
DOTS T. Reddy
Internet-Draft Cisco
Intended status: Standards Track M. Boucadair
Expires: October 1, 2017 Orange
 P. Patil
 Cisco
 A. Mortensen
 Arbor Networks, Inc.
 N. Teague
 Verisign, Inc.
 March 30, 2017

Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal
Channel

draft-ietf-dots-signal-channel-00

Abstract

 This document specifies the DOTS signal channel, a protocol for
 signaling the need for protection against Distributed Denial-of-
 Service (DDoS) attacks to a server capable of enabling network
 traffic mitigation on behalf of the requesting client. A companion
 document defines the DOTS data channel, a separate reliable
 communication layer for DOTS management and configuration.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 1, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Reddy, et al. Expires October 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DOTS Signal Channel March 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions and Terminology 3
3. Solution Overview . 4
4. Happy Eyeballs for DOTS Signal Channel 5
5. DOTS Signal Channel . 7
5.1. Overview . 7
5.2. DOTS Signal YANG Model 8
5.2.1. Mitigation Request Model structure 8
5.2.2. Mitigation Request Model 8
5.2.3. Session Configuration Model structure 10
5.2.4. Session Configuration Model 10

5.3. Mitigation Request 12
5.3.1. Requesting mitigation 12
5.3.2. Withdraw a DOTS Signal 17
5.3.3. Retrieving a DOTS Signal 18
5.3.4. Efficacy Update from DOTS Client 22

5.4. DOTS Signal Channel Session Configuration 24
5.4.1. Discover Acceptable Configuration Parameters 25
5.4.2. Convey DOTS Signal Channel Session Configuration . . 26
5.4.3. Delete DOTS Signal Channel Session Configuration . . 28

 5.4.4. Retrieving DOTS Signal Channel Session Configuration 28
5.5. Redirected Signaling 29
5.6. Heartbeat Mechanism 30

6. Mapping parameters to CBOR 31
7. (D)TLS Protocol Profile and Performance considerations . . . 31
7.1. MTU and Fragmentation Issues 32

8. (D)TLS 1.3 considerations 33
 9. Mutual Authentication of DOTS Agents & Authorization of DOTS
 Clients . 34

10. IANA Considerations . 36
10.1. DOTS signal channel CBOR Mappings Registry 36
10.1.1. Registration Template 36
10.1.2. Initial Registry Contents 36

11. Implementation Status . 39
11.1. nttdots . 40

12. Security Considerations 40

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Reddy, et al. Expires October 1, 2017 [Page 2]

Internet-Draft DOTS Signal Channel March 2017

13. Contributors . 41
14. Acknowledgements . 41
15. References . 42
15.1. Normative References 42
15.2. Informative References 43

 Authors' Addresses . 45

1. Introduction

 A distributed denial-of-service (DDoS) attack is an attempt to make
 machines or network resources unavailable to their intended users.
 In most cases, sufficient scale can be achieved by compromising
 enough end-hosts and using those infected hosts to perpetrate and
 amplify the attack. The victim in this attack can be an application
 server, a host, a router, a firewall, or an entire network.

 In many cases, it may not be possible for an network administrators
 to determine the causes of an attack, but instead just realize that
 certain resources seem to be under attack. This document defines a
 lightweight protocol permitting a DOTS client to request mitigation
 from one or more DOTS servers for protection against detected,
 suspected, or anticipated attacks . This protocol enables cooperation
 between DOTS agents to permit a highly-automated network defense that
 is robust, reliable and secure.

 The requirements for DOTS signal channel protocol are obtained from
 [I-D.ietf-dots-requirements].

 This document satisfies all the use cases discussed in
 [I-D.ietf-dots-use-cases] except the Third-party DOTS notifications
 use case in Section 3.2.3 of [I-D.ietf-dots-use-cases] which is an
 optional feature and not a core use case. Third-party DOTS
 notifications are not part of the DOTS requirements document.
 Moreover, the DOTS architecture does not assess whether that use case
 may have an impact on the architecture itself and/or the DOTS trust
 model.

 This is a companion document to the DOTS data channel specification
 [I-D.reddy-dots-data-channel] that defines a configuration and bulk
 data exchange mechanism supporting the DOTS signal channel.

2. Notational Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Reddy, et al. Expires October 1, 2017 [Page 3]

Internet-Draft DOTS Signal Channel March 2017

 (D)TLS: For brevity this term is used for statements that apply to
 both Transport Layer Security [RFC5246] and Datagram Transport Layer
 Security [RFC6347]. Specific terms will be used for any statement
 that applies to either protocol alone.

 The reader should be familiar with the terms defined in
 [I-D.ietf-dots-architecture].

3. Solution Overview

 Network applications have finite resources like CPU cycles, number of
 processes or threads they can create and use, maximum number of
 simultaneous connections it can handle, limited resources of the
 control plane, etc. When processing network traffic, such
 applications are supposed to use these resources to offer the
 intended task in the most efficient fashion. However, an attacker
 may be able to prevent an application from performing its intended
 task by causing the application to exhaust the finite supply of a
 specific resource.

 TCP DDoS SYN-flood, for example, is a memory-exhaustion attack on the
 victim and ACK-flood is a CPU exhaustion attack on the victim
 ([RFC4987]). Attacks on the link are carried out by sending enough
 traffic such that the link becomes excessively congested, and
 legitimate traffic suffers high packet loss. Stateful firewalls can
 also be attacked by sending traffic that causes the firewall to hold
 excessive state. The firewall then runs out of memory, and can no
 longer instantiate the state required to pass legitimate flows.
 Other possible DDoS attacks are discussed in [RFC4732].

 In each of the cases described above, the possible arrangements
 between the DOTS client and DOTS server to mitigate the attack are
 discussed in [I-D.ietf-dots-use-cases]. An example of network
 diagram showing a deployment of these elements is shown in Figure 1.
 Architectural relationships between involved DOTS agents is explained
 in [I-D.ietf-dots-architecture]. In this example, the DOTS server is
 operating on the access network.

 Network
 Resource CPE router Access network __________
 +-----------+ +--------------+ +-------------+ / \
	____		_______		___	Internet
DOTS client		DOTS gateway		DOTS server		
 +-----------+ +--------------+ +-------------+ __________/

 Figure 1

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc4732

Reddy, et al. Expires October 1, 2017 [Page 4]

Internet-Draft DOTS Signal Channel March 2017

 The DOTS server can also be running on the Internet, as depicted in
 Figure 2.

 Network DDoS mitigation
 Resource CPE router __________ service
 +-----------+ +-------------+ / \ +-------------+
	____		_______		___		
DOTS client		DOTS gateway		Internet		DOTS server	
 +-----------+ +-------------+ __________/ +-------------+

 Figure 2

 In typical deployments, the DOTS client belongs to a different
 administrative domain than the DOTS server. For example, the DOTS
 client is a firewall protecting services owned and operated by an
 domain, while the DOTS server is owned and operated by a different
 domain providing DDoS mitigation services. That domain providing
 DDoS mitigation service might, or might not, also provide Internet
 access service to the website operator.

 The DOTS server may (not) be co-located with the DOTS mitigator. In
 typical deployments, the DOTS server belongs to the same
 administrative domain as the mitigator.

 The DOTS client can communicate directly with the DOTS server or
 indirectly via a DOTS gateway.

 This document focuses on the DOTS signal channel.

4. Happy Eyeballs for DOTS Signal Channel

 DOTS signaling can happen with DTLS [RFC6347] over UDP and TLS
 [RFC5246] over TCP. A DOTS client can use DNS to determine the IP
 address(es) of a DOTS server or a DOTS client may be provided with
 the list of DOTS server IP addresses. The DOTS client MUST know a
 DOTS server's domain name; hard-coding the domain name of the DOTS
 server into software is NOT RECOMMENDED in case the domain name is
 not valid or needs to change for legal or other reasons. The DOTS
 client performs A and/or AAAA record lookup of the domain name and
 the result will be a list of IP addresses, each of which can be used
 to contact the DOTS server using UDP and TCP.

 If an IPv4 path to reach a DOTS server is found, but the DOTS
 server's IPv6 path is not working, a dual-stack DOTS client can
 experience a significant connection delay compared to an IPv4-only
 DOTS client. The other problem is that if a middlebox between the
 DOTS client and DOTS server is configured to block UDP, the DOTS

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Reddy, et al. Expires October 1, 2017 [Page 5]

Internet-Draft DOTS Signal Channel March 2017

 client will fail to establish a DTLS session with the DOTS server and
 will, then, have to fall back to TLS over TCP incurring significant
 connection delays. [I-D.ietf-dots-requirements] discusses that DOTS
 client and server will have to support both connectionless and
 connection-oriented protocols.

