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Abstract

The Delay-Tolerant Networking (DTN) architecture describes a type of

challenged network in which communications may be significantly

affected by long signal propagation delays, frequent link

disruptions, or both. The unique characteristics of this environment

require a unique approach to network management that supports

asynchronous transport, autonomous local control, and a small

footprint (in both resources and dependencies) so as to deploy on

constrained devices.

This document describes a DTN management architecture (DTNMA)

suitable for managing devices in any challenged environment but, in

particular, those communicating using the DTN Bundle Protocol (BP).

Operating over BP requires an architecture that neither presumes

synchronized transport behavior nor relies on query-response

mechanisms. Implementations compliant with this DTNMA should expect

to successfully operate in extremely challenging conditions, such as

over uni-directional links and other places where BP is the

preferred transport.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
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1. Introduction

The Delay-Tolerant Networking (DTN) architecture, as described in 

[RFC4838], has been designed to cope with data exchange in

challenged networks. Just as the DTN architecture requires new

capabilities for transport and transport security, special

consideration must be given for the management of DTN devices.

This document describes a DTN Management Architecture (DTNMA)

providing configuration, monitoring, and local control of both

application and network services on a managed device. The DTNMA is

designed to provide for the management of devices operating either

within or across a challenged network.
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Fundamental properties of a challenged network are outlined in

Section 2.2.1 of [RFC7228]. These properties include lacking end-to-

end IP connectivity, having "serious interruptions" to end-to-end

connectivity, and exhibiting delays longer than can be tolerated by

end-to-end synchronization mechanisms (such as TCP). It is further

noted that the DTN architecture was designed to cope with such

networks.

NOTE: These challenges may be caused by physical impairments such as

long signal propagations and frequent link disruptions, or by other

factors such as quality-of-service prioritizations, service-level

agreements, and other consequences of traffic management and

scheduling.

Device management in these environments must occur without human

interactivity, without system-in-the-loop synchronous function, and

without requiring a synchronous underlying transport layer. This

means that managed devices need to determine their own schedules for

data reporting, their own operational configuration, and perform

their own error discovery and mitigation.

Certain outcomes of device self-management should be determinable by

a privileged external observer (such as a managing device). In a

challenged network, these observers may need to communicate with a

managed device after significant periods of disconnectivity. Non-

deterministic behavior of a managed device may make establishing

communication difficult or impossible.

The desire to define asynchronous and autonomous device management

is not new. However, challenged networks (in general) and the DTN

environment (in particular) represent unique deployment scenarios

and impose unique design constraints. To the extent that these

environments differ from more traditional, enterprise networks,

their management may also differ from the management of enterprise

networks. Therefore, existing techniques may need to be adapted to

operate in the DTN environment or new techniques may need to be

created.

NOTE: The DTNMA is designed to leverage any transport, network, and

security solutions designed for challenged networks. However, the

DTNMA should operate in any environment in which the Bundle Protocol

(BPv7) [RFC9171] is deployed.

1.1. Scope

This document describes the desirable properties of, and motivation

for, a DTNMA. This document also provides a reference model, service

descriptions, autonomy model, and use cases to better reason about

ways to standardize and implement this architecture.
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This is not a normative document and the information herein is not

meant to represent a standardization of any data model, protocol, or

implementation. Instead, this document provides informative guidance

to authors and users of such models, protocols, and implementations.

The selection of any particular transport or network layer is

outside of the scope of this document. The DTNMA does not require

the use of any specific protocol such as IP, BP, TCP, or UDP. In

particular, the DTNMA design does not assume the use of either IPv4

or IPv6.

NOTE: The fact that the DTNMA must operate in any environment that

deploys BP does not mean that the DTNMA requires the use of BP to

operate.

Network features such as naming, addressing, routing, and security

are out of scope of the DTNMA. It is presumed that any operational

network communicating DTNMA messages would implement these services

for any payloads carried by that network.

The interactions between and amongst the DTNMA and other management

approaches are outside of the scope of this document.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

1.3. Organization

The remainder of this document is organized into the following nine

sections, described as follows.

Terminology - This section identifies terms fundamental to

understanding DTNMA concepts. Whenever possible, these terms

align in both word selection and meaning with their use in other

management protocols.

Challenged Network Overview - This section describes important

aspects of challenged networks and necessary approaches for their

management.

Desirable Design Properties - This section defines those

properties of the DTNMA that must be present to operate within

the constraints of a challenged network. These properties are

similar to the specification of system-level requirements of a

DTN management solution.
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Current Network Management Approaches - This section provides a

brief overview of existing network management approaches. Where

possible, the DTNMA adopts concepts from these approaches. The

limitations of current approaches from the perspective of the

DTNMA desirable properties are identified and discussed.

Motivation for New Features - This section provides an overall

motivation for this work, to include explaining why a management

architecture for challenged networks is useful and necessary.

Reference Model - This section defines a reference model that can

be used to reason about the DTNMA independent of an

implementation. This model identifies the logical elements of the

system and the high-level relationships and behaviors amongst

those elements.

Desired Services - This section identifies and defines the DTNMA

services provided to network and mission operators.

Logical Autonomy Model - This section provides an exemplar data

model that can be used to reason about DTNMA control and data

flows. This model is based on the DTNMA reference model.

Use Cases - This section presents multiple use cases accommodated

by the DTNMA architecture. Each use case is presented as a set of

control and data flows referencing the DTNMA reference model and

logical autonomy model.

2. Terminology

This section defines terminology that either is unique to the DTNMA

or is necessary for understanding the concepts defined in this

specification.

Constants (CONST): Typed, immutable value referred to by a

semantic name. Constants allow substituting a meaningful name for

a fixed value. For example, using the constant

PI_5_DIGIT_PRECISION rather than the literal value 3.14159.

Controls (CTRLs): Procedures run by a DA to change the behavior,

configuration, or state of an application or protocol managed by

that DA. This includes procedures to manage the DA itself, such

as to have the DA produce performance reports or to apply new

management policies.

DTN Management: Management that does not depend on stateful

connections, timely delivery of management messages, or closed-

loop control.
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DTNMA Agent (DA): A role associated with a managed device,

responsible for reporting performance data, accepting policy

directives, performing autonomous local control, error-handling,

and data validation. DAs exchange information with DMs operating

either on the same device and/or on remote devices in the

network.

DTNMA Manager (DM): A role associated with a managing device

responsible for configuring the behavior of, and eventually

receiving information from, DAs. DMs interact with one or more

DAs located on the same device and/or on remote devices in the

network.

Externally Defined Data (EDD): Typed information made available

to a DA by its hosting device, but not computed directly by the

DA itself.

Literals (LITs): Typed information whose name is the literal

expression of its value. For example, the number 4 is a Literal

value.

Macros (MACROs): Named, ordered collections of Controls and/or

other Macros.

Operators (OPs): Mathematical functions used to calculate

variable values and construct expressions to evaluate DA state.

Reports (RPTs): Typed, ordered collections of data values

gathered by one or more DAs and provided to one or more DMs.

Reports comply to the format of a given Report Template.

Report Templates (RPTTs): Named, ordered collection of data names

that represent the schema of a Report. Templates are generated by

a DM and communicated to other DMs and DAs.

Rules: Unit of autonomous specification that provides a stimulus-

response relationship between time or state on a DA and the

actions or operations to be run as a result of that time or

state.

State-Based Rule (SBR): Any Rule triggered by the calculable,

internal state of the DA.

Tabular Report (TBL): Typed collection of data values organized

in a tabular way in which columns represent homogeneous types of

data and rows represent unique sets of data values conforming to

column types. Tabular Reports are a specialization of a Report

and comply to the format of a given Tabular Report Template.
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Tabular Report Template (TBLT): Named, typed, ordered collection

of columns that comprise the structure for representing tabular

data values. This template forms the structure of a Tabular

Report.

Time-Based Rule (TBR): A specialization, and simplification, of a

State-Based Rule in which the rule stimulus is triggered by

relative or absolute time on a DA.

Variables (VARs): Typed information computed internal to a DA.

3. Challenged Network Overview

The DTNMA provides network management services able to operate in a

challenged network environment, such as envisioned by the DTN

architecture. This section describes what is meant by the term

"challenged network", the important properties of such a network,

and observations on impacts to conventional management approaches.

3.1. Challenged Network Constraints

Constrained networks are defined as networks where "some of the

characteristics pretty much taken for granted with link layers in

common use in the Internet at the time of writing are not

attainable." [RFC7228]. This broad definition captures a variety of

potential issues relating to physical, technical, and regulatory

constraints on message transmission. Constrained networks typically

include nodes that regularly reboot or are otherwise turned off for

long periods of time, transmit at low or asynchronous bitrates, and/

or have very limited computational resources.

Separately, a challenged network is defined as one that "has serious

trouble maintaining what an application would today expect of the

end-to-end IP model" [RFC7228]. This definition includes networks

where there is never simultaneous end-to-end connectivity, when such

connectivity is interrupted at planned or unplanned intervals, or

when delays exceed those that could be accommodated by IP-based

transport. Links in such networks are often unavailable due to

attenuation, propagation delays, mobility, occultation, and other

limitations imposed by energy and mass considerations.

NOTE: Because challenged networks might not provide services

expected of the end-to-end IP model, devices in such networks might

not implement networking stacks associated with the end-to-end IP

model. This means that devices might not include support for certain

transport protocols (TCP/UDP), web protocols (HTTP), or even

internetworking protocols (IPv4/IPv6).

By these definitions, a "challenged" network is a special type of

"constrained" network, where the constraints are related to end-to-
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end connectivity and delays. As such, "all challenged networks are

constrained networks ... but not all constrained networks are

challenged networks ... Delay-Tolerant Networking (DTN) has been

designed to cope with challenged networks" [RFC7228].

