
DRINKS J-F.M. Mule

Internet-Draft CableLabs

Intended status: Standards Track K.C. Cartwright

Expires: September 05, 2011 TNS

S.A. Ali

NeuStar

A.M. Mayrhofer

enum.at GmbH

March 04, 2011

Session Peering Provisioning Protocol

draft-ietf-drinks-spprov-05

Abstract

This document defines a protocol for provisioning session establishment

data into Session Data Registries and SIP Service Provider data stores.

The provisioned data is typically used by various network elements for

session peering.

This document describes the Session Peering Provisioning Protocol used

by clients to provision registries. The document provides a set of

guiding principles for the design of this protocol including

extensibility and independent transport definitions, a basic data model

and an XML Schema Document.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 05, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Protocol High Level Design

3.1. Protocol Layering

3.2. Protocol Data Model

4. Transport Protocol Requirements

4.1. Connection Oriented

4.2. Request and Response Model

4.3. Connection Lifetime

4.4. Authentication

4.5. Confidentiality and Integrity

4.6. Near Real Time

4.7. Request and Response Sizes

4.8. Request and Response Correlation

4.9. Request Acknowledgement

4.10. Mandatory Transport

5. Base Protocol Data Structures

5.1. Request and Response Structures

5.1.1. Update Request and Response Structures

5.1.1.1. Update Request

5.1.1.2. Update Response

5.1.2. Query Request and Response Structures

5.1.2.1. Query Request

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

5.1.2.2. Query Response

5.2. Response Codes and Messages

5.3. Basic Object Type and Organization Identifiers

6. Protocol Commands

6.1. Add Destination Group Operation

6.2. Get Destination Groups Operation

6.3. Add Public Identifier Operation

6.4. Get Public Identifiers Operation

6.5. Add Route Group Operation

6.6. Get Route Groups Operation

6.7. Add Route Record Operation

6.8. Get Route Records Operation

6.9. Add Route Group Offer Operation

6.10. Accept Route Group Offer Operation

6.11. Reject Route Group Offer Operation

6.12. Get Route Group Offers Operation

6.13. Egress Route Operations

6.14. Delete Operation

7. SPPP Examples

7.1. Add Destination Group

7.2. Add Route Records

7.3. Add Route Records -- URIType

7.4. Add Route Group

7.5. Add Public Identity -- Successful COR claim

7.6. Add LRN

7.7. Add TN Range

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.8. Add TN Prefix

7.9. Enable Peering -- Route Group Offer

7.10. Enable Peering -- Route Group Offer Accept

7.11. Add Egress Route

7.12. Get Destination Group

7.13. Get Public Identity

7.14. Get Route Group Request

7.15. Get Route Group Offers Request

7.16. Get Egress Route

7.17. Delete Destination Group

7.18. Delete Public Identity

7.19. Delete Route Group Request

7.20. Delete Route Group Offers Request

7.21. Delete Egress Route

8. XML Considerations

8.1. Namespaces

8.2. Versioning and Character Encoding

9. Security Considerations

10. IANA Considerations

11. Formal Specification

12. Acknowledgments

13. References

13.1. Normative References

13.2. Informative References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

Service providers and enterprises use registries to make call or

session routing decisions for Voice over IP, SMS and MMS traffic

exchanges. This document is narrowly focused on the provisioning

protocol for these registries. This protocol prescribes a way for an

entity to provision session-related data into a registry. The data

being provisioned can be optionally shared with other participating

peering entities. The requirements and use cases driving this protocol

have been documented in [I-D.ietf-drinks-usecases-requirements]. The

reader is expected to be familiar with the terminology defined in the

previously mentioned document.

Three types of provisioning flows have been described in the use case

document: client to registry provisioning, registry to local data

repository and registry-to-registry. This document addresses a subset

(client-to-registry provisioning) by defining a Session Peering

Provisioning Protocol (SPPP) for provisioning Session Establishment

Data (SED) into a Registry (arrow "1" in the figure below). While the

other "provisioning flows" are shown below as separate message flows,

no determination has been made for whether one common baseline protocol

could be used for all three, or whether distinct protocols are

required.

 ------------ *------------*

(1). Provisioning SED | | (3).Registry | |

-----------------------> | Registry |<------------->| Registry |

 data into Registries| | to Registry | |

 ------------ exchanges *------------*

 / \ \

 / \ \

 / \ \

 / \ v

 / \ ...

 / \

 / (2). \

 / Distributing \

 / SED \

 V V

 +----------+ +----------+

 |Local Data| |Local Data|

 |Repository| |Repository|

 +----------+ +----------+

Three Registry Provisioning Flows

The data provisioned for session establishment is typically used by

various downstream SIP signaling systems to route a call to the next

hop associated with the called domain. These systems typically use a

local data store ("Local Data Repository") as their source of session

routing information. More specifically, the SED data is the set of

parameters that the outgoing signaling path border elements (SBEs) need

to initiate the session. See [RFC5486] for more details.

A "terminating" SIP Service Provider (SSP) provisions SED into the

registry to be selectively shared with other peer SSPs. Subsequently, a

Registry may distribute the provisioned data into local Data

Repositories used for look-up queries (identifier -> URI) or for lookup

and location resolution (identifier -> URI -> ingress SBE of

terminating SSP). In some cases, the Registry may additionally offer a

central query resolution service (not shown in the above figure).

A key requirement for the SPPP protocol is to be able to accommodate

two basic deployment scenarios:

A Local Data Repository serves a Look-Up Function (LUF) to

determine the target domain to assist in call routing (as

described in [RFC5486]). In this case, the querying entity may

use other means to perform the Location Routing Function (LRF)

which in turn helps determine the actual location of the

Signaling Function in that domain.

A Local Data Repository serves both a Look-Up function (LUF)

and Location Routing Function (LRF) to locate the SED data

fully.

In terms of protocol design, SPPP protocol is agnostic to the

transport. This document includes the description of the data model and

the means to enable protocol operations within a request and response

structure. To encourage interoperability, the protocol supports

extensibility aspects.

Transport requirements are provided in this document to help with the

selection of the optimum transport mechanism. ([I-D.ietf-drinks-sppp-

over-soap]) identifies a SOAP transport mechanism for SPPP.

This document is organized as follows:

Section 2 provides the terminology;

Section 3 provides an overview of the SPPP protocol, including

the layering approach, functional entities and data model;

Section 4 specifies requirements for SPPP transport protocols;

Section 5 describes the base protocol data structures including

the request and response elements (Section 5.1), the response

codes and messages (Section 5.2) and the basic object type most

first class objects extend from;

1.

2.

*

*

*

*

SPPP:

SPDP:

Client:

Registry:

Registrant:

Section 6 and Section 7 describe the main protocol commands and

examples;

Section 8 defines XML considerations that XML parsers must meet

to conform to this specification;

Section 11 normatively defines the SPPP protocol using its XML

Schema Definition.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

This document reuses terms from [RFC3261], [RFC5486], use cases and

requirements documented in [I-D.ietf-drinks-usecases-requirements] and

the ENUM Validation Architecture [RFC4725].

In addition, this document specifies the following additional terms:

Session Peering Provisioning Protocol, the protocol used to

provision data into a Registry (see arrow labeled "1." in Figure 1

of [I-D.ietf-drinks-usecases-requirements]). It is the primary scope

of this document.

Session Peering Distribution Protocol, the protocol used to

distribute data to Local Data Repository (see arrow labeled "2." in

Figure 1 of [I-D.ietf-drinks-usecases-requirements]).

An application that supports an SPPP Client; it is sometimes

referred to as a "Registry Client".

The Registry operates a master database of Session

Establishment Data for one or more Registrants.

A Registry acts as an SPPP Server.

In this document, we extend the definition of a Registrant

based on [RFC4725]. The Registrant is the end-user, the person or

organization who is the "holder" of the Session Establishment Data

being provisioned into the Registry. For example, in [I-D.ietf-

drinks-usecases-requirements], a Registrant is pictured as a SIP

Service Provider in Figure 2.

A Registrant is uniquely identified by its ID.

*

*

*

Registrar:
In this document, we also extend the definition of a

Registrar from [RFC4725]. A Registrar performs provisioning

operations on behalf of a Registrant by interacting with the

Registry, in our case via the SPPP protocol defined in this

document.

A Registrar is identified by its ID.

3. Protocol High Level Design

This section introduces the structure of the data model and provides

the information framework for the SPPP protocol. An overview of the

protocol operations is first provided with a typical deployment

scenario. The data model is then defined along with all the objects

manipulated by the protocol and their relationships.

3.1. Protocol Layering

SPPP is a simple request/reply protocol that allows a client

application to submit provisioning data and query requests to a server.

The SPPP data structures are designed to be protocol agnostic. Concerns

regarding encryption, non-repudiation, and authentication are beyond

the scope of this document. For more details, please refer to the

Transport Protocol Requirements section.

 Layer Example

 +-------------+ +-----------------------------+

 (5) |Data Objects | | RteGrpType, etc. |

 +-------------+ +-----------------------------+

 | |

 +-------------+ +-----------------------------+

 (4) | Operations | | AddRteGrpRqstType, etc. |

 +-------------+ +-----------------------------+

 | |

 +-------------+ +-----------------------------+

 (3) | Message | | spppUpdateRequest, |

 | | | spppUpdateResponse, |

 | | | spppQueryRequest, |

 | | | spppQueryResponse |

 +-------------+ +-----------------------------+

 | |

 +-------------+ +-----------------------------+

 (2) | Message | | HTTP, SOAP, None, etc. |

 | Envelope | | |

 +-------------+ +-----------------------------+

 | |

 +-------------+ +-----------------------------+

 (1) | Transport | | TCP, TLS, BEEP, etc. |

 | Protocol | | |

 +-------------+ +-----------------------------+

SPPP Layering

SPPP can be viewed as a set of layers that collectively define the

structure of an SPPP request and response. Layers 1 and 2, as detailed

below, are left to separate specifications to allow for potentially

multiple SPPP transport, envelope, and authentication technologies.

This document defines layers 3, 4, and 5 below.

The transport protocol layer provides a communication mechanism

between the client and server. SPPP can be layered over any

transport protocol that provides a set of basic requirements

defined in the Transport Protocol Requirements section.

The message envelope layer is optional, but can provide

features that are above the transport technology layer but

below the application messaging layer. Technologies such as

HTTP and SOAP are examples of messaging envelope technologies.

The message layer provides a simple, envelope-independent and

transport-independent, SPPP wrapper for SPPP request and

response messages.

1.

2.

3.

The operation layer defines the set of base SPPP actions that

can be invoked for a given object data type using an SPPP

message. Operations are encoded using XML encoded actions and

objects.

The data object layer defines the base set of SPPP data objects

that can be included in update operations or returned in

operation responses.

3.2. Protocol Data Model

The data model illustrated and described in Figure 3 defines the

logical objects and the relationships between these objects that the

SPPP protocol supports. SPPP defines the protocol operations through

which an SPPP Client populates a Registry with these logical objects.

Various clients belonging to different Registrars may use the protocol

for populating the Registry's data.

The logical structure presented below is consistent with the

terminology and requirements defined in [I-D.ietf-drinks-usecases-

requirements].

4.

5.

+-------------+ +------------------+

| all object | |Organization: |

| types | |orgId |

+------+------+ | |

 +------------>| |

 All objects are +------------------+

 associated with 2 ^

 Organizations to |A Route Group is

 identify the |associated with

 registrant and |zero or more Peering

 the registrar |Organizations

 |

 +--------+--------------+

 |Route Group: | +-----[abstract]-+

 | rant, | | Route Record: |

 | rar, | | |

 | rgName, | | rrName, |

 | destGrpRef, +------->| priority, |

 | isInSvc, | | extension |

 | rrRef, | | |

 | peeringOrg, | +----------------+

 | sourceIdent, | ^

 | priority, | |

 | extension | |Various types

 +-----------------------+ |of Route

 | |Records...

 | +------+------------...

 | | | |

 | +----+ +-------+ +----+

 v | URI| | NAPTR | | NS |

 +----------------+-----+ +----+ +-------+ +----+

 |Destination |

 |Group: | +----------[abstract]-+

 | rant, | |Public Identifier: |

 | rar, | | |

 | dgName, | | rant, |

 | extension |<----+ rar, |

 +----------------------+ | publicIdentifier, |

 | destGrpRef, |

 | rrRef, |

 | extension |

 +---------------------+

 ^

 |Various types

 |of Public

 |Identifiers...