 To overcome these connection setup problems, the DOTS client can try
 connecting to the DOTS server using both IPv6 and IPv4, and try both
 DTLS over UDP and TLS over TCP in a fashion similar to the Happy
 Eyeballs mechanism [RFC6555]. These connection attempts are
 performed by the DOTS client when its initializes, and the client
 uses that information for its subsequent alert to the DOTS server.
 In order of preference (most preferred first), it is UDP over IPv6,
 UDP over IPv4, TCP over IPv6, and finally TCP over IPv4, which
 adheres to address preference order [RFC6724] and the DOTS preference
 that UDP be used over TCP (to avoid TCP's head of line blocking).

 DOTS client DOTS server
 | |
 |--DTLS ClientHello, IPv6 ---->X |
 |--TCP SYN, IPv6-------------->X |
 |--DTLS ClientHello, IPv4 ---->X |
 |--TCP SYN, IPv4--->|
 |--DTLS ClientHello, IPv6 ---->X |
 |--TCP SYN, IPv6-------------->X |
 |<-TCP SYNACK---|
 |--DTLS ClientHello, IPv4 ---->X |
 |--TCP ACK--->|
 |<------------Establish TLS Session---------------------->|
 |----------------DOTS signal----------------------------->|
 | |

 Figure 3: Happy Eyeballs

 In reference to Figure 3, the DOTS client sends two TCP SYNs and two
 DTLS ClientHello messages at the same time over IPv6 and IPv4. In
 this example, it is assumed that the IPv6 path is broken and UDP is
 dropped by a middle box but has little impact to the DOTS client
 because there is no long delay before using IPv4 and TCP. The DOTS
 client repeats the mechanism to discover if DOTS signaling with DTLS
 over UDP becomes available from the DOTS server, so the DOTS client
 can migrate the DOTS signal channel from TCP to UDP, but such probing
 SHOULD NOT be done more frequently than every 24 hours and MUST NOT
 be done more frequently than every 5 minutes.

https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6724

Reddy, et al. Expires October 1, 2017 [Page 6]

Internet-Draft DOTS Signal Channel March 2017

5. DOTS Signal Channel

5.1. Overview

 The DOTS signal channel is built on top of the Constrained
 Application Protocol (CoAP) [RFC7252], a lightweight protocol
 originally designed for constrained devices and networks. CoAP's
 expectation of packet loss, support for asynchronous non-confirmable
 messaging, congestion control, small message overhead limiting the
 need for fragmentation, use of minimal resources, and support for
 (D)TLS make it a good foundation on which to build the DOTS signaling
 mechanism.

 The DOTS signal channel is layered on existing standards (Figure 4).

 +--------------+
 | DOTS |
 +--------------+
 | CoAP |
 +--------------+
 | TLS | DTLS |
 +--------------+
 | TCP | UDP |
 +--------------+
 | IP |
 +--------------+

 Figure 4: Abstract Layering of DOTS signal channel over CoAP over
 (D)TLS

 The signal channel is initiated by the DOTS client. Once the signal
 channel is established, the DOTS agents periodically send heartbeats
 to keep the channel active. At any time, the DOTS client may send a
 mitigation request message to the DOTS server over the active
 channel. While mitigation is active, the DOTS server periodically
 sends status messages to the client, including basic mitigation
 feedback details. Mitigation remains active until the DOTS client
 explicitly terminates mitigation, or the mitigation lifetime expires.

 Messages exchanged between DOTS client and server are serialized
 using Concise Binary Object Representation (CBOR) [RFC7049], CBOR is
 a binary encoding designed for small code and message size. CBOR
 encoded payloads are used to convey signal channel specific payload
 messages that convey request parameters and response information such
 as errors. This specification uses the encoding rules defined in
 [I-D.ietf-core-yang-cbor] for representing mitigation scope and DOTS
 signal channel session configuration data defined using YANG
 (Section 5.2) as CBOR data.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049

Reddy, et al. Expires October 1, 2017 [Page 7]

Internet-Draft DOTS Signal Channel March 2017

5.2. DOTS Signal YANG Model

 This document defines a YANG [RFC6020] data model for mitigation
 scope and DOTS signal channel session configuration data.

5.2.1. Mitigation Request Model structure

 This document defines the YANG module "ietf-dots-signal", which has
 the following structure:

 module: ietf-dots-signal
 +--rw mitigation-scope
 +--rw scope* [policy-id]
 +--rw policy-id int32
 +--rw target-ip* inet:ip-address
 +--rw target-prefix* inet:ip-prefix
 +--rw target-port-range* [lower-port upper-port]
 | +--rw lower-port inet:port-number
 | +--rw upper-port inet:port-number
 +--rw target-protocol* uint8
 +--rw FQDN* inet:domain-name
 +--rw URI* inet:uri
 +--rw alias* string
 +--rw lifetime? int32

5.2.2. Mitigation Request Model

<CODE BEGINS> file "ietf-dots-signal@2016-11-28.yang"

module ietf-dots-signal {
 namespace "urn:ietf:params:xml:ns:yang:ietf-dots-signal";
 prefix "signal";
 import ietf-inet-types {
 prefix "inet";
 }
 organization "Cisco Systems, Inc.";
 contact "Tirumaleswar Reddy <tireddy@cisco.com>";

 description
 "This module contains YANG definition for DOTS
 signal sent by the DOTS client to the DOTS server";

 revision 2016-11-28 {
 reference
 "https://tools.ietf.org/html/draft-reddy-dots-signal-channel";
 }

 container mitigation-scope {

https://datatracker.ietf.org/doc/html/rfc6020

Reddy, et al. Expires October 1, 2017 [Page 8]

Internet-Draft DOTS Signal Channel March 2017

 description "top level container for mitigation request";
 list scope {
 key policy-id;
 description "Identifier for the mitigation request";
 leaf policy-id {
 type int32;
 description "policy identifier";
 }
 leaf-list target-ip {
 type inet:ip-address;
 description "IP address";
 }
 leaf-list target-prefix {
 type inet:ip-prefix;
 description "prefix";
 }
 list target-port-range {
 key "lower-port upper-port";
 description "Port range. When only lower-port is present,
 it represents a single port.";
 leaf lower-port {
 type inet:port-number;
 mandatory true;
 description "lower port";
 }
 leaf upper-port {
 type inet:port-number;
 must ". >= ../lower-port" {
 error-message
 "The upper-port must be greater than or
 equal to lower-port";
 }
 description "upper port";
 }
 }
 leaf-list target-protocol {
 type uint8;
 description "Internet Protocol number";
 }
 leaf-list FQDN {
 type inet:domain-name;
 description "FQDN";
 }
 leaf-list URI {
 type inet:uri;
 description "URI";
 }
 leaf-list alias {

Reddy, et al. Expires October 1, 2017 [Page 9]

Internet-Draft DOTS Signal Channel March 2017

 type string;
 description "alias name";
 }
 leaf lifetime {
 type int32;
 description "lifetime";
 }
 }
 }
 }
<CODE ENDS>

5.2.3. Session Configuration Model structure

 This document defines the YANG module "ietf-dots-signal-config",
 which has the following structure:

 module: ietf-dots-signal-config
 +--rw signal-config
 +--rw policy-id? int32
 +--rw heartbeat-timeout? int16
 +--rw max-retransmit? int16
 +--rw ack-timeout? int16
 +--rw ack-random-factor? decimal64

5.2.4. Session Configuration Model

Reddy, et al. Expires October 1, 2017 [Page 10]

Internet-Draft DOTS Signal Channel March 2017

<CODE BEGINS> file "ietf-dots-signal-config@2016-11-28.yang"

module ietf-dots-signal-config {
 namespace "urn:ietf:params:xml:ns:yang:ietf-dots-signal-config";
 prefix "config";
 organization "Cisco Systems, Inc.";
 contact "Tirumaleswar Reddy <tireddy@cisco.com>";

 description
 "This module contains YANG definition for DOTS
 signal channel session configuration";

 revision 2016-11-28 {
 reference
 "https://tools.ietf.org/html/draft-reddy-dots-signal-channel";
 }

 container signal-config {
 description "top level container for DOTS signal channel session
 configuration";
 leaf policy-id {
 type int32;
 description "Identifier for the DOTS signal channel
 session configuration data";
 }
 leaf heartbeat-timeout {
 type int16;
 description "heartbeat timeout";
 }
 leaf max-retransmit {
 type int16;
 description "Maximum number of retransmissions";
 }
 leaf ack-timeout {
 type int16;
 description "Initial retransmission timeout value";
 }
 leaf ack-random-factor {
 type decimal64 {
 fraction-digits 2;
 }
 description "Random factor used to influence the timing of
 retransmissions";
 }
 }
}

<CODE ENDS>

Reddy, et al. Expires October 1, 2017 [Page 11]

Internet-Draft DOTS Signal Channel March 2017

5.3. Mitigation Request

 The following methods are used to request or withdraw mitigation
 requests:

 PUT: DOTS clients use the PUT method to request mitigation
 (Section 5.3.1). During active mitigation, DOTS clients may use
 PUT requests to convey mitigation efficacy updates to the DOTS
 server (Section 5.3.4).
 DELETE: DOTS clients use the DELETE method to withdraw a request for
 mitigation from the DOTS server (Section 5.3.2).
 GET: DOTS clients may use the GET method to subscribe to DOTS server
 status messages, or to retrieve the list of existing mitigations
 (Section 5.3.3).