Solutions that work in constrained networks might not be solutions

that work in challenged networks. In particular, challenged networks

exhibit the following properties that impact the way in which the

function of network management is considered.

No end-to-end path is guaranteed to exist at any given time

between any two nodes.

Round-trip communications between any two nodes within any given

time window may be impossible.

Latencies on the order of seconds, hours, or days must be

tolerated.

Links may be uni-directional.

Bi-directional links may have asymmetric data rates.

The existence of external infrastructure, software, systems, or

processes such as a Domain Name Service (DNS) or a Certificate

Authority (CA) cannot be guaranteed.

3.2. Topology and Service Implications

The set of constraints that might be present in a challenged network

impact both the topology of the network and the services active

within that network.

Operational networks handle cases where nodes join and leave the

network over time. These topology changes may or may not be planned,

they may or may not represent errors, and they may or may not impact

network services. Challenged networks differ from other networks not

in the present of topological change, but in the likelihood that

impacts to topology result in impacts to network services.

The difference between topology impacts and service impacts can be

expressed in terms of connectivity. Topological connectivity usually

refers to the existence of a path between an application message

source and destination. Service connectivity, alternatively, refers

to the existence of a path between a node and one or more services

needed to process (often just-in-time) application messaging.

Examples of service connectivity include access to infrastructure

elements such as a Domain Name System (DNS) or a Certificate

Authority (CA).
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In networks that might be partitioned most of the time, it is less

likely that a node would concurrently access both an application

endpoint and one or more network service endpoints. For this reason,

network services in a challenged network should be designed to allow

for asynchronous operation. Accommodating this use case often

involves the use of local caching, pre-placing information, and not

hard-coding message information at a source that might change when a

message reaches its destination.

NOTE: Oner example of rethinking services in a challenged network is

the securing of BPv7 bundles. The BPSec [RFC9172] security

extensions to BPv7 do not encode security destinations when applying

security. Instead, BPSec requires nodes in a network to identify

themselves as security verifiers or acceptors when receiving and

processing secured messages.

3.2.1. Management Implications

Network management approaches must adapt to the topology and service

impacts encountered in challenged networks. In particular, the ways

in which "managers" and "agents" in a management architecture

operate must consider how to operate with changes to topology and

changes to service endpoints.

When connectivity to a manager cannot be guaranteed, agents must

rely on locally available information and use local autonomy to

react to changes at the node. Architectures that rely on external

resources such as access to third-party oracles, operators-in-the-

loop, or other service infrastructure may fail to operate in a

challenged network.

In addition to disconnectivity, topological change can alter the

associations amongst managed and managing devices. Different

managing devices might be active in a network at different times or

in different partitions. Managed devices might communicate with

some, all, or none of these managing devices as a function of their

own local configuration and policy.

NOTE: These concepts relate to practices in conventional networks.

For example, supporting multiple managing devices is similar to

deploying multiple instances of a network service -- such as a DNS

server or CA node. Selecting from a set of managing devices is

similar to a sensor node practice of electing cluster heads to act

as privileged nodes for data storage and exfiltration.

Therefore, a network management architecture for challenged networks

should:

Support a many-to-many association amongst managing and managed

devices, and
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Allow "control from" and "reporting to" managing devices to

function independent of one another.

3.3. Management Special Cases

The following special cases illustrate some of the operational

situations that can be encountered in the management of devices in a

challenged network.

One-Way Management. A managed device can only be accessed via a

uni-directional link, or a via a link whose duration is shorter

than a single round-trip propagation time.

Summary Data. A managing device can only receive summary data of

a managed device's state because a link or path is constrained by

capacity or reliability.

Bulk Historical Reporting. A managing device receives a large

volume of historical report data for a managed device. This can

occur when a managed device rejoins a network or has access to a

high capacity link (or path) to the managed device.

Multiple Managers. A managed device tracks multiple managers in

the network and communicates with them as a function of time,

local state, or network topology. This includes challenged

networks that interconnect two or more unchallenged networks such

that managed and managing devices exist in different networks.

These special cases highlight the need for managed devices to

operate without presupposing a dedicated connection to a single

managing device. To support this, managing devices must deliver

instruction sets that govern the local, autonomous behavior of

managed devices. These behaviors include (but are not limited to)

collecting performance data, state, and error conditions, and

applying pre-determined responses to pre-determined events. Managing

devices in a challenged network might never expect a reply to a

command, and communications from managed devices may be delivered

much later than the events being reported.

4. Desirable Design Properties

This section describes those design properties that are desirable

when defining a management architecture operating across challenged

links in a network. These properties ensure that network management

capabilities are retained even as delays and disruptions in the

network scale. Ultimately, these properties are the driving design

principles for the DTNMA.

NOTE: These properties may influence the design, construction, and

adaptation of existing management tools for use in challenged
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networks. For example, the properties the DTN architecture [RFC4838]

resulted in the development of BPv7 [RFC9171] and BPSec [RFC9172].

The DTNMA may result in the construction of new management data

models, policy expressions, and/or protocols.

4.1. Dynamic Architectures

The DTNMA should be agnostic of the underlying physical topology,

transport protocols, security solutions, and supporting

infrastructure of a given network. Due to the likelihood of

operating in a frequently partitioned environment, the topology of a

network may change over time. Attempts to stabilize an architecture

around individual nodes can result in a brittle management framework

and the creation of congestion points during periods of

connectivity.

NOTE: The DTNMA must run in every environment in which BP bundles

may be used, even though the DTNMA does not require the use of BP

for its transport.

The DTNMA should not prescribe any association between a DM and a DA

other than those defined in this document. There should be no

logical limitation to the number of DMs that can control a DA, the

number of DMs that a DA should report to, or any requirement that a

DM and DA relationship implies a pair.

NOTE: Practical limitations on the relationships between and amongst

DMs and DAs will exist as a function of the capabilities of

networked devices. These limitations derive from processing and

storage constraints, performance requirements, and other engineering

factors. While this information is vital to the proper engineering

of a managed and managing device, they are implementation

considerations, and not otherwise design constraints on the DTNMA.

4.2. Hierarchically Modeled Information

The DTNMA should use data models to define the syntactic and

semantic contracts for data exchange between a DA and a DM. A given

model should have the ability to "inherit" the contents of other

models to form hierarchical data relationships.

NOTE: The term data model in this context refers to a schema that

defines a contract between a DA and a DM for how information is

represented and validated.

Many network management solutions use data models to specify the

semantic and syntactic representation of data exchanged between

managed and managing devices. The DTNMA is not different in this

regard - information exchanged between DAs and DMs should conform to

one or more pre-defined, normative data models.
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A common best practice when defining a data model is to make it

cohesive. A cohesive model is one that includes information related

to a single purpose such as managing a single application or

protocol. When applying this practice, it is not uncommon to develop

a large number of small data models that, together, describe the

information needed to manage a device.

Another best practice for data model development is the use of

inclusion mechanisms to allow one data model to include information

from another data model. This ability to re-use a data model avoids

repeating information in different data models. When one data model

includes information from another data model, there is an implied

model hierarchy.

Data models in the DTNMA should allow for the construction of both

cohesive models and hierarchically related models. These data models

should be used to define all sources of information that can be

retrieved, configured, or executed in the DTNMA. This includes

supporting DA autonomy functions such as parameterization,

filtering, and event driven behaviors. These models will be used to

both implement interoperable autonomy engines on DAs and define

interoperable report parsing mechanisms on DMs.

NOTE: While data model hierarchies can result in a more concise data

model, arbitrarily complex nesting schemes can also result in very

verbose encodings. Where possible, data identifications schemes

should be constructed that allow for both hierarchical data and

highly compressible data identification.

4.3. Adaptive Push of Information

DAs in the DTNMA architecture should determine when to push

information to DMs as a function of their local state.

Pull management mechanisms require a managing device to send a query

to a managed device and then wait for a response to that specific

query. This practice implies some serialization mechanism (such as a

control session) between entities. However, challenged networks

cannot guarantee timely round-trip data exchange. For this reason,

pull mechanisms must be avoided in the DTNMA.

Push mechanisms, in this context, refer to the ability of DAs to

leverage local autonomy to determine when and what information

should be sent to which DMs. The push is considered adaptive because

a DA determines what information to push (and when) as an adaptation

to changes to the DA's internal state. Once pushed, information

might still be queued pending connectivity of the DA to the network.

NOTE: Even in cases where a round-trip exchange can occur, pull

mechanisms increase the overall amount of traffic in the network and

¶

¶

¶

¶

¶

¶

¶



preclude the use of autonomy at managed devices. So even when pull

mechanisms are feasible they should not be considered a pragmatic

alternative to push mechanisms.

4.4. Efficient Data Encoding

Messages exchanged between a DA and a DM in the DTNMA should be

defined in a way that allows for efficient on-the-wire encoding.

DTNMA design decisions that result in smaller message sizes should

be preferred over those that result in larger message sizes.

There is a relationship between message encoding and message

processing time at a node. Messages with little or no encodings may

simplify node processing whereas more compact encodings may require

additional activities to generate/parse encoded messages. Generally,

compressing a message takes processing time at the sender and

decompressing a message takes processing time at a receiver.

Therefore, there is a design tradeoff between minimizing message

sizes and minimizing node processing.

NOTE: There are many ways in which message size, number of messages,

and node behaviors can impact processing performance. Because the

DTNMA does not presuppose any underlying protocol or implementation,

this section is focused solely on the compactness of an individual

message and the processing for encoding and decoding that individual

message.

There is no advantage to minimizing node processing time in a

challenged network. The same sparse connectivity that benefits from

store-and-forward transport provides time at a node for data

processing prior to a future transmission opportunity.