 +---------+-------+------------...

 | | | |

 +------+ +-----+ +-----+ +-----+

 | TN | | TNP | | TNR | | RN |

 +------+ +-----+ +-----+ +-----+

SPPP Data Model

The objects and attributes that comprise the data model can be

described as follows (objects listed from the bottom up):

Public Identifier:

From a broad perspective a public identifier is a well known

attribute that is used as the key to perform resolution lookups.

Within the context of SPPP, a Public Identifier object can be a

telephone number, a range of telephone numbers, a PSTN Routing

Number (RN), or a TN prefix.

An SPPP Public Identifier is associated with a Destination Group

to create a logical grouping of Public Identifiers that share a

common set of Routes.

A TN Public Identifier may optionally be associated with zero or

more individual Route Records. This ability for a Public

Identifier to be directly associated with a set of Route Records

(e.g. target URI), as opposed to being associated with a

Destination Group, supports the use cases where the target URI

contains data specifically tailored to an individual TN Public

Identifier.

Destination Group:

A named collection of zero or more Public Identifiers that can be

associated with one or more Route Groups for the purpose of

facilitating the management of their common routing information.

Route Group:

A Route Group contains a set of references to Route Records, a

set of Destination Group references, and a set of peering

organization identifiers. This is used to establish a three part

relationships between a set of Public Identifiers and their

common routing information (SED), and the list of peering

organizations whose query responses may include that routing

information in their query responses. To support the use cases

defined in [I-D.ietf-drinks-usecases-requirements], this document

defines the following types of Route Records: NAPTRType, NSType,

and URIType. The sourceIdent element within a Route Group, in

concert with the set of peering organization identifiers enables

fine grained source based routing. Further details about the

Route Group and source based routing refer to the definitions and

descriptions of the Route Group operations found later in this

document.

*

*

*

Route Record:

A Route Record contains the data that a resolution system returns

in response to a successful query for a Public Identifier. Route

Recoords are associated with a Route Group for SED that is not

specific to a Public Identifier.

To support the use cases defined in [I-D.ietf-drinks-usecases-

requirements], SPPP protocol defines three type of Route Records:

URIType, NAPTRType, and NSType. These Route Records extend the

abstract type RteRecType and inherit the common attribute

'priority' that is meant for setting precedence across the route

records defined within a Route Group in a protocol agnostic

fashion.

Organization:

An Organization is an entity that may fulfill any combination of

three roles: Registrant, Registrar, and Peering Organization. All

SPPP objects are associated with two organization identifiers to

identify each object's registrant and registrar. A Route Group

object is also associated with a set of zero or more organization

identifiers that identify the peering organizations whose query

responses may include the routing information (SED) defined in

the Route Records within that Route Group.

4. Transport Protocol Requirements

This section provides requirements for transport protocols suitable for

SPPP. More specifically, this section specifies the services, features,

and assumptions that SPPP delegates to the chosen transport and

envelope technologies.

Two different groups of use cases are specified in [I-D.ietf-drinks-

usecases-requirements]. One group of use cases describes the

provisioning of data by a client into a Registry (Section 3.1 of the

above referenced document), while the other group describes the

distribution of data into local data repositories (Section 3.2). The

current version of this document focuses on the first set of use cases

(client to registry provisioning).

These use cases may involve the provisioning of very small data sets

like the modification or update of a single public identifier. Other

provisioning operations may deal with huge datasets like the "download"

of a whole local number portability database to a Registry.

As a result, a transport protocol for SPPP must be very flexible and

accommodate various sizes of data set sizes.

For the reasons outlined above, it is conceivable that provisioning and

distributing may use different transport protocols. This document

focuses on the provisioning protocol.

*

*

4.1. Connection Oriented

The SPPP protocol follows a model where a Client establishes a

connection to a Server in order to further exchange provisioning

transactions over such point-to-point connection. A transport protocol

for SPPP MUST therefore be connection oriented.

Note that the role of the "Client" and the "Server" only applies to the

connection, and those roles are not related in any way to the type of

entity that participates in a protocol exchange. For example, a

Registry might also include a "Client" when such a Registry initiates a

connection (for example, for data distribution to SSP).

4.2. Request and Response Model

Provisioning operations in SPPP follow the request - response model,

where a transaction is initiated by a Client using a Request command,

and the Server responds to the Client by means of a Response.

Multiple subsequent request-response exchanges MAY be performed over a

single connection.

Therefore, a transport protocol for SPPP MUST follow the request-

response model by allowing a response to be sent to the request

initiator.

4.3. Connection Lifetime

Some use cases involve provisioning a single request to a network

element - connections supporting such provisioning requests might be

short-lived, and only established on demand.

Other use cases involve either provisioning a huge set of data, or a

constant stream of small updates, which would require long-lived

connections.

Therefore, a protocol suitable for SPPP SHOULD support short lived as

well as long lived connections.

4.4. Authentication

Many use cases require the Server to authenticate the Client, and

potentially also the Client to authenticate the Server. While

authentication of the Server by the Client is expected to be used only

to prevent impersonation of the Server, authentication of the Client by

the Server is expected to be used to identify and further authorize the

Client to certain resources on the Server.

Therefore, an SPPP transport protocol MUST provide means for a Server

to authenticate and authorize a Client, and MAY provide means for

Clients to authenticate a Server.

4.5. Confidentiality and Integrity

Data that is transported over the protocol is deemed confidential.

Therefore, a transport protocol suitable for SPPP MUST ensure

confidentiality and integrity protection by providing encryption

capabilities.

Additionally, a DRINKS protocol MUST NOT use an unreliable lower-layer

transport protocol that does not provide confidentiality and integrity

protection.

4.6. Near Real Time

Many use cases require near real-time responses from the Server.

Therefore, a DRINKS transport protocol MUST support near-real-time

response to requests submitted by the Client.

4.7. Request and Response Sizes

SPPP covers a range of use cases - from cases where provisioning a

single public identifier will create very small request and response

sizes to cases where millions of data records are submitted or

retrieved in one transaction. Therefore, a transport protocol suitable

for SPPP MUST support a great variety of request and response sizes.

A transport protocol MAY allow splitting large chunks of data into

several smaller chunks.

4.8. Request and Response Correlation

A transport protocol suitable for SPPP MUST allow responses to be

correlated with requests.

4.9. Request Acknowledgement

Data transported in the SPPP protocol is likely crucial for the

operation of the communication network that is being provisioned.

Failed transactions can lead to situations where a subset of public

identifiers (or even SSPs) might not be reachable, or situations where

the provisioning state of the network is inconsistent.

Therefore, a transport protocol for SPPP MUST provide a Response for

each Request, so that a Client can identify whether a Request succeeded

or failed.

4.10. Mandatory Transport

As of this writing of this revision, one transport protocol proposal

has been provided in [I-D.ietf-drinks-sppp-over-soap].

This section will define a mandatory transport protocol to be compliant

with this RFC.

5. Base Protocol Data Structures

SPPP uses a common model and a common set of data structures for most

of the supported operations and object types. This section describes

these common data structures.

5.1. Request and Response Structures

An SPPP client interacts with an SPPP server by using one of the

supported transport mechanisms to send one or more requests to the

server and receive corresponding replies from the server. There are two

generalized types of operations that an SPPP client can submit to an

SPPP server, updates and queries. The following two sub-sections

describe the generalized data structures that are used for each of

these two types of operations.

5.1.1. Update Request and Response Structures

An SPPP update request is wrapped within the <spppUpdateRequest>

element while an SPPP update response is wrapped within an

<spppUpdateResponse> element. The following two sub-sections describe

these two elements.

5.1.1.1. Update Request

An SPPP update request object is contained within the generic

<spppUpdateRequest> element.

 <element name="spppUpdateRequest">

 <complexType>

 <sequence>

 <element name="clientTransId" type="spppb:TransIdType"

 minOccurs="0"/>

 <element name="minorVer" type="spppb:MinorVerType"

 minOccurs="0"/>

 <element name="rqstObj" type="spppb:BasicUpdateRqstType"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <simpleType name="TransIdType">

 <restriction base="string"/>

 </simpleType>

 <simpleType name="MinorVerType">

 <restriction base="unsignedLong"/>

 </simpleType>

The data elements within the <spppUpdateRequest> element are described

as follows:

clientTransId: Zero or one client generated transaction ID that,

within the context of the SPPP client, identifies this request.

This value can be used at the discretion of the SPPP client to

track, log or correlate requests and their responses. This value

is also echoed back to the client in the SPPP update response. An

SPPP server will not check this value for uniqueness.

minorVer: Zero or one minor version identifier, indicating the

minor version of the SPPP API that the client is attempting to

use. This is used in conjunction with the major version

identifier in the XML namespace to identify the version of SPPP

that the client is using. If the element is not present, the

server assumes that the client is using the latest minor version

supported by the SPPP server for the given major version. The

versions supported by a given SPPP server can be retrieved by the

client using the SPPP server menu operation described later in

the document.

rqstObj: One or more BasicUpdateRqstType objects. These are the

actions that the client is requesting the SPPP server perform.

They are processed by the SPPP server in the order in which they

*

*

*

are included in the request. And with respect to handling error

conditions, it is a matter of policy whether the objects are

processed in a "stop and rollback" fashion or in a "stop and

commit" fashion. In the "stop and rollback" scenario, the SPPP

server would stop processing BasicUpdateRqstType object instances

in the request at the first error and roll back any

BasicUpdateRqstType object instances that had already been

processed for that update request. In the "stop and commit"

scenario the SPPP server would stop processing

BasicUpdateRqstType object instances in the request at the first

error but commit any BasicUpdateRqstType object instances that

had already been processed for that update request.

All update request objects extend the base type BasicUpdateRqstType.

This base type is defined as follows:

 <complexType name="BasicUpdateRqstType" abstract="true">

 <sequence>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

The BasicUpdateRqstType object primarily acts as an abstract base type,

and its only data element is described as follows:

ext: This is the standard extension element for this object.

Refer to the Extensibility section of this document for more

details.

5.1.1.2. Update Response

An SPPP update response object is contained within the generic

<spppUpdateResponse> element.

*

 <element name="spppUpdateResponse">

 <complexType>

 <sequence>

 <element name="overallResult" type="spppb:ResultCodeType"/>

 <element name="rqstObjResult" type="spppb:RqstObjResultCodeType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="clientTransId" type="spppb:TransIdType"

 minOccurs="0"/>

 <element name="serverTransId" type="spppb:TransIdType"/>

 </sequence>

 </complexType>

 </element>

 <complexType name="ResultCodeType">

 <sequence>

 <element name="code" type="int"/>

 <element name="msg" type="string"/>

 </sequence>

 </complexType>

 <complexType name="RqstObjResultCodeType">

 <complexContent>

 <extension base="spppb:ResultCodeType">

 <sequence>

 <element name="rqstObj" type="spppb:BasicUpdateRqstType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

An <spppUpdateResponse> contains the elements necessary for the SPPP

client to precisely determine the overal result of the request, and if

an error occurred, it provides information about the specific object,

data element, or condition caused the error.

The data elements within the SPPP update response are described as

follows:

clientTransId: Zero or one client transaction ID. This value is

simply an echo of the client transaction ID that SPPP client

passed into the SPPP update request.

serverTransId: Exactly one server transaction ID that identifies

this request for tracking purposes. This value is guaranteed to

be unique for a given SPPP server.

*

*

overallResult: Exactly one response code and message pair that

explicitly identifies the result of the request. See the Response

Code section for further details.

rqstObjResult: An optional response code, response message, and

BasicRqstObject triplet. This element will be present only if an

object level error condition occurs, and indicates exactly which

error condition occurred and exactly which request object that

was passed in caused the error condition. The contained

BasicRqstObject is simply an echo of the request object instance

that caused the error, while the response code and message

indicate the error condition for this object. See the Response

Code section for further details.

ext: This is the standard extension element for this object.

Refer to the Extensibility section for more details.

5.1.2. Query Request and Response Structures

An SPPP query request is wrapped within the <spppQueryRequest> element

while an SPPP query response is wrapped within an <spppQueryResponse>

element. The following two sub-sections describe these two element

structures.

5.1.2.1. Query Request

An SPPP query request object is contained within the generic

<spppQueryRequest> element.

