
Workgroup: Delay-Tolerant Networking

Internet-Draft: draft-ietf-dtn-dtnma-01

Published: 10 July 2022

Intended Status: Informational

Expires: 11 January 2023

Authors: E.J. Birrane

Johns Hopkins Applied Physics Laboratory

E. Annis

Johns Hopkins Applied Physics Laboratory

S.E. Heiner

Johns Hopkins Applied Physics Laboratory

DTN Management Architecture

Abstract

This document describes the motivation for, and services required

of, the management of devices deployed in a Delay-Tolerant

Networking (DTN) environment. Together, this set of information

outlines a conceptual DTN Management Architecture (DTNMA) suitable

for deployment in any of the challenged and constrained DTN

operational environments.

The DTNMA is supported by two types of asynchronous behavior. First,

the DTNMA does not presuppose any synchronized transport behavior

between managed and managing devices. Second, the DTNMA does not

support any query-response semantics. In this way, the DTNMA allows

for operation in extremely challenging conditions, to include over

uni-directional links and cases where delays/disruptions prevent

operation over traditional transport layers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Scope

1.2. Requirements Language

1.3. Organization

2. Terminology

3. Motivation

3.1. Constrained and Challenged Networks

3.2. Management of Challenged Networks

3.3. Current Network Management Approaches and Limitations

3.3.1. Simple Network Management Protocol (SNMP)

3.3.2. YANG Data Model and NETCONF, RESTCONF, and CORECONF

3.3.3. The Future of Autonomous and Autonomic Network

Management Solutions

3.3.4. Takeaways from Existing Network Management Protocols

3.4. A Network Management Approach for DTNs

4. Desirable Properties of an DTNMA

4.1. Asynchronous, Dynamic, and Highly Logical Architecture

4.2. Model-derived and Hierarchically Organized Definition of

Information

4.3. Intelligent Push of Information

4.4. Minimize Message Size Not Node Processing

4.5. Absolute Data Identification

4.6. Custom Data Definition

4.7. Autonomous Operation

5. Services Provided by an DTNMA

5.1. Configuration

5.2. Reporting

5.3. Autonomous Parameterized Procedure Calls

5.4. Authorized Administration, accounting, and error control

6. DTNMA Roles and Responsibilities

6.1. Agent Responsibilities

6.2. Manager Responsibilities

¶

¶

https://trustee.ietf.org/license-info

7. Logical Data Model

7.1. Data Representations: Constants, Externally Defined Data,

and Variables

7.2. Data Collections: Reports and Tables

7.2.1. Report Templates and Reports

7.2.2. Table Templates and Tables

7.3. Command Execution: Controls and Macros

7.4. Autonomy: Time and State-Based Rules

7.4.1. State-Based Rule (SBR)

7.4.2. Time-Based Rule (TBR)

7.5. Calculations: Expressions, Literals, and Operators

8. System Model

8.1. Control and Data Flows

8.2. Control Flow by Role

8.2.1. Notation

8.2.2. Serialized Management

8.2.3. Challenged, DTN Management

8.2.4. Consolidated Message Management

8.2.5. Multiplexed Management

8.2.6. Data Fusion

9. IANA Considerations

10. Security Considerations

11. Informative References

Authors' Addresses

1. Introduction

The Delay-Tolerant Networking (DTN) architecture (as described in

[RFC4838]) has been designed to cope with data exchange in

challenged networks. Just as the DTN architecture requires new

capabilities for transport and transport security, special

consideration must be given for the management of DTN devices.

This document describes the DTN Management Architecture (DTNMA)

designed to provide configuration, monitoring, and local control of

both application and network services on a managed device operating

either within or across a challenged network.

The structure of the DTNMA is derived from the unique properties of

challenged networks are defined in [RFC7228]. These properties

include cases where an end-to-end transport path may not exist at

any moment in time and when delivery delays may prevent timely

communications between a network operator and a managed device.

These challenges may be caused by physical impairments such as long

signal propagations and frequent link disruptions or by other

factors such as quality-of-service prioritizations, service-level

agreements, and other consequences of traffic management and

scheduling.

¶

¶

¶

Device management in these environments must occur without human

interactivity, without system-in-the-loop synchronous function, and

without requiring a synchronous underlying transport layer. This

means that managed devices need to determine their own schedules for

data reporting, their own operational configuration, and perform

their own error discovery and mitigation. Importantly, these

capabilities must be designed and implemented in a way that results

in outcomes that are determinable by an outside observer as such

observers may need to connect with a managed device after

significant periods of disconnectivity.

The desire to define asynchronous and autonomous device management

is not new. However, challenged networks (in general) and the DTN

environment (in particular) represent unique deployment scenarios

and impose unique design constraints. To the extent that these

environments differ from more traditional, enterprise networks their

management may also differ from the management of enterprise

networks. Therefore, existing techniques may need to be adapted to

operate in the DTN environment or new techniques may need to be

created.

Ultimately, the DTNMA is designed to leverage any transport,

network, and security solutions designed for challenged networks.

However the DTNMA is designed to be usable in any environment in

which the Bundle Protocol (BPv7) [RFC9171] may be deployed.

1.1. Scope

This document describes the motivation, services, desirable

properties, roles/responsibilities, logical data model, and system

model that form the DTNMA. These descriptions comprise a concept of

operations for management in challenged networks

This document is not a normative standardization of a physical data

model or any individual protocol. Instead, it serves as informative

guidance to authors and users of such models and protocols.

The DTNMA is independent of transport and network layers. It does

not, for example, require the use of BP, TCP, or UDP. Similarly, it

does not pre-suppose the use of IPv4 or IPv6.

The DTNMA is not bound to a particular security solution and does

not presume that transport layers can exchange messages in a timely

manner. It is assumed that any network using this architecture

supports services such as naming, addressing, routing, and security

that are required to communicate DTNMA messages as would be the case

with any other messages in the network.

¶

¶

¶

¶

¶

¶

¶

While possible that a challenged network may interface with an

unchallenged network, this document does not specifically address

compatibility with other management approaches.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

1.3. Organization

The remainder of this document is organized into the following seven

sections, described as follows.

Terminology - This section identifies those terms critical to

understanding DTNMA concepts. Whenever possible, these terms

align in both word selection and meaning with their analogs from

other management protocols.

Motivation - This section provides an overall motivation for this

work, to include explaining why this approach is a useful

alternative to existing network management approaches.

Desirable Properties - This section identifies the properties

that guide the definition of the system and logical models that

comprise the DTNMA.

Services Provided - This section identifies and defines the DTNMA

services provided to network and mission operators.

Roles and Responsibilities - This section identifies roles in the

DTNMA and their associated responsibilities. It provides the

context for discussing how services are provided for both managed

and managing devices.

Logical Data Model - This section describes the kinds of data,

procedures, autonomy, and associated hierarchical structure

inherent to the DTNMA.

System Model - This section describes data flows amongst various

defined DTNMA roles. These flows capture how the DTNMA system

works to manage devices across a challenged network.

2. Terminology

Actor - A software service running on either managed or managing

devices for the purpose of implementing management protocols

between such devices. Actors may implement the "Manager" role,

"Agent" role, or both.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Agent Role (or Agent) - A role associated with a managed device,

responsible for reporting performance data, accepting/performing

controls, error handling and validation, and executing any

autonomous behaviors. DTNMA Agents exchange information with

DTNMA Managers operating either on the same device or on a remote

managing device.

DTN Management - Management that does not depend on stateful

connections or real time delivery of management messages. Such

management allows for asynchronous commanding to autonomous

managers running on managed devices. This management is designed

to run in any environment conformant to the DTN architecture and/

or in any environment deploying a BPv7 network.

Externally Defined Data (EDD) - Information made available to a

DTNMA Agent by a managed device, but not computed directly by the

DTNMA Agent itself.

Variables (VARs) - Typed information that is computed by a DTNMA

Agent, typically as a function of EDD values and/or other

Variables.

Constants (CONST) - A Constant represents a typed, immutable

value that is referred to by a semantic name. Constants are used

in situations where substituting a name for a fixed value

provides useful semantic information. For example, using the

named constant PI rather than the literal value 3.14159.

Controls (CTRLs) - Procedures run by a DTNMA Actor to change the

behavior, configuration, or state of an application or protocol

being managed within a DTN. Controls may also be used to request

data from an Agent and define the rules associated with

generation and delivery.

Literals (LITs) - A Literal represents a typed value without a

semantic name. Literals are used in cases where adding a semantic

name to a fixed value provides no useful semantic information.

For example, the number 4 is a Literal value.

Macros (MACROs) - A named, ordered collection of Controls and/or

other Macros.

Manager Role (or Manager) - A role associated with a managing

device responsible for configuring the behavior of, and

eventually receiving information from, DTNMA Agents. DTNMA

Managers interact with one or more DTNMA Agents located on the

same device and/or on remote devices in the network.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Operator (OP) - The enumeration and specification of a

mathematical function used to calculate variable values and

construct expressions to evaluate DTNMA Agent state.