However, there is a significant advantage to smaller message sizes

in a challenged network. Smaller messages require smaller periods of

viable transmission for communication, they incur less re-

transmission cost, and they consume less resources when persistently

stored en-route in the network.

NOTE: Naive approaches to minimizing message size through general

purpose compression algorithms do not produce minimal encodings.

Data models can, and should, be designed for compact encoding from

the beginning. Design strategies for compact encodings involve using

structured data instead of large hash values, reusable, hierarchical

data models, and exploiting common structures in data models.

4.5. Universal, Unique Data Identification

Elements within the DTNMA should be uniquely identifiable so that

they can be individually manipulated. Further, these identifiers
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should be universal - the identifier for a data element should be

the same regardless of role, implementation, or network instance.

Identification schemes that are relative to a specific DA or

specific system configuration might change over time. In particular,

nodes in a challenged network may change their status or

configuration during periods of partition from other parts of the

network. Resynchronizing relative state or configuration should be

avoided whenever possible.

NOTE: Consider the common technique for approximating an associative

array lookup. A manager wishing to perform an associative lookup for

some key K1 will:

Query a list of array keys from an agent.

Find the key that matches K1 and infer the index of K1 from

the returned key list.

Query the discovered index on the agent to retrieve the

desired data.

Ignoring the inefficiency of two round-trip exchanges, this

mechanism will fail if the agent changes its key-index mapping

between the first and second query. While this is unlikely to occur

in a low-latency network, it is more likely to occur in a challenged

network.

4.6. Runtime Data Definitions

The DTNMA should allow for the definition of new elements to a data

model as part of the runtime operation of the management system.

These definitions may represent custom data definitions that are

applicable only for a particular device or network. Custom

definitions should also be able to be removed from the system during

runtime.

The custom definition of new data from existing data (such as

through data fusion, averaging, sampling, or other mechanisms)

provides the ability to communicate desired information in as

compact a form as possible.

NOTE: A DM could, for example, define a custom data report that

includes only summary information around a specific operational

event or as part of specific debugging. DAs could then produce this

smaller report until it is no longer necessary, at which point the

custom report could be removed from the management system.

Custom data elements should be calculated and used both as

parameters for DA autonomy and for more efficient reporting to DMs.

¶

¶

¶

1. ¶

2. 

¶

3. 

¶

¶

¶

¶

¶



Defining new data elements allows for DAs to perform local data

fusion and defining new reporting templates allows for DMs to

specify desired formats and generally save on link capacity,

storage, and processing time.

4.7. Autonomous Operation

The management of applications by a DA should be achievable using

only knowledge local to the DA because DAs might need to operate

during times when they are disconnected from a DM.

DA autonomy may be used for simple automation of predefined tasks or

to support semi-autonomous behavior in determining when to run tasks

and how to configure or parameterize tasks when they are run. In

either case, a DA should provide the following features.

Stand-alone Operation - Pre-configuration allows DAs to operate

without regular contact with other nodes in the network. The

initial configuration (and periodic update) of a DA autonomy

engine remains difficult in a challenged network, but removes the

requirement that a DM be in-the-loop during regular operations.

Sending stimuli-and-responses to a DA during periods of

connectivity allows DAs to self-manage during periods of

disconnectivity.

Deterministic Behavior - Operational systems might need to act in

a deterministic way even in the absence of an operator in-the-

loop. Deterministic behavior allows an out-of-contact DM to

predict the state of a DA and to determine how a DA got into a

particular state.

Engine-Based Behavior - Operational systems might not be able to

deploy "mobile code" [RFC4949] solutions due to network

bandwidth, memory or processor loading, or security concerns.

Engine-based approaches provide configurable behavior without

incurring these concerns.

Authentication, Authorization, and Accounting - The DTNMA does

not require a specific underlying transport protocol, network

infrastructure, or network services. Therefore, mechanisms for

authentication, authorization, and accounting must be present in

a standard way at DAs and DMs to provide these functions if the

underlying network does not. This is particularly true in cases

where multiple DMs may be active concurrently in the network.

Features such as deterministic processing and engine-based behavior

do not preclude the use of other Artificial Intelligence (AI) and

Machine Learning (ML) approaches on a managed device.
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NOTE: The deterministic automation of the DTNMA can monitor and

control AI/ML management applications on a managed device. Using

multiple levels of autonomy is a well-known method to balance the

flexibility of a highly autonomous system with the reduced risk of a

deterministic system.

5. Current Network Management Approaches

Several network management solutions have been developed for both

local-area and wide-area networks. Their capabilities range from

simple configuration and report generation to complex modeling of

device settings, state, and behavior. Each of these approaches are

successful in the domains for which they have been built, but are

not all equally functional when deployed in a challenged network.

Early network management tools designed for unchallenged networks

provide synchronous mechanisms for communicating locally-collected

data from devices to operators. Applications are managed using a

"pull" mechanism, requiring a managing device to explicitly request

the data to be produced and transmitted by a managed device.

NOTE: Network management solutions that pull large sets of data

might not operate in a challenged environment that cannot support

timely, round-trip exchange of large data volumes.

More recent network management tools focus on message-based

management, reduced state keeping by managed and managing devices,

and increased levels of system autonomy.

This section describes some of the well-known, standardized

protocols for network management and contrasts their purposes with

the desirable properties of the DTNMA. The purpose of this

comparison is to identify elements of existing approaches that can

be adopted or adapted for use in challenged networks and where new

elements must be created specifically for this environment.

5.1. Simple Network Management Protocol (SNMP)

The de facto example of a pull architecture is the Simple Network

Management Protocol (SNMP) [RFC3416]. SNMP utilizes a request/

response model to set and retrieve data values such as host

identifiers, link utilization metrics, error rates, and counters

between application software on managing and managed devices. Data

may be directly sampled or consolidated into representative

statistics. Additionally, SNMP supports a model for unidirectional

push notification messages, called traps, based on predefined

triggering events.

SNMP managing devices can query agents for status information, send

new configurations, and request to be informed when specific events
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have occurred. SNMP devices separate the representations for data

modeling (Structure of Management Information (SMI) [RFC2578] and

the Management Information Base (MIB) [RFC3418]) and messaging,

sequencing and encoding (the SNMP protocol [RFC3416]).

Separating data models from messaging and encoding is a best

practice in subsequent management protocols and likely necessary for

the DTNMA. In particular, SNMP MIBs provide well-organized,

hierarchical Object Identifiers (OIDs) which support the

compressibility necessary for challenged DTNs.

While there is a large installation base for SNMP, several aspects

of the protocol make it inappropriate for use in a challenged

network. SNMP relies on sessions with low round-trip latency to

support its "pull" mechanism. Complex management can be achieved,

but only through careful orchestration of real-time, end-to-end,

managing-device-generated query-and-response logic.

The SNMP trap model provides some low-fidelity Agent-side

processing. Traps are typically used for alerting purposes, as they

do not support a local agent response to the initiating event. In a

challenged network where the delay between a managing device

receiving an alert and sending a response can be significant, the

SNMP trap model is insufficient for event handling.

5.2. YANG-Based Protocols

Yet Another Next Generation (YANG) [RFC6020] is a data modeling

language used to model the configuration and state data of managed

devices and applications. A number of network management protocols

have been developed around the definition, exchange, and reporting

associated with YANG data models. Currently, YANG represents the

standard for defining network management information.

5.2.1. The YANG Data Model

The YANG model defines a schema for organizing and accessing a

device's configuration or operational information. Once a model is

developed, it is loaded to both the client and server, and serves as

a contract between the two. A YANG model can be complex, describing

many containers of managed elements, each providing methods for

device configuration or reporting of operational state.

The YANG module itself is a flexible data model that could be used

for capturing the autonomy models and other behaviors needed by the

DTNMA. The YANG schema provides flexibility in the organization of

data to the model developer. The YANG schema supports a broad range

of data types noted in [RFC6991]. YANG supports the definition of

parameterized Remote Procedure Calls (RPCs) to be executed on
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managed nodes as well as the definition of push notifications within

the model.

The YANG modeling language continues to evolve as new features are

needed by adopting management protocols. Two evolving features that

might be useful in the DTNMA are notifications and schema

identifiers.

YANG notifications [RFC8639] and YANG-Push notifications 

[RFC8641] allow a client to subscribe to the delivery of specific

containers or data nodes defined in the model, either on a

periodic or "on change" basis. These notification events can be

filtered according to XPath [xpath] or subtree [RFC6241]

filtering as described in [RFC8639] Section 2.2.

YANG Schema Item iDentifiers (SIDs) [I-D.ietf-core-sid] are

proposed to be 63-bit identifiers used for more efficiently

identification of YANG data elements for use in constrained

environments.

While the YANG model is currently the standard way to describe

management data, there are concerns with its unmodified use in the

DTNMA, as follows.

Size. Data nodes within a YANG model are referenced by a

verbose, string-based path of the module, sub-module,

container, and any data nodes such as lists, leaf-lists, or

leaves, without any explicit hierarchical organization based on

data or object type. Existing efforts to make compressed

identifies for YANG objects (such as SIDs) are still relatively

verbose (~8 bytes per item) and do not natively support ways to

glob multiple SIDs.

Protocol Coupling. A significant amount of existing YANG

tooling presumes the use of YANG with a specific management

protocol. The emergence of multiple YANG-based protocols may

make these presumptions less problematic in the future. Work to

more consistently identify different types of YANG modules and

their use has been undertaken to disambiguate how YANG modules

should be treated [RFC8199].

