'.

 This is an optional attribute.

 target-uri: A list of Uniform Resource Identifiers (URIs)
 [RFC3986].

 The same validation checks used for 'target-fqdn' MUST be followed
 by DOTS servers to validate a target URI.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc1983
https://datatracker.ietf.org/doc/html/rfc3986

Boucadair, et al. Expires January 28, 2019 [Page 41]

Internet-Draft DOTS Data Channel Protocol July 2018

 This is an optional attribute.

 In POST or PUT requests, at least one of the 'target-prefix',
 'target-fqdn', or 'target-uri' attributes MUST be present. DOTS
 agents can safely ignore Vendor-Specific parameters they don't
 understand.

 Figure 17 shows a POST request to create an alias called "https1" for
 HTTPS servers with IP addresses 2001:db8:6401::1 and 2001:db8:6401::2
 listening on port number 443.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: www.example.com
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:aliases": {
 "alias": [
 {
 "name": "https1",
 "target-protocol": [
 6
],
 "target-prefix": [
 "2001:db8:6401::1/128",
 "2001:db8:6401::2/128"
],
 "target-port-range": [
 {
 "lower-port": 443
 }
]
 }
]
 }
 }

 Figure 17: Example of a POST to Create an Alias

 "201 Created" status-line MUST be returned in the response if the
 DOTS server has accepted the alias.

 "409 Conflict" status-line MUST be returned to the requesting DOTS
 client, if the request is conflicting with an existing alias name.
 The error-tag "resource-denied" is used in this case.

 If the request is missing a mandatory attribute or its contains an
 invalid or unknown parameter, "400 Bad Request" status-line MUST be

Boucadair, et al. Expires January 28, 2019 [Page 42]

Internet-Draft DOTS Data Channel Protocol July 2018

 returned by the DOTS server. The error-tag is set to "missing-
 attribute", "invalid-value", or "unknown-element" as a function of
 the encountered error.

 If the request is received via a server-domain DOTS gateway, but the
 DOTS server does not maintain a 'cdid' for this 'cuid' while a 'cdid'
 is expected to be supplied, the DOTS server MUST reply with "403
 Forbidden" status-line and the error-tag "access-denied". Upon
 receipt of this message, the DOTS client MUST register (Section 5).

 A DOTS client uses the PUT request to modify the aliases in the DOTS
 server. In particular, a DOTS client MUST update its alias entries
 upon change of the prefix indicated in the 'target-prefix'.

 A DOTS server MUST maintain an alias for at least 10080 minutes (1
 week). If no refresh request is seen from the DOTS client, the DOTS
 server removes expired entries.

6.2. Retrieve Installed Aliases

 GET request is used to retrieve one or all installed aliases by a
 DOTS client from a DOTS server (Section 3.3.1 in [RFC8040]). If no
 'name' is included in the request, this is an indication that the
 request is about retrieving all aliases instantiated by the DOTS
 client.

 Figure 18 shows an example to retrieve all the aliases that were
 instantiated by the requesting DOTS client. The 'content' parameter
 and its permitted values are defined in Section 4.8.1 of [RFC8040].

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases?content=all HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 18: GET to Retrieve All Installed Aliases

 Figure 19 shows an example of the response message body that includes
 all the aliases that are maintained by the DOTS server for the DOTS
 client identified by the 'cuid' parameter.

https://datatracker.ietf.org/doc/html/rfc8040#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc8040#section-4.8.1

Boucadair, et al. Expires January 28, 2019 [Page 43]

Internet-Draft DOTS Data Channel Protocol July 2018

 {
 "ietf-dots-data-channel:aliases": {
 "alias": [
 {
 "name": "Server1",
 "target-protocol": [
 6
],
 "target-prefix": [
 "2001:db8:6401::1/128",
 "2001:db8:6401::2/128"
],
 "target-port-range": [
 {
 "lower-port": 443
 }
],
 "pending-lifetime": 3596
 },
 {
 "name": "Server2",
 "target-protocol": [
 6
],
 "target-prefix": [
 "2001:db8:6401::10/128",
 "2001:db8:6401::20/128"
],
 "target-port-range": [
 {
 "lower-port": 80
 }
],
 "pending-lifetime": 9869
 }
]
 }
 }

 Figure 19: An Example of Response Body

 Figure 20 shows an example of a GET request to retrieve the alias
 "Server2" that was instantiated by the DOTS client.

