
Delay Tolerant Networking B. Sipos
Internet-Draft RKF Engineering
Obsoletes: RFC7242 (if approved) M. Demmer
Intended status: Standards Track UC Berkeley
Expires: May 31, 2017 J. Ott
 Aalto University
 S. Perreault
 November 27, 2016

Delay-Tolerant Networking TCP Convergence Layer Protocol Version 4
draft-ietf-dtn-tcpclv4-01

Abstract

 This document describes a revised protocol for the TCP-based
 convergence layer for Delay-Tolerant Networking (DTN). The protocol
 revision is based on implementation issues in the original [RFC7242]
 and updates to the Bundle Protocol contents, encodings, and
 convergence layer requirements in [I-D.ietf-dtn-bpbis].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 31, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Sipos, et al. Expires May 31, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DTN TCPCLv4 November 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 4
2.1. Definitions Specific to the TCPCL Protocol 4

3. General Protocol Description 5
3.1. Bidirectional Use of TCPCL Sessions 6
3.2. Example Message Exchange 6

4. Session Establishment . 7
4.1. Contact Header . 8
4.2. Validation and Parameter Negotiation 10

5. Established Session Operation 11
5.1. Message Type Codes 11
5.2. Upkeep and Status Messages 12
5.2.1. Session Upkeep (KEEPALIVE) 12
5.2.2. Message Rejection (REJECT) 13

5.3. Session Security . 14
5.3.1. TLS Handshake Result 14
5.3.2. Example TLS Initiation 15

5.4. Bundle Transfer . 15
5.4.1. Bundle Transfer ID 16
5.4.2. Bundle Length (LENGTH) 16
5.4.3. Bundle Data Transmission (DATA_SEGMENT) 17
5.4.4. Bundle Acknowledgments (ACK_SEGMENT) 18
5.4.5. Bundle Refusal (REFUSE_BUNDLE) 19

6. Session Termination . 21
6.1. Shutdown Message (SHUTDOWN) 21
6.2. Idle Session Shutdown 23

7. Security Considerations 23
8. IANA Considerations . 24
8.1. Port Number . 25
8.2. Protocol Versions . 25
8.3. Message Types . 26
8.4. REFUSE_BUNDLE Reason Codes 26
8.5. SHUTDOWN Reason Codes 27
8.6. REJECT Reason Codes 27

9. Acknowledgments . 28
10. References . 28
10.1. Normative References 28
10.2. Informative References 29

Appendix A. Significant changes from RFC7242 29
 Authors' Addresses . 30

https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires May 31, 2017 [Page 2]

Internet-Draft DTN TCPCLv4 November 2016

1. Introduction

 This document describes the TCP-based convergence-layer protocol for
 Delay-Tolerant Networking. Delay-Tolerant Networking is an end-to-
 end architecture providing communications in and/or through highly
 stressed environments, including those with intermittent
 connectivity, long and/or variable delays, and high bit error rates.
 More detailed descriptions of the rationale and capabilities of these
 networks can be found in "Delay-Tolerant Network Architecture"
 [RFC4838].

 An important goal of the DTN architecture is to accommodate a wide
 range of networking technologies and environments. The protocol used
 for DTN communications is the revised Bundle Protocol (BP)
 [I-D.ietf-dtn-bpbis], an application-layer protocol that is used to
 construct a store-and- forward overlay network. As described in the
 Bundle Protocol specification [I-D.ietf-dtn-bpbis], it requires the
 services of a "convergence- layer adapter" (CLA) to send and receive
 bundles using the service of some "native" link, network, or Internet
 protocol. This document describes one such convergence-layer adapter
 that uses the well-known Transmission Control Protocol (TCP). This
 convergence layer is referred to as TCPCL.

 The locations of the TCPCL and the BP in the Internet model protocol
 stack are shown in Figure 1. In particular, when BP is using TCP as
 its bearer with TCPCL as its convergence layer, both BP and TCPCL
 reside at the application layer of the Internet model.