Agent Control. YANG RPCs execute commands on a device and

generate an expected, structured response. RPC execution is

strictly limited to those issued by the client. Commands are

executed immediately and sequentially as they are received by

the server, and there is no method to autonomously execute RPCs

triggered by specific events or conditions.
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5.2.2. YANG-Based Management Protocols

YANG defines the schema for data used by network management

protocols such as NETCONF [RFC6241], RESTCONF [RFC8040], and

CORECONF [I-D.ietf-core-comi]. These protocols provide the

mechanisms to install, manipulate, and delete the configuration of

network devices.

5.2.2.1. NETCONF

NETCONF is a stateful, XML-based protocol that provides a RPC syntax

to retrieve, edit, copy, or delete any data nodes or exposed

functionality on a server. It requires that underlying transport

protocols support long-lived, reliable, low-latency, sequenced data

delivery sessions.

NETCONF connections are required to provide authentication, data

integrity, confidentiality, and replay protection through secure

transport protocols such as SSH or TLS. A bi-directional NETCONF

session must be established before any data transfer can occur. All

of these requirements make NETCONF a poor choice for operating in a

challenged network.

5.2.2.2. RESTCONF

RESTCONF is a stateless RESTful protocol based on HTTP. RESTCONF

configures or retrieves individual data elements or containers

within YANG data models by passing JSON over REST. This JSON

encoding is used to GET, POST, PUT, PATCH, or DELETE data nodes

within YANG modules.

RESTCONF is a stateless protocol because it presumes that it is

running over a stateful secure transport (HTTP over TLS). Also,

RESTCONF presumes that a single pull of information can be made in a

single round-trip. In this way, RESTCONF is only stateless between

queries - not internal to a single query.

5.2.2.3. CORECONF

CORECONF is an emerging stateless protocol built atop the

Constrained Application Protocol (CoAP) [RFC7252] that defines a

messaging construct developed to operate specifically on constrained

devices and networks by limiting message size and fragmentation.

CoAP also implements a request/response system and methods for GET,

POST, PUT, and DELETE.

Currently, the CORECONF draft [I-D.ietf-core-comi] is archived and

expired since 2021.
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5.3. Autonomic Networking

The future of network operations requires more autonomous behavior

including self-configuration, self-management, self-healing, and

self-optimization. One approach to support this is termed Autonomic

Networking [RFC7575].

In particular, there is a large and growing set of work within the

IETF focused on developing an Autonomic Networking Integrated Model

and Approach (ANIMA). The ANIMA work has developed a comprehensive

reference model for distributing autonomic functions across multiple

nodes in an autonomic networking infrastructure [RFC8993].

This work, focused on learning the behavior of distributed systems

to predict future events, is an exciting and emerging network

management capability. This includes the development of signalling

protocols such as GRASP [RFC8990] and autonomic control planes 

[RFC8368].

Both autonomic and challenged networks require similar degrees of

autonomy. However, challenged networks cannot provide the complex

coordination between nodes and distributed supporting infrastructure

necessary for the frequent data exchanges for negotiation, learning,

and bootstrapping associated with the above capabilities.

There is some emerging work in ANIMA as to how disconnected devices

might join and leave the autonomic control plane over time. However,

this work is solving an important, but different, problem than that

encountered by challenged networks.

6. Motivation for New Features

The future of network management will involve autonomous and

autonomic functions operating on both managed and managing devices.

However, the development of distributed autonomy for coordinated

learning and event reaction is different from a managed device

operating without connectivity to a managing node.

Management mechanisms that provide DTNMA desirable properties do not

currently exist. This is not surprising since autonomous management

in the context of a challenged networking environment is an emerging

use case.

In particular, a management architecture is needed that provides the

following new features.

Open Loop Control. Freedom from a request-response

architecture, API, or other presumption of timely round-trip

communications. This is particularly important when managing
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networks that are not built over an HTTP or TCP/TLS

infrastructure.

Standard Autonomy Model. An autonomy model that allows for

standard expressions of policy to guarantee deterministic

behavior across devices and vendor implementations.

Compressible Model Structure. A data model that allows for very

compact encodings by defining and exploiting common elements of

data schemas.

Combining these new features with existing mechanisms for message

data exchange (such as BP), data representations (such as CBOR) and

data modeling languages (such as YANG) will form a pragmatic

approach to defining challenged network management.

7. Reference Model

There are a multitude of ways in which both existing and emerging

network management protocols, APIs, and applications can be

integrated for use in challenged environments. However, expressing

the needed behaviors of the DTNMA in the context of any of these

pre-existing elements risks conflating systems requirements,

operational assumptions, and implementation design constraints.

7.1. Important Concepts

This section describes a network management concept for challenged

networks (generally) and those conforming to the DTN architecture

(in particular). The goal of this section is to describe how DTNMA

services provide DTNMA desirable properties.

NOTE: This section assumes a BPv7 underlying network transport.

Bundles are the baselined transport protocol data units of the DTN

architecture. Additionally, they may be used in a variety of network

architectures beyond the DTN architecture. Therefore, assuming

bundles is a convenient way of scoping DTNMA to any network or

network architecture that relies on BPv7 features.

Similar to other network management architectures, the DTNMA draws a

logical distinction between a managed device and a managing device.

Managed devices use a DA to manage resident applications. Managing

devices use a DM to both monitor and control DAs.

NOTE: The terms "managing" and "managed" represent logical

characteristics of a device and are not, themselves, mutually

exclusive. For example, a managed device might, itself, also manage

some other device in the network. Therefore, a device may support

either or both of these characteristics.
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The DTNMA differs from some other management architectures in three

significant ways, all related to the need for a device to self-

manage when disconnected from a managing device.

Pre-shared Definitions. Managing and managed devices should

operate using pre-shared data definitions and models. This

implies that static definitions should be standardized whenever

possible and that managing and managed devices may need to

negotiate definitions during periods of connectivity.

Agent Self-Management. A managed device may find itself

disconnected from its managing device. In many challenged

networking scenarios, a managed device may spend the majority

of its time without a regular connection to a managing device.

In these cases, DAs manage themselves by applying pre-shared

policies received from managing devices.

Command-Based Management. Managing devices communicate with

managed devices through an envisioned command and control

interface. Unlike other network management approaches where

managers locally construct datastores and databases for bulk

updates, the DTNMA presumes that managed device databases are

managed through a command-based interface. This, in part, is

driven by the need for DAs to receive updates from both remote

management devices and local autonomy.

7.2. Model Overview

A DTNMA reference model is provided in Figure 1 below. In this

reference model, applications and services on a managing device

communicate with a DM which uses pre-shared definitions to create a

set of directives that can be sent to a managed device's DA. The DA

provides local monitoring and control of the applications and

services resident on the managed device. The DA also performs local

data fusion as necessary to synthesize data products (such as

reports) that can be sent back to the DM when appropriate.

DTNMA Reference Model
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Figure 1

This model preserves the familiar concept of "managers" resident on

managing devices and "agents" resident on managed devices. However,

the DTNMA model is unique in how the DM and DA operate. The DM is

used to pre-configure DAs in the network with management policies.

it is expected that the DAs, themselves, perform monitoring and

control functions on their own. In this way, a properly configured

DA may operate without a timely, reliable connection back to a DM.

7.3. Functional Elements

The reference model illustrated in Figure 1 implies the existence of

certain logical elements whose roles and responsibilities are

discussed in this section.

7.3.1. Managed Applications and Services

By definition, managed applications and services reside on a managed

device. These software entities can be controlled through some

interface by the DA and their state can be sampled as part of

periodic monitoring. It is presumed that the DA on the managed

device has the proper data model, control interface, and permissions

to alter the configuration and behavior of these software

applications.

       Managed Device                             Managing Device

+----------------------------+             +-----------------------------+

| +------------------------+ |             | +-------------------------+ |

| |Applications & Services | |             | | Applications & Services | |

| +----------^-------------+ |             | +-----------^-------------+ |

|            |               |             |             |               |

| +----------v-------------+ |             | +-----------v-------------+ |

| | DTNMA  +-------------+ | |             | | +-----------+   DTNMA   | |

| | AGENT  | Monitor and | | |  Controls   | | |  Policy   |  MANAGER  | |

| |        |   Control   | | |<============| | | Encoding  |           | |

| | +------+-------------+ | |             | | +-----------+-------+   | |

| | |Admin | Data Fusion | | |============>| | | Reporting | Admin |   | |

| | +------+-------------+ | |    Reports  | | +-----------+-------+   | |

| +------------------------+ |             | +-------------------------+ |

+----------------------------+             +-----------------------------+

               ^                                        ^

               |          Pre-Shared Definitions        |

               |      +---------------------------+     |

               +------| - Autonomy Model          |-----+

                      | - Application Data Models |

                      | - Runtime Data Stores     |

                      +---------------------------+
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Rules Database

Autonomy Engine

Application Control Interfaces

7.3.2. DTNMA Agent (DA)

A DA resides on a managed device. As is the case with other network

management approaches, this agent is responsible for the monitoring

and control of the applications local to that device. Unlike other

network management approaches, the agent accomplishes this task

without a regular connection to a DTNMA Manager.

The DA performs three major functions on a managed device: the

monitoring and control of local applications, production of data

analytics, and the administrative control of the agent itself.

7.3.2.1. Monitoring and Control

DAs monitor the status of applications running on their managed

device and selectively control those applications as a function of

that monitoring. The following components are used to perform

monitoring and control on an agent.

A DA monitors the state of the managed device looking for pre-

defined stimuli and, when encountered, issuing a pre-defined

response. The tuple of stimulus-response is termed a "rule".

Within the DTNMA, these rules are the embodiment of policy

expressions received from DMs and evaluated at regular intervals

by the autonomy engine. The rules database is the collection of

active rules known to the DA.