Boucadair, et al. Expires January 28, 2019 [Page 44]

Internet-Draft DOTS Data Channel Protocol July 2018

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases/alias=Server2?content=all HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 20: GET to Retrieve an Alias

 If an alias name ('name') is included in the request, but the DOTS
 server does not find that alias name for this DOTS client in its
 configuration data, it MUST respond with a "404 Not Found" status-
 line.

6.3. Delete Aliases

 DELETE request is used to delete an alias maintained by a DOTS
 server.

 If the DOTS server does not find the alias name, conveyed in the
 DELETE request, in its configuration data for this DOTS client, it
 MUST respond with a "404 Not Found" status-line.

 The DOTS server successfully acknowledges a DOTS client's request to
 remove the alias using "204 No Content" status-line in the response.

 Figure 21 shows an example of a request to delete an alias.

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases/alias=Server1 HTTP/1.1
 Host: {host}:{port}

 Figure 21: Delete an Alias

7. Managing DOTS Filtering Rules

 The following sub-sections define means for a DOTS client to retrieve
 DOTS filtering capabilities (Section 7.1), create filtering rules
 (Section 7.2), retrieve active filtering rules (Section 7.3), and
 delete a filtering rule (Section 7.4).

7.1. Retrieve DOTS Filtering Capabilities

 A DOTS client MAY send a GET request to retrieve the filtering
 capabilities supported by a DOTS server. Figure 22 shows an example
 of such request.

Boucadair, et al. Expires January 28, 2019 [Page 45]

Internet-Draft DOTS Data Channel Protocol July 2018

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /capabilities HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 22: GET to Retrieve the Capabilities of a DOTS Server

 A DOTS client which issued a GET request to retrieve the filtering
 capabilities supported by its DOTS server, SHOULD NOT request for
 filtering actions that are not supported by that DOTS server.

 Figure 23 shows an example of a response received from a DOTS server
 which only supports the mandatory filtering criteria listed in

Section 4.1.

Boucadair, et al. Expires January 28, 2019 [Page 46]

Internet-Draft DOTS Data Channel Protocol July 2018

 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:capabilities": {
 "address-family": ["ipv4", "ipv6"],
 "forwarding-actions": ["drop", "accept"],
 "rate-limit": true,
 "transport-protocols": [1, 6, 17, 58],
 "ipv4": {
 "length": true,
 "protocol": true,
 "destination-prefix": true,
 "source-prefix": true,
 "fragment": true
 },
 "ipv6": {
 "length": true,
 "protocol": true,
 "destination-prefix": true,
 "source-prefix": true,
 "fragment": true
 },
 "tcp": {
 "flags-bitmask": true,
 "source-port": true,
 "destination-port": true,
 "port-range": true
 },
 "udp": {
 "length": true,
 "source-port": true,
 "destination-port": true,
 "port-range": true
 },
 "icmp": {
 "type": true,
 "code": true
 }
 }
 }

 Figure 23: Reply to a GET Response with Filtering Capabilities

7.2. Install Filtering Rules

 A POST or PUT request is used by a DOTS client to communicate
 filtering rules to a DOTS server.