Report (RPT) - A typed, ordered collection of data values

gathered by one or more DTNMA Agents and provided to one or more

DTNMA Managers. Reports only contain typed data values and the

identity of the Report Template (RPTT) to which they conform.

Report Template (RPTT) - A named, typed, ordered collection of

data types that represent the schema of a Report. This template

is generated by a DTNMA Manager and communicated to one or more

other DTNMA Managers and DTNMA Agents.

Rule - A unit of autonomous specification that provides a

stimulus-response relationship between time or state on an DTNMA

Agent and the actions or operations to be run as a result of that

time or state. A Rule might trigger actions such as updating a

Variable, producing a Report or a Table, and running a Control.

State-Based Rule (SBR) - Any Rule triggered by the calculable

internal state of the DTNMA Agent.

Synchronous Management - Management that assumes messages will be

delivered and acted upon in real or near-real-time. Synchronous

management often involves immediate replies of acknowledgment or

error status. Synchronous management is often bound to underlying

transport protocols and network protocols to ensure reliability

or source and sender identification.

Table (TBL) - A typed collection of data values organized in a

tabular way in which columns represent homogeneous types of data

and rows represent unique sets of data values conforming to

column types. Tables only contain typed data values and the

identity of the Table Template (TBLT) to which they conform.

Table Template (TBLT) - A named, typed, ordered collection of

columns that comprise the structure for representing tabular data

values. This template forms the structure of a table (TBL).

Time-Based Rule (TBR) - A time-based rule is a specialization,

and simplification, of a state-based rule in which the rule

stimulus is triggered by relative or absolute time on an Agent.

3. Motivation

Early work on the rationale and motivation for specialized

management for the DTN architecture was captured in [BIRRANE1],

[BIRRANE2], and [BIRRANE3]. Prototyping work done in accordance with

the DTN Research Group within the IRTF as documented in [I-D.irtf-

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

dtnrg-dtnmp] provides some of the desirable properties and necessary

adaptations for this proposed management system for challenged

networks.

The unique nature and constraints that characterize challenged

networks require the development of new network capabilities to

deliver expected network functions. For example, the distinctive

constraints of the DTN architecture required the development of BPv7

[RFC9171] for transport functions and the Bundle Protocol Security

Extensions (BPSec) [RFC9172] to provide end-to-end security.

Similarly, a new approach to network management and the associated

capabilities is necessary for operation in these challenged

environments and when using these new transport and security

mechanisms.

This section discusses the characteristics of challenged networks

and how they may violate the assumptions made by non-DTNMA

approaches about the operating environment.

3.1. Constrained and Challenged Networks

Constrained networks are defined as networks where "some of the

characteristics pretty much taken for granted with link layers in

common use in the Internet at the time of writing are not

attainable." ([RFC7228]). This broad definition captures a variety

of potential issues relating to physical, technical, or regulatory

constraints on message transmission. Constrained networks typically

include nodes that regularly reboot or are otherwise turned off for

long periods of time, transmit at low or asynchronous bitrates, or

have very limited computational resources.

Separately, a challenged network is defined as one that "has serious

trouble maintaining what an application would today expect of the

end-to-end IP model" ([RFC7228]). This definition includes networks

where there is never simultaneous end-to-end connectivity, when such

connectivity is interrupted at planned or unplanned intervals, or

when delays exceed those that could be accommodated by IP-based

transport. Links in such networks are often unavailable due to

attenuations, propagation delays, mobility, occultation, and other

limitations imposed by energy and mass considerations.

These networks exhibit the following properties that impact the way

in which the function of network management is considered.

No end-to-end path is guaranteed to exist at any given time

between any two nodes.

Round-trip communications between any two nodes within any given

time window may be impossible.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Latencies on the order of seconds, hours, or days must be

tolerated.

Links may be uni-directional.

Bi-directional links may have asymmetric data rates.

Dependence on external infrastructure, software, systems, or

processes such as Domain Name Service (DNS) or Certificate

authorities (CAs) cannot be guaranteed.

Finally, it is noted that "all challenged networks are constrained

networks ... but not all constrained networks are challenged

networks ... Delay-Tolerant Networking (DTN) has been designed to

cope with challenged networks" ([RFC7228]).

Challenged networks differ from other kinds of constrained networks,

in part, in the way that the topology and roles and responsibilities

of the network may evolve over time. From the time at which data is

generated to the time at which that data is delivered, the topology

of the network and the roles assigned to various nodes, devices, and

other actors may have changed several times. In certain

circumstances, the physical node receiving messages for a given

logical destination may have also changed.

Challenged networks cannot guarantee that a timely data exchange can

be maintained between managing and managed devices. The topological

changes characteristic of these networks can impact the path of

messages, requiring the transport to wait to establish the

incremental connectivity necessary to advance messages along their

expected route. The BPv7 transport protocol implements this store-

and-forward operation for DTNs.

3.2. Management of Challenged Networks

When topological change impacts the semantic roles and

responsibilities of nodes in the network then local configuration

and autonomy must be present at the node to determine and execute

time-variant changes. For example, the BPSec protocol does not

encode security destinations and, instead, requires nodes in a

network to identify themselves as security verifiers or acceptors

when receiving secured messages.

When applied to network management, the semantic roles of Agent and

Manager may also change with the evolving topology of the network.

Individual nodes must implement desirable behavior without relying

on a single configuration oracle or other coordinating function such

as an operator-in-the-loop and/or supporting infrastructure. These

mechanisms cannot be supported by an asynchronous, challenged

network.

*

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

The support for changing roles implies that there MUST NOT be a

defined relationship between a particular manager and agent in a

network. A network management architecture for challenged networks

must support the association of multiple managers with a single

agent, allow "control from" and "reporting to" managers to function

independent of one another, and allow the logical role of a manager

to be physically shared among assets and change over time.

Together, this means that a network management architecture suitable

for challenged environments must account for certain operational

situations.

Managed devices that are only accessible via a uni-directional

link, or via a link whose duration is shorter than a single

round-trip propagation time.

Links that may be significantly constrained by capacity or

reliability, but at (predictable or unpredictable) times may

offer significant throughput.

Multi-hop challenged networks that interconnect two or more

unchallenged networks such that managed and managing devices

exist in different networks.

Networks unable to support session-based transport. For example,

when propagation delays exceed the Maximum Segment Lifetime (MSL)

of the Transmission Control Protocol (TCP).

In these and related scenarios, managed devices need to operate with

local autonomy because managing devices may not be available within

operationally-relevant timeframes. Managing devices deliver

instruction sets that govern the local, autonomous behavior of the

managed device. These behaviors include (but are not limited to)

collecting performance data, state, and error conditions, and

applying pre-determined responses to pre-determined events. The goal

is asynchronous and autonomous communication between the device

being managed and the manager, at times never expecting a reply, and

with knowledge that commands and queries may be delivered much later

than the initial request.

3.3. Current Network Management Approaches and Limitations

Several network management solutions have been developed for both

local-area and wide-area networks. Their capabilities range from

simple configuration and report generation to complex modeling of

device settings, state, and behavior. Each of these approaches are

successful in the domains for which they have been built, but are

not all equally functional when deployed in a challenged network.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Generally, network management solutions that require managers and

agents to push and pull large sets of data may fail to operate in a

challenged (and thus, constrained) environment as a function of

transmit power, bitrates, and the ability of the network to store

and forward large data volumes over long periods of time.

Newer network management approaches are exploring the application of

moe efficient message-based management, less reliance on end-to-end

transport sessions, and increased levels of autonomy on managed

devices. These approaches focus on problems different from those

described above for challenged networks. For example, much of the

autonomous network management work currently undertaken focuses more

on well-resourced, unchallenged networks where devices self-

configure, self-heal, and self-optimize with other nodes in their

vicinity. While an important and transformational capability, such

solutions will not be deployable in a challenged network

environment.

This section describes some of the well-known, standardized

protocols for network management and contrasts their purposes with

the needs of challenged network management solutions.

3.3.1. Simple Network Management Protocol (SNMP)

Early network management tools designed for unchallenged networks

provide synchronous mechanisms for communicating locally-collected

data from devices to operators. Applications are managed using a

"pull" mechanism, requiring a manager to explicitly request the data

to be produced and transmitted by an agent.

The de facto example of this architecture is the Simple Network

Management Protocol (SNMP) [RFC3416]. SNMP utilizes a request/

response model to set and retrieve data values such as host

identifiers, link utilizations, error rates, and counters between

application software on agents and managers. Data may be directly

sampled or consolidated into representative statistics.

Additionally, SNMP supports a model for unidirectional push

notification messages, called traps, based on predefined triggering

events.

SNMP managers can query agents for status information, send new

configurations, and request to be informed when specific events have

occurred. Traps and queryable data are defined in a data model known

as Managed Information Bases (MIBs) which define the information for

a particular data standard, protocol, device, or application.