 +-------------------------+
 | DTN Application | -\
 +-------------------------| |
 | Bundle Protocol (BP) | -> Application Layer
 +-------------------------+ |
 | TCP Conv. Layer (TCPCL) | -/
 +-------------------------+
 | TLS (optional) | ---> Presentation Layer
 +-------------------------+
 | TCP | ---> Transport Layer
 +-------------------------+
 | IP | ---> Network Layer
 +-------------------------+
 | Link-Layer Protocol | ---> Link Layer
 +-------------------------+
 | Physical Medium | ---> Physical Layer
 +-------------------------+

 Figure 1: The Locations of the Bundle Protocol and the TCP
 Convergence-Layer Protocol above the Internet Protocol Stack

https://datatracker.ietf.org/doc/html/rfc4838

Sipos, et al. Expires May 31, 2017 [Page 3]

Internet-Draft DTN TCPCLv4 November 2016

 This document describes the format of the protocol data units passed
 between entities participating in TCPCL communications. This
 document does not address:

 o The format of protocol data units of the Bundle Protocol, as those
 are defined elsewhere in [RFC5050] and [I-D.ietf-dtn-bpbis]. This
 includes the concept of bundle fragmentation or bundle
 encapsulation. The TCPCL transfers bundles as opaque data blocks.

 o Mechanisms for locating or identifying other bundle nodes within
 an internet.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions Specific to the TCPCL Protocol

 This section contains definitions that are interpreted to be specific
 to the operation of the TCPCL protocol, as described below.

 TCP Connection: A TCP connection refers to a transport connection
 using TCP as the transport protocol.

 TCPCL Session: A TCPCL session (as opposed to a TCP connection) is a
 TCPCL communication relationship between two bundle nodes. The
 lifetime of a TCPCL session is bound to the lifetime of an
 underlying TCP connection. Therefore, a TCPCL session is
 initiated when a bundle node initiates a TCP connection to be
 established for the purposes of bundle communication. A TCPCL
 session is terminated when the TCP connection ends, due either to
 one or both nodes actively terminating the TCP connection or due
 to network errors causing a failure of the TCP connection. For
 the remainder of this document, the term "session" without the
 prefix "TCPCL" refer to a TCPCL session.

 Session parameters: The session parameters are a set of values used
 to affect the operation of the TCPCL for a given session. The
 manner in which these parameters are conveyed to the bundle node
 and thereby to the TCPCL is implementation dependent. However,
 the mechanism by which two bundle nodes exchange and negotiate the
 values to be used for a given session is described in Section 4.2.

 Transmission: Transmission refers to the procedures and mechanisms
 (described below) for conveyance of a bundle from one node to
 another.

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc2119

Sipos, et al. Expires May 31, 2017 [Page 4]

Internet-Draft DTN TCPCLv4 November 2016

3. General Protocol Description

 The service of this protocol is the transmission of DTN bundles over
 TCP. This document specifies the encapsulation of bundles,
 procedures for TCP setup and teardown, and a set of messages and node
 requirements. The general operation of the protocol is as follows.

 First, one node establishes a TCPCL session to the other by
 initiating a TCP connection. After setup of the TCP connection is
 complete, an initial contact header is exchanged in both directions
 to set parameters of the TCPCL session and exchange a singleton
 endpoint identifier for each node (not the singleton Endpoint
 Identifier (EID) of any application running on the node) to denote
 the bundle-layer identity of each DTN node. This is used to assist
 in routing and forwarding messages, e.g., to prevent loops.

 Once the TCPCL session is established and configured in this way,
 bundles can be transferred in either direction. Each transfer is
 performed in one or more logical segments of data. Each logical data
 segment consists of a DATA_SEGMENT message header, a count of the
 length of the segment, and finally the octet range of the bundle
 data. The choice of the length to use for segments is an
 implementation matter (but must be within the Segment MRU size of

Section 4.1). The first segment for a bundle MUST set the 'start'
 flag, and the last one MUST set the 'end' flag in the DATA_SEGMENT
 message header.

 If multiple bundles are transmitted on a single TCPCL connection,
 they MUST be transmitted consecutively. Interleaving data segments
 from different bundles is not allowed. Bundle interleaving can be
 accomplished by fragmentation at the BP layer or by establishing
 multiple TCPCL sessions.