Boucadair, et al. Expires January 28, 2019 [Page 47]

Internet-Draft DOTS Data Channel Protocol July 2018

 Figure 24 shows a POST request example to block traffic from
 192.0.2.0/24 and destined to 198.51.100.0/24. Other examples are
 discussed in Appendix A.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "sample-ipv4-acl",
 "type": "ipv4-acl-type",
 "activation-type": "activate-when-mitigating",
 "aces": {
 "ace": [
 {
 "name": "rule1",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24",
 "source-ipv4-network": "192.0.2.0/24"
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 }
 }
]
 }
 }

 Figure 24: POST to Install Filtering Rules

 The meaning of these parameters is as follows:

 name: The name of the access list.

 This is a mandatory attribute.

 type: Indicates the primary intended type of match criteria (e.g.,
 IPv4, IPv6). It is set to 'ipv4-acl-type' in this example.

 This is an optional attribute.

Boucadair, et al. Expires January 28, 2019 [Page 48]

Internet-Draft DOTS Data Channel Protocol July 2018

 activation-type: Indicates whether an ACL has to be installed
 immediately or during mitigation time. If this attribute is not
 provided, the DOTS server MUST use 'activate-when-mitigating' as
 default value. Filters that are activated only when a mitigation
 is in progress MUST be bound to the DOTS client which created the
 filtering rule.

 This is an optional attribute.

 matches: Define criteria used to identify a flow on which to apply
 the rule. It can be "l3" (IPv4, IPv6) or "l4" (TCP, UDP, ..).
 The detailed match parameters are specified in Section 4.

 In this example, an IPv4 matching criteria is used.

 This is an optional attribute.

 destination-ipv4-network: The destination IPv4 prefix. DOTS servers
 MUST validate that these prefixes are within the scope of the DOTS
 client's domain. Other validation checks may be supported by DOTS
 servers. If this attribute is not provided, the DOTS server
 enforces the ACL on any destination IP address that belong to the
 DOTS client's domain.

 This is a mandatory attribute in requests with an 'activation-
 type' set to 'immediate'.

 source-ipv4-network: The source IPv4 prefix.

 This is an optional attribute.

 actions: Actions in the forwarding ACL category can be "drop" or
 "accept". The "accept" action is used to white-list traffic. The
 "drop" action is used to black-list traffic.

 Accepted traffic may be subject to "rate-limit"; the allowed
 traffic rate is represented in bytes per second indicated in IEEE
 floating point format [IEEE.754.1985].

 This is a mandatory attribute.

 The DOTS server indicates the result of processing the POST request
 using the status-line header. Concretely, "201 Created" status-line
 MUST be returned in the response if the DOTS server has accepted the
 filtering rules. If the request is missing a mandatory attribute or
 contains an invalid or unknown parameter (e.g., a match field not
 supported by the DOTS server), "400 Bad Request" status-line MUST be
 returned by the DOTS server in the response. The error-tag is set to

Boucadair, et al. Expires January 28, 2019 [Page 49]

Internet-Draft DOTS Data Channel Protocol July 2018

 "missing-attribute", "invalid-value", or "unknown-element" as a
 function of the encountered error.

 If the request is received via a server-domain DOTS gateway, but the
 DOTS server does not maintain a 'cdid' for this 'cuid' while a 'cdid'
 is expected to be supplied, the DOTS server MUST reply with "403
 Forbidden" status-line and the error-tag "access-denied". Upon
 receipt of this message, the DOTS client MUST register (Figure 11).

 If the request is conflicting with an existing filtering installed by
 another DOTS client of the domain, the DOTS server returns "409
 Conflict" status-line to the requesting DOTS client. The error-tag
 "resource-denied" is used in this case.

 The "insert" query parameter (Section 4.8.5 of [RFC8040]) MAY be used
 to specify how an access control entry is inserted within an ACL and
 how an ACL is inserted within an ACL set.

 The DOTS client uses the PUT request to modify its filtering rules
 maintained by the DOTS server. In particular, a DOTS client MUST
 update its filtering entries upon change of the destination-prefix.
 How such change is detected is out of scope.