 Mitigation request and response messages are marked as Non-
 confirmable messages. DOTS agents should follow the data
 transmission guidelines discussed in Section 3.1.3 of
 [I-D.ietf-tsvwg-rfc5405bis] and control transmission behavior by not
 sending on average more than one UDP datagram per RTT to the peer
 DOTS agent. Requests marked by the DOTS client as Non-confirmable
 messages are sent at regular intervals until a response is received
 from the DOTS server and if the DOTS client cannot maintain a RTT
 estimate then it SHOULD NOT send more than one Non-confirmable
 request every 3 seconds, and SHOULD use an even less aggressive rate
 when possible (case 2 in Section 3.1.3 of
 [I-D.ietf-tsvwg-rfc5405bis]).

5.3.1. Requesting mitigation

 When a DOTS client requires mitigation for any reason, the DOTS
 client uses CoAP PUT method to send a mitigation request to the DOTS
 server (Figure 5, illustrated in JSON diagnostic notation). The DOTS
 server can enable mitigation on behalf of the DOTS client by
 communicating the DOTS client's request to the mitigator and relaying
 selected mitigator feedback to the requesting DOTS client.

Reddy, et al. Expires October 1, 2017 [Page 12]

Internet-Draft DOTS Signal Channel March 2017

 Header: PUT (Code=0.03)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Content-Type: "application/cbor"
 {
 "mitigation-scope": {
 "scope": [
 {
 "policy-id": integer,
 "target-ip": [
 "string"
],
 "target-prefix": [
 "string"
],
 "target-port-range": [
 {
 "lower-port": integer,
 "upper-port": integer
 }
],
 "target-protocol": [
 integer
],
 "FQDN": [
 "string"
],
 "URI": [
 "string"
],
 "alias": [
 "string"
],
 "lifetime": integer
 }
]
 }
 }

 Figure 5: PUT to convey DOTS signals

 The parameters are described below.

 policy-id: Identifier for the mitigation request represented using
 an integer. This identifier MUST be unique for each mitigation
 request bound to the DOTS client, i.e., the policy-id parameter

Reddy, et al. Expires October 1, 2017 [Page 13]

Internet-Draft DOTS Signal Channel March 2017

 value in the mitigation request needs to be unique relative to the
 policy-id parameter values of active mitigation requests conveyed
 from the DOTS client to the DOTS server. This identifier MUST be
 generated by the DOTS client. This document does not make any
 assumption about how this identifier is generated. This is a
 mandatory attribute.
 target-ip: A list of IP addresses under attack. This is an optional
 attribute.
 target-prefix: A list of prefixes under attack. Prefixes are
 represented using CIDR notation [RFC4632]. This is an optional
 attribute.
 target-port-range: A list of ports under attack. The port range,
 lower-port for lower port number and upper-port for upper port
 number. When only lower-port is present, it represents a single
 port. For TCP, UDP, SCTP, or DCCP: the range of ports (e.g.,
 1024-65535). This is an optional attribute.
 target-protocol: A list of protocols under attack. Internet
 Protocol numbers. This is an optional attribute.
 FQDN: A list of Fully Qualified Domain Names. Fully Qualified
 Domain Name (FQDN) is the full name of a system, rather than just
 its hostname. For example, "venera" is a hostname, and
 "venera.isi.edu" is an FQDN. This is an optional attribute.
 URI: A list of Uniform Resource Identifiers (URI). This is an
 optional attribute.
 alias: A list of aliases (see Section 3.1.1 in
 [I-D.reddy-dots-data-channel]). This is an optional attribute.
 lifetime: Lifetime of the mitigation request in seconds. Upon the
 expiry of this lifetime, and if the request is not refreshed, the
 mitigation request is removed. The request can be refreshed by
 sending the same request again. The default lifetime of the
 mitigation request is 3600 seconds (60 minutes) -- this value was
 chosen to be long enough so that refreshing is not typically a
 burden on the DOTS client, while expiring the request where the
 client has unexpectedly quit in a timely manner. A lifetime of
 zero indicates indefinite lifetime for the mitigation request.
 The server MUST always indicate the actual lifetime in the
 response and the remaining lifetime in status messages sent to the
 client. This is an optional attribute in the request.

 The CBOR key values for the parameters are defined in Section 6. The
 IANA Considerations section defines how the CBOR key values can be
 allocated to standards bodies and vendors. In the PUT request at
 least one of the attributes target-ip or target-prefix or FQDN or URI
 or alias MUST be present. DOTS agents can safely ignore Vendor-
 Specific parameters they don't understand. The relative order of two
 mitigation requests from a DOTS client is determined by comparing
 their respective policy-id values. If two mitigation requests have
 overlapping mitigation scopes the mitigation request with higher

https://datatracker.ietf.org/doc/html/rfc4632

Reddy, et al. Expires October 1, 2017 [Page 14]

Internet-Draft DOTS Signal Channel March 2017

 numeric policy-id value will override the mitigation request with a
 lower numeric policy-id value. The Uri-Path option carries a major
 and minor version nomenclature to manage versioning and DOTS signal
 channel in this specification uses v1 major version.

 In both DOTS signal and data channel sessions, the DOTS client MUST
 authenticate itself to the DOTS server (Section 9). The DOTS server
 couples the DOTS signal and data channel sessions using the DOTS
 client identity, so the DOTS server can validate whether the aliases
 conveyed in the mitigation request were indeed created by the same
 DOTS client using the DOTS data channel session. If the aliases were
 not created by the DOTS client then the DOTS server returns 4.00 (Bad
 Request) in the response. The DOTS server couples the DOTS signal
 channel sessions using the DOTS client identity, the DOTS server uses
 policy-id parameter value to detect duplicate mitigation requests.

 Figure 6 shows a PUT request example to signal that ports 80, 8080,
 and 443 on the servers 2002:db8:6401::1 and 2002:db8:6401::2 are
 being attacked (illustrated in JSON diagnostic notation).

 Header: PUT (Code=0.03)
 Uri-Host: "www.example.com"
 Uri-Path: "v1"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Content-Format: "application/cbor"
 {
 "mitigation-scope": {
 "scope": [
 {
 "policy-id": 12332,
 "target-ip": [
 "2002:db8:6401::1",
 "2002:db8:6401::2"
],
 "target-port-range": [
 {
 "lower-port": 80
 },
 {
 "lower-port": 443
 },
 {
 "lower-port": 8080
 }
],
 "target-protocol": [
 6

Reddy, et al. Expires October 1, 2017 [Page 15]

Internet-Draft DOTS Signal Channel March 2017

]
 }
]
 }
 }

 The CBOR encoding format is shown below:

 a1 # map(1)
 01 # unsigned(1)
 a1 # map(1)
 02 # unsigned(2)
 81 # array(1)
 a4 # map(4)
 03 # unsigned(3)
 19 302c # unsigned(12332)
 04 # unsigned(4)
 82 # array(2)
 70 # text(16)
 323030323a6462383a363430313a3a31 # "2002:db8:6401::1"
 70 # text(16)
 323030323a6462383a363430313a3a32 # "2002:db8:6401::2"
 05 # unsigned(5)
 83 # array(3)
 a1 # map(1)
 06 # unsigned(6)
 18 50 # unsigned(80)
 a1 # map(1)
 06 # unsigned(6)
 19 01bb # unsigned(443)
 a1 # map(1)
 06 # unsigned(6)
 19 1f90 # unsigned(8080)
 08 # unsigned(8)
 81 # array(1)
 06 # unsigned(6)

 Figure 6: POST for DOTS signal

 The DOTS server indicates the result of processing the PUT request
 using CoAP response codes. CoAP 2.xx codes are success. CoAP 4.xx
 codes are some sort of invalid requests. COAP 5.xx codes are
 returned if the DOTS server has erred or is currently unavailable to
 provide mitigation in response to the mitigation request from the
 DOTS client. If the DOTS server does not find the policy-id
 parameter value conveyed in the PUT request in its configuration data

Reddy, et al. Expires October 1, 2017 [Page 16]

Internet-Draft DOTS Signal Channel March 2017

 then the server MAY accept the mitigation request, and a 2.01
 (Created) response is returned to the DOTS client, and the DOTS
 server will try to mitigate the attack. If the DOTS server finds the
 policy-id parameter value conveyed in the PUT request in its
 configuration data then the server MAY update the mitigation request,
 and a 2.04 (Changed) response is returned to indicate a successful
 updation of the mitigation request. If the request is missing one or
 more mandatory attributes, then 4.00 (Bad Request) will be returned
 in the response or if the request contains invalid or unknown
 parameters then 4.02 (Invalid query) will be returned in the
 response. For responses indicating a client or server error, the
 payload explains the error situation of the result of the requested
 action (Section 5.5 in [RFC7252]).