 A feature of this protocol is for the receiving node to send
 acknowledgments as bundle data segments arrive (ACK_SEGMENT). The
 rationale behind these acknowledgments is to enable the sender node
 to determine how much of the bundle has been received, so that in
 case the session is interrupted, it can perform reactive
 fragmentation to avoid re-sending the already transmitted part of the
 bundle. For each data segment that is received, the receiving node
 sends an ACK_SEGMENT code followed by an count containing the
 cumulative length of the bundle that has been received. The sending
 node MAY transmit multiple DATA_SEGMENT messages without necessarily
 waiting for the corresponding ACK_SEGMENT responses. This enables
 pipelining of messages on a channel. In addition, there is no
 explicit flow control on the TCPCL layer.

Sipos, et al. Expires May 31, 2017 [Page 5]

Internet-Draft DTN TCPCLv4 November 2016

 Another feature is that a receiver MAY interrupt the transmission of
 a bundle at any point in time by replying with a REFUSE_BUNDLE
 message, which causes the sender to stop transmission of the current
 bundle, after completing transmission of a partially sent data
 segment. Note: This enables a cross-layer optimization in that it
 allows a receiver that detects that it already has received a certain
 bundle to interrupt transmission as early as possible and thus save
 transmission capacity for other bundles.

 For sessions that are idle, a KEEPALIVE message is sent at a
 negotiated interval. This is used to convey liveness information.

 Finally, before sessions close, a SHUTDOWN message is sent to the
 session peer. After sending a SHUTDOWN message, the sender of this
 message MAY send further acknowledgments (ACK_SEGMENT or
 REFUSE_BUNDLE) but no further data messages (DATA_SEGMENT). A
 SHUTDOWN message MAY also be used to refuse a session setup by a
 peer.

3.1. Bidirectional Use of TCPCL Sessions

 There are specific messages for sending and receiving operations (in
 addition to session setup/teardown). TCPCL is symmetric, i.e., both
 sides can start sending data segments in a session, and one side's
 bundle transfer does not have to complete before the other side can
 start sending data segments on its own. Hence, the protocol allows
 for a bi-directional mode of communication.

 Note that in the case of concurrent bidirectional transmission,
 acknowledgment segments MAY be interleaved with data segments.

3.2. Example Message Exchange

 The following figure visually depicts the protocol exchange for a
 simple session, showing the session establishment and the
 transmission of a single bundle split into three data segments (of
 lengths L1, L2, and L3) from Node A to Node B.

 Note that the sending node MAY transmit multiple DATA_SEGMENT
 messages without necessarily waiting for the corresponding
 ACK_SEGMENT responses. This enables pipelining of messages on a
 channel. Although this example only demonstrates a single bundle
 transmission, it is also possible to pipeline multiple DATA_SEGMENT
 messages for different bundles without necessarily waiting for
 ACK_SEGMENT messages to be returned for each one. However,
 interleaving data segments from different bundles is not allowed.

 No errors or rejections are shown in this example.

Sipos, et al. Expires May 31, 2017 [Page 6]

Internet-Draft DTN TCPCLv4 November 2016

 Node A Node B
 ====== ======
 +-------------------------+ +-------------------------+
 | Contact Header | -> <- | Contact Header |
 +-------------------------+ +-------------------------+

 +-------------------------+
 | LENGTH | ->
 | Transfer ID [I1] |
 | Total Length [L1] |
 +-------------------------+
 +-------------------------+
 | DATA_SEGMENT (start) | ->
 | Transfer ID [I1] |
 | Length [L1] |
 | Bundle Data 0..(L1-1) |
 +-------------------------+
 +-------------------------+ +-------------------------+
 | DATA_SEGMENT | -> <- | ACK_SEGMENT (start) |
 | Transfer ID [I1] | | Transfer ID [I1] |
 | Length [L2] | | Length [L1] |
 |Bundle Data L1..(L1+L2-1)| +-------------------------+
 +-------------------------+
 +-------------------------+ +-------------------------+
 | DATA_SEGMENT (end) | -> <- | ACK_SEGMENT |
 | Transfer ID [I1] | | Transfer ID [I1] |
 | Length [L3] | | Length [L1+L2] |
 |Bundle Data | +-------------------------+
 | (L1+L2)..(L1+L2+L3-1)|
 +-------------------------+
 +-------------------------+
 <- | ACK_SEGMENT (end) |
 | Transfer ID [I1] |
 | Length [L1+L2+L3] |
 +-------------------------+