 A DOTS server MUST maintain a filtering rule for at least 10080
 minutes (1 week). If no refresh request is seen from the DOTS
 client, the DOTS server removes expired entries. Typically, a
 refresh request is a PUT request which echoes the content of a
 response to a GET request with all of the read-only parameters
 stripped out (e.g. pending-lifetime).

7.3. Retrieve Installed Filtering Rules

 The DOTS client periodically queries the DOTS server to check the
 counters for installed filtering rules. GET request is used to
 retrieve filtering rules from a DOTS server. In order to indicate
 which type of data is requested in a GET request, the DOTS client
 sets adequately the 'content' parameter.

 If the DOTS server does not find the access list name conveyed in the
 GET request in its configuration data for this DOTS client, it
 responds with a "404 Not Found" status-line.

 In order to illustrate the intended behavior, consider the example
 depicted in Figure 25. In reference to this example, the DOTS client
 requests the creation of an immediate ACL called "test-acl-ipv6-udp".

https://datatracker.ietf.org/doc/html/rfc8040#section-4.8.5

Boucadair, et al. Expires January 28, 2019 [Page 50]

Internet-Draft DOTS Data Channel Protocol July 2018

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "aces": {
 "ace": [
 {
 "name": "test-ace-ipv6-udp",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 25: Example of a PUT Request to Create a Filtering

Boucadair, et al. Expires January 28, 2019 [Page 51]

Internet-Draft DOTS Data Channel Protocol July 2018

 The peer DOTS server follows the procedure specified in Section 7.2
 to process the request. We consider in the following that a positive
 response is sent back to the requesting DOTS client to confirm that
 the "test-acl-ipv6-udp" ACL is successfully installed by the DOTS
 server.

 The DOTS client can issue a GET request to retrieve all its filtering
 rules and the number of matches for the installed filtering rules as
 illustrated in Figure 26. 'content' parameter is set to 'all'. The
 message body of the response to this GET request is shown in
 Figure 27.

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /acls?content=all HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 26: Retrieve the Configuration Data and State Data for the
 Filtering Rules: GET Request

Boucadair, et al. Expires January 28, 2019 [Page 52]

Internet-Draft DOTS Data Channel Protocol July 2018

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "pending-lifetime":9080,
 "aces": {
 "ace": [
 {
 "name": "test-ace-ipv6-udp",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 27: Retrieve the Configuration Data and State Data for the
 Filtering Rules: Response

 Also, a DOTS client can issue a GET request to retrieve only
 configuration data related to an ACL as shown in Figure 28. It does
 so by setting 'content' parameter to 'config'.

Boucadair, et al. Expires January 28, 2019 [Page 53]

Internet-Draft DOTS Data Channel Protocol July 2018

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp?content=config HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 28: Retrieve the Configuration Data for a Filtering Rule: GET
 Request

 A response to this GET request is shown in Figure 29.

Boucadair, et al. Expires January 28, 2019 [Page 54]

Internet-Draft DOTS Data Channel Protocol July 2018

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "aces": {
 "ace": [
 {
 "name": "test-ace-ipv6-udp",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 29: Retrieve the Configuration Data for a Filtering Rule:
 Response

 A DOTS client can also issue a GET request with 'content' parameter
 to 'non-config' to exclusively retrieve non-configuration data bound
 to a given ACL as shown in Figure 28. A response to this GET request
 is shown in Figure 31.

Boucadair, et al. Expires January 28, 2019 [Page 55]

Internet-Draft DOTS Data Channel Protocol July 2018

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp?content=non-config HTTP/1.1
 Host: {host}:{port}
 Accept: application/yang-data+json

 Figure 30: Retrieve the Non-Configuration Data for a Filtering Rule:
 GET Request

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "pending-lifetime": 8000,
 "aces": {
 "ace": [
 {
 "name": "test-ace-ipv6-udp"
 }
]
 }
 }
]
 }
 }

 Figure 31: Retrieve the Non-Configuration Data for a Filtering Rule:
 GET Request

7.4. Remove Filtering Rules

 DELETE request is used by a DOTS client to delete filtering rules
 from a DOTS server.