While there is a large installation base for SNMP, there are several

aspects of the protocol that make it inappropriate for use in a

challenged network. SNMP relies on sessions with low round-trip

¶

¶

¶

¶

¶

¶

latency to support its "pull" model that challenged networks cannot

maintain. Complex management can be achieved, but only through

craftful orchestration using a series of real-time, end-to-end,

manager-generated query-and-response logic that is not possible in

challenged networks.

The SNMP trap model provides some low-fidelity Agent-side

processing. Traps are typically used for alerting purposes, as they

do not support an agent response to the event occurrence. In a

challenged network where the delay between a manager receiving an

alert and sending a response can be significant, the SNMP trap model

is insufficient for event handling.

Adaptive modifications to SNMP to support challenged networks and

more complex application-level management would alter the basic

function of the protocol (data models, control flows, and syntax) so

as to be functionally incompatible with existing SNMP installations.

This approach is therefore not suitable for use in challenged

networks.

3.3.2. YANG Data Model and NETCONF, RESTCONF, and CORECONF

3.3.2.1. The YANG Data Model

Yet Another Next Generation (YANG) [RFC6020] is a data modeling

language used to model configuration and state data of managed

devices and applications. The YANG model defines a schema for

organizing and accessing a device's configuration or operational

information. Once a model is developed, it is loaded to both the

client and server, and serves as a contract between the two. A YANG

model can be complex, describing many containers of managed

elements, each providing methods for device configuration or

reporting of operational state.

YANG supports the definition of parameterized Remote Procedure Calls

(RPCs) to be executed on managed nodes as well as the definition of

push notifications within the model. The RPCs are used to execute

commands on a device, generating an expected, structured response.

However, RPC execution is strictly limited to those issued by the

client. Commands are executed immediately and sequentially as they

are received by the server, and there is no method to autonomously

execute RPCs triggered by specific events or conditions.

YANG defines the schema for data used by network management

protocols such as NETCONF [RFC6241], RESTCONF [RFC8040], and

CORECONF [I-D.ietf-core-comi]. These protocols provide the

mechanisms to install, manipulate, and delete the configuration of

network devices.

¶

¶

¶

¶

¶

¶

3.3.2.2. YANG-Based Management Protocols

NETCONF is a stateful, XML-based protocol that provides a RPC syntax

to retrieve, edit, copy, or delete any data nodes or exposed

functionality on the server. It requires that underlying transport

protocols support long-lived, reliable, low-latency, sequenced data

delivery sessions. NETCONF connections are required to provide

authentication, data integrity, confidentiality, and replay

protection through secure transport protocols such as SSH or TLS. A

bi-directional NETCONF session must be established before any data

transfer can occur.

NETCONF uses verbose XML files to provide the ability to update and

fetch multiple data elements simultaneously. These XML files are not

easily or efficiently compressed, which is an important

consideration for challenged networks.

RESTCONF is a stateless RESTful protocol based on HTTP. RESTCONF

configures or retrieves individual data elements or containers

within YANG data models by passing JSON over REST. This JSON

encoding is used to GET, POST, PUT, PATCH, or DELETE data nodes

within YANG modules. RESTCONF requires the use of a secure transport

such as TLS.

Unlike NETCONF, RESTCONF is stateless. However, the transfer of

large data sets, such as configuration changes of many data

elements, or the collection of information, depends greatly on the

support of synchronous communication.

CORECONF is stateless, as RESTCONF is, and is built atop the

Constrained Application Protocol (CoAP) [RFC7252] which defines a

messaging construct developed to operate specifically on constrained

devices and networks by limiting message size and fragmentation.

CORECONF requires the use of DTLS or Object Security for Constrained

RESTful Environments (OSCORE) [RFC8613] to fulfil its security

requirements. COAP supports a store and forward operation similar to

DTN; however, it operates strictly at the application layer and

requires specification of pre-determined proxies and moments of bi-

directional communication.

CORECONF leverages the Concise Binary Object Representation (CBOR)

[RFC8949] of YANG modules [I-D.ietf-core-yang-cbor] and provides

further compressibility through the use of YANG Schema Item

iDentifiers (SIDs) [I-D.ietf-core-sid]. While these design choices

offer reductions in encoded data size, data compressibility is still

dependent on underlying transport protocols and limited by the

organization of the YANG schema.

¶

¶

¶

¶

¶

¶

3.3.2.3. Limitations of YANG-Based Approaches

YANG notifications are promising for challenged network management,

defined as subscriptions to both YANG notifications [RFC8639]] and

YANG PUSH notifications [RFC8641]. In this model, a client may

subscribe to the delivery of specific containers or data nodes

defined in the model, either on a periodic or "on change" basis. The

notification events can be filtered according to XPath ([xpath]) or

subtree ([RFC6241]) filtering as described in [RFC8639] Section 2.2.

While the YANG model provides great flexibility for configuring a

homogeneous network of devices, it becomes a burden in challenged

networks where concise encoding is necessary. The YANG schema

provides flexibility in the organization of data to the model

developer. The YANG schema supports a broad range of data types

noted in [RFC6991]. All the data nodes within a YANG model are

referenced by a verbose, string-based path of the module, sub-

module, container, and any data nodes such as lists, leaf-lists, or

leaves, without any explicit hierarchical organization based on data

or object type.

Recent efforts for compression of the YANG model have used CBOR and

SIDs to address YANG data nodes through integer identifiers.

However, these compression strategies lack a formal hierarchical

structure. The manual mapping of SIDs to YANG modules and data nodes

limits the portability of these models and further increases the

size of any encoding scheme.

3.3.3. The Future of Autonomous and Autonomic Network Management

Solutions

The future of network operations requires more autonomous behavior

including self-configuration, self-management, self-healing, and

self-optimization. One approach to support this is termed Autonomic

Networking [RFC7575] and includes many recent efforts describe

Autonomic architecture and protocols [RFC8993] as well as cite the

gaps that exist between traditional and Autonomic Networking

approaches [RFC7576]. Challenged networks require similar degrees of

autonomy, however they lack the ability to depend on the complex

coordination between nodes and the centralized and distributed

supporting infrastructure that Autonomic networking proposes.

Policy-based management is a well-established approach that uses

business and operations support systems to monitor and manage

devices and networks in real-time. These systems leverage various,

existing network management protocols and their supporting features,

such as the use of YANG module classification types [RFC8199], to

describe abstract services and support configuration of service

level agreements. These services can then enact additional control

¶

¶

¶

¶

over devices using network element modules. This approach is quite

comprehensive but requires sufficient, supporting infrastructure and

synchronous access, which cannot be provided by challenged networks.

3.3.4. Takeaways from Existing Network Management Protocols

While the protocols described above are useful and well-realized for

different applications and networking environments, they simply do

not meet the requirements for the management of challenged networks.

However, that does not exclude features from each from contributing

to the design of DTNMA.

The concept of a data model for describing network configuration

elements has been used by many protocols to ensure compliance

between managing and managed devices. A data model provides error

checking and bounds operations, which is necessary when controlling

mission critical devices.

The SNMP MIBs provide well-organized, hierarchical OIDs which

support the compressibility necessary for challenged DTNs. YANG,

NETCONF, and RESTCONF support notification abilities needed for DTN

network management, but have limited features for describing

autonomous execution and behavior.

CORECONF provides CBOR encoding and concise reference abilities

using SIDs, but lack a hierarchical structure or authoritative

planning to allocation. While this approach will become too verbose

and prove limiting in the future, the encoding considerations from

CORECONF can be used to inform the design of the DTNMA.

3.4. A Network Management Approach for DTNs

The DTNMA is designed with consideration for the constraints

discussed in section Section 3.1. The DTNMA seeks to incorporate

existing network management protocols and feature. However, there

are core capabilities the DTNMA must provide in order to serve a

challenged network that are not supported by these approaches.

The DTNMA proposes a data model that is that is designed for the

compression required for a challenged network. The efficiency of

data encoding is limited by the efficiency of the underlying data

model. For this reason, naming schemes for the DTNMA must be

hierarchical and patternable, supporting the level of

compressibility needed by the resource-constrained devices that form

a challenged network.

Autonomous behavior is required for the management of a DTN, which

is characterized by link delays and disruptions. The constrained

autonomy model of the DTNMA provides the deterministic management

necessary for managed devices to detect and respond to events

¶

¶

¶

¶

¶

¶

¶

without intervention from an in-the-loop manager. The separation of

remote and local, autonomous managing devices supports autonomous

behavior even when synchronization is not feasible.

The sections below describe the desirable features of the DTNMA and

build from e xisting protocols and mechanisms where possible, with

adaptations made for the challenged networking environment.

4. Desirable Properties of an DTNMA

This section describes those design properties that are desirable

when defining an architecture that must operate across challenged

links in a network. These properties ensure that network management

capabilities are retained even as delays and disruptions in the

network scale. Ultimately, these properties are the driving design

principles for the DTNMA.