5.3.2. Withdraw a DOTS Signal

 A DELETE request is used to withdraw a DOTS signal from a DOTS server
 (Figure 7).

 Header: DELETE (Code=0.04)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Content-Format: "application/cbor"
 {
 "mitigation-scope": {
 "scope": [
 {
 "policy-id": integer
 }
]
 }
 }

 Figure 7: Withdraw DOTS signal

 If the DOTS server does not find the policy-id parameter value
 conveyed in the DELETE request in its configuration data, then it
 responds with a 4.04 (Not Found) error response code. The DOTS
 server successfully acknowledges a DOTS client's request to withdraw
 the DOTS signal using 2.02 (Deleted) response code, and ceases
 mitigation activity as quickly as possible.

 To protect against route or DNS flapping caused by a client rapidly
 toggling mitigation, and to dampen the effect of oscillating attacks,
 DOTS servers MAY continue mitigation for a period of up to fifteen
 minutes after acknowledging a DOTS client's withdrawal of a

https://datatracker.ietf.org/doc/html/rfc7252#section-5.5

Reddy, et al. Expires October 1, 2017 [Page 17]

Internet-Draft DOTS Signal Channel March 2017

 mitigation request. During this period, DOTS server mitigation
 status messages SHOULD indicate that mitigation is active but
 terminating. After the fifteen-minute period elapses, the DOTS
 server MUST treat the mitigation as terminated, as the DOTS client is
 no longer responsible for the mitigation.

5.3.3. Retrieving a DOTS Signal

 A GET request is used to retrieve information and status of a DOTS
 signal from a DOTS server (Figure 8). If the DOTS server does not
 find the policy-id parameter value conveyed in the GET request in its
 configuration data, then it responds with a 4.04 (Not Found) error
 response code. The 'c' (content) parameter and its permitted values
 defined in [I-D.ietf-core-comi] can be used to retrieve non-
 configuration data or configuration data or both.

 1) To retrieve all DOTS signals signaled by the DOTS client.

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Observe : 0

 2) To retrieve a specific DOTS signal signaled by the DOTS client.
 The configuration data in the response will be formatted in the
 same order it was processed at the DOTS server.

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Observe : 0
 Content-Format: "application/cbor"
 {
 "mitigation-scope": {
 "scope": [
 {
 "policy-id": integer
 }
]
 }
 }

 Figure 8: GET to retrieve the rules

Reddy, et al. Expires October 1, 2017 [Page 18]

Internet-Draft DOTS Signal Channel March 2017

 Figure 9 shows a response example of all the active mitigation
 requests associated with the DOTS client on the DOTS server and the
 mitigation status of each mitigation request.

 {
 "mitigation-scope":[
 {
 "scope": [
 {
 "policy-id": 12332,
 "target-protocol": [
 17
],
 "lifetime":1800,
 "status":2,
 "bytes_dropped": 134334555,
 "bps_dropped": 43344,
 "pkts_dropped": 333334444,
 "pps_dropped": 432432
 }
]
 },
 {
 "scope": [
 {
 "policy-id": 12333,
 "target-protocol": [
 6
],
 "lifetime":1800,
 "status":3
 "bytes_dropped": 0,
 "bps_dropped": 0,
 "pkts_dropped": 0,
 "pps_dropped": 0
 }
]
 }
]
 }

 Figure 9: Response body

 The mitigation status parameters are described below.

 bytes_dropped: The total dropped byte count for the mitigation
 request. This is a optional attribute.

Reddy, et al. Expires October 1, 2017 [Page 19]

Internet-Draft DOTS Signal Channel March 2017

 bps_dropped: The average dropped bytes per second for the mitigation
 request. This is a optional attribute.
 pkts_dropped: The total dropped packet count for the mitigation
 request. This is a optional attribute.
 pps_dropped: The average dropped packets per second for the
 mitigation request. This is a optional attribute.
 status: Status of attack mitigation. The 'status' parameter is a
 mandatory attribute.

 The various possible values of 'status' parameter are explained
 below:

/--------------------+---\
| Parameter value | Description |
|--------------------+---|
1	Attack mitigation is in progress
	(e.g., changing the network path to re-route the
	inbound traffic to DOTS mitigator).
+--+	
2	Attack is successfully mitigated
	(e.g., traffic is redirected to a DDOS mitigator
	and attack traffic is dropped).
+--+	
3	Attack has stopped and the DOTS client
	can withdraw the mitigation request.
+--+	
4	Attack has exceeded the mitigation provider
	capability.
+--+	
5	DOTS client has withdrawn the mitigation request
 and the mitigation is active but terminating. |
| | |
\--------------------+---/

 The observe option defined in [RFC7641] extends the CoAP core
 protocol with a mechanism for a CoAP client to "observe" a resource
 on a CoAP server: the client retrieves a representation of the
 resource and requests this representation be updated by the server as
 long as the client is interested in the resource. A DOTS client
 conveys the observe option set to 0 in the GET request to receive
 unsolicited notifications of attack mitigation status from the DOTS
 server. Unidirectional notifications within the bidirectional signal
 channel allows unsolicited message delivery, enabling asynchronous
 notifications between the agents. A DOTS client that is no longer
 interested in receiving notifications from the DOTS server can simply
 "forget" the observation. When the DOTS server then sends the next
 notification, the DOTS client will not recognize the token in the

https://datatracker.ietf.org/doc/html/rfc7641

Reddy, et al. Expires October 1, 2017 [Page 20]

Internet-Draft DOTS Signal Channel March 2017

 message and thus will return a Reset message. This causes the DOTS
 server to remove the associated entry.

 DOTS Client DOTS Server
 | |
 | GET /<policy-id number> |
 | Token: 0x4a | Registration
 | Observe: 0 |
 +-------------------------->|
 | |
 | 2.05 Content |
 | Token: 0x4a | Notification of
 | Observe: 12 | the current state
 | status: "mitigation |
 | in progress" |
 |<--------------------------+
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 44 | a state change
 | status: "mitigation |
 | complete" |
 |<--------------------------+
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 60 | a state change
 | status: "attack stopped" |
 |<--------------------------+
 | |

 Figure 10: Notifications of attack mitigation status

5.3.3.1. Mitigation Status

 A DOTS client retrieves the information about a DOTS signal at
 frequent intervals to determine the status of an attack. If the DOTS
 server has been able to mitigate the attack and the attack has
 stopped, the DOTS server indicates as such in the status, and the
 DOTS client recalls the mitigation request.

 A DOTS client should react to the status of the attack from the DOTS
 server and not the fact that it has recognized, using its own means,
 that the attack has been mitigated. This ensures that the DOTS
 client does not recall a mitigation request in a premature fashion
 because it is possible that the DOTS client does not sense the DDOS
 attack on its resources but the DOTS server could be actively
 mitigating the attack and the attack is not completely averted.

Reddy, et al. Expires October 1, 2017 [Page 21]

Internet-Draft DOTS Signal Channel March 2017

5.3.4. Efficacy Update from DOTS Client

 While DDoS mitigation is active, a DOTS client MAY frequently
 transmit DOTS mitigation efficacy updates to the relevant DOTS
 server. An PUT request (Figure 11) is used to convey the mitigation
 efficacy update to the DOTS server. The PUT request MUST include all
 the parameters used in the PUT request to convey the DOTS signal
 (Section 5.3.1).