 <element name="spppQueryRequest">

 <complexType>

 <sequence>

 <element name="minorVer" type="spppb:MinorVerType"

 minOccurs="0"/>

 <element name="rqstObj" type="spppb:BasicQueryRqstType"/>

 </sequence>

 </complexType>

 </element>

The data elements within the <spppQueryRequest> element are described

as follows:

minorVer: Zero or one minor version identifier, indicating the

minor version of the SPPP API that the client is attempting to

use. This is used in conjunction with the major version

identifier in the XML namespace to identify the version of SPPP

that the client is using. If the element is not present, the

*

*

*

*

server assumes that the client is using the latest minor version

supported by the SPPP server for the given major version. The

versions supported by a given SPPP server can be retrieved by the

client using the SPPP server menu operation described later in

the document.

rqstObj: One BasicQueryRqstType objects. This is the query that

the client is requesting the SPPP server perform.

All query request objects extend the base type BasicQueryRqstType. This

base type is defined as follows:

 <complexType name="BasicQueryRqstType" abstract="true">

 <sequence>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

The BasicQueryRqstType object primarily acts as an abstract base type,

and its only data element is described as follows:

ext: This is the standard extension element for this object.

Refer to the Extensibility section of this document for more

details.

5.1.2.2. Query Response

An SPPP query response object is contained within the generic

<spppQueryResponse> element.

 <element name="spppQueryResponse">

 <complexType>

 <sequence>

 <element name="overallResult" type="spppb:ResultCodeType"/>

 <element name="resultSet" type="spppb:BasicObjType"

 minOccurs="0" maxOccurs=" unbounded"/>

 </sequence>

 </complexType>

 </element>

An <spppQueryResponse> contains the elements necessary for the SPPP

client to precisely determine the overal result of the query, and if an

error occurred, exactly what condition caused the error.

*

*

The data elements within the SPPP query response are described as

follows:

overallResult: Exactly one response code and message pair that

explicitly identifies the result of the request. See the Response

Code section for further details.

resultSet: The set of zero or more objects that matched the query

criteria. If no objects matched the query criteria then this

result set MUST be empty and the overallResult value MUST

indicate success (if no matches are found for the query criteria,

the response is considered a success).

5.2. Response Codes and Messages

This section contains the listing of response codes and their

corresponding human-readable text.

The response code numbering scheme generally adheres to the theory

formalized in section 4.2.1 of [RFC5321]:

The first digit of the response code can only be 1 or 2: 1 = a

positive result, 2 = a negative result.

The second digit of the response code indicates the category: 0 =

Protocol Syntax, 1 = Implementation Specific Business Rule, 2 =

Security, 3 = Server System.

The third and fourth digits of the response code indicate the

individual message event within the category defines by the first

two digits.

The response codes are also categorized as to whether they are overall

response codes that may only be returned in the "overallResult" data

element in SPPP responses, of object level response codes that may only

be returned in the "rqstObjResult" element of the SPPP responses.

Result

Code
Result Message

Overall or

Object Level

1000 Request Succeeded.
Overall

Response Code

2001 Request syntax invalid.
Overall

Response Code

2002 Request too large.
Overall

Response Code

2003 Version not supported.
Overall

Response Code

2103 Command invalid.

*

*

*

*

*

Result

Code
Result Message

Overall or

Object Level

Overall

Response Code

2301 System temporarily unavailable.
Overall

Response Code

2302 Unexpected internal system or server error.
Overall

Response Code

2104
Attribute value invalid. AttrName:

[AttributeName] AttrVal:[AttributeValue]

Object Level

Response Code

2105
Object does not exist. AttrName:[AttributeName]

AttrVal:[AttributeValue]

Object Level

Response Code

2106

Object status or ownership does not allow for

operation. AttrName:[AttributeName] AttrVal:

[AttributeValue]

Object Level

Response Code

Response Codes Numbering Scheme and Messages

Each of the object level response messages are "parameterized" with the

following parameters: "AttributeName" and "AttributeValue".

The use of these parameters MUST adhere to the following rules:

All parameters within a response message are mandatory and MUST

be present.

Any value provided for the "AttributeName" parameter MUST be an

exact XSD element name of the protocol data element that the

response message is referring to. For example, valid values for

"attribute name" are "dgName", "rgName", "rteRec", etc.

The value for "AttributeValue" MUST be the value of the data

element to which the preceding "AttributeName" refers.

Result code 2104 SHOULD be used whenever an element value does

not adhere to data validation rules.

Result codes 2104 and 2105 MUST NOT be used interchangeably.

Response code 2105 SHOULD be returned by an update operation when

the data element(s) used to uniquely identify a pre-existing

object do not exist. If the data elements used to uniquely

identify an object are malformed, then response code 2104 SHOULD

be returned.

5.3. Basic Object Type and Organization Identifiers

This section introduces the basic object type that most first class

objects derive from.

All first class objects extend the basic object type BasicObjType which

contains the identifier of the registrant organization that owns this

*

*

*

*

*

object, the identifier of the registrar organization that provisioned

this object, the date and time that the object was created by the

server, and the date and time that the object was last modified.

 <complexType name="BasicObjType" abstract="true">

 <sequence>

 <element name="rant" type="spppb:OrgIdType"/>

 <element name="rar" type="spppb:OrgIdType"/>

 <element name="cDate" type="dateTime" minOccurs="0"/>

 <element name="mDate" type="dateTime" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

The identifiers used for registrants (rant), registrars (rar) and

peering organizations (peeringOrg) are instances of OrgIdType. The

OrgIdType is defined as a string and all OrgIdType instances SHOULD

follow the textual convention: "namespace:value" (for example "iana-en:

32473"). See the IANA Consideration section for more details.

6. Protocol Commands

This section provides a description of each supported protocol command.

6.1. Add Destination Group Operation

As described in the introductory sections, a Destination Group

represents a set of Public Identifiers with common routing information.

The AddDestGrpRqstType operation creates or overwrites a Destination

Group object. If a Destination Group with the given name and registrant

ID (which together comprise the unique key for a Destination Group)

does not exist, then the server MUST create the Destination Group. If a

Destination Group with the given name and registrant ID does exist,

then the server MUST replace the current properties of the Destination

Group with the properties passed into the AddDestGrpsRqstType

operation. The XSD declarations of the operation request object are as

follows:

 <complexType name="AddDestGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="destGrp" type="spppb:DestGrpType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The element passed into the spppUpdateRequest element for this

operation is an element of type AddDestGrpRqsttype, which extends

BasicUpdateRqstType and contains a DestGrpType object. The DestGrpType

object structure is defined as follows:

 <complexType name="DestGrpType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="dgName" type="spppb:ObjNameType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The DestGrpType object is composed of the following elements:

base: All first class objects extend BasicObjType which contains

the ID of the registrant organization that owns this object, the

ID of the registrar organization that provisioned this object,

the date and time that the object was created by the server, and

the date and time that the object was last modified. If the

client passed in either the created date or the modification

date, the server will ignore them. The server sets these two

date/time values.

dgName: The character string that contains the name of the

Destination Group. This uniquely identifies this object within

the context of the registrant ID (a child element of the base

element as described above).

ext: Point of extensibility described in a previous section of

this document.

*

*

*

As with the responses to all update operations, the result of the

AddDestGrpRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.2. Get Destination Groups Operation

The getDestGrpsRqst operation allows a client to get the properties of

Destination Group objects that a registrar organization is authorized

to view. The server will attempt to find a Destination Group object

that has the registrant ID and destination group name pair contained in

each ObjKeyType object instance. If there are no matching Destination

Groups found then an empty result set will be returned. If the set of

ObjKeyType objects passed in is empty then the server will return the

list of Destination Group objects that the querying registrar has the

authority to view.

The element passed into the spppQueryRequest element for this operation

is an instance of type GetDestGrpsRqstType, which extends

BasicQueryRqstType and contains zero or more ObjKeyType objects. Any

limitation on the maximum number of objects that may be passed into or

returned by this operation is a policy decision and not limited by the

protocol. The XSD declaration of the operation is as follows:

 <complexType name="GetDestGrpsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

As described in an earlier section of this document, the result of any

spppQueryRequest operation is an spppQueryResponse element that

contains the overall response code and the query result set, if any.

Refer to that section of the document for a detailed description of the

spppQueryResponse element.

6.3. Add Public Identifier Operation

A Public Identifier is the search key used for locating the session

establishment data (SED). In many cases, a Public Identifier is

attributed to the end user who has a retail relationship with the

service provider or registrant organization. SPPP supports the notion

of the carrier-of-record as defined in RFC 5067. Therefore, the

Registrant under which the Public Identity is being created can

optionally claim to be a carrier-of-record.

SPPP identifies two types of Public Identifiers: telephone numbers

(TN), and the routing numbers (RN). SPPP provides structures to manage

a single TN, a contiguous range of TNs, and a TN prefix.

The abstract XML schema type definition PubIDType is a generalization

for the concrete the Public Identifier schema types. PubIDType element

'dgName' represents the name of the destination group that a given

Public Identifier is a member of. Because a Destination Group is

uniquely identified by its composite business key, which is comprised

of its Registrant ID, rantId, and its name, dgName, the Public

Identity's containing Destination Group is identified by the Public

Identity's dgName element and the Public Identity's registrant ID,

rantId, element. The PubIDType object structure is defined as follows:

 <complexType name="PubIdType" abstract="true">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="dgName" type="spppb:ObjNameType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

A registrant can add a Public Identifier using the AddPubIdRqstType

operation. To complete the add request, AddPubIdRqstType XML instance

is populated into the <spppUpdateRequest> element. A Public Identifier

may provisioned as a member of a Destination Group or provisioned

outside of a Destination Group. A Public Identifier that is provisioned

as a member of a Destionation Group is intended to be associated with

its SED through the Route Group(s) that are associated with its

containing Destination Group. A Public Identifier that is not

provisioned as a member of a Destionation Group is intended to be

associated with its SED through the Route Records that are directly

associated with the Public Identifier. If a Public Identifier being

added already exists then that Public Identifier will be replaced with

the newly provisioned Public Identifier.

A telephone number is provisioned using the TNType, an extension of

PubIDType. Each TNType object is uniquely identified by the combination

of its tn element, and the unique key of its parent Destination Group

(dgName and rantId). In other words a given telephone number string may

exist within one or more Destination Groups, but must not exist more

than once within a Destination Group. TNType is defined as follows:

 <complexType name="TNType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="tn" type="string"/>

 <element name="rrRef" type="spppb:RteRecRefType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

TNType consists of the following attributes:

tn: Telephone number to be added to the Registry.

rrRef: Optional reference to route records that are directly

associated with the TN Public Identifier. Following the SPPP data

model, the route record could be a protocol agnostic URIType or

another type.

corInfo: corInfo is an optional parameter of type CORInfoType

that allows the registrant organization to set forth a claim to

be the carrier-of-record [see RFC 5067]. This is done by setting

the value of <corClaim> element of the CORInfoType object

structure to "true". The other two parameters of the CORInfoType,

<cor> and <corDate> are set by the Registry to describe the

outcome of the carrier-of-record claim by the registrant. In

general, inclusion of <corInfo> parameter is useful if the

Registry has the authority information, such as, the number

portability data, etc., in order to qualify whether the

registrant claim can be satisfied. If the carrier-of-record claim

disagrees with the authority data in the Registry, whether the TN

add operation fails or not is a matter of policy and it is beyond

the scope of this document. In the response message

<spppUpdateResponse>, the SPPP Server must include the <cor>

parameter of the <corInfo> element to let the registrant know the

outcome of the claim.

A routing number is provisioned using the RNType, an extension of

PubIDType. SSPs that possess the number portability data may be able to

leverage the RN search key to discover the ingress routes for session

establishment. Therefore, the registrant organization can add the RN

and associate it with the appropriate destination group to share the

route information. Each RNType object is uniquely identified by the

*

*

*

combination of its rn element, and the unique key of its parent

Destination Group (dgName and rantId). In other words a given routing

number string may exist within one or more Destination Groups, but must

not exist more than once within a Destination Group. RNType is defined

as follows:

 <complexType name="RNType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="rn" type="string" default="true"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

RNType has the following attributes:

rn: Routing Number used as the search key

corInfo: Optional <corInfo> element of type CORInfoType.