The DA autonomy engine is configured with policy expressions

describing expected reactions to potential events. This engine is

configured by managers during periods of connectivity. Once

configured, the engine may function without other access to any

managing device. This engine may also reconfigure itself as a

function of policy.

DAs must support control interfaces for all managed applications.

Control interfaces are used to alter the configuration and

behavior of an application. These interfaces may be custom for

each application, or as provided through a common framework such

as provided by an operating system.

7.3.2.2. Data Fusion

DAs generate new data elements as a function of the current state of

the managed device and its applications. These new data products may

take the form of individual data values, or new collections of data

used for reporting. The logical components responsible for these

behaviors are as follows.
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Application Data Interfaces

Data Value Generators

Report Generators

Manager Mapping

Data Verifiers

DAs must support mechanisms by which important state is retrieved

from various applications resident on the managed device. These

data interfaces may be custom for each application, or as

provided through a common framework such as provided by an

operating system.

DAs may support the generation of new data values as a function

of other values collected from the managed device. These data

generators may be configured with descriptions of data values and

the data values they generate may be included in the overall

monitoring and reporting associated with the managed device.

DAs may, as appropriate, generate collections of data values for

transmission to managers. Reports can be generated as a matter of

policy or in response to the handling of critical events (such as

errors), or other logging needs. The generation of a report is

independent of whether there exists any connectivity between a DA

and a DM. It is assumed that reports are queued on an agent

pending transmit opportunities.

7.3.2.3. Administration

DAs must perform a variety of administrative services in support of

their configuration. The significant such administrative services

are as follows.

The DTNMA allows for a many-to-many relationship amongst DTNMA

Agents and Managers. A single DM may configure multiple DAs, and

a single DA may be configured by multiple DMs. Multiple managers

may exist in a network for at least two reasons. First, different

managers may exist to control different applications on a device.

Second, multiple managers increase the likelihood of an agent

encountering a manager when operating in a sparse or challenged

environment.

DAs might handle large amounts of data produced by various

sources, to include data from local managed applications, remote

managers, and self-calculated values. DAs should ensure, when

possible, that externally generated data values have the proper
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Access Controllers

syntax (e.g., data type and ranges) and any required integrity

and confidentiality.

DAs support authorized access to the management of individual

applications, to include the administrative management of the

agent itself. This means that a manager may only set policy on

the agent pursuant to verifying that the manager is authorized to

do so.

7.3.3. Managing Applications and Services

Managing applications and services reside on a managing device and

serve as the both the source of DA policy statements and the target

of DA reporting. They may operate with or without an operator in the

loop.

Unlike management applications in unchallenged networks, these

applications cannot exert timely closed-loop control over any

managed device application. Instead, these applications must be

built to exercise open-loop control by producing policies that can

be configured and enforced on managed devices by DAs.

NOTE: Closed-loop control in this context refers to the practice of

waiting for a response from a managed device prior to issuing new

directives to that device. These "loops" may be closed quickly (in

milliseconds) or over much longer periods (hours, days, years). The

alternative to closed-loop control is open-loop control, where

responses from a managed device and directives to the managed device

are independent of one another.

7.3.4. DTNMA Manager (DM)

A DM resides on a managing device. This manager provides an

interface between various managing applications and services and the

DAs that enforce their policies. In providing this interface, DMs

translate between whatever native interface exists to various

managing applications and the autonomy models used to encode

management policy.

The DM performs three major functions on a managing device: policy

encoding, reporting, and administration.

7.3.4.1. Policy Encoding

DMs translate policy directives from managing applications and

services into standardized policy expressions that can be recognized

by DAs. The following logical components are used to perform this

policy encoding.
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Application Control Interfaces

Policy Encoders

Policy Aggregators

Report Collectors

Data Analyzers

Application Data Interfaces

DMs must support control interfaces for managing applications.

These control interfaces are used to receive desired policy

statements from applications. These interfaces may be custom for

each application, or provided through a common framework,

protocol, or operating system.

DAs implement a standardized autonomy model comprising

standardized data elements. The open-loop control structures

provided by managing applications must be represented in this

common language. Policy encoders perform this encoding function.

DMs collect multiple encoded policies into messages that can be

sent to DAs over the network. This implies the proper addressing

of agents and the creation of messages that support store-and-

forward operations. It is recommended that control messages be

packaged using BP bundles when there may be intermittent

connectivity between DMs and DAs.

7.3.4.2. Reporting

DMs receive reports on the status of managed devices during periods

of connectivity with the DAs on those devices. The following logical

components are needed to implement reporting capabilities on a DM.

DMs receive reports from DAs in an asynchronous manner. This

means that reports may be received out of chronological order and

in ways that are difficult or impossible to associate with a

specific policy from a managing application. DMs collect these

reports and extract their data in support of subsequent data

analytics.

DMs review sets of data reports from DAs with the purpose of

extracting relevant data to communicate with managing

applications. This may include simple data extraction or may

include more complex processing such as data conversion, data

fusion, and appropriate data analytics.

DMs must support mechanisms by which data retrieved from agent

may be provided back to managing devices. These interfaces may be

custom for each application, or as provided through a common

framework, protocol, or operating system.
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Agent Mappings

Data Verifiers

Access Controllers

Autonomy Model

7.3.4.3. Administration

Managers in the DTNMA must perform a variety of administrative

services in support of their proper configuration and operation.

This includes the following logical components.

The DTNMA allows DMs to communicate with multiple DAs. However,

not every agent in a network is expected to support the same set

of Application Data Models or otherwise have the same set of

managed applications running. For this reason, DMs must determine

individual DA capabilities to ensure that only appropriate

controls are sent to a DA.

DMs handle large amounts of data produced by various sources, to

include data from managing applications and DAs. DMs should

ensure, when possible, that data values received from DAs over a

network have the proper syntax (e.g., data type and ranges) and

any required integrity and confidentiality.

DMs should only send controls to agents when the manager is

configured with appropriate access to both the agent and the

applications being managed.

7.3.5. Pre-Shared Definitions

A consequence of operating in a challenged environment is the

potential inability to negotiate information in real-time. For this

reason, the DTNMA requires that managed and managing devices operate

using pre-shared definitions rather than relying on data definition

negotiation.

The three types of pre-shared definitions in the DTNMA are the DA

autonomy model, managed application data models, and any runtime

data shared by managers and agents.

A DTNMA autonomy model represents the data elements and

associated autonomy structures that define the behavior of the

agent autonomy engine. A standardized autonomy model allows for

individual implementations of DAs, and DMs to interoperate. A

standardized model also provides guidance to the design and

implementation of both managed and managing applications.

NOTE: A standardized autonomy model is required for the

interoperable encoding of policy statements. However, the

DTNMA does not standardize a specific transport of those

policy statements between agents and managers. The DTNMA also

does not specify any transport-related encoding.
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Application Data Models

Runtime Data Stores

As with other network management architectures, the DTNMA pre-

supposes that managed applications (and services) define their

own data models. These data models include the data produced by,

and controls implemented by, the application. These models are

expected to be static for individual applications and

standardized for applications implementing standard protocols.

Runtime data stores, by definition, include data that is defined

at runtime. As such, the data is not pre-shared prior to the

deployment of DMs and DAs. Pre-sharing in this context means that

DMs and DAs are able to define and synchronize data elements

prior to their operational use in the system. This

synchronization happens during periods of connectivity between

DMs and DAs.

8. Desired Services

This section provides a description of the services provided by

DTNMA elements on both managing and managed devices. These service

descriptions differ from other management descriptions because of

the unique characteristics of the DTNMA operating environment.

Predicate autonomy, asynchronous data transport, and intermittent

connectivity require new techniques for device management. Many of

the services discussed in this section attempt to provide continuous

operation of a managed device through periods of no connectivity.

8.1. Local Monitoring and Control

DTNMA monitoring is associated with the agent autonomy engine. The

term monitoring implies timely and regular access to information

such that state changes may be acted upon within some response time

period. Within the DTNMA, connections between a managed and managing

device are unable to provide such a connection and, thus, monitoring

functions must be handled on the managed device.

Predicate autonomy on a managed device should collect state

associated with the device at regular intervals and evaluate that

collected state for any changes the require a preventative or

corrective action. Similarly, this monitoring may cause the device

to generate one or more reports destined to the managing device.

Similar to monitoring, DTNMA control results in actions by the agent

to change the state or behavior of the managed device. All control

in the DTNMA is local control. In cases where there exists a timely

connection to a manager, received controls a are still run through

the autonomy engine. In this case, the stimulus is the direct

receipt of the control and the response is to immediately run the
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control. In this way, there is never a dependency on a session or

other stateful exchange with any remote entity.

8.2. Local Data Fusion

DTNMA Fusion services produce new data products from existing state

on the managed device. These fusion products can be anything from

simple summations of sampled counters to complex calculations of

behavior over time.

Fusion is an important service in the DTNMA because fusion products

are part of the overall state of a managed device. Complete

knowledge of this overall state is important for the management of

the device, particularly in a stimulus-response system whose stimuli

are evaluated against this state.

In-situ data fusion is an important function as it allows for the

construction of intermediate summary data, the reduction of stored

and transmitted raw data, and otherwise insulates the data source

from conclusions drawn from that data.

While some fusion is performed in any management system, the DTNMA

requires fusion to occur on the managed device itself. If the

network is partitioned such that no connection to a managing device

is available, fusion must happen locally. Similarly, connections to

a managing device might not remain active long enough for round-trip

data exchange or may not have the bandwidth to send all sampled

data.

NOTE: While data fusion is an important function within the DTNMA,

it is expected that the storage and transmission of raw (or pre-

fused) data remains a capability of the system. In particular, raw

data can be useful for debugging managed devices, understanding

complex interactions and underlying conditions, and tuning for

better performance and/or better outcomes.