 If the DOTS server does not find the access list name carried in the
 DELETE request in its configuration data for this DOTS client, it
 MUST respond with a "404 Not Found" status-line. The DOTS server
 successfully acknowledges a DOTS client's request to withdraw the
 filtering rules using "204 No Content" status-line, and removes the
 filtering rules accordingly.

 Figure 32 shows an example of a request to remove the IPv4 ACL
 "sample-ipv4-acl" created in Section 7.2.

Boucadair, et al. Expires January 28, 2019 [Page 56]

Internet-Draft DOTS Data Channel Protocol July 2018

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw/acls\
 /acl=sample-ipv4-acl HTTP/1.1
 Host: {host}:{port}

 Figure 32: Remove a Filtering Rule: DELETE Request

 Figure 33 shows an example of a response received from the server to
 confirm the deletion of "sample-ipv4-acl".

 HTTP/1.1 204 No Content
 Server: Apache
 Date: Fri, 27 Jul 2018 10:05:15 GMT
 Cache-Control: no-cache
 Content-Type: application/yang-data+json
 Content-Length: 0
 Connection: Keep-Alive

 Figure 33: Remove a Filtering Rule: Response

8. IANA Considerations

 This document requests IANA to register the following URI in the
 "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-dots-data-channel
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document requests IANA to register the following YANG module in
 the "YANG Module Names" registry [RFC7950].

 name: ietf-dots-data-channel
 namespace: urn:ietf:params:xml:ns:yang:ietf-dots-data-channel
 prefix: data-channel
 reference: RFC XXXX

9. Security Considerations

 RESTCONF security considerations are discussed in [RFC8040]. In
 particular, DOTS agents MUST follow the security recommendations in
 Sections 2 and 12 of [RFC8040]. Also, DOTS agents MUST support the
 mutual authentication TLS profile discussed in Sections 7.1 and 8 of
 [I-D.ietf-dots-signal-channel]. YANG ACL-specific security
 considerations are discussed in [I-D.ietf-netmod-acl-model].

 Authenticated encryption MUST be used for data confidentiality and
 message integrity. The interaction between the DOTS agents requires

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc8040

Boucadair, et al. Expires January 28, 2019 [Page 57]

Internet-Draft DOTS Data Channel Protocol July 2018

 Transport Layer Security (TLS) with a cipher suite offering
 confidentiality protection and the guidance given in [RFC7525] MUST
 be followed to avoid attacks on TLS.

 An attacker may be able to inject RST packets, bogus application
 segments, etc., regardless of whether TLS authentication is used.
 Because the application data is TLS protected, this will not result
 in the application receiving bogus data, but it will constitute a DoS
 on the connection. This attack can be countered by using TCP-AO
 [RFC5925]. If TCP-AO is used, then any bogus packets injected by an
 attacker will be rejected by the TCP-AO integrity check and therefore
 will never reach the TLS layer.

 In order to prevent leaking internal information outside a client-
 domain, client-side DOTS gateways SHOULD NOT reveal the identity of
 internal DOTS clients (e.g., source IP address, client's hostname)
 unless explicitly configured to do so.

 DOTS servers MUST verify that requesting DOTS clients are entitled to
 enforce filtering rules on a given IP prefix. That is, only
 filtering rules on IP resources that belong to the DOTS client's
 domain MUST be authorized by a DOTS server. The exact mechanism for
 the DOTS servers to validate that the target prefixes are within the
 scope of the DOTS client's domain is deployment-specific.

 Rate-limiting DOTS requests, including those with new 'cuid' values,
 from the same DOTS client defends against DoS attacks that would
 result in varying the 'cuid' to exhaust DOTS server resources. Rate-
 limit policies SHOULD be enforced on DOTS gateways (if deployed) and
 DOTS servers.