Reddy, et al. Expires October 1, 2017 [Page 22]

Internet-Draft DOTS Signal Channel March 2017

 Header: PUT (Code=0.03)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "signal"
 Content-Format: "application/cbor"
 {
 "mitigation-scope": {
 "scope": [
 {
 "policy-id": integer,
 "target-ip": [
 "string"
],
 "target-port-range": [
 {
 "lower-port": integer,
 "upper-port": integer
 }
],
 "target-protocol": [
 integer
],
 "FQDN": [
 "string"
],
 "URI": [
 "string"
],
 "alias": [
 "string"
],
 "lifetime": integer,
 "attack-status": integer
 }
]
 }
 }

 Figure 11: Efficacy Update

 The 'attack-status' parameter is a mandatory attribute. The various
 possible values contained in the 'attack-status' parameter are
 explained below:

Reddy, et al. Expires October 1, 2017 [Page 23]

Internet-Draft DOTS Signal Channel March 2017

/--------------------+--\
| Parameter value | Description |
|--------------------+--|
| 1 | DOTS client determines that it is still under attack.|
+---+
2	DOTS client determines that the attack is
	successfully mitigated
	(e.g., attack traffic is not seen).
\--------------------+--/

 The DOTS server indicates the result of processing the PUT request
 using CoAP response codes. The response code 2.04 (Changed) will be
 returned in the response if the DOTS server has accepted the
 mitigation efficacy update. If the DOTS server does not find the
 policy-id parameter value conveyed in the PUT request in its
 configuration data then the server MAY accept the mitigation request
 and will try to mitigate the attack, resulting in a 2.01 (Created)
 Response Code. The 5.xx response codes are returned if the DOTS
 server has erred or is incapable of performing the mitigation.

5.4. DOTS Signal Channel Session Configuration

 The DOTS client can negotiate, configure and retrieve the DOTS signal
 channel session behavior. The DOTS signal channel can be used, for
 example, to configure the following:

 a. Heartbeat timeout: DOTS agents regularly send heartbeats (Ping/
 Pong) to each other after mutual authentication in order to keep
 the DOTS signal channel open, heartbeat timeout is the time to
 wait for a Pong in milliseconds.
 b. Acceptable signal loss ratio: Maximum retransmissions,
 retransmission timeout value and other message transmission
 parameters for the DOTS signal channel.

 Reliability is provided to requests and responses by marking them as
 Confirmable (CON) messages. DOTS signal channel session
 configuration requests and responses are marked as Confirmable (CON)
 messages. As explained in Section 2.1 of [RFC7252], a Confirmable
 message is retransmitted using a default timeout and exponential
 back-off between retransmissions, until the DOTS server sends an
 Acknowledgement message (ACK) with the same Message ID conveyed from
 the DOTS client. Message transmission parameters are defined in

Section 4.8 of [RFC7252]. Reliability is provided to the responses
 by marking them as Confirmable (CON) messages. The DOTS server can
 either piggyback the response in the acknowledgement message or if
 the DOTS server is not able to respond immediately to a request
 carried in a Confirmable message, it simply responds with an Empty

https://datatracker.ietf.org/doc/html/rfc7252#section-2.1
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8

Reddy, et al. Expires October 1, 2017 [Page 24]

Internet-Draft DOTS Signal Channel March 2017

 Acknowledgement message so that the DOTS client can stop
 retransmitting the request. Empty Acknowledgement message is
 explained in Section 2.2 of [RFC7252]. When the response is ready,
 the server sends it in a new Confirmable message which then in turn
 needs to be acknowledged by the DOTS client (see Sections 5.2.1 and
 Sections 5.2.2 in [RFC7252]). Requests and responses exchanged
 between DOTS agents during peacetime are marked as Confirmable
 messages.

 Implementation Note: A DOTS client that receives a response in a CON
 message may want to clean up the message state right after sending
 the ACK. If that ACK is lost and the DOTS server retransmits the
 CON, the DOTS client may no longer have any state to which to
 correlate this response, making the retransmission an unexpected
 message; the DOTS client will send a Reset message so it does not
 receive any more retransmissions. This behavior is normal and not an
 indication of an error (see Section 5.3.2 in [RFC7252] for more
 details).

5.4.1. Discover Acceptable Configuration Parameters

 A GET request is used to obtain acceptable configuration parameters
 on the DOTS server for DOTS signal channel session configuration.
 Figure 12 shows how to obtain acceptable configuration parameters for
 the server.

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "config"

 Figure 12: GET to retrieve configuration

 The DOTS server in the 2.05 (Content) response conveys the minimum
 and maximum attribute values acceptable by the DOTS server.

 Content-Format: "application/cbor"
 {
 "heartbeat-timeout": {"MinValue": integer, "MaxValue" : integer},
 "max-retransmit": {"MinValue": integer, "MaxValue" : integer},
 "ack-timeout": {"MinValue": integer, "MaxValue" : integer},
 "ack-random-factor": {"MinValue": number, "MaxValue" : number}
 }

 Figure 13: GET response body

https://datatracker.ietf.org/doc/html/rfc7252#section-2.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.2

Reddy, et al. Expires October 1, 2017 [Page 25]

Internet-Draft DOTS Signal Channel March 2017

5.4.2. Convey DOTS Signal Channel Session Configuration

 A POST request is used to convey the configuration parameters for the
 signaling channel (e.g., heartbeat timeout, maximum retransmissions
 etc). Message transmission parameters for CoAP are defined in

Section 4.8 of [RFC7252]. If the DOTS agent wishes to change the
 default values of message transmission parameters then it should
 follow the guidance given in Section 4.8.1 of [RFC7252]. The DOTS
 agents MUST use the negotiated values for message transmission
 parameters and default values for non-negotiated message transmission
 parameters. The signaling channel session configuration is
 applicable to a single DOTS signal channel session between the DOTS
 agents.

 Header: POST (Code=0.02)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "config"
 Content-Format: "application/cbor"
 {
 "signal-config": {
 "policy-id": integer,
 "heartbeat-timeout": integer,
 "max-retransmit": integer,
 "ack-timeout": integer,
 "ack-random-factor": number
 }
 }

 Figure 14: POST to convey the DOTS signal channel session
 configuration data.

 The parameters are described below:

 policy-id: Identifier for the DOTS signal channel session
 configuration data represented as an integer. This identifier
 MUST be generated by the DOTS client. This document does not make
 any assumption about how this identifier is generated. This is a
 mandatory attribute.
 heartbeat-timeout: Heartbeat timeout is the time to wait for a
 response in milliseconds to check the DOTS peer health. This is
 an optional attribute.
 max-retransmit: Maximum number of retransmissions for a message
 (referred to as MAX_RETRANSMIT parameter in CoAP). This is an
 optional attribute.

https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.1

Reddy, et al. Expires October 1, 2017 [Page 26]

Internet-Draft DOTS Signal Channel March 2017

 ack-timeout: Timeout value in seconds used to calculate the intial
 retransmission timeout value (referred to as ACK_TIMEOUT parameter
 in CoAP). This is an optional attribute.
 ack-random-factor: Random factor used to influence the timing of
 retransmissions (referred to as ACK_RANDOM_FACTOR parameter in
 CoAP). This is an optional attribute.

 In the POST request at least one of the attributes heartbeat-timeout
 or max-retransmit or ack-timeout or ack-random-factor MUST be
 present. The POST request with higher numeric policy-id value over-
 rides the DOTS signal channel session configuration data installed by
 a POST request with a lower numeric policy-id value.

 Figure 15 shows a POST request example to convey the configuration
 parameters for the DOTS signal channel.

 Header: POST (Code=0.02)
 Uri-Host: "www.example.com"
 Uri-Path: "v1"
 Uri-Path: "dots-signal"
 Uri-Path: "config"
 Content-Format: "application/cbor"
 {
 "signal-config": {
 "policy-id": 1234534333242,
 "heartbeat-timeout": 30,
 "max-retransmit": 7,
 "ack-timeout": 5,
 "ack-random-factor": 1.5
 }
 }

 Figure 15: POST to convey the configuration parameters

 The DOTS server indicates the result of processing the POST request
 using CoAP response codes. The CoAP response will include the CBOR
 body received in the request. Response code 2.01 (Created) will be
 returned in the response if the DOTS server has accepted the
 configuration parameters. If the request is missing one or more
 mandatory attributes then 4.00 (Bad Request) will be returned in the
 response or if the request contains invalid or unknown parameters
 then 4.02 (Invalid query) will be returned in the response. Response
 code 4.22 (Unprocessable Entity) will be returned in the response if
 any of the heartbeat-timeout, max-retransmit, target-protocol, ack-
 timeout and ack-random-factor attribute values is not acceptable to
 the DOTS server. The DOTS server in the error response conveys the
 minimum and maximum attribute values acceptable by the DOTS server.

Reddy, et al. Expires October 1, 2017 [Page 27]

Internet-Draft DOTS Signal Channel March 2017

 The DOTS client can re-try and send the POST request with updated
 attribute values acceptable to the DOTS server.