8.3. Remote Configuration

DTNMA configuration services must update the local configuration of

a managed device with the intent to impact the behavior and

capabilities of that device. The change of device configurations is

a common service provided by many network management systems. The

DTNMA has a unique approach to configuration for the following

reasons.

The DTNMA configuration service is unique in that the selection of

managed device configurations must occur, itself, as a function of

the state of the device. This implies that management proxies on the

device store multiple configuration functions that can be applied as

needed without consultation from a managing device.
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This approach differs from the management concept of selecting from

multiple datastores in that DTNMA configuration functions can target

individual data elements and can calculate new values from local

device state.

When detecting stimuli, the agent autonomy engine must support a

mechanism for evaluating whether application monitoring data or

runtime data values are recent enough to indicate a change of state.

In cases where data has not been updated recently, it may be

considered stale and not used to reliably indicate that some

stimulus has occurred.

8.4. Remote Reporting

DTNMA reporting services collect information known to the managed

device and prepare it for eventual transmission to one or more

managing devices. The contents of these reports, and the frequency

at which they are generated, occurs as a function of the state of

the managed device, independent of the managing device.

Once generated, it is expected that reports might be queued pending

a connection back to a managing device. Therefore, reports must be

differentiable as a function of the time they were generated.

When reports are sent to a managing device over a challenged

network, they may arrive out of order due to taking different paths

through the network or being delayed due to retransmissions. A

managing device should not infer meaning from the order in which

reports are received, nor should a given report be associated with a

specific control or autonomy action on a given managed device.

8.5. Authorization

Both local and remote services provided by the DTNMA affect the

behavior of multiple applications on a managed device and may

interface with multiple managing devices. It is expected that

transport protocols used in any DTNMA implementation support

security services such as integrity and confidentiality.

Authorization services enforce the potentially complex mapping of

other DTNMA services amongst managed and managing devices in the

network. For example, fine-grained access control can determine

which managing devices receive which reports, and what controls can

be used to alter which managed applications.

This is particularly beneficial in networks that either deal with

multiple administrative entities or overlay networks that cross

administrative boundaries. Allowlists, blocklists, key-based

infrastructures, or other schemes may be used for this purpose.
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9. Logical Autonomy Model

An important characteristic of the DTNMA is the shift in the role of

a managing device. In the DTNMA, managers configure the autonomy

engines on agents, and it is the agents that provide local device

management. One way to describe the behavior of the agent autonomy

engine is to describe the characteristics of the autonomy model it

implements.

This section describes a logical autonomy model in terms of the

abstract data elements that would comprise the model. Defining

abstract data elements allows for an unambiguous discussion of the

behavior of an autonomy model without mandating a particular design,

encoding, or transport associated with that model.

9.1. Overview

Managing autonomy on a potentially disconnected device must behave

in both an expressive and deterministic way. Expressivity allows for

the model to be configured for a wide range of future situations.

Determinism allows for the forensic reconstruction of device

behavior as part of debugging or recovery efforts.

The DTNMA autonomy model is built on a stimulus-response model in

which the autonomy system responses to pre-identified stimuli with

pre-configured responses. Stimuli are identified using simple

predicate logic that examines aspects of the state of the managed

device. Responses are implemented by running one or more procedures

on the managed device.

As with many such systems, behavior can be captured using the

construct:

IF stimulus THEN response

NOTE: The use of predicate logic and a stimulus-response system does

not conflict with the use of higher-level autonomous function or the

incorporation of machine learning. The DTNMA recommended autonomy

model allows for the use of higher levels of autonomous function as

moderated and controlled by a more deterministic base autonomy

system.

By allowing for a multi-tier autonomy system, the DTNMA may increase

the adoption of higher-functioning autonomy because of the

reporting, control, and determinism of the underlying predicate

system.

DTNMA Autonomy Model
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Figure 2

The flow of data into and out of the agent autonomy engine is

illustrated in Figure 2. In this model, the autonomy engine stores

the combination of stimulus conditions and associated responses as a

set of "rules" in a rules database. This database is updated through

the execution of the autonomy engine and as configured from policy

statements received by managers.

Stimuli are detected by examining the state of applications as

reported through application monitoring interfaces and through any

locally-derived data. Local data is calculated in accordance with

definitions also provided by managers as part of the runtime data

store.

Responses to stimuli are run as updated to the rules database,

updated to the runtime data store, controls sent to applications,

and the generation of reports.

9.2. Model Characteristics

There are a number of ways to represent data values, and many data

modeling languages exist for this purpose. When considering how to

model data in the context of the DTNMA autonomy model there are some

modeling features that should be present to enable functionality.

There are also some modeling features that should be prevented to

avoid ambiguity.

Traditional network management approaches favor flexibility in their

data models. The DTNMA stresses deterministic behavior that supports

forensic analysis of agent activities "after the fact". As such, the

   Managed Applications  |           DTNMA Agent           |   DTNMA Manager

+------------------------+---------------------------------+-----------------+

                         |   +---------+                   |

                         |   |  Local  |                   |   Encoded

                         |   | Rule DB |<--------------------- Policy

                         |   +---------+                   |   Expressions

                         |        ^                        |

                         |        |                        |

                         |        v                        |

                         |   +----------+     +---------+  |

      Monitoring Data------->|   Agent  |     | Runtime |  |

                         |   | Autonomy |<--->|  Data   |<---- Definitions

  Application Control<-------|  Engine  |     |  Store  |  |

                         |   +----------+     +---------+  |

                         |         |                       |

                         |         +--------------------------> Reports

                         |                                 |
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following statements should be true of all data representations

relating to DTNMA autonomy.

Strong Typing - The predicates and expressions that comprise the

autonomy services in the DTNMA should require strict data typing.

This avoids errors associated with implicit data conversions and

helps detect misconfiguration.

Acyclic Dependency - Many dependencies exist in an autonomy

model, particularly when combining individual expressions or

results to create complex behaviors. Implementations that conform

to the DTNMA must prevent circular dependencies.

Fresh Data - Autonomy models operating on data values presume

that their data inputs represent the actionable state of the

managed device. If a data value has failed to be refreshed within

a time period, autonomy might incorrectly infer an operational

state. Regardless of whether a data value has changed, DTNMA

implementations must provide some indicator of whether the data

value is "fresh" meaning that is still represents the current

state of the device.

Pervasive Parameterization - Where possible, autonomy model

objects should support parameterization to allow for flexibility

in the specification. Parameterization allows for the definition

of fewer unique model objects and also can support the

substitution of local device state when exercising device control

or data reporting.

Configurable Cardinality - The number of data values that can be

supported in a given implementation is finite. For devices

operating in challenged environments, the number of supported

objects may be far fewer than that which can be supported by

devices in well-resourced environments. DTNMA implementations

should define limits to the number of supported objects that can

be active in a system at one time, as a function of the resources

available to the implementation.

Control-Based Updates - The agent autonomy engine changes the

state of the managed device by running controls on the device.

This is different from other approaches where the behavior of a

managed device is updated only by updated configuration values,

such as in a table or datastore. Altering behavior via one or

more controls allows checking all pre-conditions before making

changes as well as providing more granularity in the way in which

the device is updated. Where necessary, controls can be defined

to perform bulk updated of configuration data so as not to lose

that update modality.
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9.3. Data Value Representation

The expressive representation of data values is fundamental to the

successful construction and evaluation of predicates in the DTNMA

autonomy model. This section describes the characteristics of data

representation for this model, both as individual data values and

ways to aggregate these values into collections.

There is a useful distinction that can be made regarding the way in

which data values are assigned in the context of an autonomy system.

This section discusses four categories of assigning strategies and

proposes mnemonics to differentiate each.

NOTE: The assignment and naming of data values are different from

the base type of the data value. The DTNMA assumes common data types

(e.g., integer, real, string, byte) would be supported in any

operational autonomy model.

The four categories of value assignment can be derived by

determining whether values are calculated internal or external to

the autonomy model and whether, once calculated, these values can be

changed.

Immutable Mutable

Internally Defined CONST VAR

Externally Defined LIT EDD

Table 1: Data Value Categories and

Mnemonics

Constants (CONST) - Constant data values are named values that are

defined in the context of the autonomy model. Both the name and the

value of the constant are fixed and cannot be changed. An example of

a constant would be defining the numerical value PI to 2 digits of

precision (PI_2_DIGITS = 3.14).

Literals (LIT) - Literal data values are those whose name and value

are the same. These values are used to represent atomic values that

are too simple to be represented a constant. For example, the number

4 is a literal value. The name "4" and the value 4 are the same and

inseparable. Literal values cannot change ("4" could not be used to

mean 5) and they are defined external to the autonomy model (the

autonomy model is not expected to redefine what 4 means).

Variables (VAR) - Variables are named data values defined by the

autonomy model itself. They can be added and removed as a function

of the function of the autonomy model, and the autonomy model is the

sole determiner of their value. An example of a variable in an
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autonomy model would be the number of times that a particular

predicate evaluated to true.

Externally-Defined Data (EDD) - External data values are those

provided to the autonomy model from its hosting environment. These

values are the foundation of state-based autonomy as they capture

the state of the managed device. The autonomy model treats these

values as read-only inputs. Examples of externally defined values

include temperature sensor readings and the instantaneous data rate

from a radio.

9.4. Data Reporting

The DTNMA autonomy model should, as required, report on the state of

its managed device (to include the state of the model itself). This

reporting should be done as a function of the changing state of the

managed device, independent of the connection to any managing

device. Queuing reports allows for later forensic analysis of device

behavior, which is a desirable property of DTNMA management.