TNRType structure is used to provision a contiguous range of telephone

numbers. The object definition requires a starting TN and an ending TN

that together define the span of the TN range. Use of TNRType is

particularly useful when expressing a TN range that does not include

all the TNs within a TN block or prefix. The TNRType definition

accommodates the open number plan as well such that the TNs that fall

between the start and end TN range may include TNs with different

length variance. Whether the Registry can accommodate the open number

plan semantics is a matter of policy and is beyond the scope of this

document. Each TNRType object is uniquely identified by the combination

of its startTn and endTn elements, and the unique key of its parent

Destination Group (dgName and rantId). In other words a given TN Range

may exist within one or more Destination Groups, but must not exist

more than once within a Destination Group. TNRType object structure

definition is as follows:

*

*

 <complexType name="TNRType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="startTn" type="string"/>

 <element name="endTn" type="string"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

TNRType has the following attributes:

startTn: Starting TN in the TN range

endTn: The last TN in the TN range

corInfo: Optional <corInfo> element of type CORInfoType

In some cases, it is useful to describe a set of TNs with the help of

the first few digits of the telephone number, also referred to as the

telephone number prefix or a block. A given TN prefix may include TNs

with different length variance in support of open number plan. Once

again, whether the Registry supports the open number plan semantics is

a matter of policy and it is beyond the scope of this document. The

TNPType data structure is used to provision a TN prefix. Each TNPType

object is uniquely identified by the combination of its tnPrefix

element, and the unique key of its parent Destination Group (dgName and

rantId). TNPType is defined as follows:

 <complexType name="TNPType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="tnPrefix" type="string"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

*

*

*

TNPType consists of the following attributes:

tnPrefix: The telephone number prefix

corInfo: Optional <corInfo> element of type CORInfoType.

The object structure of AddPubIdRqstType is used to add Public

Identifiers is as follows

 <complexType name="AddPubIdRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

6.4. Get Public Identifiers Operation

The SPPP client can use the GetPubIdsRqstType in the <spppQueryRequest>

structure to obtain information about one or more <pi> objects. If no

matching Public Identifiers are found, then an empty result set is

returned.

GetPubIdsRqstType object structure is as follows:

 <complexType name="GetPubIdsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"

 maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

As described earlier in the document, the result of any

spppQueryRequest operation is a spppQueryResponse that contains the

response code and the query result set, if any.

*

*

6.5. Add Route Group Operation

As described in the introductory sections, a Route Group represents a

combined grouping of Route Records that define route information,

Destination Groups that contain a set of Public Identifiers with common

routing information, and the list of peer organizations that have

access to these public identifiers using this route information. It is

this indirect linking of public identifiers to their route information

that significantly improves the scalability and manageability of the

peering data. Additions and changes to routing information are reduced

to a single operation on a Route Group or Route Record , rather than

millions of data updates to individual public identifier records that

individually contain their peering data.

The AddRteGrpRqstType operation creates or overwrites a Route Group

object. If a Route Group with the given name and registrant ID (which

together comprise the unique key or a Route Group) does not exist, then

the server MUST create the Route Group. If a Route Group with the given

name and registrant ID does exist, then the server MUST replace the

current properties of the Route Group with the properties passed into

the AddRteGrpRqstType operation. The XSD declarations of the

AddRteGrpRqstType operation request object are as follows:

 <complexType name="AddRteGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrp" type="spppb:RteGrpType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The element passed into the spppUpdateRequest element for this

operation is an instance of AddRteGrpRqstType, which extends

BasicUpdateRqstType and contains one RteGrpType object. The RteGrpType

object structure is defined as follows:

 <complexType name="RteGrpType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rgName" type="spppb:ObjNameType"/>

 <element name="rrRef" type="spppb:RteRecRefType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="dgName" type="spppb:ObjNameType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="peeringOrg" type="spppb:OrgIdType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="sourceIdent" type="spppb:SourceIdentType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="isInSvc" type="boolean"/>

 <element name="priority" type="unsignedShort"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RteRecRefType">

 <sequence>

 <element name="rrKey" type="spppb:ObjKeyType"/>

 <element name="priority" type="unsignedShort"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

The RteGrpType object is composed of the following elements:

base: All first class objects extend BasicObjType which contains

the ID of the registrant organization that owns this object, the

ID of the registrar organization that provisioned this object,

the date and time that the object was created by the server, and

the date and time that the object was last modified. If the

client passes in either the created date or the modification

date, the server will ignore them. The server sets these two

date/time values.

rgName: The character string that contains the name of the Route

Group. It uniquely identifies this object within the context of

the registrant ID (a child element of the base element as

described above).

rrRef: Set of zero or more objects of type RteRecRefType that

house the unique keys of the Route Records that the RteGrpType

*

*

*

object refers to and their relative priority within the context

of a given route group. The associated Route Records contain the

routing information, sometimes called SED, associated with this

Route Group.

dgName: Set of zero or more names of DestGrpType object

instances. Each dgName name, in association with this Route

Group's registrant ID, uniquely identifies a DestGrpType object

instance whose public identifiers are reachable using the routing

information housed in this Route Group. An intended side affect

of this is that a Route Group cannot provide routing information

for a Destination Group belonging to another registrant.

peeringOrg: Set of zero or more peering organization IDs that

have accepted an offer to receive this Route Group's information.

The set of peering organizations in this list is not directly

settable or modifiable using the addRteGrpsRqst operation. This

set is instead controlled using the route offer and accept

operations.

sourceIdent: Set of zero or more SourceIdentType object

instances. These objects, described further below, house the

source identification schemes and identifiers that are applied at

resolution time as part of source based routing algorithms for

the Route Group.

isInSvc: A boolean element that defines whether this Route Group

is in service. The routing information contained in a Route Group

that is in service is a candidate for inclusion in resolution

responses for public identities residing in the Destination Group

associated with this Route Group. The routing information

contained in a Route Group that is not in service is not a

candidate for inclusion in resolution responses.

priority: Zero or one priority value that can be used to provide

a relative value weighting of one Route Group over another. The

manner in which this value is used, perhaps in conjunction with

other factors, is a matter of policy.

ext: Point of extensibility described in a previous section of

this document.

As described above, the Route Group contains a set of references to

route record objects. A route record object is based on an abstract

type: RteRecType. The concrete types that use RteRecType as an

extension base are NAPTRType, NSType, and URIType. The definitions of

these types are included the Route Record section of this document.

The RteGrpType object provides support for source-based routing via the

peeringOrg data element and more granular source base routing via the

*

*

*

*

*

*

source identity element. The source identity element provides the

ability to specify zero or more of the following in association with a

given Route Group: a regular expression that is matched against the

resolution client IP address, a regular expression that is matched

against the root domain name(s), and/or a regular expression that is

matched against the calling party URI(s). The result will be that,

after identifying the visible Route Groups whose associated Destination

Group(s) contain the lookup key being queried and whose peeringOrg list

contains the querying organizations organization ID, the resolution

server will evaluate the characteristics of the Source URI, and Source

IP address, and root domain of the lookup key being queried. The

resolution server then compares these criteria against the source

identity criteria associated with the Route Groups. The routing

information contained in Route Groups that have source based routing

criteria will only be included in the resolution response if one or

more of the criteria matches the source criteria from the resolution

request. The Source Identity data element is of type SourceIdentType,

whose structure is defined as follows:

 <complexType name="SourceIdentType">

 <sequence>

 <element name="sourceIdentLabel" type="string"/>

 <element name="sourceIdentScheme"

 type="spppb:SourceIdentSchemeType"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <simpleType name="SourceIdentSchemeType">

 <restriction base="token">

 <enumeration value="uri"/>

 <enumeration value="ip"/>

 <enumeration value="rootDomain"/>

 </restriction>

 </simpleType>

The SourceIdentType object is composed of the following data elements:

sourceIdentScheme: The source identification scheme that this

source identification criteria applies to and that the associated

sourceIdentRegex should be matched against.

sourceIdentRegex: The regular expression that should be used to

test for a match against the portion of the resolution request

that is dictated by the associated sourceIdentScheme.

*

*

ext: Point of extensibility described in a previous section of

this document.

As with the responses to all update operations, the result of the

AddRteGrpRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.6. Get Route Groups Operation

The getRteGrpsRqst operation allows a client to get the properties of

Route Group objects that a registrar organization is authorized to

view. The server will attempt to find a Route Group object that has the

registrant ID and route group name pair contained in each ObjKeyType

object instance. If the set of ObjKeyType objects is empty then the

server will return the list of Route Group objects that the querying

client has the authority to view. If there are no matching Route Groups

found then an empty result set will be returned.

The element passed into the spppQueryRequest element for this operation

is an instance of type GetRteGrpsRqstType, which extends

BasicUpdateRqstType and contains zero or more ObjKeyType objects. Any

limitation on the maximum number of objects that may be passed into or

returned by this operation is a policy decision and not limited by the

protocol. The XSD declaration of the operation is as follows:

 <complexType name="GetRteGrpsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

As described in an earlier section of this document, the result of any

spppQueryRequest operation is an spppQueryResponse element that

contains the overall response code and the query result set, if any.

Refer to that section of the document for a detailed description of the

spppQueryResponse element.

6.7. Add Route Record Operation

As described in the introductory sections, a Route Group represents a

combined grouping of Route Records that define route information.

*

However, Route Records need not be created to just serve a single Route

Group. Route Records can be created and managed to serve multiple Route

Groups. As a result, a change to the properties of a network node, for

example, that is used for multiple routes, would necessitate just a

single update operation to change the properties of that node. The

change would then be reflected in all the Route Groups whose route

record set contains a reference to that node.

The AddRteRecRqstType operation creates or overwrites a Route Record

object. If a Route Record with the given name and registrant ID (which

together comprise the unique key or a Route Record) does not exist,

then the server MUST create the Route Record. If a Route Record with

the given name and registrant ID does exist, then the server MUST

replace the current properties of the Route Record with the properties

passed into the AddRteRecRqstType operation. The XSD declarations of

the AddRteRecRqstType operation request object are as follows:

 <complexType name="AddRteRecRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteRec" type="spppb:RteRecType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The element passed into the spppUpdateRequest element for this

operation is an instance of AddRteRecRqstType, which extends

BasicUpdateRqstType and contains one RteRecType object. The RteRecType

object structure is defined as follows:

 <complexType name="RteRecType" abstract="true">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rrName" type="spppb:ObjNameType"/>

 <element name="priority" type="unsignedShort" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The RteRecType object is composed of the following elements:

base: All first class objects extend BasicObjType which contains

the ID of the registrant organization that owns this object, the

ID of the registrar organization that provisioned this object,

the date and time that the object was created by the server, and

the date and time that the object was last modified. If the

client passes in either the created date or the modification

date, the server will ignore them. The server sets these two

date/time values.

rrName: The character string that contains the name of the Route

Record. It uniquely identifies this object within the context of

the registrant ID (a child element of the base element as

described above).

priority: Zero or one priority value that can be used to provide

a relative value weighting of one Route Record over another. The

manner in which this value is used, perhaps in conjunction with

other factors, is a matter of policy.

As described above, route records are based on an abstract type:

RteRecType. The concrete types that use RteRecType as an extension base

are NAPTRType, NSType, and URIType. The definitions of these types are

included below. The NAPTRType object is comprised of the data elements

necessary for a NAPTR that contains routing information for a Route

Group. The NSType object is comprised of the data elements necessary

for a Name Server that points to another DNS server that contains the

desired routing information. The NSType is relevant only when the

resolution protocol is ENUM. The URIType object is comprised of the

data elements necessary to house a URI.

The data provisioned in a Registry can be leveraged for many purposes

and queried using various protocols including SIP, ENUM and others. It

is for this reason that a route record type offers a choice of URI and

DNS resource record types. URIType fulfills the need for both SIP and

ENUM protocols. When a given URIType is associated to a destination

group, the user part of the replacement string <uri> that may require

the Public Identifier cannot be preset. As a SIP Redirect, the

resolution server will apply <ere> pattern on the input Public

Identifier in the query and process the replacement string by

substituting any back reference(s) in the <uri> to arrive at the final

URI that is returned in the SIP Contact header. For an ENUM query, the

resolution server will simply return the value of the <ere> and <uri>

members of the URIType in the NAPTR REGEX parameter.