 +-------------------------+ +-------------------------+
 | SHUTDOWN | -> <- | SHUTDOWN |
 +-------------------------+ +-------------------------+

 Figure 2: A Simple Visual Example of the Flow of Protocol Messages on
 a Single TCP Session between Two Nodes (A and B)

4. Session Establishment

 For bundle transmissions to occur using the TCPCL, a TCPCL session
 MUST first be established between communicating nodes. It is up to
 the implementation to decide how and when session setup is triggered.

Sipos, et al. Expires May 31, 2017 [Page 7]

Internet-Draft DTN TCPCLv4 November 2016

 For example, some sessions MAY be opened proactively and maintained
 for as long as is possible given the network conditions, while other
 sessions MAY be opened only when there is a bundle that is queued for
 transmission and the routing algorithm selects a certain next-hop
 node.

 To establish a TCPCL session, a node MUST first establish a TCP
 connection with the intended peer node, typically by using the
 services provided by the operating system. Port number 4556 has been
 assigned by IANA as the well-known port number for the TCP
 convergence layer. Other port numbers MAY be used per local
 configuration. Determining a peer's port number (if different from
 the well-known TCPCL port) is up to the implementation.

 If the node is unable to establish a TCP connection for any reason,
 then it is an implementation matter to determine how to handle the
 connection failure. A node MAY decide to re-attempt to establish the
 connection. If it does so, it MUST NOT overwhelm its target with
 repeated connection attempts. Therefore, the node MUST retry the
 connection setup only after some delay (a 1-second minimum is
 RECOMMENDED), and it SHOULD use a (binary) exponential backoff
 mechanism to increase this delay in case of repeated failures. In
 case a SHUTDOWN message specifying a reconnection delay is received,
 that delay is used as the initial delay. The default initial delay
 SHOULD be at least 1 second but SHOULD be configurable since it will
 be application and network type dependent.

 The node MAY declare failure after one or more connection attempts
 and MAY attempt to find an alternate route for bundle data. Such
 decisions are up to the higher layer (i.e., the BP).

 Once a TCP connection is established, each node MUST immediately
 transmit a contact header over the TCP connection. The format of the
 contact header is described in Section 4.1.

 Upon receipt of the contact header, both nodes perform the validation
 and negotiation procedures defined in Section 4.2

 After receiving the contact header from the other node, either node
 MAY also refuse the session by sending a SHUTDOWN message. If
 session setup is refused, a reason MUST be included in the SHUTDOWN
 message.

4.1. Contact Header

 Once a TCP connection is established, both parties exchange a contact
 header. This section describes the format of the contact header and
 the meaning of its fields.

Sipos, et al. Expires May 31, 2017 [Page 8]

Internet-Draft DTN TCPCLv4 November 2016

 The format for the Contact Header is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | magic='dtn!' |
 +---------------+---------------+---------------+---------------+
 | Version | Flags | Keepalive Interval |
 +---------------+---------------+---------------+---------------+
 | Segment MRU... |
 +---------------+---------------+---------------+---------------+
 | contd. |
 +---------------+---------------+---------------+---------------+
 | Transfer MRU... |
 +---------------+---------------+---------------+---------------+
 | contd. |
 +---------------+---------------+---------------+---------------+
 | EID Length | EID Data... |
 +---------------+---------------+---------------+---------------+
 | contd. |
 +---------------+---------------+---------------+---------------+

 Figure 3: Contact Header Format

 The fields of the contact header are:

 magic: A four-octet field that always contains the octet sequence
 0x64 0x74 0x6e 0x21, i.e., the text string "dtn!" in US-ASCII (and
 UTF-8).

 Version: A one-octet field value containing the value 4 (current
 version of the protocol).

 Flags: A one-octet field of single-bit flags, interpreted according
 to the descriptions in Table 1.

 Keepalive Interval: A 16-bit unsigned integer indicating the longest
 allowable interval in seconds between KEEPALIVE messages received
 in this session.