 Applying resources quota per DOTS client and/or per DOTS client
 domain (e.g., limit the number of aliases and filters to be install
 by DOTS clients) prevents DOTS server resources to be aggressively
 used by some DOTS clients and ensures, therefore, DDoS mitigation
 usage fairness. Additionally, DOTS servers may limit the number of
 DOTS clients that can be enabled per domain.

 The presence of DOTS gateways may lead to infinite forwarding loops,
 which is undesirable. To prevent and detect such loops, a mechanism
 is defined in Section 3.5.

 All data nodes defined in the YANG module which can be created,
 modified, and deleted (i.e., config true, which is the default) are
 considered sensitive. Write operations applied to these data nodes
 without proper protection can negatively affect network operations.
 Appropriate security measures are recommended to prevent illegitimate
 users from invoking DOTS data channel primitives. Nevertheless, an

https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/rfc5925

Boucadair, et al. Expires January 28, 2019 [Page 58]

Internet-Draft DOTS Data Channel Protocol July 2018

 attacker who can access a DOTS client is technically capable of
 launching various attacks, such as:

 o Set an arbitrarily low rate-limit, which may prevent legitimate
 traffic from being forwarded (rate-limit).

 o Set an arbitrarily high rate-limit, which may lead to the
 forwarding of illegitimate DDoS traffic (rate-limit).

 o Communicate invalid aliases to the server (alias), which will
 cause the failure of associating both data and signal channels.

 o Set invalid ACL entries, which may prevent legitimate traffic from
 being forwarded. Likewise, invalid ACL entries may lead to
 forward DDoS traffic.

10. Contributors

 The following individuals have contributed to this document:

 o Dan Wing, Email: dwing-ietf@fuggles.com

 o Jon Shallow, NCC Group, Email: jon.shallow@nccgroup.trust

11. Acknowledgements

 Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Ehud
 Doron, Russ White, Gilbert Clark, and Nesredien Suleiman for the
 discussion and comments.

12. References

12.1. Normative References

 [I-D.ietf-dots-signal-channel]
 Reddy, T., Boucadair, M., Patil, P., Mortensen, A., and N.
 Teague, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification", draft-

ietf-dots-signal-channel-20 (work in progress), May 2018.

 [I-D.ietf-netmod-acl-model]
 Jethanandani, M., Huang, L., Agarwal, S., and D. Blair,
 "Network Access Control List (ACL) YANG Data Model",

draft-ietf-netmod-acl-model-19 (work in progress), April
 2018.

https://datatracker.ietf.org/doc/html/draft-ietf-dots-signal-channel-20
https://datatracker.ietf.org/doc/html/draft-ietf-dots-signal-channel-20
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-acl-model-19

Boucadair, et al. Expires January 28, 2019 [Page 59]

Internet-Draft DOTS Data Channel Protocol July 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
 2006, <https://www.rfc-editor.org/info/rfc4632>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

12.2. Informative References

 [I-D.ietf-dots-architecture]
 Mortensen, A., Andreasen, F., Reddy, T.,
 christopher_gray3@cable.comcast.com, c., Compton, R., and
 N. Teague, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", draft-ietf-dots-

architecture-06 (work in progress), March 2018.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://datatracker.ietf.org/doc/html/bcp122
https://datatracker.ietf.org/doc/html/rfc4632
https://www.rfc-editor.org/info/rfc4632
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://datatracker.ietf.org/doc/html/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-06
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-06

Boucadair, et al. Expires January 28, 2019 [Page 60]

Internet-Draft DOTS Data Channel Protocol July 2018

 [I-D.ietf-dots-requirements]
 Mortensen, A., Moskowitz, R., and T. Reddy, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-14 (work in
 progress), February 2018.

 [IEEE.754.1985]
 Institute of Electrical and Electronics Engineers,
 "Standard for Binary Floating-Point Arithmetic", August
 1985.