*

*

*

 <complexType name="NAPTRType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="order" type="unsignedShort"/>

 <element name="flags" type="string" minOccurs="0"/>

 <element name="svcs" type="string"/>

 <element name="regx" type="spppb:RegexParamType"

 minOccurs="0"/>

 <element name="repl" type="string" minOccurs="0"/>

 <element name="ttl" type="positiveInteger" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="NSType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="hostName" type="string"/>

 <element name="ttl" type="positiveInteger" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="URIType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="ere" type="string" default="^(.*)$"/>

 <element name="uri" type="string"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The NAPTRType object is composed of the following elements:

order: Order value in an ENUM NAPTR, relative to other NAPTRType

objects in the same Route Group.

*

svcs: ENUM service(s) that are served by the SBE. This field's

value must be of the form specified in [RFC3761] (e.g.,

E2U+pstn:sip+sip). The allowable values are a matter of policy

and not limited by this protocol.

regx: NAPTR’s regular expression field. If this is not included

then the Repl field must be included.

repl: NAPTR replacement field, should only be provided if the

Regex field is not provided, otherwise it will be ignored by the

server.

ttl: Number of seconds that an addressing server may cache this

NAPTR.

ext: Point of extensibility described in a previous section of

this document.

The NSType object is composed of the following elements:

hostName: Fully qualified host name of the name server.

ttl: Number of seconds that an addressing server may cache this

Name Server.

ext: Point of extensibility described in a previous section of

this document.

The URIType object is composed of the following elements:

ere: The POSIX Extended Regular Expression (ere) as defined in

[RFC3986].

uri: the URI as defined in [RFC3986]. In some cases, this will

serve as the replacement string and it will be left to the

resolution server to arrive at the final usable URI.

As with the responses to all update operations, the result of the

AddRteRecRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.8. Get Route Records Operation

The getRteRecsRqst operation allows a client to get the properties of

Route Record objects that a registrar organization is authorized to

view. The server will attempt to find a Route Record object that has

the registrant ID and route record name pair contained in each

ObjKeyType object instance. If the set of ObjKeyType objects is empty

*

*

*

*

*

*

*

*

*

*

then the server will return the list of Route Record objects that the

querying client has the authority to view. If there are no matching

Route Record found then an empty result set will be returned.

The element passed into the spppQueryRequest element for this operation

is an instance of type GetRteRecsRqstType, which extends

BasicUpdateRqstType and contains zero or more ObjKeyType objects. Any

limitation on the maximum number of objects that may be passed into or

returned by this operation is a policy decision and not limited by the

protocol. The XSD declaration of the operation is as follows:

 <complexType name="GetRteRecsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

As described in an earlier section of this document, the result of any

spppQueryRequest operation is an spppQueryResponse element that

contains the overall response code and the query result set, if any.

Refer to that section of the document for a detailed description of the

spppQueryResponse element.

6.9. Add Route Group Offer Operation

The list of peer organizations whose resolution responses can include

the routing information contained in a given Route Group is controlled

by the organization to which a Route Group object belongs (its

registrant), and the peer organization that submits resolution requests

(a data recipient, also know as a peering organization). The registrant

offers access to a Route Group by submitting a Route Group Offer. The

data recipient can then accept or reject that offer. Not until access

to a Route Group has been offered and accepted will the data

recipient's organization ID be included in the peeringOrg list in a

Route Group object, and that Route Group's peering information become a

candidate for inclusion in the responses to the resolution requests

submitted by that data recipient. The AddRteGrpOffersRqstType operation

creates or overwrites one or more Route Group Offer objects. If a Route

Group Offer for the given Route Group object key and the offeredTo Org

ID does not exist, then the server creates the Route Group Offer

object. If a such a Route Group Offer does exist, then the server

replaces the current object with the new object. The XSD declarations

of the operation request object are as follows:

 <complexType name="AddRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOffer" type="spppb:RteGrpOfferType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The element passed into the spppUpdateRequest element for this

operation is an instance of AddRteGrpOfferRqstType, which extends

BasicUpdateRqstType and contains a RteGrpOfferType object. The XSD

declaration of the RteGrpOfferType is as follows:

 <complexType name="RteGrpOfferType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType"/>

 <element name="status" type="spppb:RteGrpOfferStatusType"/>

 <element name="offerDateTime" type="dateTime"/>

 <element name="acceptDateTime" type="dateTime" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RteGrpOfferKeyType">

 <sequence>

 <element name="rteGrpKey" type="spppb:ObjKeyType"/>

 <element name="offeredTo" type="spppb:OrgIdType"/>

 </sequence>

 </complexType>

 <simpleType name="RteGrpOfferStatusType">

 <restriction base="token">

 <enumeration value="offered"/>

 <enumeration value="accepted"/>

 </restriction>

 </simpleType>

The RteGrpOfferType object is composed of the following elements:

base: All first class objects extend BasicObjType which contains

the ID of the registrant organization that owns this object, the

ID of the registrar organization that provisioned this object,

the date and time that the object was created by the server, and

the date and time that the object was last modified. If the

client passed in either the created date or the modification

date, the will ignore them. The server sets these two date/time

values.

rteGrpOfferKey: The object that identifies the route that is or

has been offered and the organization that it is or has been

offered to. The combination of these three data elements uniquely

identify a Route Group Offer.

status: The status of the offer, offered or accepted. This status

is controlled by the server. It is automatically set to "offered"

*

*

*

when ever a new Route Group Offer is added, and is automatically

set to "accepted" if and when that offer is accepted. The value

of the element is ignored when passed in by the client.

offerDateTime: Date and time in GMT when the Route Group Offer

was added.

acceptDateTime: Date and time in GMT when the Route Group Offer

was accepted.

As with the responses to all update operations, the result of the

AddRteGrpOfferRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.10. Accept Route Group Offer Operation

Not until access to a Route Group has been offered and accepted will

the data recipient's organization ID will it be included in the

peeringOrg list in that Route Group object, and that Route Group's

peering information become a candidate for inclusion in the responses

to the resolution requests submitted by that data recipient. The

AcceptRteGrpOffersRqstType operation is called by, or on behalf of, the

data recipient to accept a Route Group Offer that is pending in the

"offered" status for the data recipient's organization ID. If a Route

Group Offer for the given Route Group Offer key (route name, route

registrant ID, data recipient's organization ID) exists, then the

server moves the Route Group Offer to the "accepted" status and adds

that data recipient's organization ID into the list of peerOrgIds for

that Route Group. If a such a Route Group Offer does not exist, then

the server returns the appropriate error code, 2105. The XSD

declarations for the operation request object are as follows:

<complexType name="AcceptRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOfferKey" type="spppb:RteGrpOfferKeyType"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The element passed into the spppUpdateRequest element for this

operation is an instance of AcceptRteGrpOffersRqstType, which extends

BasicUpdateRqstType and contains a RteGrpOfferKeyType object.

*

*

As with the responses to all update operations, the result of the

AcceptRteGrpOfferRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.11. Reject Route Group Offer Operation

The data recipient to which a Route Group has been offered has the

option of rejecting a Route Group Offer. Furthermore, that offer may be

rejected, regardless of whether or not it has been previously accepted.

The RejectRteGrpOffersRqstType operation is used for these purposes and

is called by, or on behalf of, the data recipient to accept a Route

Group Offer that is pending in the "offered" status or is in the

"accepted" status for the data recipient's organization ID. If a Route

Group Offer for the given Route Group Offer key (route name, route

registrant ID, data recipient's organization ID) exists in either the

offered or accepted status, then the server deletes that Route Group

Offer object, and, if appropriate, removes the data recipients

organization ID from the list of peeringOrg IDs for that Route Group.

If the Route Group Offer does not exist, then the server returns the

appropriate error code, 2105. The XSD declarations for the operation

request object are as follows:

<complexType name="RejectRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOfferKey" type="spppb:RteGrpOfferKeyType"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The element passed into the spppUpdateRequest element for this

operation is an instance of RejectRteGrpOffersRqstType, which extends

BasicUpdateRqstType and contains a RteGrpOfferKeyType object.

As with the responses to all update operations, the result of the

RejectRteGrpOfferRqstType operation is contained in the generic

spppUpdateResponse data structure described in an earlier sections of

this document. For a detailed description of the spppUpdateResponse

data structure refer to that section of the document.

6.12. Get Route Group Offers Operation

The getRteGrpOffersRqst operation allows a client to get the properties

of zero or more Route Group Offer objects that registrar is authorized

to view. The server will attempt to find Route Group Offer objects that

have all the properties specified in the criteria passed into the

operation. If no criteria is passed in then the server will return the

list of Route Group Offer objects that the querying client has the

authority to view. If there are no matching Route Group Offers found

then an empty result set will be returned.

The element passed into the spppQueryRequest element for this operation

is an instance of GetRteGrpOffersRqstType, which extends

BasicQueryRqstType and contains the criteria that the returned Route

Group Offer objects must match. Any limitation on the maximum number of

objects that may be returned by this operation is a policy decision and

not limited by the protocol. The XSD declaration of the operation is as

follows:

 <complexType name="GetRteGrpOffersRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="offeredBy" type="spppb:OrgIdType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="offeredTo" type="spppb:OrgIdType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="status" type="spppb:RteGrpOfferStatusType"

 minOccurs="0"/>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The GetRteGrpOffersRqstType object is composed of the following

elements:

offeredBy: Zero or more organization IDs. Only offers that are

offered to the organization IDs in this list should be included

in the result set. The result set is also subject to other query

criteria in the request.

offeredTo: Zero or more organization IDs. Only offers that are

offered by the organization IDs in this list should be included

in the result set. The result set is also subject to other query

criteria in the request.

status: The status of the offer, offered or accepted. Only offers

in the specified status should be included in the result set. If

*

*

*

this element is not present then the status of the offer should

not be considered in the query. The result set is also subject to

other query criteria in the request.

rteGrpOfferKey: Zero or more Route Group Offer Keys. Only offers

having one of these keys should be included in the result set.

The result set is also subject to other query criteria in the

request.

As described in an earlier section of this document, the result of any

spppQueryRequest operation is an spppQueryResponse element that

contains the overall response code and the query result set, if any.

Refer to that section of the document for a detailed description of the

spppQueryResponse element.

6.13. Egress Route Operations

In a high-availability environment, the originating SSP likely has more

than one egress paths to the ingress SBE of the target SSP. If the

originating SSP wants to exercise greater control and choose a specific

egress SBE to be associated to the target ingress SBE, it can do so

using the AddEgrRteRqstType object.

Lets assume that the target SSP has offered to share one or more

ingress route information and that the originating SSP has accepted the

offer. In order to add the egress route to the Registry, the

originating SSP uses a valid regular expression to rewrite ingress

route in order to include the egress SBE information. Also, more than

one egress route can be associated with a given ingress route in

support of fault-tolerant configurations. The supporting SPPP protocol

structure provides a way to include route precedence information to

help manage traffic to more than one outbound egress SBE.

An egress route is identified by type EgrRteType and its object

structure is shown below:

*

 <complexType name="EgrRteType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="egrRteName" type="spppb:ObjNameType"/>

 <element name="pref" type="unsignedShort"/>

 <element name="regxRewriteRule" type="spppb:RegexParamType"/>

 <element name="ingrRteRec" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The EgrRteType object is composed of the following elements:

base: All first class objects extend BasicObjType which contains

the ID of the registrant organization that owns this object, the

ID of the registrar organization that provisioned this object,

the date and time that the object was created by the server, and

the date and time that the object was last modified. If the

client passes in either the created date or the modification

date, the server will ignore them. The server sets these two

date/time values.

egrRteName: The name of the egress route.

pref: The preference of this egress route relative to other

egress routes that may get selected when responding to a

resolution request.

regxRewriteRule: The regular expression re-write rule that should

be applied to the regular expression of the ingress NAPTR(s) that

belong to the ingress route.

ingrRteRec: The ingress route records that the egress route

should be used for.

ext: Point of extensibility described in a previous section of

this document.

The AddEgrRteRqstType request is used to create or overwrite an egress

route.

*

*

*

*

*

*

 <complexType name="AddEgrRteRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="egrRte" type="spppb:EgrRteType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

An instance of AddEgrRtesRqstType is added in the spppUpdateRequest

element in order to send a valid request to the server. Any limitation

on the maximum number of AddEgrRteRqstType instances is a matter of

policy and is not limited by the specification.

The response from the server is returned in addEgrRteRspns element,

which is defined as the element of type BasicRspnsType.

The GetEgrRtesRqstType is used by an authorized entity to fetch the

well-known egress route data.