4.1. Asynchronous, Dynamic, and Highly Logical Architecture

An DTNMA built to support DTN must be agnostic of the underlying

physical topology, transport protocols, security solutions, and

supporting infrastructure. The DTNMA shall be limited to only the

network management protocols, message structure, and information

content, including but not limited to the type of objects to manage

and the expected behavior and interaction upon access or execution

of those objects. There shall be no prescribed association between

between a manager and an agent other than those defined in the

responsibilities associated with each in this document. There should

be no limitation to the number of managers that can control an

agent, the number of managers that an agent should report to, or any

requirement that a manager and agent relationship implies a pair.

4.2. Model-derived and Hierarchically Organized Definition of

Information

A means to define a shared contract between agent and manager has

long been an approach to network management solutions. A model is a

schema that defines this contract and defines all sources of

information that can be retrieved, configured, or executed, as well

as the various functions for parameterization, filtering, or event

driven behavior. A model gives way to concise representation of

information, intelligent suffixing, and patterning. The DTNMA model

shall be designed with a limited set of object and data types to

allow and be organized hierarchally to provide for highly

compressible and concise encoding. This allows the agents and

managers to infer context with limited link utilization necessary in

DTN.

¶

¶

¶

¶

¶

4.3. Intelligent Push of Information

Pull management mechanisms require that a Manager send a query to an

Agent and then wait for the response to that query. This practice

implies a control-session between entities and increases the overall

message traffic in the network. Challenged networks cannot guarantee

that the round-trip data-exchange will occur in a timely fashion. In

extreme cases, networks may be comprised of solely uni-directional

links which drastically increases the amount of time needed for a

round-trip data exchange. Therefore, pull mechanisms must be avoided

in favor of push mechanisms.

Push mechanisms, in this context, refer to the ability of Agents to

leverage rule-based criteria to determine when and what information

should be sent to managers. This could be based solely off logic

applied to existing VARs or EDDs, based off operations applied to

data elements, or triggered as a function of relative time. Such

mechanisms do not require round-trip communications as Managers do

not request each reporting instance; Managers need only request

once, in advance, that information be produced in accordance with a

predetermined schedule or in response to a predefined state on the

Agent. In this way information is "pushed" from Agents to Managers

and the push is "intelligent" because it is based on some internal

evaluation performed by the Agent.

4.4. Minimize Message Size Not Node Processing

Protocol designers must balance message size versus message

processing time at sending and receiving nodes. Verbose

representations of data simplify node processing whereas compact

representations require additional activities to generate/parse the

compacted message. There is no asynchronous management advantage to

minimizing node processing time in a challenged network. However,

there is a significant advantage to smaller message sizes in such

networks. Compact messages require smaller periods of viable

transmission for communication, incur less re-transmission cost, and

consume less resources when persistently stored en-route in the

network. A DTN Management Protocol (DTNMP) should minimize PDUs

whenever practical, to include packing and unpacking binary data,

variable-length fields, and pre-configured data definitions.

4.5. Absolute Data Identification

Elements within the management system must be uniquely identifiable

so that they can be individually manipulated. Identification schemes

that are relative to system configuration make data exchange between

Agents and Managers difficult as system configurations may change

faster than nodes can communicate.

¶

¶

¶

¶

Consider the following common technique for approximating an

associative array lookup. A manager wishing to do an associative

lookup for some key K1 will (1) query a list of array keys from the

agent, (2) find the key that matches K1 and infer the index of K1

from the returned key list, and (3) query the discovered index on

the agent to retrieve the desired data.

Ignoring the inefficiency of two pull requests, this mechanism fails

when the Agent changes its key-index mapping between the first and

second query. Rather than constructing an artificial mapping from K1

to an index, an AMP must provide an absolute mechanism to lookup the

value K1 without an abstraction between the Agent and Manager.

4.6. Custom Data Definition

Custom definition of new data from existing data (such as through

data fusion, averaging, sampling, or other mechanisms) provides the

ability to communicate desired information in as compact a form as

possible. Specifically, an Agent should not be required to transmit

a large data set for a Manager that only wishes to calculate a

smaller, inferred data set. These new defined data elements could be

calculated and used both as parameters for local stimulus-response

rules-based criteria or simply serve to populate custom reports and

tables. Since the identification of custom data sets is likely to

occur in the context of a specific network deployment, AMPs must

provide a mechanism for their definition.

Aggregation of controls and custom formatting of reports and tables

are equally important. Custom reporting provides the flexibility

allowing the manager to define the desired format of all information

to be sent over the challenged network from the agents, serving to

both save link capacity and increase the value of returned

information. Aggregation of controls allows a manager to specify a

set of controls to execute, specifying both the order and criteria

of execution. This aggregate set of controls can be sent as a single

command rather than a series of sequential operands. In this case it

is additionally possible to use outputs of one command to serve as

an input to the next at the agent.

4.7. Autonomous Operation

DTNMA network functions must be achievable using only knowledge

local to the Agent. Rather than directly controlling an Agent, a

Manager configures an engine of the Agent to take its own action

under the appropriate conditions in accordance with the Agent's

notion of local state and time.

Such an engine may be used for simple automation of predefined tasks

or to support semi-autonomous behavior in determining when to run

¶

¶

¶

¶

¶

tasks and how to configure or parameterize tasks when they are run.

Wholly autonomous operations MAY be supported where required.

Generally, autonomous operations should provide the following

benefits.

Distributed Operation - The concept of pre-configuration allows

the Agent to operate without regular contact with Managers in the

system. The initial configuration (and periodic update) of the

system remains difficult in a challenged network, but an initial

synchronization on stimuli and responses drastically reduces

needs for centralized operations.

Deterministic Behavior - Such behavior is necessary in critical

operational systems where the actions of a platform must be well

understood even in the absence of an operator in the loop.

Depending on the types of stimuli and responses, these systems

may be considered to be maintaining simple automation or semi-

autonomous behavior. In either case, this preserves the ability

of a frequently-out-of-contact Manager to predict the state of an

Agent with more reliability than cases where Agents implement

independent and fully autonomous systems.

Engine-Based Behavior - Several operational systems are unable to

deploy "mobile code" based solutions due to network bandwidth,

memory or processor loading, or security concerns. Engine-based

approaches provide configurable behavior without incurring these

types of concerns associated with mobile code.

Intelligent authentication, authorization, accounting (AAA), and

error checking - A means of autonomous AAA, error checking, and

validation of data and controls will be be required in all cases

where agents or managers are disconnected from the rest of the

network. In addition, there is a need to handle conflicts

including messages that arrive out of order, or at the same time

from different managers whose controls would otherwise conflict.

The need to perform these operations still exists however they

will need to be performed with context provided with controls

sent or in accordance with pre-defined behavior and policy.

5. Services Provided by an DTNMA

The DTNMA provides a method of configuring DTNMA Agents with local,

autonomous management functions, such as rule-based execution of

procedures and generation of reports, to achieve expected behavior

when managed devices exist over a challenged network. It further

allows for dynamic instantiation and population of Variables and

reports through local operations defined by the manager, as well as

custom formatting of tables and reports to be sent back. This gives

the DTNMA significant flexibility to operate over challenged

¶

*

¶

*

¶

*

¶

*

¶

networks, both providing new degrees of freedom over existing

configuration based data models used in synchronous networks and

allowing for more concise formatting over constrained networks. This

architecture makes very few assumptions on the nature of the network

and allow for continuous operation through periods of connectivity

and lack of connectivity. The DTNMA deviates from synchronous

management approaches because it never requires periods of bi-

directional connectivity, and provides the manager flexibility to

describe agent behavior that was unpredicted at the time of the data

model creation.

This section identifies the services that a DTNMA would provide for

management of challenged network resources. These services include

configuration, reporting, autonomous parameterized control, and

administration.

5.1. Configuration

Configuration services update Agent data associated with managed

applications and protocols. Some configuration data might be defined

in the context of an application or protocol, such that any network

using that application or protocol would understand that data. Other

configuration data may be defined tactically for use in a specific

network deployment and not available to other networks even if they

use the same applications or protocols.

With no guarantee of round-trip data exchange, Agents cannot rely on

remote Managers to correct erroneous or stale configurations from

harming the flow of data through a challenged network.

Examples of configuration service behavior include the following.

Creating a new datum as a function of other well-known data:

C = A + B.

Creating a new report as a unique, ordered collection of known

data:

RPT = {A, B, C}.

Storing predefined, parameterized responses to potential future

conditions:

IF (X > 3) THEN RUN CMD(PARM).

5.2. Reporting

Reporting services populate report templates with values collected

or computed by an Agent. The resultant reports are sent to one or

¶

¶

¶

¶

¶

* ¶

¶

*

¶

¶

*

¶

¶

more Managers by the Agent. The term "reporting" is used in place of

the term "monitoring", as monitoring implies a timeliness and

regularity that cannot be guaranteed by a challenged network.

Reports sent by an Agent provide best-effort information to

receiving Managers.