 Content-Format: "application/cbor"
 {
 "heartbeat-timeout": {"MinValue": 15, "MaxValue" : 60},
 "max-retransmit": {"MinValue": 3, "MaxValue" : 15},
 "ack-timeout": {"MinValue": 1, "MaxValue" : 30},
 "ack-random-factor": {"MinValue": 1.0, "MaxValue" : 4.0}
 }

 Figure 16: Error response body

5.4.3. Delete DOTS Signal Channel Session Configuration

 A DELETE request is used to delete the installed DOTS signal channel
 session configuration data (Figure 17).

 Header: DELETE (Code=0.04)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "config"
 Content-Format: "application/cbor"
 {
 "signal-config": {
 "policy-id": integer
 }
 }

 Figure 17: DELETE configuration

 If the DOTS server does not find the policy-id parameter value
 conveyed in the DELETE request in its configuration data, then it
 responds with a 4.04 (Not Found) error response code. The DOTS
 server successfully acknowledges a DOTS client's request to remove
 the DOTS signal channel session configuration using 2.02 (Deleted)
 response code.

5.4.4. Retrieving DOTS Signal Channel Session Configuration

 A GET request is used to retrieve the installed DOTS signal channel
 session configuration data from a DOTS server. Figure 18 shows how
 to retrieve the DOTS signal channel session configuration data.

Reddy, et al. Expires October 1, 2017 [Page 28]

Internet-Draft DOTS Signal Channel March 2017

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: "version"
 Uri-Path: "dots-signal"
 Uri-Path: "config"
 Content-Format: "application/cbor"
 {
 "signal-config": {
 "policy-id": integer
 }
 }

 Figure 18: GET to retrieve configuration

5.5. Redirected Signaling

 Redirected Signaling is discussed in detail in Section 3.2.2 of
 [I-D.ietf-dots-architecture]. If the DOTS server wants to redirect
 the DOTS client to an alternative DOTS server for a signaling session
 then the response code 3.00 (alternate server) will be returned in
 the response to the client. The DOTS server can return the error
 response code 3.00 in response to a POST or PUT request from the DOTS
 client or convey the error response code 3.00 in a unidirectional
 notification response from the DOTS server.

 The DOTS server in the error response conveys the alternate DOTS
 server FQDN, and the alternate DOTS server IP addresses and TTL (time
 to live) values in the CBOR body.

 {
 "alt-server": "string",
 "alt-server-record": [
 {
 "addr": "string",
 "TTL" : integer,
 }
]
 }

 Figure 19: Error response body

 The parameters are described below:

 alt-server: FQDN of alternate DOTS server.
 addr: IP address of alternate DOTS server.
 TTL: Time to live represented as an integer number of seconds.

Reddy, et al. Expires October 1, 2017 [Page 29]

Internet-Draft DOTS Signal Channel March 2017

 Figure 20 shows a 3.00 response example to convey the DOTS alternate
 server www.example-alt.com, its IP addresses 2002:db8:6401::1 and
 2002:db8:6401::2, and TTL values 3600 and 1800.

 {

 "alt-server": "www.example-alt.com",
 "alt-server-record": [
 {
 "TTL" : 3600,
 "addr": "2002:db8:6401::1"
 },
 {
 "TTL" : 1800,
 "addr": "2002:db8:6401::2"
 }
]
 }

 Figure 20: Example of error response body

 When the DOTS client receives 3.00 response, it considers the current
 request as having failed, but SHOULD try the request with the
 alternate DOTS server. During a DDOS attack, the DNS server may be
 subjected to DDOS attack, alternate DOTS server IP addresses conveyed
 in the 3.00 response help the DOTS client to skip DNS lookup of the
 alternate DOTS server and can try to establish UDP or TCP session
 with the alternate DOTS server IP addresses. The DOTS client SHOULD
 implement DNS64 function to handle the scenario where IPv6-only DOTS
 client communicates with IPv4-only alternate DOTS server.

5.6. Heartbeat Mechanism

 While the communication between the DOTS agents is quiescent, the
 DOTS client will probe the DOTS server to ensure it has maintained
 cryptographic state and vice versa. Such probes can also keep alive
 firewall or NAT bindings. This probing reduces the frequency of
 needing a new handshake when a DOTS signal needs to be conveyed to
 the DOTS server. In DOTS over UDP, heartbeat messages can be
 exchanged between the DOTS agents using the "COAP ping" mechanism
 (Section 4.2 in [RFC7252]). The DOTS agent sends an Empty
 Confirmable message and the peer DOTS agent will respond by sending
 an Reset message. In DOTS over TCP, heartbeat messages can be
 exchanged between the DOTS agents using the Ping and Pong messages
 (Section 4.4 in [I-D.ietf-core-coap-tcp-tls]). The DOTS agent sends
 an Ping message and the peer DOTS agent will respond by sending an
 single Pong message.

https://datatracker.ietf.org/doc/html/rfc7252#section-4.2

Reddy, et al. Expires October 1, 2017 [Page 30]

Internet-Draft DOTS Signal Channel March 2017

6. Mapping parameters to CBOR

 All parameters in DOTS signal channel are mapped to CBOR types as
 follows and are given an integer key value to save space.

/--------------------+------------------------+--------------------------\
| Parameter name | CBOR key | CBOR major type of value |
|--------------------+------------------------+--------------------------|
mitigation-scope	1	5 (map)
scope	2	5 (map)
policy-id	3	0 (unsigned)
target-ip	4	4 (array)
target-port-range	5	4
lower-port	6	0
upper-port	7	0
target-protocol	8	4
FQDN	9	4
URI	10	4
alias	11	4
lifetime	12	0
attack-status	13	0
signal-config	14	5
heartbeat-timeout	15	0
max-retransmit	16	0
ack-timeout	17	0
ack-random-factor	18	7
MinValue	19	0
MaxValue	20	0
status	21	0
bytes_dropped	22	0
bps_dropped	23	0
pkts_dropped	24	0
pps_dropped	25	0
\--------------------+------------------------+--------------------------/

 Figure 21: CBOR mappings used in DOTS signal channel message

7. (D)TLS Protocol Profile and Performance considerations

 This section defines the (D)TLS protocol profile of DOTS signal
 channel over (D)TLS and DOTS data channel over TLS.

 There are known attacks on (D)TLS, such as machine-in-the-middle and
 protocol downgrade. These are general attacks on (D)TLS and not
 specific to DOTS over (D)TLS; please refer to the (D)TLS RFCs for
 discussion of these security issues. DOTS agents MUST adhere to the
 (D)TLS implementation recommendations and security considerations of
 [RFC7525] except with respect to (D)TLS version. Since encryption of

https://datatracker.ietf.org/doc/html/rfc7525

Reddy, et al. Expires October 1, 2017 [Page 31]

Internet-Draft DOTS Signal Channel March 2017

 DOTS using (D)TLS is virtually a green-field deployment DOTS agents
 MUST implement only (D)TLS 1.2 or later.

 Implementations compliant with this profile MUST implement all of the
 following items:

 o DOTS agents MUST support DTLS record replay detection (Section 3.3
 in [RFC6347]) to protect against replay attacks.
 o DOTS client can use (D)TLS session resumption without server-side
 state [RFC5077] to resume session and convey the DOTS signal.
 o Raw public keys [RFC7250] which reduce the size of the
 ServerHello, and can be used by servers that cannot obtain
 certificates (e.g., DOTS gateways on private networks).

 Implementations compliant with this profile SHOULD implement all of
 the following items to reduce the delay required to deliver a DOTS
 signal:

 o TLS False Start [RFC7918] which reduces round-trips by allowing
 the TLS second flight of messages (ChangeCipherSpec) to also
 contain the DOTS signal.
 o Cached Information Extension [RFC7924] which avoids transmitting
 the server's certificate and certificate chain if the client has
 cached that information from a previous TLS handshake.
 o TCP Fast Open [RFC7413] can reduce the number of round-trips to
 convey DOTS signal.

7.1. MTU and Fragmentation Issues

 To avoid DOTS signal message fragmentation and the consequently
 decreased probability of message delivery, DOTS agents MUST ensure
 that the DTLS record MUST fit within a single datagram. If the Path
 MTU is not known to the DOTS server, an IP MTU of 1280 bytes SHOULD
 be assumed. The length of the URL MUST NOT exceed 256 bytes. If UDP
 is used to convey the DOTS signal messages then the DOTS client must
 consider the amount of record expansion expected by the DTLS
 processing when calculating the size of CoAP message that fits within
 the path MTU. Path MTU MUST be greater than or equal to [CoAP
 message size + DTLS overhead of 13 octets + authentication overhead
 of the negotiated DTLS cipher suite + block padding (Section 4.1.1.1
 of [RFC6347]]. If the request size exceeds the Path MTU then the
 DOTS client MUST split the DOTS signal into separate messages, for
 example the list of addresses in the 'target-ip' parameter could be
 split into multiple lists and each list conveyed in a new POST
 request.