 <complexType name="GetEgrRtesRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

6.14. Delete Operation

In order to remove an object from the Registry, an authorized entity

can send the <spppUpdateRequest> to the Registry with a corresponding

delete BasicUpdateRqstType object. Each 'Add' operation in SPPP has a

corresponding 'Del' operation, which is used to delete the respective

object type from the Registry. If the entity that issued the command is

not authorized to perform this operation an appropriate error code will

be returned in the <spppUpdateRespnonse> message.

As an example, DelPubIdRqstType is used to delete Public Identifiers

The DelPubIdsRqstType object definition is shown below:

 <complexType name="DelPubIdRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

When an object is deleted, any references to that object must of course

also be removed as the SPPP server implementation fulfills the deletion

request. Furthermore, the deletion of a composite object must also

result in the deletion of the objects it contains. As a result, the

following rules apply to the deletion of SPPP object types:

Destination Groups: When a destination group is deleted all

public identifiers within that destination group must also be

automatically deleted by the SPPP implementation as part of

fulfilling the deletion request. And any references between that

destination group and any route group must be automatically

removed by the SPPP implementation as part of fulfilling the

deletion request.

Route Groups: When a route group is deleted any references

between that route group and any destination group must be

automatically removed by the SPPP implementation as part of

fulfilling the deletion request. Similarly any references between

that route group and any route records must be removed by the

SPPP implementation as part of fulfilling the deletion request.

Furthermore, route group offers relating that route group must

also be deleted as part of fulfilling the deletion request.

Route Records: When a route record is deleted any references

between that route record and any route group must be removed by

the SPPP implementation as part of fulfilling the deletion

request.

Puplic Identifiers: When a public identifier is deleted any

references between that public identifier and its containing

destination group must be removed by the SPPP implementation as

part of fulfilling the deletion request. And any route records

contained directly within that Public Identifier must be deleted

by the SPPP implementation as part of fulfilling the deletion

request.

*

*

*

*

7. SPPP Examples

This section shows XML message exchange between two SIP Service

Providers (SSP) and a Registry. For the sake of simplicity, the

transport wrapper for the SPPP protocol is left out. The SPPP protocol

messages in this section are valid XML instances that conform to the

SPPP schema version within this document.

In this sample use case scenario, SSP1 and SSP2 provision resource data

in the registry and use SPPP constructs to selectively share the route

groups. In the figure below, SSP2 has two ingress SBE instances that

are associated with the public identities that SSP2 has the retail

relationship with. Also, the two SBE instances for SSP1 are used to

show how to use SPPP protocol to associate route preferences for the

destination ingress routes and exercise greater control on outbound

traffic to the peer's ingress SBEs.

 ---------------+ +------------------

 | |

 +------+ +------+

 | sbe1 | | sbe2 |

 +------+ +------+

 SSP1 | | SSP2

 +------+ +------+

 | sbe3 | | sbe4 |

 +------+ +------+

 iana-en:111 | | iana-en:222

 ---------------+ +------------------

 | |

 | |

 | SPPP +------------------+ SPPP |

 +------->| Registry |<--------+

 +------------------+

7.1. Add Destination Group

SSP2 adds a destination group to the Registry for use later. The SSP2

SPPP client sets a unique transaction identifier 'tx_7777' for tracking

purposes. The name of the destination group is set to DEST_GRP_SSP2_1

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateRequest

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <clientTransId>txid-5555</clientTransId>

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddDestGrpRqstType">

 <destGrp>

 <ns1:rant>iana-en:222</ns1:rant>

 <ns1:rar>iana-en:222</ns1:rar>

 <dgName>DEST_GRP_SSP2_1</dgName>

 </destGrp>

 </rqstObj>

 </spppUpdateRequest>

The Registry processes the request and return a favorable response

confirming successful creation of the named destination group. Also,

besides returning a unique transaction identifier, Registry also

returns the matching client transaction identifier from the request

message back to the SPPP client.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <clientTransId>tx_5555</clientTransId>

 <serverTransId>tx_id_12346</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 </spppUpdateResponse>

7.2. Add Route Records

SSP2 adds an ingress routes in the Registry.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateRequest

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddRteRecRqstType">

 <rteRec xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:NAPTRType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <ns1:rrName>RTE_SSP2_SBE2</ns1:rrName>

 <order>10</order>

 <flags>u</flags>

 <svcs>E2U+sip</svcs>

 <regx>

 <ere>^(.*)$</ere>

 <repl>sip:\1@sbe2.ssp2.example.com</repl>

 </regx>

 </rteRec>

 </rqstObj>

 </spppUpdateRequest>

The Registry returns a success response.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_11145</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

 </spppUpdateResponse>

7.3. Add Route Records -- URIType

SSP2 adds another ingress routes in the Registry and makes use of

URIType

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest>

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddRteRecRqstType">

 <rteRec xsi:type="ns1:URIType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <rrName>RTE_SSP2_SBE4</rrName>

 <ere>^(.*)$</ere>

 <uri>sip:\1;npdi@sbe4.ssp2.example.com</uri>

 </rteRec>

 </rqstObj>

</spppUpdateRequest>

The Registry returns a success response.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_11145</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

 </spppUpdateResponse>

7.4. Add Route Group

SSP2 creates the grouping of the ingress routes and choses higher

precedence for RTE_SSP2_SBE2 by setting a lower number for the

"priority" attribute, a protocol agnostic precedence indicator.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateRequest

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddRteGrpRqstType">

 <rteGrp>

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <rgName>RTE_GRP_SSP2_1</rgName>

 <rrRef>

 <rrKey>

 <rant>iana-en:222</rant>

 <name>RTE_SSP2_SBE2</name>

 </rrKey>

 <priority>100</priority>

 </rrRef>

 <dgName>DEST_GRP_SSP2_1</dgName>

 <isInSvc>true</isInSvc>

 <ns1:priority>10</ns1:priority>

 </rteGrp>

 </rqstObj>

 </spppUpdateRequest>

To confirm successful processing of this request, Registry returns a

well-known resolution code '1000' to the SSP2 client.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12345</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

 </spppUpdateResponse>

7.5. Add Public Identity -- Successful COR claim

SSP2 activates a TN public identity by associating it with a valid

destination group. Further, SSP2 puts forth a claim that it is the

carrier-of-record for the TN.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <clientTransId>txid-5577</clientTransId>

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddPubIdRqstType">

 <pi xsi:type="ns1:TNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <cDate>2010-05-30T09:30:10Z</cDate>

 <dgName>DEST_GRP_SSP2_1</dgName>

 <tn>+12025556666</tn>

 <corInfo>

 <corClaim>true</corClaim>

 </corInfo>

 </pi>

 </rqstObj>

 </spppUpdateRequest>

Assuming that the Registry has access to TN authority data and it

performs the required checks to verify that SSP2 is in fact the service

provider of record for the given TN, the request is processed

successfully. In the response message, the Registry sets the value of

<cor> to "true" in order to confirm SSP2 claim as the carrier of record

and the <corDate> reflects the time when the carrier of record claim is

processed.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <clientTransId>txid-5577</clientTransId>

 <serverTransId>tx_id_12345</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <rqstObjResult>

 <code>1000</code>

 <msg>success</msg>

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddPubIdRqstType">

 <pi xsi:type="ns1:TNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <cDate>2010-05-30T09:30:10Z</cDate>

 <dgName>DEST_GRP_SSP2_1</dgName>

 <tn>+12025556666</tn>

 <corInfo>

 <corClaim>true</corClaim>

 <cor>true</cor>

 <corDate>2010-05-30T09:30:11Z</corDate>

 </corInfo>

 </pi>

 </rqstObj>

 </rqstObjResult>

 </spppUpdateResponse>

7.6. Add LRN

If another entity that SSP2 shares the routes with has access to Number

Portability data, it may choose to perform route lookups by routing

number. Therefore, SSP2 associates a routing number to a destination

group in order to facilitate ingress route discovery.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddPubIdRqstType">

 <pi xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:RNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <ns1:dgName>DEST_GRP_SSP2_1</ns1:dgName>

 <rn>2025550000</rn>

 </pi>

 </rqstObj>

 </spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response to the SPPP client.

 <?xml version="1.0" encoding="UTF-8"?>

 <spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12345</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

 </spppUpdateResponse>

7.7. Add TN Range

Next, SSP2 activates a block of ten thousand TNs and associate it to a

destination group.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddPubIdRqstType">

 <pi xsi:type="ns1:TNRType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <dgName>DEST_GRP_SSP2_1</dgName>

 <startTn>+12026660000</startTn>

 <endTn>+12026669999</endTn>

 </pi>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12244498</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

</spppUpdateResponse>

7.8. Add TN Prefix

Next, SSP2 activates a block of ten thousand TNs using the TNPType

structure and identifying a TN prefix.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddPubIdRqstType">

 <pi xsi:type="ns1:TNPType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <ns1:dgName>DEST_GRP_SSP2_1</ns1:dgName>

 <tnPrefix>+1202777</tnPrefix>

 </pi>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12387698</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

</spppUpdateResponse>

7.9. Enable Peering -- Route Group Offer

In order for SSP1 to complete session establishment for a destination

TN where the target subscriber has a retail relationship with SSP2, it

first requires an asynchronous bi-directional handshake to show mutual

consent. To start the process, SSP2 initiates the peering handshake by

offering SSP1 access to its route group.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddRteGrpOfferRqstType">

 <rteGrpOffer>

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <rteGrpOfferKey>

 <rteGrpKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </rteGrpKey>

 <offeredTo>iana-en:111</offeredTo>

 </rteGrpOfferKey>

 <status>offered</status>

 <offerDateTime>2006-05-04T18:13:51.0Z</offerDateTime>

 </rteGrpOffer>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and confirms that the SSP1

will now have the opportunity to weigh in on the offer and either

accept or reject it. The Registry may employ out-of-band notification

mechanisms for quicker updates to SSP1 so they can act faster, though

this topic is beyond the scope of this document.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12277798</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

</spppUpdateResponse>

7.10. Enable Peering -- Route Group Offer Accept

SSP1 responds to the offer from SSP2 and agrees to have visibility to

SSP2 ingress routes.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AcceptRteGrpOfferRqstType">

 <rteGrpOfferKey>

 <rteGrpKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </rteGrpKey>

 <offeredTo>iana-en:111</offeredTo>

 </rteGrpOfferKey>

 </rqstObj>

</spppUpdateRequest>

Registry confirms that the request has been processed successfully.

From this point forward, if SSP1 looks up a public identity through the

query resolution server, where the public identity is part of the

destination group by way of "RTE_GRP_SSP2_1" route association, SSP2

ingress SBE information will be shared with SSP1.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <serverTransId>tx_id_12333798</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

</spppUpdateResponse>

7.11. Add Egress Route

SSP1 wants to prioritize all outbound traffic to routes associated with

"RTE_GRP_SSP2_1" route group through "sbe1.ssp1.example.com".