Since a Manager is not actively "monitoring" an Agent, the Agent

must make its own determination on when to send what Reports based

on its own local time and state information. Agents should produce

Reports of varying fidelity and with varying frequency based on

thresholds and other information set as part of configuration

services.

Examples of reporting service behavior include the following.

Generate Report R1 every hour (time-based production).

Generate Report R2 when X > 3 (state-based production).

5.3. Autonomous Parameterized Procedure Calls

Similar to an RPC call, some mechanism MUST exist which allows a

procedure to be run on an Agent in order to affect its behavior or

otherwise change its internal state. Since there is no guarantee

that a Manager will be in contact with an Agent at any given time,

the decisions of whether and when a procedure should be run MUST be

made locally and autonomously by the Agent. Two types of automation

triggers are identified in the DTNMA: triggers based on the internal

state of the Agent and triggers based on an Agent's notion of time.

As such, the autonomous execution of procedures can be viewed as a

stimulus-response system, where the stimulus is the positive

evaluation of a state or time based predicate and the response is

the function to be executed.

The autonomous nature of procedure execution by an Agent implies

that the full suite of information necessary to run a procedure may

not be known by a Manager in advance. To address this situation, a

parameterization mechanism MUST be available so that required data

can be provided at the time of execution on the Agent rather than at

the time of definition/configuration by the Manager.

Autonomous, parameterized procedure calls provide a powerful

mechanism for Managers to "manage" an Agent asynchronously during

periods of no communication by pre-configuring responses to events

that may be encountered by the Agent at a future time.

Examples of potential behavior include the following.

Updating local routing information based on instantaneous link

analysis.

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

Manager Mapping

Managing storage on the device to enforce quotas.

Applying or modifying local security policy.

5.4. Authorized Administration, accounting, and error control

Administration services enforce the potentially complex mapping of

auhorization to configuration, reporting, and control services

amongst Agents and Managers in the network. Fine-grained access

control can specify which Managers may apply which services to which

Agents. This is particularly beneficial in networks that either deal

with multiple administrative entities or overlay networks that cross

administrative boundaries. Whitelists, blacklists, key-based

infrastructures, or other schemes may be used for this purpose.

Other administrative services may place practical restrictions on

the overall number of items that can be kept in a system. This

includes items such as the number of rows kept by an Agent for a

given table template or number of entries for a given report

template.

Examples of administration service behavior include the following.

Agent A1 only Sends reports for Protocol P1 to Manager M1.

Agent A2 only accepts a configurations for Application Y from

Managers M2 and M3.

Agent A3 accepts services from any Manager providing the proper

authentication token.

Note that the administrative enforcement of access control is

different from security services provided by the networking stack

carrying such messages.

6. DTNMA Roles and Responsibilities

By definition, Agents reside on managed devices and Managers reside

on managing devices. There is however no pre-supposed architecture

that connects managers and agents and therefore a single device

could assume both roles. This section describes the responsibilities

associated with each role and how these roles participate in network

management.

6.1. Agent Responsibilities

Agents must receive messages from managers that govern

application control, reporting, and autonomous behavior. Agents

must maintain a list of managers which have delivered control

* ¶

* ¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

Application Support

Local Data Collection

Autonomous Control

Autonomous Reporting

Custom Data Definition

Consolidate Messages

Error Checking and State Control

messages along with a list of "report to" managers. The list of

requested reports must be mapped to one or more managers.

Agents MUST collect all data, execute all controls, populate all

reports and run operations required by each application which the

Agent manages. Agents MUST report supported applications by their

data model so that Managers in a network understands what

information is understood by what Agent.

Agents MUST collect from local firmware (or other on-board

mechanisms) and report all data defined for the management of

applications for which they have been configured. Agents must

further use this information in the computation of variable

expressions and rules-based autonomy.

Agents MUST determine, as previously prescribed by a manager,

whether a procedure should be invoked.

Agents MUST determine, without real-time Manager intervention,

whether and when to populate and transmit a given report or table

targeted to one or more Managers in the network.

Agents MUST provide mechanisms for operators in the network to

use configuration services to create customized data definitions

in the context of a specific network or network use-case. Agents

MUST allow for the creation, listing, and removal of such

definitions in accordance with whatever security models are

deployed within the particular network.

Where applicable, Agents MUST verify the validity of these

definitions when they are configured and respond in a way

consistent with the logging/error-handling policies of the Agent

and the network.

Agents SHOULD produce as few messages as possible when sending

information. For example, rather than sending multiple messages,

each with one report to a Manager, an Agent SHOULD prefer to send

a single message containing multiple reports.

Agents should perform error checking and validation of incoming

manager messages as well as internally computed values. This

includes but is not limited to validating the syntax of messages

and controls according to the data model, preventing circular

¶

¶

¶

¶

¶

¶

¶

¶

Authorized Administration and Accounting

Agent Capabilities Mapping

Agent Messaging

Data Collection

Custom Data Definitions

Data Fusion

references in custom defined data, and verifying maximum nesting

levels or table lengths have not been exceeded. This also

includes control of internal agent operations and state. Finally

there must be a means to handle conflicts such as messages that

arrive out of order or messages from more than one authorized

manager.

The Agent shall provide authorized administration and accounting

to restrict execution of controls, custom data definition, and

reporting to only those authorized nodes. Both nominal and

exception events shall be logged where applicable.

6.2. Manager Responsibilities

Managers must maintain a list of supported models and managed

applications. Managers MUST understand what applications are

managed by the various Agents with which they communicate and

maintain a list of those managed agents. Managers should not

attempt to request, invoke, or refer to application information

for applications not managed by an Agent. Agents must further

maintain a list of all agents that are reporting to this manager.

Managers must generate and transmit control messages destined for

agents. This includes all the control types, configuration, and

parameterization described in the logical data model.

Managers MUST receive information from Agents asynchronously upon

the configuration and production of reports by the local and

other external managers, collecting responses from Agents over

time. Managers MAY try to detect conditions where Agent

information has not been received within operationally relevant

time spans and react in accordance with network policy.

Managers should provide the ability to define custom data

definitions. Any custom definitions MUST be transmitted to

appropriate Agents and these definitions MUST be remembered to

interpret the reporting of these custom values from Agents in the

future.

Managers MAY support the fusion of data from multiple Agents with

the purpose of transmitting fused data results to other Managers

within the network. Managers MAY receive fused reports from other

¶

¶

¶

¶

¶

¶

Error Checking and State Control

Authorized Administration and Accounting

Managers pursuant to appropriate security and administrative

configurations.

Managers should perform error checking and validation of incoming

agent messages as well as internally configured controls for

agents. This includes but is not limited to validating the syntax

of messages and controls according to the data model, preventing

circular references in custom defined data, and verifying maximum

nesting levels or table lengths have not been exceeded. This also

includes control of internal manager operations and state.

The Manager shall provide authorized administration and

accounting and send controls to only those agents for which it is

authorized. It shall additionally validate incoming agent reports

according to any defined restrictions. Both nominal and exception

events shall be logged where applicable.

7. Logical Data Model

The DTNMA logical data model captures the types of information that

should be collected and exchanged to implement necessary roles and

responsibilities. The data model presented in this section does not

presuppose a specific mapping to a physical data model or encoding

technique; it is included to provide a way to logically reason about

the types of data that should be exchanged in a DTN managed network.

The elements of the DTNMA logical data model are described as

follows.

7.1. Data Representations: Constants, Externally Defined Data, and

Variables

There are three fundamental representations of data in the DTNMA:

(1) data whose values do not change as a function of time or state,

(2) data whose values change as determined by sampling/calculation

external to the network management system, and (3) data whose values

are calculated internal to the network management system.

Data whose values do not change as a function of time or state are

defined as Constants (CONST). CONST values are strongly typed, named

values that cannot be modified once they have been defined.

Data sampled/calculated external to the network management system

are defined as Externally Defined Data" (EDD). EDD values represent

the most useful information in the management system as they are

provided by the applications or protocols being managed on the

Agent. It is RECOMMENDED that EDD values be strongly typed to avoid

issues with interpreting the data value. It is also RECOMMENDED that

¶

¶

¶

¶

¶

¶

¶

the timeliness/staleness of the data value be considered when using

the data in the context of autonomous action on the Agent.

Data that is calculated internal to the network management system is

defined as a Variable (VAR). VARs allow the creation of new data

values for use in the network management system. New value

definitions are useful for storing user-defined information, storing

the results of complex calculations for easier re-use, and providing

a mechanism for combining information from multiple external

sources. It is RECOMMENDED that VARs be strongly typed to avoid

issues with interpreting the data value. In cases where a VAR

definition relies on other VAR definitions, mechanisms to prevent

circular references MUST be included in any actual data model or

implementation.

7.2. Data Collections: Reports and Tables

Individual data values may be exchanged amongst Agents and Managers

in the DTNMA. However, data are typically most useful to a Manager

when received as part of a set of information. Ordered collections

of data values can be produced by Agents and sent to Managers as a

way of efficiently communicating Agent status. Within the DTNMA, the

structure of the ordered collection is treated separately from the

values that populate such a structure.