 [proto_numbers]
 "IANA, "Protocol Numbers"", 2011,
 <http://www.iana.org/assignments/protocol-numbers>.

 [RFC1983] Malkin, G., Ed., "Internet Users' Glossary", FYI 18,
RFC 1983, DOI 10.17487/RFC1983, August 1996,

 <https://www.rfc-editor.org/info/rfc1983>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <https://www.rfc-editor.org/info/rfc5389>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <https://www.rfc-editor.org/info/rfc6520>.

https://datatracker.ietf.org/doc/html/draft-ietf-dots-requirements-14
http://www.iana.org/assignments/protocol-numbers
https://datatracker.ietf.org/doc/html/rfc1983
https://www.rfc-editor.org/info/rfc1983
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6520
https://www.rfc-editor.org/info/rfc6520

Boucadair, et al. Expires January 28, 2019 [Page 61]

Internet-Draft DOTS Data Channel Protocol July 2018

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <https://www.rfc-editor.org/info/rfc6887>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Sample Examples: Filtering Fragments

 This specification strongly recommends the use of "fragment" for
 handling fragments.

 Figure 34 shows the content of the POST request to be issued by a
 DOTS client to its DOTS server to allow the traffic destined to
 198.51.100.0/24 and UDP port number 53, but to drop all fragmented
 packets. The following ACEs are defined (in this order):

 o "drop-all-fragments" ACE: discards all fragments.

 o "allow-dns-packets" ACE: accepts DNS packets destined to
 198.51.100.0/24.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {

https://datatracker.ietf.org/doc/html/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340

Boucadair, et al. Expires January 28, 2019 [Page 62]

Internet-Draft DOTS Data Channel Protocol July 2018

 "ipv4": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 "ace": [
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 }
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 34: Filtering IPv4 Fragmented Packets (Recommended)

 Figure 35 shows a POST request example issued by a DOTS client to its
 DOTS server to allow the traffic destined to 2001:db8::/32 and UDP
 port number 53, but to drop all fragmented packets. The following
 ACEs are defined (in this order):

 o "drop-all-fragments" ACE: discards all fragments (including atomic
 fragments). That is, IPv6 packets which include a Fragment header
 (44) are dropped.

Boucadair, et al. Expires January 28, 2019 [Page 63]

Internet-Draft DOTS Data Channel Protocol July 2018

 o "allow-dns-packets" ACE: accepts DNS packets destined to
 2001:db8::/32.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json
 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 "ace": [
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 }
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }

Boucadair, et al. Expires January 28, 2019 [Page 64]

Internet-Draft DOTS Data Channel Protocol July 2018

]
 }
 }
]
 }
 }

 Figure 35: Filtering IPv6 Fragmented Packets

Authors' Addresses

 Mohamed Boucadair (editor)
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Tirumaleswar Reddy (editor)
 McAfee, Inc.
 Embassy Golf Link Business Park
 Bangalore, Karnataka 560071
 India

 Email: kondtir@gmail.com

 Kaname Nishizuka
 NTT Communications
 GranPark 16F 3-4-1 Shibaura, Minato-ku
 Tokyo 108-8118
 Japan

 Email: kaname@nttv6.jp

 Liang Xia
 Huawei
 101 Software Avenue, Yuhuatai District
 Nanjing, Jiangsu 210012
 China

 Email: frank.xialiang@huawei.com

Boucadair, et al. Expires January 28, 2019 [Page 65]

Internet-Draft DOTS Data Channel Protocol July 2018

 Prashanth Patil
 Cisco Systems, Inc.

 Email: praspati@cisco.com

 Andrew Mortensen
 Arbor Networks, Inc.
 2727 S. State St
 Ann Arbor, MI 48104
 United States

 Email: amortensen@arbor.net

 Nik Teague
 Verisign, Inc.
 United States

 Email: nteague@verisign.com

Boucadair, et al. Expires January 28, 2019 [Page 66]