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <clientTransId>tx_9000</clientTransId>

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:AddEgrRteRqstType">

 <egrRte>

 <rant>iana-en:111</rant>

 <rar/>

 <egrRteName>EGR_RTE_01</egrRteName>

 <pref>50</pref>

 <regxRewriteRule>

 <ere>^(.*@)(.*)$</ere>

 <repl>\1\2?route=sbe1.ssp1.example.com</repl>

 </regxRewriteRule>

 <ingrRteRec>

 <rant>iana-en:222</ns1:rant>

 <name>SSP2_RTE_REC_3</ns1:name>

 </ingrRteRec>

 </egrRte>

 </rqstObj>

</spppUpdateRequest>

Since peering has already been established, the request to add the

egress route has been successfully completed.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd"

 xmlns="urn:ietf:params:xml:ns:sppp:base:1">

 <clientTransId>tx_9000</clientTransId>

 <serverTransId>tx_id_12388898</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Request successful</msg>

 </overallResult>

</spppUpdateResponse>

7.12. Get Destination Group

SSP2 uses the 'GetDestGrpsRqstType' operation to tally the last

provisioned record for destination group DEST_GRP_SSP2_1.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:GetDestGrpsRqstType">

 <objKey>

 <rant>iana-en:222</rant>

 <name>DEST_GRP_SSP2_1</name>

 </objKey>

 </rqstObj>

</spppQueryRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <resultSet xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DestGrpType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <dgName>DEST_GRP_SSP2_1</dgName>

 </resultSet>

</spppQueryResponse>

7.13. Get Public Identity

SSP2 obtains the last provisioned record associated with a given TN.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:GetPubIdsRqstType">

 <pi xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:TNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <tn>+12025556666</tn>

 </pi>

 </rqstObj>

</spppQueryRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <resultSet xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:TNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <dgName>DEST_GRP_1</dgName>

 <tn>+12025556666</tn>

 <corInfo>

 <corClaim>true</corClaim>

 <cor>true</cor>

 <corDate>2010-05-30T09:30:10Z</corDate>

 </corInfo>

 </resultSet>

</spppQueryResponse>

7.14. Get Route Group Request

SSP2 obtains the last provisioned record for the route group

RTE_GRP_SSP2_1.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:GetRteGrpsRqstType">

 <objKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </objKey>

 </rqstObj>

</spppQueryRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <resultSet xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:RteGrpType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <rgName>RTE_GRP_SSP2_1</rgName>

 <rrRef>

 <rrKey>

 <rant>iana-en:222</rant>

 <name>RTE_SSP2_SBE2</name>

 </rrKey>

 <priority>100</priority>

 </rrRef>

 <rrRef>

 <rrKey>

 <rant>iana-en:222</rant>

 <name>RTE_SSP2_SBE4</name>

 </rrKey>

 <priority>101</priority>

 </rrRef>

 <dgName>DEST_GRP_SSP2_1</dgName>

 <isInSvc>true</isInSvc>

 <priority>10</priority>

 </resultSet>

</spppQueryResponse>

7.15. Get Route Group Offers Request

SSP2 fetches the last provisioned route group offer to the <peeringOrg>

SSP1.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:GetRteGrpOffersRqstType">

 <offeredTo>iana-en:111</offeredTo>

 </rqstObj>

</spppQueryRequest>

Registry processes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <resultSet xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:RteGrpOfferType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <rteGrpOfferKey>

 <rteGrpKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </rteGrpKey>

 <offeredTo>iana-en:111</offeredTo>

 </rteGrpOfferKey>

 <status>offered</status>

 <offerDateTime>2006-05-04T18:13:51.0Z</offerDateTime>

 </resultSet>

</spppQueryResponse>

7.16. Get Egress Route

SSP1 wants to verify the last provisioned record for the egress route

called EGR_RTE_01.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:GetEgrRtesRqstType">

 <objKey>

 <rant>iana-en:111</rant>

 <name>EGR_RTE_01</name>

 </objKey>

 </rqstObj>

</spppQueryRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppQueryResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

 <resultSet xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:EgrRteType">

 <rant>iana-en:111</rant>

 <rar>iana-en:111</rar>

 <egrRteName>EGR_RTE_01</egrRteName>

 <pref>50</pref>

 <svcs>E2U+sip</svcs>

 <regxRewriteRule>

 <ere>^(.*)$</ere>

 <repl>sip:\1@sbe1.ssp1.example.com</repl>

 </regxRewriteRule>

 <ingressRte>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </ingressRte>

 </resultSet>

</spppQueryResponse>

7.17. Delete Destination Group

SSP2 initiates a request to delete the destination group

DEST_GRP_SSP2_1.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DelDestGrpRqstType">

 <objKey>

 <rant>iana-en:222</rant>

 <name>DEST_GRP_SSP2_1</name>

 </objKey>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <serverTransId>txid-982543123</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Success</msg>

 </overallResult>

</spppUpdateResponse>

7.18. Delete Public Identity

SSP2 choses to de-activate the TN and remove it from the Registry.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DelPubIdRqstType">

 <pi xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:TNType">

 <rant>iana-en:222</rant>

 <rar>iana-en:222</rar>

 <tn>+12025556666</tn>

 </pi>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <serverTransId>txid-98298273123</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>success</msg>

 </overallResult>

</spppUpdateResponse>

7.19. Delete Route Group Request

SSP2 removes the route group called RTE_GRP_SSP2_1.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DelRteGrpRqstType">

 <objKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </objKey>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <serverTransId>txid-982543123</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>msg</msg>

 </overallResult>

</spppUpdateResponse>

7.20. Delete Route Group Offers Request

SSP2 no longer wants to share route group RTE_GRP_SSP2_1 with SSP1.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DelRteGrpOfferRqstType">

 <rteGrpOfferKey>

 <rteGrpKey>

 <rant>iana-en:222</rant>

 <name>RTE_GRP_SSP2_1</name>

 </rteGrpKey>

 <offeredTo>iana-en:111</offeredTo>

 </rteGrpOfferKey>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response. Restoring this resource sharing will require a new route

group offer from SSP2 to SSP1 followed by a successful route group

accept request from SSP1.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <serverTransId>txid-982543123</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Success</msg>

 </overallResult>

</spppUpdateResponse>

7.21. Delete Egress Route

SSP1 decides to remove the egress route with the label EGR_RTE_01.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateRequest xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <rqstObj xmlns:ns1="urn:ietf:params:xml:ns:sppp:base:1"

 xsi:type="ns1:DelEgrRteRqstType">

 <objKey>

 <rant>iana-en:111</rant>

 <name>EGR_RTE_01</name>

 </objKey>

 </rqstObj>

</spppUpdateRequest>

Registry completes the request successfully and returns a favorable

response.

<?xml version="1.0" encoding="UTF-8"?>

<spppUpdateResponse xmlns="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ietf:params:xml:ns:sppp:base:1 sppp.xsd">

 <serverTransId>txid-982543123</serverTransId>

 <overallResult>

 <code>1000</code>

 <msg>Success</msg>

 </overallResult>

</spppUpdateResponse>

8. XML Considerations

XML serves as the encoding format for SPPP, allowing complex

hierarchical data to be expressed in a text format that can be read,

saved, and manipulated with both traditional text tools and tools

specific to XML.

XML is case sensitive. Unless stated otherwise, XML specifications and

examples provided in this document MUST be interpreted in the character

case presented to develop a conforming implementation.

This section discusses a small number of XML-related considerations

pertaining to SPPP.

8.1. Namespaces

All SPPP protocol elements are defined in the namespaces in the IANA

Considerations section and in the Formal Protocol Specification section

of this document.

8.2. Versioning and Character Encoding

All XML instances SHOULD begin with an <?xml?> declaration to identify

the version of XML that is being used, optionally identify use of the

character encoding used, and optionally provide a hint to an XML parser

that an external schema file is needed to validate the XML instance.

Conformant XML parsers recognize both UTF-8 (defined in [RFC3629]) and

UTF-16 (defined in [RFC2781]); per [RFC2277] UTF-8 is the RECOMMENDED

character encoding for use with SPPP.

Character encodings other than UTF-8 and UTF-16 are allowed by XML.

UTF-8 is the default encoding assumed by XML in the absence of an

"encoding" attribute or a byte order mark (BOM); thus, the "encoding"

attribute in the XML declaration is OPTIONAL if UTF-8 encoding is used.

SPPP clients and servers MUST accept a UTF-8 BOM if present, though

emitting a UTF-8 BOM is NOT RECOMMENDED.

Example XML declarations:

<?xml?> version="1.0" encoding="UTF-8" standalone="no"?>

9. Security Considerations

SPPP implementations manage data that is considered confidential and

critical. Furthermor, SPPP implementations can support provisioning

activities for multiple registrars and registrants. As a result any

SPPP implementation must address the requirements for confidentiality,

authentication, and authorization.

With respect to confidentiality and authentication, the transport

protocol section contains some security properties that the transport

protocol must provide so that authenticated endpoints can exchange data

confidentially and with integrity protection.

With respect to authorization, the SPPP server implementation must

define and implement a set of authorization rules that precisely

address (1) which registrars will be authorized to create/modify/delete

each SPPP object type for given registrant(s) and (2) which registrars

will be authorized to view/get each SPPP object type for a given

registrant(s). These authorization rules are left as a matter of policy

and are not specified within the context of SPPP. However, any SPPP

implementation must specify these authorization rules in order to

function in a realiable and safe manner.

10. IANA Considerations

This document uses URNs to describe XML namespaces and XML schemas

conforming to a registry mechanism described in [RFC3688].

Two URI assignments are requested.

Registration request for the SPPP XML namespace:

urn:ietf:params:xml:ns:sppp:base:1

Registrant Contact: IESG

XML: None. Namespace URIs do not represent an XML specification.

Registration request for the XML schema:

URI: urn:ietf:params:xml:schema:sppp:1

Registrant Contact: IESG

XML: See the "Formal Specification" section of this document (Section

11).

IANA is requested to create a new SPPP registry for Organization

Identifiers that will indicate valid strings to be used for well-known

enterprise namespaces.

This document makes the following assignments for the OrgIdType

namespaces:

 Namespace OrgIdType namespace string

 ---- ----------------------------

 IANA Enterprise Numbers iana-en

11. Formal Specification

This section provides the draft XML Schema Definition for the SPPP

protocol.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns:spppb="urn:ietf:params:xml:ns:sppp:base:1"

 xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:ietf:params:xml:ns:sppp:base:1"

 elementFormDefault="qualified" xml:lang="EN">

 <annotation>

 <documentation>

 ------------------ Object Type Definitions --------------

 </documentation>

 </annotation>

 <complexType name="RteGrpType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rgName" type="spppb:ObjNameType"/>

 <element name="rrRef" type="spppb:RteRecRefType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="dgName" type="spppb:ObjNameType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="peeringOrg" type="spppb:OrgIdType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="sourceIdent" type="spppb:SourceIdentType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="isInSvc" type="boolean"/>

 <element name="priority" type="unsignedShort"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DestGrpType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="dgName" type="spppb:ObjNameType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="PubIdType" abstract="true">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="dgName" type="spppb:ObjNameType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="TNType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="tn" type="string"/>

 <element name="rrRef" type="spppb:RteRecRefType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="TNRType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="startTn" type="string"/>

 <element name="endTn" type="string"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="TNPType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="tnPrefix" type="string"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RNType">

 <complexContent>

 <extension base="spppb:PubIdType">

 <sequence>

 <element name="rn" type="string" default="true"/>

 <element name="corInfo" type="spppb:CORInfoType"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RteRecType" abstract="true">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rrName" type="spppb:ObjNameType"/>

 <element name="priority" type="unsignedShort" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="NAPTRType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="order" type="unsignedShort"/>

 <element name="flags" type="string" minOccurs="0"/>

 <element name="svcs" type="string"/>

 <element name="regx" type="spppb:RegexParamType"

 minOccurs="0"/>

 <element name="repl" type="string" minOccurs="0"/>

 <element name="ttl" type="positiveInteger" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="NSType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="hostName" type="string"/>

 <element name="ttl" type="positiveInteger" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="URIType">

 <complexContent>

 <extension base="spppb:RteRecType">

 <sequence>

 <element name="ere" type="string" default="^(.*)$"/>

 <element name="uri" type="string"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RteGrpOfferType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="rteGrpOfferKey" type="spppb:RteGrpOfferKeyType"

 />

 <element name="status" type="spppb:RteGrpOfferStatusType"/>

 <element name="offerDateTime" type="dateTime"/>

 <element name="acceptDateTime" type="dateTime" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="EgrRteType">

 <complexContent>

 <extension base="spppb:BasicObjType">

 <sequence>

 <element name="egrRteName" type="spppb:ObjNameType"/>

 <element name="pref" type="unsignedShort"/>

 <element name="regxRewriteRule" type="spppb:RegexParamType"/>

 <element name="ingrRteRec" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <annotation>

 <documentation> ------------------ Abstract Object and Element

 Type Definitions -------------- </documentation>

 </annotation>

 <complexType name="BasicObjType" abstract="true">

 <sequence>

 <element name="rant" type="spppb:OrgIdType"/>

 <element name="rar" type="spppb:OrgIdType"/>

 <element name="cDate" type="dateTime" minOccurs="0"/>

 <element name="mDate" type="dateTime" minOccurs="0"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="RegexParamType">