The DTNMA provides two ways of defining collections of data: reports

and tables. Reports are ordered sets of data values, whereas Tables

are special types of reports whose entries have a regular, tabular

structure.

7.2.1. Report Templates and Reports

The typed, ordered structure of a data collection is defined as a

Report Template (RPTT). A particular set of data values provided in

compliance with such a template is called a Report (RPT).

Separating the structure and content of a report reduces the overall

size of RPTs in cases where reporting structures are well known and

unchanging. RPTTs can be synchronized between an Agent and a Manager

so that RPTs themselves do not incur the overhead of carrying self-

describing data. RPTTs may include EDD values, VARs, and also other

RPTTs. In cases where a RPTT includes another RPTTs, mechanisms to

prevent circular references MUST be included in any actual data

model or implementation.

Protocols and applications managed in the DTNMA may define common

RPTTs. Additionally, users within a network may define their own

RPTTs that are useful in the context of a particular deployment.

¶

¶

¶

¶

¶

¶

¶

Unlike tables, reports do not exploit assumptions on the underlying

structure of their data. Therefore, unlike tables, operators can

define new reports at any time as part of the runtime configuration

of the network.

7.2.2. Table Templates and Tables

Tables optimize the communication of multiple sets of data in

situations where each data set has the same syntactic structure and

with the same semantic meaning. Unlike reports, the regularity of

tabular data representations allow for the addition of new rows

without changing the structure of the table. Attempting to add a new

data set at the end of a report would require alterations to the

report template.

The typed, ordered structure of a table is defined as a Table

Template (TBLT). A particular instance of values populating the

table template is called a Table (TBL).

TBLTs describes the "columns" that define the table schema. A TBL

represents the instance of a specific TBLT that holds actual data

values. These data values represent the "rows" of the table.

The prescriptive nature of the TBLT allows for the possibility of

advanced filtering which may reduce traffic between Agents and

Managers. However, the unique structure of each TBLT along may make

them difficult or impossible to change dynamically in a network.

7.3. Command Execution: Controls and Macros

Low-latency, high-availability approaches to network management use

mechanisms such as (or similar to) RPCs to cause some action to be

performed on an Agent. The DTNMA enables similar capabilities

without requiring that the Manager be in the processing loop of the

Agent. Command execution in the DTNMA happens through the use of

controls and macros.

A Control (CTRL) represents a parameterized, predefined procedure

that can be run on an Agent. While conceptually similar to a "remote

procedure call", CTRLs differ in that they do not provide numeric

return codes. The concept of a return code when running a procedure

implies a synchronous relationship between the caller of the

procedure and the procedure being called, which is disallowed in an

DTN management system. Instead, CTRLs may create reports which

describe the status and other summarizations of their operation, and

these reports may be sent to the Manager(s) calling the CTRL.

Parameters can be provided when running a command from a Manager,

pre-configured as part of a response to a time-based or state-based

rule on the Agent, or auto-generated as needed on the Agent. The

¶

¶

¶

¶

¶

¶

¶

success or failure of a control MAY be inferred by reports generated

for that purpose.

NOTE: The DTNMA term control is derived in part from the concept of

Command and Control (C2) where control implies the operational

instructions that must be undertaken to implement (or maintain) a

commanded objective. A DTN management function controls an Agent to

allow it to fulfill its commanded purpose in a variety of

operational scenarios. For example, attempting to maintain a safe

internal thermal environment for a spacecraft is considered "thermal

control" (not "thermal commanding") even though thermal control

involves "commanding" heaters, louvers, radiators, and other

temperature-affecting components. That said, CTRLs should be

developed for specific autonomous and deterministic behavior where

possible. Some controls may be designed to set configuration

parameters or load complex policies, but there should be no

assumption that it will be executed in real time.

Often, a series of controls must be executed in sequence to achieve

a particular outcome. A Macro (MACRO) represents an ordered

collection of controls (or other macros). In cases where a MACRO

includes another MACRO, mechanisms to prevent circular references

and maximum nesting levels MUST be included in any actual data model

or implementation.

7.4. Autonomy: Time and State-Based Rules

The DTNMA data model contains EDDs and VARs that capture the state

of applications on an Agent. The model also contains controls and

macros to perform actions on an Agent. A mechanism is needed to

relate these two capabilities: to perform an action on the Agent

autonomously in response to the state of the Agent. This mechanism

in the DTNMA is the "rule" and can be activated based on Agent

internal state (state-based rule) or based on the Agent's notion of

relative time (time-based rule).

7.4.1. State-Based Rule (SBR)

State-Based Rules (SBRs) perform actions based on the Agent's

internal state, as identified by EDD and VAR values. An SBR

represents a stimulus-response pairing in the following form: IF

predicate THEN response The predicate is a logical expression that

evaluates to true if the rule stimulus is present and evaluates to

false otherwise. The response may be any control or macro known to

the Agent.

An example of an SBR could be to initiate a thermal control self

check if some internal temperature is greater than a threshold: IF

(current_temp > maximum_temp) THEN thermal_control_self_check

¶

¶

¶

¶

¶

¶

Rules may construct their stimuli from the full set of values known

to the network management system. Similarly, responses may be

constructed from the full set of controls and macros that can be run

on the Agent. By allowing rules to evaluate the variety of all known

data and run the variety of all known controls, multiple

applications can be monitored and managed by one Agent instance.

7.4.2. Time-Based Rule (TBR)

Time-Based Rules (TBR) perform actions based on the Agent's notion

of the passage of time. A possible TBR construct would be to perform

some action at 1Hz on the Agent.

A TBR is a specialization of an SBR as the Agent's notion of time is

a type of Agent state. For example, a TBR to perform an action every

24 hours could be expressed using some type of predicate of the

form: IF (((current_time - base_time) % 24_hours) == 0) THEN ...

However, time-based events are popular enough that special semantics

for expressing them would likely significantly reduce the

computations necessary to represent time functions in a SBR.

7.5. Calculations: Expressions, Literals, and Operators

Actions such as computing a VAR value or describing a rule predicate

require some mechanism for calculating the value of mathematical

expressions. In addition to the aforementioned DTNMA logical data

objects, Literals, Operators, and Expressions are used to perform

these calculations.

A Literal (LIT) represents a strongly typed datum whose identity is

equivalent to its value. An example of a LIT value is "4" - its

identifier (4) is the same as its value (4). Literals differ from

constants in that constants have an identifier separate from their

value. For example, the constant PI may refer to a value of 3.14.

However, the literal 3.14159 always refers to the value 3.14159.

An Operator (OP) represents a mathematical operation in an

expression. OPs should support multiple operands based on the

operation supported. A common set of OPs SHOULD be defined for any

Agent and systems MAY choose to allow individual applications to

define new OPs to assist in the generation of new VAR values and

predicates for managing that application. OPs may be simple binary

operations such as "A + B" or more complex functions such as sin(A)

or avg(A,B,C,D). Additionally, OPs may be typed. For example,

addition of integers may be defined separately from addition of real

numbers.

An Expression (EXPR) is a combination of operators and operands used

to construct a numerical value from a series of other elements of

the DTNMA logical model. Operands include any DTNMA logical data

¶

¶

¶

¶

¶

¶

model object that can be interpreted as a value, such as EDD, VAR,

CONST, and LIT values. Operators perform some function on operands

to generate new values.

8. System Model

This section describes the notional data flows and control flows

that illustrate how Managers and Agents within an DTNMA cooperate to

perform network management services.

8.1. Control and Data Flows

The DTNMA identifies three significant data flows: control flows

from Managers to Agents, reports flows from Agents to Managers, and

fusion reports from Managers to other Managers. These data flows are

illustrated in Figure 1.

DTNMA Control and Data Flows

Figure 1

In this data flow, the Agent on node A receives Controls from

Managers on nodes B and C, and replies with Report Entries back to

these Managers. Similarly, the Agent on node B interacts with the

local Manager on node B and the remote Manager on node C. Finally,

the Manager on node B may fuse Report Entries received from Agents

at nodes A and B and send these fused Report Entries back to the

Manager on node C. From this figure it is clear that there exist

many-to-many relationships amongst Managers, amongst Agents, and

between Agents and Managers. Note that Agents and Managers are

roles, not necessarily different software applications. Node A may

represent a single software application fulfilling only the Agent

role, whereas node B may have a single software application

fulfilling both the Agent and Manager roles. The specifics of how

these roles are realized is an implementation matter.

¶

¶

¶

¶

 +---------+ +------------------------+ +---------+

 | Node A | | Node B | | Node C |

 | | | | | |

 |+-------+| |+-------+ +-------+| |+-------+|

 || ||=====>>||Manager|====>>| ||====>>|| ||

 || ||<<=====|| B |<<====|Agent B||<<====|| ||

 || || |+--++---+ +-------+| ||Manager||

 || Agent || +---||-------------------+ || C ||

 || A || || || ||

 || ||<<=========||==========================|| ||

 || ||===========++========================>>|| ||

 |+-------+| |+-------+|

 +---------+ +---------+

¶

8.2. Control Flow by Role

This section describes three common configurations of Agents and

Managers and the flow of messages between them. These configurations

involve local and remote management and data fusion.