 Implementation Note: DOTS choice of message size parameters works
 well with IPv6 and with most of today's IPv4 paths. However, with

https://datatracker.ietf.org/doc/html/rfc6347#section-3.3
https://datatracker.ietf.org/doc/html/rfc6347#section-3.3
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7918
https://datatracker.ietf.org/doc/html/rfc7924
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.1.1
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.1.1

Reddy, et al. Expires October 1, 2017 [Page 32]

Internet-Draft DOTS Signal Channel March 2017

 IPv4, it is harder to absolutely ensure that there is no IP
 fragmentation. If IPv4 support on unusual networks is a
 consideration and path MTU is unknown, implementations may want to
 limit themselves to more conservative IPv4 datagram sizes such as 576
 bytes, as per [RFC0791] IP packets up to 576 bytes should never need
 to be fragmented, thus sending a maximum of 500 bytes of DOTS signal
 over a UDP datagram will generally avoid IP fragmentation.

8. (D)TLS 1.3 considerations

 TLS 1.3 [I-D.ietf-tls-tls13] provides critical latency improvements
 for connection establishment over TLS 1.2. The DTLS 1.3 protocol
 [I-D.rescorla-tls-dtls13] is based on the TLS 1.3 protocol and
 provides equivalent security guarantees. (D)TLS 1.3 provides two
 basic handshake modes of interest to DOTS signal channel:

 o Absent packet loss, a full handshake in which the DOTS client is
 able to send the DOTS signal message after one round trip and the
 DOTS server immediately after receiving the first DOTS signal
 message from the client.
 o 0-RTT mode in which the DOTS client can authenticate itself and
 send DOTS signal message on its first flight, thus reducing
 handshake latency. 0-RTT only works if the DOTS client has
 previously communicated with that DOTS server, which is very
 likely with the DOTS signal channel. The DOTS client SHOULD
 establish a (D)TLS session with the DOTS server during peacetime
 and share a PSK. During DDOS attack, the DOTS client can use the
 (D)TLS session to convey the DOTS signal message and if there is
 no response from the server after multiple re-tries then the DOTS
 client can resume the (D)TLS session in 0-RTT mode using PSK. A
 simplified TLS 1.3 handshake with 0-RTT DOTS signal message
 exchange is shown in Figure 22.

https://datatracker.ietf.org/doc/html/rfc0791

Reddy, et al. Expires October 1, 2017 [Page 33]

Internet-Draft DOTS Signal Channel March 2017

 DOTS Client DOTS Server

 ClientHello
 (Finished)
 (0-RTT DOTS signal message)
 (end_of_early_data) -------->
 ServerHello
 {EncryptedExtensions}
 {ServerConfiguration}
 {Certificate}
 {CertificateVerify}
 {Finished}
 <-------- [DOTS signal message]
 {Finished} -------->

 [DOTS signal message] <-------> [DOTS signal message]

 Figure 22: TLS 1.3 handshake with 0-RTT

9. Mutual Authentication of DOTS Agents & Authorization of DOTS Clients

 (D)TLS based on client certificate can be used for mutual
 authentication between DOTS agents. If a DOTS gateway is involved,
 DOTS clients and DOTS gateway MUST perform mutual authentication;
 only authorized DOTS clients are allowed to send DOTS signals to a
 DOTS gateway. DOTS gateway and DOTS server MUST perform mutual
 authentication; DOTS server only allows DOTS signals from authorized
 DOTS gateway, creating a two-link chain of transitive authentication
 between the DOTS client and the DOTS server.

Reddy, et al. Expires October 1, 2017 [Page 34]

Internet-Draft DOTS Signal Channel March 2017

 +---+
 | example.com domain +---------+ |
	AAA	
+---------------+	Server	
	Application	+------+--+
	server + ^	
	(DOTS client)	<-----------------+
+---------------+ +		example.net
domain		
V V		
+-------------+		
+---------------+		
+--------------+		
	Guest +<-----x----->+ +<---------------->+	
DOTS		
	(DOTS client)	
Server		
+--------------+	Gateway	
+----+--------+		
+---------------+		
^		
+----------------+		
	DDOS detector	
	(DOTS client) +<--------------+	
+----------------+		
 +---+

 Figure 23: Example of Authentication and Authorization of DOTS Agents

 In the example depicted in Figure 23, the DOTS gateway and DOTS
 clients within the 'example.com' domain mutually authenticate with
 each other. After the DOTS gateway validates the identity of a DOTS
 client, it communicates with the AAA server in the 'example.com'
 domain to determine if the DOTS client is authorized to request DDOS
 mitigation. If the DOTS client is not authorized, a 4.01
 (Unauthorized) is returned in the response to the DOTS client. In
 this example, the DOTS gateway only allows the application server and
 DDOS detector to request DDOS mitigation, but does not permit the
 user of type 'guest' to request DDOS mitigation.

 Also, DOTS gateway and DOTS server MUST perform mutual authentication
 using certificates. A DOTS server will only allow a DOTS gateway
 with a certificate for a particular domain to request mitigation for
 that domain. In reference to Figure 23, the DOTS server only allows

 the DOTS gateway to request mitigation for 'example.com' domain and
 not for other domains.

Reddy, et al. Expires October 1, 2017 [Page 35]

Internet-Draft DOTS Signal Channel March 2017

10. IANA Considerations

 This specification registers new parameters for DOTS signal channel
 and establishes registries for mappings to CBOR.

10.1. DOTS signal channel CBOR Mappings Registry

 A new registry will be requested from IANA, entitled "DOTS signal
 channel CBOR Mappings Registry". The registry is to be created as
 Expert Review Required.

10.1.1. Registration Template

 Parameter name:
 Parameter names (e.g., "target_ip") in the DOTS signal channel.
 CBOR Key Value:
 Key value for the parameter. The key value MUST be an integer in
 the range of 1 to 65536. The key values in the range of 32768 to
 65536 are assigned for Vendor-Specific parameters.
 CBOR Major Type:
 CBOR Major type and optional tag for the claim.
 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

10.1.2. Initial Registry Contents

 o Parameter Name: "mitigation-scope"
 o CBOR Key Value: 1
 o CBOR Major Type: 5
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "scope"
 o CBOR Key Value: 2
 o CBOR Major Type: 5
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "policy-id"
 o CBOR Key Value: 3
 o CBOR Major Type: 0

Reddy, et al. Expires October 1, 2017 [Page 36]

Internet-Draft DOTS Signal Channel March 2017

 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name:target-ip
 o CBOR Key Value: 4
 o CBOR Major Type: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: target-port-range
 o CBOR Key Value: 5
 o CBOR Major Type: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "lower-port"
 o CBOR Key Value: 6
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "upper-port"
 o CBOR Key Value: 7
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: target-protocol
 o CBOR Key Value: 8
 o CBOR Major Type: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "FQDN"
 o CBOR Key Value: 9
 o CBOR Major Type: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "URI"
 o CBOR Key Value: 10
 o CBOR Major Type: 4
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: alias
 o CBOR Key Value: 11
 o CBOR Major Type: 4

Reddy, et al. Expires October 1, 2017 [Page 37]

Internet-Draft DOTS Signal Channel March 2017

 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: "lifetime"
 o CBOR Key Value: 12
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: attack-status
 o CBOR Key Value: 13
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: signal-config
 o CBOR Key Value: 14
 o CBOR Major Type: 5
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: heartbeat-timeout
 o CBOR Key Value: 15
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: max-retransmit
 o CBOR Key Value: 16
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: ack-timeout
 o CBOR Key Value: 17
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: ack-random-factor
 o CBOR Key Value: 18
 o CBOR Major Type: 7
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: MinValue
 o CBOR Key Value: 19
 o CBOR Major Type: 0

Reddy, et al. Expires October 1, 2017 [Page 38]

Internet-Draft DOTS Signal Channel March 2017

 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: MaxValue
 o CBOR Key Value: 20
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: status
 o CBOR Key Value: 21
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: bytes_dropped
 o CBOR Key Value: 22
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: bps_dropped
 o CBOR Key Value: 23
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: pkts_dropped
 o CBOR Key Value: 24
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

 o Parameter Name: pps_dropped
 o CBOR Key Value: 25
 o CBOR Major Type: 0
 o Change Controller: IESG
 o Specification Document(s): this document

11. Implementation Status

 [Note to RFC Editor: Please remove this section and reference to
 [RFC6982] prior to publication.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC6982].
 The description of implementations in this section is intended to

https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc6982

Reddy, et al. Expires October 1, 2017 [Page 39]

Internet-Draft DOTS Signal Channel March 2017

 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC6982], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