There are at least four useful categories of reporting mechanism

that should be present in the DTNMA These categories can be

distinguished by whether the reported data share a common structure

or not, and whether the report mechanism represents a scheme or data

adherent to that schema.

Schema Values

Common Structure TBLT TBL

Mixed Structure RPTT RPT

Table 2: Data Reporting Mechanisms

and Mnemonics

9.4.1. Tabular Reports (TBLs) and Tabular Report Templates (TBLTs)

Relational database tables provide collection, filtering, and

reporting efficiencies when representing series of data collections

that share a common syntactic structure and semantic meaning. Tables

have a fixed structure identified by one or more vertical columns.

They are populated by zero or more data collections, with one row

per represented data collection.

To the extent that DTNMA reporting includes data collections

similarly adhering to a common structure, these reports can be

modeled similarly to tables. Such reports are called Tabular Reports

(TBLs).

Every TBL is populated in accordance to a pre-defined schema, which

is termed the Tabular Report Template (TBLT). This template defines

¶

¶

¶

¶

¶

¶



the columns that comprise the TBL and associated constraints on data

values for those columns.

Dissimilar to relational database tables, TBLs are reporting

mechanisms. They represent a report generated at a specific moment

in time. Therefore, a managed device may produce and queue for

transmission multiple TBLs for the same TBLT.

9.4.2. Reports (RPT) and Report Templates (RPTT)

Not all reportable data collections are efficiently represented in a

tabular structure. In cases where there is no processing or encoding

advantage to a tabular report, a non-tabular representation is

needed. This representation is termed the DTNMA report (RPT).

A RPT is a snapshot of a collection of data values at a given moment

in time. The type, number, order, and other details of these data

values is given by a schema called the Report Template (RPTT).

Separating the structure (RPTT) and content (RPT) of a general

purpose reporting mechanism reduces the size of generated traffic,

which is an important property of the DTNMA.

9.5. Command Execution

The agent autonomy engine requires that managed devices issue

commands on themselves as if they were otherwise being controlled by

a managing device. The ability to support this type of commanding in

the autonomy model is one of the unique requirements of the DTNMA.

This approach is not dissimilar to the concept of Remote Procedure

Calls (RPCs) that are sometimes used in low-latency, high-

availability approaches to network management mechanisms.

Command execution in the DTNMA happens through the use of controls

and macros.

Controls (CTRL) - A control represents a parameterized, predefined

procedure that is run by the agent autonomy engine. CTRLs are

conceptually similar to RPCs in that they represent parameterized

functions run on the managed device. However, they are conceptually

dissimilar from RPCs in that they do not have a concept of a return

code as they must operate over an asynchronous transport. The

concept of return code in an RPC implies a synchronous relationship

between the caller of the procedure and the procedure being called,

which might not be possible within the DTNMA.

NOTE: The use of the term Control in the DTNMA is derived in part

from the concept of Command and Control (C2) where control implies

the operational instructions that must be undertaken to implement

(or maintain) a commanded objective. The DA autonomy engine controls
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a managed device to allow it to fulfill some purpose as commanded by

a (possibly disconnected) managing device.

For example, attempting to maintain a safe internal thermal

environment for a spacecraft is considered "thermal control" (not

"thermal commanding") even though thermal control involves sending

commands to heaters, louvers, radiators, and other temperature-

affecting components.

Even when CTRLs are received from a managing device with the intent

to be run immediately, the control-vs-command distinction still

applies. The CTRL run on the managed device is in service of the

command received from the managing device to immediately change the

local state of the device.

The success or failure of a CTRL may be handled locally by the agent

autonomy engine. Otherwise, the externally observable impact of a

CTRL can be understood through the generation and eventual

examination of data reports produced by the managed device.

Macros (MACRO) - A Macro represents an ordered sequence of CTRLs

execution. They may be implemented as a set of CTRLs, or as a mixed

set of both MACRO and CTRL objects. Similar to CTRLs, a MACRO object

should support parameterization and should not support a return code

back to a caller.

9.6. Predicate Autonomy

The core function of the agent autonomy engine is to apply

predetermined responses to predetermined state on a managed device.

This involves the ability to calculate predicate expressions and the

ability to associate the positive evaluation of these expressions

with command execution.

9.6.1. Expressions

There are a few instances within the DTNMA autonomy model where a

value must be calculated by the model itself, to include the

following.

Calculating the value of a VAR.

Evaluating a predicate to see if it is true.

In cases such as these, the DTNMA must support an efficient,

configurable syntax for defining expressions, calculating the value

of these expressions based on the local state of the managed device,

and using the calculated value in an appropriate way.
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Expression (EXPR) - An Expression is a combination of operators and

operands used to construct a numerical value from a series of other

data values in the autonomy model.

Operator (OP) - An Operator represents a operation performed on at

least one operand and returning a single result that, itself, can be

used as an operand to some other operator. OPs may represent simple

(+, -) or complex (sin, avg) mathematical functions or custom

functions defined for the managed device.

Operands may be built from any autonomy model object that can be

associated with a data value, to include the CONST, LIT, VAR, and

EDD types, the result of an OP, and the result of a fully evaluated

EXPR.

Predicate Expression (PRED) - A Predicate Expression is an EXPR

whose evaluated data value is interpreted in a logical way as being

either true or false.

9.6.2. Rules

A stimulus-response system associated stimulus detection with a

commanded response. In the DTNMA, this relationship is captured

through the definition of rules. These rules may be defined as

focused on either the state of the managed device or optimized to

only examine how time has passed on the managed device.

State-Based Rules (SBRs) - A state-based rule is one whose stimulus

is indicated when a given PRED evaluates to true. Since the PRED is

a combination of sampled and calculated data values on the managed

device, evaluation of the PRED is evaluating the relevant state of

the device. A SBR is one of the form:

IF PRED THEN MACRO

Time-Based Rules (TBRs) - A time-based rule is a specialization of a

SBR that is optimized to only consider the passage of time on the

managed device. A TBR is one of the form:

EVERY interval THEN MACRO

10. Use Cases

Using the autonomy model mnemonics defined in Section 9, this

section describes flows through sample configurations conforming to

the DTNMA. These use cases illustrate remote configuration, local

monitoring and control, multiple manager support, and data fusion.
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10.1. Notation

The use cases presented in this section are documented with a

shorthand notation to describe the types of data sent between

managers and agents. This notation, outlined in Table 3, leverages

the mnemonic definitions of autonomy model elements defined in 

Section 9.

Term Definition Example

ID DTNMA Object Identifier. V1, EDD2

EDD# Enumerated EDD definition. EDD1

V# Enumerated VAR definition. V1 = EDD1 + V0

ACL# Enumerated Access Control List. ACL1

DEF([ACL],ID,EXPR)
Define ID from expression. Allow

managers in ACL to see this ID.

DEF([ACL1], V1,

EDD1 + EDD2)

PROD(P,ID)

Produce ID according to

predicate P. P may be a time

period (1s) or an expression

(EDD1 > 10).

PROD(1s, EDD1)

RPT(ID)
A report containing data named

ID.
RPT(EDD1)

Table 3: Terminology

These notations do not imply any implementation approach. They only

provide a succinct syntax for expressing the data flows in the use

case diagrams in the remainder of this section.

10.2. Serialized Management

This nominal configuration shows a single DM interacting with

multiple DAs. The control flows for this scenario are outlined in 

Figure 3.

Serialized Management Control Flow
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Figure 3

In a serialized management scenario, a single DM interacts with

multiple DAs.

In this figure, the DTNMA Manager A sends a policy to DTNMA Agents A

and B to report the value of an EDD (EDD1) every second in (step 1).

Each DA receives this policy and configures their respective

autonomy engines for this production. Thereafter, (step 2) each DA

produces a report containing data element EDD1 and sends those

reports back to the DM.

This behavior continues without any additional communications from

the DM and without requiring a connection between the DA and DM.

10.3. Intermittent Connectivity

Building from the nominal configuration in Section 10.2, this

scenario shows a challenged network in which connectivity between

DTNMA Agent B and the DM is temporarily lost. Control flows for this

case are outlined in Figure 4.

Challenged Management Control Flow

+-----------+           +---------+           +---------+

|   DTNMA   |           |  DTNMA  |           |  DTNMA  |

| Manager A |           | Agent A |           | Agent B |

+----+------+           +----+----+           +----+----+

    |                       |                     |

    |-----PROD(1s, EDD1)--->|                     | (1)

    |----------------------------PROD(1s, EDD1)-->|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     | (2)

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |
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Figure 4

In a challenged network, DAs store reports pending a transmit

opportunity.

In this figure, DTNMA Manager A sends a policy to DTNMA Agents A and

B to produce an EDD (EDD1) every second in (step 1). Each DA

receives this policy and configures their respective autonomy

engines for this production. Produced reports are transmitted when

there is connectivity between the DA and DM (step 2).

At some point, DTNMA Agent B loses the ability to transmit in the

network (steps 3 and 4). During this time period, DA B continues to

produce reports, but they are queued for transmission. This queuing

might be done by the DA itself or by a supporting transport such as

BP. Eventually, DTNMA Agent B is able to transmit in the network

again (step 5) and all queued reports are sent at that time. DTNMA

Agent A maintains connectivity with the DM during steps 3-5, and

continues to send reports as they are generated.

+-----------+           +---------+           +---------+

|   DTNMA   |           |  DTNMA  |           |  DTNMA  |

| Manager A |           | Agent A |           | Agent B |

+----+------+           +----+----+           +----+----+

    |                       |                     |

    |-----PROD(1s, EDD1)--->|                     | (1)

    |----------------------------PROD(1s, EDD1)-->|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     | (2)

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |                       |            RPT(EDD1)| (3)

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |                       |            RPT(EDD1)| (4)

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<----------------RPT(EDD1), RPT(EDD1)--------| (5)

    |                       |                     |
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10.4. Open-Loop Reporting

This scenario illustrates the DTNMA open-loop control paradigm,

where DAs manage themselves in accordance with policies provided by

DMs, and provide reports to DMs based on these policies.