 <sequence>

 <element name="ere" type="string" default="^(.*)$"/>

 <element name="repl" type="string"/>

 </sequence>

 </complexType>

 <simpleType name="OrgIdType">

 <restriction base="string"/>

 </simpleType>

 <simpleType name="ObjNameType">

 <restriction base="string"/>

 </simpleType>

 <simpleType name="TransIdType">

 <restriction base="string"/>

 </simpleType>

 <simpleType name="MinorVerType">

 <restriction base="unsignedLong"/>

 </simpleType>

 <complexType name="ObjKeyType">

 <sequence>

 <element name="rant" type="spppb:OrgIdType"/>

 <element name="name" type="spppb:ObjNameType"/>

 </sequence>

 </complexType>

 <complexType name="RteRecRefType">

 <sequence>

 <element name="rrKey" type="spppb:ObjKeyType"/>

 <element name="priority" type="unsignedShort"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="SourceIdentType">

 <sequence>

 <element name="sourceIdentLabel" type="string"/>

 <element name="sourceIdentScheme"

 type="spppb:SourceIdentSchemeType"/>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <simpleType name="SourceIdentSchemeType">

 <restriction base="token">

 <enumeration value="uri"/>

 <enumeration value="ip"/>

 <enumeration value="rootDomain"/>

 </restriction>

 </simpleType>

 <complexType name="CORInfoType">

 <sequence>

 <element name="corClaim" type="boolean" default="true"/>

 <element name="cor" type="boolean" default="false"

 minOccurs="0"/>

 <element name="corDate" type="dateTime" minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="SvcMenuType">

 <sequence>

 <element name="serverStatus" type="spppb:ServerStatusType"/>

 <element name="majMinVersion" type="string"

 maxOccurs="unbounded"/>

 <element name="objURI" type="anyURI" maxOccurs="unbounded"/>

 <element name="extURI" type="anyURI" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <simpleType name="ServerStatusType">

 <restriction base="token">

 <enumeration value="inService"/>

 <enumeration value="outOfService"/>

 </restriction>

 </simpleType>

 <complexType name="RteGrpOfferKeyType">

 <sequence>

 <element name="rteGrpKey" type="spppb:ObjKeyType"/>

 <element name="offeredTo" type="spppb:OrgIdType"/>

 </sequence>

 </complexType>

 <simpleType name="RteGrpOfferStatusType">

 <restriction base="token">

 <enumeration value="offered"/>

 <enumeration value="accepted"/>

 </restriction>

 </simpleType>

 <complexType name="ExtAnyType">

 <sequence>

 <any namespace="##other" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <annotation>

 <documentation> -------------- Operation Request and Response

 Object Type Definitions ------------ </documentation>

 </annotation>

 <complexType name="ResultCodeType">

 <sequence>

 <element name="code" type="int"/>

 <element name="msg" type="string"/>

 </sequence>

 </complexType>

 <complexType name="RqstObjResultCodeType">

 <complexContent>

 <extension base="spppb:ResultCodeType">

 <sequence>

 <element name="rqstObj" type="spppb:BasicUpdateRqstType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="BasicUpdateRqstType" abstract="true">

 <sequence>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="BasicQueryRqstType" abstract="true">

 <sequence>

 <element name="ext" type="spppb:ExtAnyType" minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="AddRteGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrp" type="spppb:RteGrpType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelRteGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetRteGrpsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AddRteRecRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteRec" type="spppb:RteRecType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelRteRecRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetRteRecsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AddDestGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="destGrp" type="spppb:DestGrpType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelDestGrpRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetDestGrpsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AddPubIdRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelPubIdRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetPubIdsRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="pi" type="spppb:PubIdType"

 maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AddRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOffer" type="spppb:RteGrpOfferType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AcceptRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="RejectRteGrpOfferRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetRteGrpOffersRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="offeredBy" type="spppb:OrgIdType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="offeredTo" type="spppb:OrgIdType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="status" type="spppb:RteGrpOfferStatusType"

 minOccurs="0"/>

 <element name="rteGrpOfferKey"

 type="spppb:RteGrpOfferKeyType" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="AddEgrRteRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="egrRte" type="spppb:EgrRteType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="DelEgrRteRqstType">

 <complexContent>

 <extension base="spppb:BasicUpdateRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="GetEgrRtesRqstType">

 <complexContent>

 <extension base="spppb:BasicQueryRqstType">

 <sequence>

 <element name="objKey" type="spppb:ObjKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <annotation>

 <documentation> -------- Generic Request and Response Definitions

 --------------- </documentation>

 </annotation>

 <element name="spppUpdateRequest">

 <complexType>

 <sequence>

 <element name="clientTransId" type="spppb:TransIdType"

 minOccurs="0"/>

 <element name="minorVer" type="spppb:MinorVerType"

 minOccurs="0"/>

 <element name="rqst" type="spppb:BasicUpdateRqstType"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="spppUpdateResponse">

 <complexType>

 <sequence>

 <element name="clientTransId" type="spppb:TransIdType"

 minOccurs="0"/>

 <element name="serverTransId" type="spppb:TransIdType"/>

 <element name="overallResult" type="spppb:ResultCodeType"/>

 <element name="rqstObjResult"

 type="spppb:RqstObjResultCodeType" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="spppQueryRequest">

 <complexType>

 <sequence>

 <element name="minorVer" type="spppb:MinorVerType"

 minOccurs="0"/>

 <element name="rqst" type="spppb:BasicQueryRqstType"/>

 </sequence>

 </complexType>

 </element>

 <element name="spppQueryResponse">

 <complexType>

 <sequence>

 <element name="overallResult" type="spppb:ResultCodeType"/>

 <element name="resultSet" type="spppb:BasicObjType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="spppServerStatusRequest">

 <complexType>

 <sequence>

 <element name="minorVer" type="spppb:MinorVerType"

 minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="spppServerStatusResponse">

 <complexType>

 <sequence>

 <element name="overallResult" type="spppb:ResultCodeType"/>

 <element name="svcMenu" type="spppb:SvcMenuType"/>

 </sequence>

 </complexType>

 </element>

</schema>

12. Acknowledgments

This document is a result of various discussions held in the DRINKS

working group and within the DRINKS protocol design team, which is

comprised of the following individuals, in alphabetical order:

Alexander Mayrhofer, Deborah A Guyton, David Schwartz, Lisa Dusseault,

Manjul Maharishi, Mickael Marrache, Otmar Lendl, Richard Shockey,

Samuel Melloul, and Sumanth Channabasappa.

13. References

13.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC2277]
Alvestrand, H.T., "IETF Policy on Character Sets

and Languages", BCP 18, RFC 2277, January 1998.

[RFC3629]
Yergeau, F., "UTF-8, a transformation format of

ISO 10646", STD 63, RFC 3629, November 2003.

[RFC3688]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:Harald.T.Alvestrand@uninett.no
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629

Mealling, M., "The IETF XML Registry", BCP 81,

RFC 3688, January 2004.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[I-D.ietf-

drinks-sppp-

over-soap]

Cartwright, K and V Bhatia, "SPPP Over SOAP and

HTTP", Internet-Draft draft-ietf-drinks-sppp-

over-soap-07, November 2011.

13.2. Informative References

[RFC5321]
Klensin, J., "Simple Mail Transfer Protocol",

RFC 5321, October 2008.

[RFC3261]

Rosenberg, J., Schulzrinne, H., Camarillo, G.,

Johnston, A., Peterson, J., Sparks, R.,

Handley, M. and E. Schooler, "SIP: Session

Initiation Protocol", RFC 3261, June 2002.

[RFC3761]

Faltstrom, P. and M. Mealling, "The E.164 to

Uniform Resource Identifiers (URI) Dynamic

Delegation Discovery System (DDDS) Application

(ENUM)", RFC 3761, April 2004.

[RFC4725]

Mayrhofer, A. and B. Hoeneisen, "ENUM

Validation Architecture", RFC 4725, November

2006.

[RFC5486]

Malas, D. and D. Meyer, "Session Peering for

Multimedia Interconnect (SPEERMINT)

Terminology", RFC 5486, March 2009.

[RFC2781]

Hoffman, P. and F. Yergeau, "UTF-16, an

encoding of ISO 10646", RFC 2781, February

2000.

[I-D.ietf-drinks-

usecases-

requirements]

Channabasappa, S, "Data for Reachability of

Inter/tra-NetworK SIP (DRINKS) Use cases and

Protocol Requirements", Internet-Draft draft-

ietf-drinks-usecases-requirements-06, August

2011.

Authors' Addresses

Jean-Francois Mule Mule CableLabs 858 Coal Creek Circle Louisville,

CO 80027 USA EMail: jfm@cablelabs.com

Kenneth Cartwright Cartwright TNS 1939 Roland Clarke Place Reston,

VA 20191 USA EMail: kcartwright@tnsi.com

Syed Wasim Ali Ali NeuStar 46000 Center Oak Plaza

Sterling, VA 20166 USA EMail: syed.ali@neustar.biz

Alexander Mayrhofer Mayrhofer enum.at GmbH Karlsplatz 1/9

Wien, A-1010 Austria EMail: alexander.mayrhofer@enum.at

http://tools.ietf.org/html/rfc3688
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-ietf-drinks-sppp-over-soap-07
http://tools.ietf.org/html/draft-ietf-drinks-sppp-over-soap-07
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3761
http://tools.ietf.org/html/rfc3761
http://tools.ietf.org/html/rfc3761
http://tools.ietf.org/html/rfc3761
http://tools.ietf.org/html/rfc4725
http://tools.ietf.org/html/rfc4725
http://tools.ietf.org/html/rfc5486
http://tools.ietf.org/html/rfc5486
http://tools.ietf.org/html/rfc5486
mailto:phoffman@imc.org
mailto:fyergeau@alis.com
http://tools.ietf.org/html/rfc2781
http://tools.ietf.org/html/rfc2781
http://tools.ietf.org/html/draft-ietf-drinks-usecases-requirements-06
http://tools.ietf.org/html/draft-ietf-drinks-usecases-requirements-06
http://tools.ietf.org/html/draft-ietf-drinks-usecases-requirements-06
mailto:jfm@cablelabs.com
mailto:kcartwright@tnsi.com
mailto:syed.ali@neustar.biz
mailto:alexander.mayrhofer@enum.at

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Protocol High Level Design
	3.1. Protocol Layering
	3.2. Protocol Data Model
	4. Transport Protocol Requirements
	4.1. Connection Oriented
	4.2. Request and Response Model
	4.3. Connection Lifetime
	4.4. Authentication
	4.5. Confidentiality and Integrity
	4.6. Near Real Time
	4.7. Request and Response Sizes
	4.8. Request and Response Correlation
	4.9. Request Acknowledgement
	4.10. Mandatory Transport
	5. Base Protocol Data Structures
	5.1. Request and Response Structures
	5.1.1. Update Request and Response Structures
	5.1.1.1. Update Request
	5.1.1.2. Update Response
	5.1.2. Query Request and Response Structures
	5.1.2.1. Query Request
	5.1.2.2. Query Response
	5.2. Response Codes and Messages
	5.3. Basic Object Type and Organization Identifiers
	6. Protocol Commands
	6.1. Add Destination Group Operation
	6.2. Get Destination Groups Operation
	6.3. Add Public Identifier Operation
	6.4. Get Public Identifiers Operation
	6.5. Add Route Group Operation
	6.6. Get Route Groups Operation
	6.7. Add Route Record Operation
	6.8. Get Route Records Operation
	6.9. Add Route Group Offer Operation
	6.10. Accept Route Group Offer Operation
	6.11. Reject Route Group Offer Operation
	6.12. Get Route Group Offers Operation
	6.13. Egress Route Operations
	6.14. Delete Operation
	7. SPPP Examples
	7.1. Add Destination Group
	7.2. Add Route Records
	7.3. Add Route Records -- URIType
	7.4. Add Route Group
	7.5. Add Public Identity -- Successful COR claim
	7.6. Add LRN
	7.7. Add TN Range
	7.8. Add TN Prefix
	7.9. Enable Peering -- Route Group Offer
	7.10. Enable Peering -- Route Group Offer Accept
	7.11. Add Egress Route
	7.12. Get Destination Group
	7.13. Get Public Identity
	7.14. Get Route Group Request
	7.15. Get Route Group Offers Request
	7.16. Get Egress Route
	7.17. Delete Destination Group
	7.18. Delete Public Identity
	7.19. Delete Route Group Request
	7.20. Delete Route Group Offers Request
	7.21. Delete Egress Route
	8. XML Considerations
	8.1. Namespaces
	8.2. Versioning and Character Encoding
	9. Security Considerations
	10. IANA Considerations
	11. Formal Specification
	12. Acknowledgments
	13. References
	13.1. Normative References
	13.2. Informative References
	Authors' Addresses