8.2.1. Notation

The notation outlined in Table 1 describes the types of control

messages exchanged between Agents and Managers.

Term Definition Example

EDD# EDD definition. EDD1

V# Variable definition.
V1 = EDD1 +

V0.

DEF([ACL],

ID,EXPR)

Define ID from expression. Allow

managers in access control list (ACL)

to request this ID.

DEF([*], V1,

EDD1 + EDD2)

PROD(P,ID)

Produce ID according to predicate P. P

may be a time period (1s) or an

expression (EDD1 > 10).

PROD(1s, EDD1)

RPT(ID) A report identified by ID. RPT(EDD1)

Table 1: Terminology

8.2.2. Serialized Management

This is a nominal configuration of network management where a

Manager interacts with a set of Agents. The control flows for this

are outlined in Figure 2.

Serialized Management Control Flow

¶

¶

¶

¶

Figure 2

In a simple network, a Manager interacts with multiple Agents.

In this figure, the Manager configures Agents A and B to produce

EDD1 every second in (1). Upon receiving and configuring this

message, Agents A and B then build a Report Entry containing EDD1

and send those reports back to the Manager in (2). This behavior

then repeats this action every 1s without requiring other inputs

from the Manager.

8.2.3. Challenged, DTN Management

This is a challenged configuration of network management where Agent

B temporarily looses connectivity between the agent and the Manager.

Flows in this case are outlined in Figure 3.

Challenged Management Control Flow

 +----------+ +---------+ +---------+

 | Manager | | Agent A | | Agent B |

 +----+-----+ +----+----+ +----+----+

 | | |

 |-----PROD(1s, EDD1)--->| | (1)

 |----------------------------PROD(1s, EDD1)-->|

 | | |

 | | |

 |<-------RPT(EDD1)------| | (2)

 |<----------------------------RPT(EDD1)-------|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |<----------------------------RPT(EDD1)-------|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |<----------------------------RPT(EDD1)-------|

 | | |

¶

¶

¶

¶

Figure 3

In a challenged network, an agent must store and forward reports

until links are available.

In this figure, the Manager configures Agents A and B to produce

EDD1 every second in (1). Upon receiving and configuring this

message, Agents A and B then build a Report Entry containing EDD1

and send those reports back to the Manager in (2). At step (3) the

connection between Agent B and Manager is not available. The agent

still generates the reports and stores locally using DTN protocols.

At step (4) the link has been restored and all stored reports are

successfully delivered to the manager.

8.2.4. Consolidated Message Management

This is a configuration of network management where Agent B has been

configured to deliver two sets of data and demonstrates the Agent's

responsibility to consolidate messages for transport. Flows in this

case are outlined in Figure 4.

 +----------+ +---------+ +---------+

 | Manager | | Agent A | | Agent B |

 +----+-----+ +----+----+ +----+----+

 | | |

 |-----PROD(1s, EDD1)--->| | (1)

 |----------------------------PROD(1s, EDD1)-->|

 | | |

 | | |

 |<-------RPT(EDD1)------| | (2)

 |<----------------------------RPT(EDD1)-------|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |<----------------------------RPT(EDD1)-------|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |< RPT(EDD1)| (3)

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |< RPT(EDD1)|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |<----------------RPT(EDD1, EDD1, EDD1)-------| (4)

 | | |

¶

¶

¶

Consolidated Management Control Flow

Figure 4

In a challenged network, Agents shall consolidate messages where

possible.

In this figure, the Manager configures Agents A and B to produce

EDD1 every second in (1). Upon receiving and configuring this

message, Agents A and B then build a Report Entry containing EDD1

and send those reports back to the Manager in (2). At step (3), the

manager configures Agent B to additionally report EDD2 every second.

At step (4) Agent B proceeds to deliver EDD1 and EDD2 in the same

report.

8.2.5. Multiplexed Management

Networks spanning multiple administrative domains may require

multiple Managers (for example, one per domain). When a Manager

defines custom Reports/Variables to an Agent, that definition may be

tagged with an Access Control List (ACL) to limit what other

Managers will be privy to this information. Managers in such

networks should synchronize with those other Managers granted access

to their custom data definitions. When Agents generate messages,

they MUST only send messages to Managers according to these ACLs, if

¶

 +----------+ +---------+ +---------+

 | Manager | | Agent A | | Agent B |

 +----+-----+ +----+----+ +----+----+

 | | |

 |-----PROD(1s, EDD1)--->| | (1)

 |----------------------------PROD(1s, EDD1)-->|

 | | |

 | | |

 |<-------RPT(EDD1)------| | (2)

 |<----------------------------RPT(EDD1)-------|

 | | |

 | | |

 |----------------------------PROD(1s, EDD2)-->| (3)

 | | |

 | | |

 |<-------RPT(EDD1)------| | (4)

 |<--------------------------RPT(EDD1,EDD2)----|

 | | |

 | | |

 |<-------RPT(EDD1)------| |

 |<--------------------------RPT(EDD1,EDD2)----|

 | | |

¶

¶

present. The control flows in this scenario are outlined in Figure

5.

Multiplexed Management Control Flow

Figure 5

Complex networks require multiple Managers interfacing with Agents.

In more complex networks, any Manager may choose to define custom

Reports and Variables, and Agents may need to accept such

definitions from multiple Managers. Variable definitions may include

an ACL that describes who may query and otherwise understand these

definitions. In (1), Manager A defines V1 only for A while Manager B

defines V2 only for B. Managers may, then, request the production of

Report Entries containing these definitions, as shown in (2). Agents

produce different data for different Managers in accordance with

configured production rules, as shown in (3). If a Manager requests

the production of a custom definition for which the Manager has no

¶

¶

 +-----------+ +-------+ +-----------+

 | Manager A | | Agent | | Manager B |

 +-----+-----+ +---+---+ +-----+-----+

 | | |

 |---DEF(A,V1,EDD1*2)-->|<-DEF(B, V2, EDD2*2)--| (1)

 | | |

 |---PROD(1s, V1)------>|<---PROD(1s, V2)------| (2)

 | | |

 |<--------RPT(V1)------| | (3)

 | |--------RPT(V2)------>|

 |<--------RPT(V1)------| |

 | |--------RPT(V2)------>|

 | | |

 | |<---PROD(1s, V1)------| (4)

 | | |

 | |---ERR(V1 no perm.)-->|

 | | |

 |--DEF(*,V3,EDD3*3)--->| | (5)

 | | |

 |---PROD(1s, V3)------>| | (6)

 | | |

 | |<----PROD(1s, V3)-----|

 | | |

 |<--------RPT(V3)------|--------RPT(V3)------>| (7)

 |<--------RPT(V1)------| |

 | |--------RPT(V2)------>|

 |<-------RPT(V3)-------|--------RPT(V3)------>|

 |<-------RPT(V1)-------| |

 | |--------RPT(V2)------>|

¶

permissions, a response consistent with the configured logging

policy on the Agent should be implemented, as shown in (4).

Alternatively, as shown in (5), a Manager may define custom data

with no access restrictions, allowing all other Managers to request

and use this definition. This allows all Managers to request the

production of Report Entries containing this definition, shown in

(6) and have all Managers receive this and other data going forward,

as shown in (7).

8.2.6. Data Fusion

Data fusion reduces the number and size of messages in the network

which can lead to more efficient utilization of networking

resources. The DTNMA supports fusion of NM reports by co-locating

Agents and Managers on nodes and offloading fusion activities to the

Manager. This process is illustrated in Figure 6.

Data Fusion Control Flow

Figure 6

Data fusion occurs amongst Managers in the network.

In this example, Manager A requires the production of a Variable V0,

from node B, as shown in (1). The Manager role understands what data

is available from what agents in the subnetwork local to B,

¶

¶

¶

 | Actor B |

 | |

+-----------+ | +-----------+ +---------+ | +---------+

| Manager A | | | Manager B | | Agent B | | | Agent C |

+---+-------+ | +-----+-----+ +----+----+ | +----+----+

 | | | | | |

 |------------------DEF(A,V0,EDD1+EDD2)->| | | (1)

 |------------------PROD(EDD1&EDD2,V0)-->| | |

 | | | | | |

 | | |--PROD(1s,EDD1)->| | | (2)

 | | |--------------------PROD(1s, EDD2)->|

 | | | | | |

 | | |<---RPT(EDD1)----| | | (3)

 | | |<--------------------RPT(EDD2)------|

 | | | | | |

 |<------------------RPT(A,V0)-----------| | | (4)

 | | | | | |

 | | | | | |

 | |

 | |

¶

[BIRRANE1]

[BIRRANE2]

[BIRRANE3]

[I-D.ietf-core-comi]

understanding that EDD1 is available locally and EDD2 is available

remotely. Production messages are produced in (2) and data collected

in (3). This allows the Manager at node B to fuse the collected

Report Entries into V0 and return it in (4). While a trivial

example, the mechanism of associating fusion with the Manager

function rather than the Agent function scales with fusion

complexity, though it is important to reiterate that Agent and

Manager designations are roles, not individual software components.