The control flow shown in Figure 5, includes an example of data

fusion, where multiple policies configured by a DM result in a

single report from a DA.

Consolidated Management Control Flow

Figure 5

A many-to-one mapping between management policy and device state

reporting is supported by the DTNMA.

In this figure, DTNMA Manager A sends a policy statement in the form

of a rule to DTNMA Agents A and B, which instructs the DAs to

produce a report with EDD1 every second (step 1). Each DA receives

this policy, which is stored in its respective Rule Database, and

configures its Autonomy Engine. Reports are transmitted by each DA

when produced (step 2).
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+-----------+           +---------+           +---------+

|   DTNMA   |           |  DTNMA  |           |  DTNMA  |

| Manager A |           | Agent A |           | Agent B |

+----+------+           +----+----+           +----+----+

    |                       |                     |

    |-----PROD(1s, EDD1)--->|                     | (1)

    |----------------------------PROD(1s, EDD1)-->|

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     | (2)

    |<----------------------------RPT(EDD1)-------|

    |                       |                     |

    |                       |                     |

    |----------------------------PROD(1s, EDD2)-->| (3)

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<--------------------------RPT(EDD1,EDD2)----| (4)

    |                       |                     |

    |                       |                     |

    |<-------RPT(EDD1)------|                     |

    |<--------------------------RPT(EDD1,EDD2)----|

    |                       |                     |
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At a later time, DTNMA Manager A sends an additional policy to DTNMA

Agent B, requesting the production of a report for EDD2 every second

(step 3). This policy is added to DTNMA Agent B's Rule Database.

Following this policy update, DTNMA Agent A will continue to produce

EDD1 and DTNMA Agent B will produce both EDD1 and EDD2 (step 4).

However, DTNMA Agent B may provide these values to the DM in a

single report rather than as 2 independent reports. In this way,

there is no direct mapping between the single consolidated report

sent by DTNMA Agent B (step 4) and the two different policies sent

to DTNMA Agent B that caused that report to be generated (steps 1

and 3).

10.5. Multiple Administrative Domains

The managed applications on a DA may be controlled by different

administrative entities in a network. The DTNMA allows DAs to

communicate with multiple DMs in the network, such as in cases where

there is one DM per administrative domain.

Whenever a DM sends a policy expression to a DA, that policy

expression may be annotated with authorization information. One

method of representing this is an ACL.

The use of an ACL in this use case does not imply the DTNMA requires

ACLs to annotate policy expressions. ACLs in this context are for

example purposes only.

The ability of one DM to access the results of policy expressions

configured by some other DM will be limited to the authorization

annotations of those policy expressions.

An example of multi-manager authorization is illustrated in 

Figure 6.

Multiplexed Management Control Flow
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Figure 6

Multiple DMs may interface with a single DA, particularly in complex

networks.

In this figure, both DTNMA Managers A and B send policies to DTNMA

Agent A (step 1). DM A defines a VAR (V1) whose value is given by

the mathematical expression (EDD1 * 2) and provides an ACL (ACL1)

that restricts access to V1 to DM A only. Similarly, DM B defines a

VAR (V2) whose value is given by the mathematical expression (EDD2 *

2) and provides an ACL (ACL2) that restricts access to V2 to DM B

only.

Both DTNMA Managers A and B also send policies to DTNMA Agent A to

report on the values of their VARs at 1 second intervals (step 2).

Since DM A can access V1 and DM B can access V2, there is no

authorization issue with these policies and they are both accepted

+-----------+               +---------+                 +-----------+

|   DTNMA   |               |  DTNMA  |                 |   DTNMA   |

| Manager A |               | Agent A |                 | Manager B |

+-----+-----+               +----+----+                 +-----+-----+

     |                          |                            |

     |---DEF(ACL1,V1,EDD1*2)--->|<---DEF(ACL2, V2, EDD2*2)---| (1)

     |                          |                            |

     |---PROD(1s, V1)---------->|<---PROD(1s, V2)------------| (2)

     |                          |                            |

     |<--------RPT(V1)----------|                            | (3)

     |                          |--------RPT(V2)------------>|

     |<--------RPT(V1)----------|                            |

     |                          |--------RPT(V2)------------>|

     |                          |                            |

     |                          |<---PROD(1s, V1)------------| (4)

     |                          |                            |

     |                          |----ERR(V1 no perm.)------->|

     |                          |                            |

     |--DEF(NULL,V3,EDD3*3)---->|                            | (5)

     |                          |                            |

     |---PROD(1s, V3)---------->|                            | (6)

     |                          |                            |

     |                          |<----PROD(1s, V3)-----------|

     |                          |                            |

     |<--------RPT(V3)----------|--------RPT(V3)------------>| (7)

     |<--------RPT(V1)----------|                            |

     |                          |--------RPT(V2)------------>|

     |<-------RPT(V3)-----------|--------RPT(V3)------------>|

     |<-------RPT(V1)-----------|                            |

     |                          |--------RPT(V2)------------>|

¶

¶



by the autonomy engine on Agent A. Agent A produces reports as

expected, sending them to their respective managers (step 3).

Later (step 4) DM B attempts to configure DA A to also report to it

the value of V1. Since DM B does not have authorization to view this

VAR, DA A does not include this in the configuration of its autonomy

engine and, instead, some indication of permission error is included

in any regular reporting back to DM B.

DM A also sends a policy to Agent A (step 5) that defines a VAR (V3)

whose value is given by the mathematical expression (EDD3 * 3) and

provides no ACL, indicating that any DM can access V3. In this

instance, both DM A and DM B can then send policies to DA A to

report the value of V3 (step 6). Since there is no authorization

restriction on V3, these policies are accepted by the autonomy

engine on Agent A and reports are sent to both DM A and B over time

(step 7).

10.6. Cascading Management

There are times where a single network device may serve as both a DM

for other DAs in the network and, itself, as a device managed by

someone else. This may be the case on nodes serving as gateways or

proxies. The DTNMA accommodates this case by allowing a single

device to run both a DA and DM.

An example of this configuration is illustrated in Figure 7.

Data Fusion Control Flow
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Figure 7

A device can operate as both a DTNMA Manager and an Agent.

In this example, we presume that DA B is able to sample a given EDD

(EDD1) and that DA C is able to sample a different EDD (EDD2). Node

B houses DM B (which controls DA C) and DA B (which is controlled by

DM A). DM A must periodically receive some new value that is

calculated as a function of both EDD1 and EDD2.

First, DM A sends a policy to DA B to define a VAR (V0) whose value

is given by the mathematical expression (EDD1 + EDD2) without a

restricting ACL. Further, DM A sends a policy to DA B to report on

the value of V0 every second (step 1).

DA B can require the ability to monitor both EDD1 and EDD2. However,

the only way to receive EDD2 values is to have them reported back to

Node B by DA C and included in the Node B runtime data stores.

Therefore, DM B sends a policy to DA C to report on the value of

EDD2 (step 2).

DA C receives the policy in its autonomy engine and produces reports

on the value of EDD2 every second (step 3).

               ---------------------------------------

               |                 Node B              |

               |                                     |

+-----------+  |    +-----------+      +---------+   |    +---------+

|   DTNMA   |  |    |   DTNMA   |      |  DTNMA  |   |    |  DTNMA  |

| Manager A |  |    | Manager B |      | Agent B |   |    | Agent C |

+---+-------+  |    +-----+-----+      +----+----+   |    +----+----+

    |          |          |                 |        |         |

    |---------------DEF(NULL,V0,EDD1+EDD2)->|        |         | (1)

    |------------------PROD(EDD1&EDD2,V0)-->|        |         |

    |          |          |                 |        |         |

    |          |          |                 |        |         |

    |          |          |--------------------PROD(1s, EDD2)->| (2)

    |          |          |                 |        |         |

    |          |          |                 |        |         |

    |          |          |<--------------------RPT(EDD2)------| (3)

    |          |          |                 |        |         |

    |<------------------RPT(V0)-------------|        |         | (4)

    |          |          |                 |        |         |

    |          |          |                 |        |         |

               |                                     |

               |                                     |

               ---------------------------------------

¶

¶

¶
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DA B may locally sample EDD1 and EDD2 and uses that to compute

values of V0 and report on those values at regular intervals to DM A

(step 4).

While a trivial example, the mechanism of associating fusion with

the Agent function rather than the Manager function scales with

fusion complexity. Within the DTNMA, DAs and DMs are not required to

be separate software implementations. There may be a single software

application running on Node B implementing both DM B and DA B roles.

11. IANA Considerations

This informational document requires no registrations to be managed

by IANA.

12. Security Considerations

Security within a DTNMA MUST exist in at least two layers: security

in the data model and security in the messaging and encoding of the

data model.

Data model security refers to the confidentiality of elements of a

data model and the authorization of DTNMA actors to access those

elements. For example, elements of a data model might be available

to certain DAs or DMs in a system, whereas the same elements may be

hidden from other DAs or DMs.

NOTE: One way to provide finer-grained application security is

through the use of Access Control Lists (ACLs) that would be defined

as part of the configuration of DAs and DMs. It is expected that

many common data model tools provide mechanisms for the definition

of ACLs and best practices for their operational use.

The exchange of information between and amongst DAs and DMs in the

DTNMA is expected to be accomplished through some messaging

transport. As such, security at the transport layer is expected to

address the questions of authentication, integrity, and

confidentiality.
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