11.1. nttdots

 Organization: NTT Communication is developing a DOTS client and
 DOTS server software based on DOTS signal channel specified in
 this draft. It will be open-sourced.
 Description: Early implementation of DOTS protocol. It is aimed to
 implement a full DOTS protocol spec in accordance with maturing of
 DOTS protocol itself.
 Implementation: To be open-sourced.
 Level of maturity: It is a early implementation of DOTS protocol.
 Messaging between DOTS clients and DOTS servers has been tested.
 Level of maturity will increase in accordance with maturing of
 DOTS protocol itself.
 Coverage: Capability of DOTS client: sending DOTS messages to the
 DOTS server in CoAP over DTLS as dots-signal. Capability of DOTS
 server: receiving dots-signal, validating received dots-signal,
 starting mitigation by handing over the dots-signal to DDOS
 mitigator.
 Licensing: It will be open-sourced with BSD 3-clause license.
 Implementation experience: It is implemented in Go-lang. Core
 specification of signaling is mature to be implemented, however,
 finding good libraries(like DTLS, CoAP) is rather difficult.
 Contact: Kaname Nishizuka <kaname@nttv6.jp>

12. Security Considerations

 Authenticated encryption MUST be used for data confidentiality and
 message integrity. (D)TLS based on client certificate MUST be used
 for mutual authentication. The interaction between the DOTS agents
 requires Datagram Transport Layer Security (DTLS) and Transport Layer
 Security (TLS) with a cipher suite offering confidentiality

https://datatracker.ietf.org/doc/html/rfc6982

Reddy, et al. Expires October 1, 2017 [Page 40]

Internet-Draft DOTS Signal Channel March 2017

 protection and the guidance given in [RFC7525] MUST be followed to
 avoid attacks on (D)TLS.

 A single DOTS signal channel between DOTS agents can be used to
 exchange multiple DOTS signal messages. To reduce DOTS client and
 DOTS server workload, DOTS client SHOULD re-use the (D)TLS session.

 If TCP is used between DOTS agents, an attacker may be able to inject
 RST packets, bogus application segments, etc., regardless of whether
 TLS authentication is used. Because the application data is TLS
 protected, this will not result in the application receiving bogus
 data, but it will constitute a DoS on the connection. This attack
 can be countered by using TCP-AO [RFC5925]. If TCP-AO is used, then
 any bogus packets injected by an attacker will be rejected by the
 TCP-AO integrity check and therefore will never reach the TLS layer.

 Special care should be taken in order to ensure that the activation
 of the proposed mechanism won't have an impact on the stability of
 the network (including connectivity and services delivered over that
 network).

 Involved functional elements in the cooperation system must establish
 exchange instructions and notification over a secure and
 authenticated channel. Adequate filters can be enforced to avoid
 that nodes outside a trusted domain can inject request such as
 deleting filtering rules. Nevertheless, attacks can be initiated
 from within the trusted domain if an entity has been corrupted.
 Adequate means to monitor trusted nodes should also be enabled.

13. Contributors

 The following individuals have contributed to this document:

 Mike Geller Cisco Systems, Inc. 3250 Florida 33309 USA Email:
 mgeller@cisco.com

 Robert Moskowitz HTT Consulting Oak Park, MI 42837 United States
 Email: rgm@htt-consult.com

 Dan Wing Email: dwing-ietf@fuggles.com

14. Acknowledgements

 Thanks to Christian Jacquenet, Roland Dobbins, Andrew Mortensen,
 Roman D. Danyliw, Michael Richardson, Ehud Doron, Kaname Nishizuka,
 Dave Dolson and Gilbert Clark for the discussion and comments.

https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/rfc5925

Reddy, et al. Expires October 1, 2017 [Page 41]

Internet-Draft DOTS Signal Channel March 2017

15. References

15.1. Normative References

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

draft-ietf-core-coap-tcp-tls-07 (work in progress), March
 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <http://www.rfc-editor.org/info/rfc7250>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-tcp-tls-07
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5925
http://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7250
http://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525

Reddy, et al. Expires October 1, 2017 [Page 42]

Internet-Draft DOTS Signal Channel March 2017

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

15.2. Informative References

 [I-D.ietf-core-comi]
 Stok, P., Bierman, A., Veillette, M., and A. Pelov, "CoAP
 Management Interface", draft-ietf-core-comi-00 (work in
 progress), January 2017.

 [I-D.ietf-core-yang-cbor]
 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",

draft-ietf-core-yang-cbor-04 (work in progress), February
 2017.

 [I-D.ietf-dots-architecture]
 Mortensen, A., Andreasen, F., Reddy, T.,
 christopher_gray3@cable.comcast.com, c., Compton, R., and
 N. Teague, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", draft-ietf-dots-

architecture-01 (work in progress), October 2016.

 [I-D.ietf-dots-requirements]
 Mortensen, A., Moskowitz, R., and T. Reddy, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-04 (work in
 progress), March 2017.

 [I-D.ietf-dots-use-cases]
 Dobbins, R., Fouant, S., Migault, D., Moskowitz, R.,
 Teague, N., Xia, L., and K. Nishizuka, "Use cases for DDoS
 Open Threat Signaling", draft-ietf-dots-use-cases-04 (work
 in progress), March 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-19 (work in progress),
 March 2017.

 [I-D.ietf-tsvwg-rfc5405bis]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", draft-ietf-tsvwg-rfc5405bis-19 (work in
 progress), October 2016.

https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-yang-cbor-04
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-dots-requirements-04
https://datatracker.ietf.org/doc/html/draft-ietf-dots-use-cases-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-19
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc5405bis-19

Reddy, et al. Expires October 1, 2017 [Page 43]

Internet-Draft DOTS Signal Channel March 2017

 [I-D.reddy-dots-data-channel]
 Reddy, T., Boucadair, M., Nishizuka, K., Xia, L., Patil,
 P., Mortensen, A., and N. Teague, "Distributed Denial-of-
 Service Open Threat Signaling (DOTS) Data Channel", draft-

reddy-dots-data-channel-05 (work in progress), March 2017.

 [I-D.rescorla-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-rescorla-tls-dtls13-01 (work in progress),
 March 2017.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
 2006, <http://www.rfc-editor.org/info/rfc4632>.

 [RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
 Denial-of-Service Considerations", RFC 4732,
 DOI 10.17487/RFC4732, December 2006,
 <http://www.rfc-editor.org/info/rfc4732>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <http://www.rfc-editor.org/info/rfc5077>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <http://www.rfc-editor.org/info/rfc6555>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <http://www.rfc-editor.org/info/rfc6724>.

https://datatracker.ietf.org/doc/html/draft-reddy-dots-data-channel-05
https://datatracker.ietf.org/doc/html/draft-reddy-dots-data-channel-05
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-dtls13-01
https://datatracker.ietf.org/doc/html/rfc791
http://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/bcp122
https://datatracker.ietf.org/doc/html/rfc4632
http://www.rfc-editor.org/info/rfc4632
https://datatracker.ietf.org/doc/html/rfc4732
http://www.rfc-editor.org/info/rfc4732
https://datatracker.ietf.org/doc/html/rfc4987
http://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5077
http://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc6020
http://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6555
http://www.rfc-editor.org/info/rfc6555
https://datatracker.ietf.org/doc/html/rfc6724
http://www.rfc-editor.org/info/rfc6724

Reddy, et al. Expires October 1, 2017 [Page 44]

Internet-Draft DOTS Signal Channel March 2017

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982,
 DOI 10.17487/RFC6982, July 2013,
 <http://www.rfc-editor.org/info/rfc6982>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

 [RFC7918] Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", RFC 7918,
 DOI 10.17487/RFC7918, August 2016,
 <http://www.rfc-editor.org/info/rfc7918>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <http://www.rfc-editor.org/info/rfc7924>.

Authors' Addresses

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: kondtir@gmail.com

 Mohamed Boucadair
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Prashanth Patil
 Cisco Systems, Inc.

 Email: praspati@cisco.com

https://datatracker.ietf.org/doc/html/rfc6982
http://www.rfc-editor.org/info/rfc6982
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7918
http://www.rfc-editor.org/info/rfc7918
https://datatracker.ietf.org/doc/html/rfc7924
http://www.rfc-editor.org/info/rfc7924

Reddy, et al. Expires October 1, 2017 [Page 45]

Internet-Draft DOTS Signal Channel March 2017

 Andrew Mortensen
 Arbor Networks, Inc.
 2727 S. State St
 Ann Arbor, MI 48104
 United States

 Email: amortensen@arbor.net

 Nik Teague
 Verisign, Inc.
 United States

 Email: nteague@verisign.com

Reddy, et al. Expires October 1, 2017 [Page 46]