There may be a single software application running on node B

implementing both Manager B and Agent B roles.

9. IANA Considerations

This protocol has no fields registered by IANA.

10. Security Considerations

Security within an DTNMA MUST exist in two layers: transport layer

security and access control.

Transport-layer security addresses the questions of authentication,

integrity, and confidentiality associated with the transport of

messages between and amongst Managers and Agents in the DTNMA. This

security is applied before any particular Actor in the system

receives data and, therefore, is outside of the scope of this

document.

Finer grain application security is done via ACLs which are defined

via configuration messages and implementation specific.

11. Informative References

Birrane, E.B. and R.C. Cole, "Management of Disruption-

Tolerant Networks: A Systems Engineering Approach", 2010.

Birrane, E.B., Burleigh, S.B., and V.C. Cerf, "Defining

Tolerance: Impacts of Delay and Disruption when Managing

Challenged Networks", 2011.

Birrane, E.B. and H.K. Kruse, "Delay-Tolerant Network

Management: The Definition and Exchange of Infrastructure

Information in High Delay Environments", 2011.

Veillette, M., Van der Stok, P., Pelov, A.,

Bierman, A., and I. Petrov, "CoAP Management Interface

(CORECONF)", Work in Progress, Internet-Draft, draft-

¶

¶

¶

¶

¶

[I-D.ietf-core-sid]

[I-D.ietf-core-yang-cbor]

[I-D.irtf-dtnrg-dtnmp]

[RFC2119]

[RFC3416]

[RFC4838]

[RFC6020]

[RFC6241]

[RFC6991]

ietf-core-comi-11, 17 January 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-comi-11.txt>.

Veillette, M., Pelov, A., Petrov, I., and C.

Bormann, "YANG Schema Item iDentifier (YANG SID)", Work

in Progress, Internet-Draft, draft-ietf-core-sid-16, 24

June 2021, <https://www.ietf.org/archive/id/draft-ietf-

core-sid-16.txt>.

Veillette, M., Petrov, I., Pelov, A., and

C. Bormann, "CBOR Encoding of Data Modeled with YANG",

Work in Progress, Internet-Draft, draft-ietf-core-yang-

cbor-16, 24 June 2021, <https://www.ietf.org/archive/id/

draft-ietf-core-yang-cbor-16.txt>.

Birrane, E. and V. Ramachandran, "Delay

Tolerant Network Management Protocol", Work in Progress,

Internet-Draft, draft-irtf-dtnrg-dtnmp-01, 31 December

2014, <http://www.ietf.org/internet-drafts/draft-irtf-

dtnrg-dtnmp-01.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Presuhn, R., Ed., "Version 2 of the Protocol Operations

for the Simple Network Management Protocol (SNMP)", STD

62, RFC 3416, DOI 10.17487/RFC3416, December 2002,

<https://www.rfc-editor.org/info/rfc3416>.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,

R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant

Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,

April 2007, <https://www.rfc-editor.org/info/rfc4838>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

https://www.ietf.org/archive/id/draft-ietf-core-comi-11.txt
https://www.ietf.org/archive/id/draft-ietf-core-comi-11.txt
https://www.ietf.org/archive/id/draft-ietf-core-sid-16.txt
https://www.ietf.org/archive/id/draft-ietf-core-sid-16.txt
https://www.ietf.org/archive/id/draft-ietf-core-yang-cbor-16.txt
https://www.ietf.org/archive/id/draft-ietf-core-yang-cbor-16.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-dtnmp-01.txt
http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-dtnmp-01.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3416
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991

[RFC7228]

[RFC7252]

[RFC7575]

[RFC7576]

[RFC8040]

[RFC8199]

[RFC8613]

[RFC8639]

[RFC8641]

[RFC8949]

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", DOI 10.17487/RFC7228, RFC

7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,

Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic

Networking: Definitions and Design Goals", RFC 7575, DOI

10.17487/RFC7575, June 2015, <https://www.rfc-editor.org/

info/rfc7575>.

Jiang, S., Carpenter, B., and M. Behringer, "General Gap

Analysis for Autonomic Networking", RFC 7576, DOI

10.17487/RFC7576, June 2015, <https://www.rfc-editor.org/

info/rfc7576>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module

Classification", RFC 8199, DOI 10.17487/RFC8199, July

2017, <https://www.rfc-editor.org/info/rfc8199>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

E., and A. Tripathy, "Subscription to YANG

Notifications", RFC 8639, DOI 10.17487/RFC8639, September

2019, <https://www.rfc-editor.org/info/rfc8639>.

Clemm, A. and E. Voit, "Subscription to YANG

Notifications for Datastore Updates", RFC 8641, DOI

10.17487/RFC8641, September 2019, <https://www.rfc-

editor.org/info/rfc8641>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", DOI 10.17487/RFC8949, STD 94, RFC

8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8199
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8639
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[RFC8993]

[RFC9171]

[RFC9172]

[xpath]

Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,

L., and J. Nobre, "A Reference Model for Autonomic

Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,

<https://www.rfc-editor.org/info/rfc8993>.

Burleigh, S., Fall, K., Birrane, E., and III., "Bundle

Protocol Version 7", RFC 9171, DOI 10.17487/RFC9171,

January 2022, <https://www.rfc-editor.org/info/rfc9171>.

Birrane, E., III., and K. McKeever, "Bundle Protocol

Security (BPSec)", RFC 9172, DOI 10.17487/RFC9172,

January 2022, <https://www.rfc-editor.org/info/rfc9172>.

Clark, J.C. and R.D. DeRose, "XML Path Language (XPath)

Version 1.0", 1999.

Authors' Addresses

Edward J. Birrane

Johns Hopkins Applied Physics Laboratory

Email: Edward.Birrane@jhuapl.edu

Emery Annis

Johns Hopkins Applied Physics Laboratory

Email: Emery.Annis@jhuapl.edu

Sarah E. Heiner

Johns Hopkins Applied Physics Laboratory

Email: Sarah.Heiner@jhuapl.edu

https://www.rfc-editor.org/info/rfc8993
https://www.rfc-editor.org/info/rfc9171
https://www.rfc-editor.org/info/rfc9172
mailto:Edward.Birrane@jhuapl.edu
mailto:Emery.Annis@jhuapl.edu
mailto:Sarah.Heiner@jhuapl.edu

	DTN Management Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Requirements Language
	1.3. Organization

	2. Terminology
	3. Motivation
	3.1. Constrained and Challenged Networks
	3.2. Management of Challenged Networks
	3.3. Current Network Management Approaches and Limitations
	3.3.1. Simple Network Management Protocol (SNMP)
	3.3.2. YANG Data Model and NETCONF, RESTCONF, and CORECONF
	3.3.2.1. The YANG Data Model
	3.3.2.2. YANG-Based Management Protocols
	3.3.2.3. Limitations of YANG-Based Approaches

	3.3.3. The Future of Autonomous and Autonomic Network Management Solutions
	3.3.4. Takeaways from Existing Network Management Protocols

	3.4. A Network Management Approach for DTNs

	4. Desirable Properties of an DTNMA
	4.1. Asynchronous, Dynamic, and Highly Logical Architecture
	4.2. Model-derived and Hierarchically Organized Definition of Information
	4.3. Intelligent Push of Information
	4.4. Minimize Message Size Not Node Processing
	4.5. Absolute Data Identification
	4.6. Custom Data Definition
	4.7. Autonomous Operation

	5. Services Provided by an DTNMA
	5.1. Configuration
	5.2. Reporting
	5.3. Autonomous Parameterized Procedure Calls
	5.4. Authorized Administration, accounting, and error control

	6. DTNMA Roles and Responsibilities
	6.1. Agent Responsibilities
	6.2. Manager Responsibilities

	7. Logical Data Model
	7.1. Data Representations: Constants, Externally Defined Data, and Variables
	7.2. Data Collections: Reports and Tables
	7.2.1. Report Templates and Reports
	7.2.2. Table Templates and Tables

	7.3. Command Execution: Controls and Macros
	7.4. Autonomy: Time and State-Based Rules
	7.4.1. State-Based Rule (SBR)
	7.4.2. Time-Based Rule (TBR)

	7.5. Calculations: Expressions, Literals, and Operators

	8. System Model
	8.1. Control and Data Flows
	8.2. Control Flow by Role
	8.2.1. Notation
	8.2.2. Serialized Management
	8.2.3. Challenged, DTN Management
	8.2.4. Consolidated Message Management
	8.2.5. Multiplexed Management
	8.2.6. Data Fusion

	9. IANA Considerations
	10. Security Considerations
	11. Informative References
	Authors' Addresses