 Segment MRU: A 64-bit unsigned integer indicating the largest
 allowable single-segment data payload size to be received in this
 session. Any DATA_SEGMENT sent to this peer SHALL have a data
 payload no longer than the peer's Segment MRU. The two endpoints
 of a single session MAY have different Segment MRUs, and no
 relation between the two is required.

Sipos, et al. Expires May 31, 2017 [Page 9]

Internet-Draft DTN TCPCLv4 November 2016

 Transfer MRU: A 64-bit unsigned integer indicating the largest
 allowable total-bundle data size to be received in this session.
 Any bundle transfer sent to this peer SHALL have a Total bundle
 data payload no longer than the peer's Transfer MRU. This value
 can be used to perform proactive bundle fragmentation. The two
 endpoints of a single session MAY have different Transfer MRUs,
 and no relation between the two is required.

 EID Length and EID Data: Together these fields represent a variable-
 length text string. The EID Length is a 16-bit unsigned integer
 indicating the number of octets of EID Data to follow. A zero EID
 Length is a special case which indicates the lack of EID rather
 than a truly empty EID. A non-zero-length EID Data contains the
 UTF-8 encoded EID of some singleton endpoint in which the sending
 node is a member, in the canonical format of <scheme
 name>:<scheme-specific part>.

 +---------+------+--+
 | Type | Code | Description |
 +---------+------+--+
 | CAN_TLS | 0x01 | If bit is set, indicates that the sending peer |
 | | | is capable of TLS security. |
 +---------+------+--+

 Table 1: Contact Header Flags

4.2. Validation and Parameter Negotiation

 Upon reception of the contact header, each node follows the following
 procedures to ensure the validity of the TCPCL session and to
 negotiate values for the session parameters.

 If the magic string is not present or is not valid, the connection
 MUST be terminated. The intent of the magic string is to provide
 some protection against an inadvertent TCP connection by a different
 protocol than the one described in this document. To prevent a flood
 of repeated connections from a misconfigured application, a node MAY
 elect to hold an invalid connection open and idle for some time
 before closing it.

 If a node receives a contact header containing a version that is
 greater than the current version of the protocol that the node
 implements, then the node SHALL shutdown the session with a reason
 code of "Version mismatch". If a node receives a contact header with
 a version that is lower than the version of the protocol that the
 node implements, the node MAY either terminate the session (with a
 reason code of "Version mismatch"). Otherwise, the node MAY adapt

Sipos, et al. Expires May 31, 2017 [Page 10]

Internet-Draft DTN TCPCLv4 November 2016

 its operation to conform to the older version of the protocol. This
 decision is an implementation matter.

 A node calculates the parameters for a TCPCL session by negotiating
 the values from its own preferences (conveyed by the contact header
 it sent to the peer) with the preferences of the peer node (expressed
 in the contact header that it received from the peer). The
 negotatiated parameters defined by this specification are described
 in the following paragraphs.

 Session Keepalive: Negotiation of the Session Keepalive parameter is
 performed by taking the minimum of this two contact headers'
 Keepalive Interval. If the negotiated Session Keepalive is zero
 (i.e. one or both contact headers contains a zero Keepalive
 Interval), then the keepalive feature (described in Section 5.2.1)
 is disabled.

 Enable TLS: Negotiation of the Enable TLS parameter is performed by
 taking the logical AND of the two contact headers' CAN_TLS flags.
 If the negotiated Enable TLS value is true then TLS negotiation
 feature (described in Section 5.3) begins immediately following
 the contact header exchange.

 Once this process of parameter negotiation is completed, the protocol
 defines no additional mechanism to change the parameters of an
 established session; to effect such a change, the session MUST be
 terminated and a new session established.

5. Established Session Operation

 This section describes the protocol operation for the duration of an
 established session, including the mechanism for transmitting bundles
 over the session.

5.1. Message Type Codes

 After the initial exchange of a contact header, all messages
 transmitted over the session are identified by a one-octet header
 with the following structure:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | type | flags |
 +-+-+-+-+-+-+-+-+

 Figure 4: Format of the One-Octet Message Header

 type: Indicates the type of the message as per Table 2 below.

Sipos, et al. Expires May 31, 2017 [Page 11]

Internet-Draft DTN TCPCLv4 November 2016

 flags: Optional flags defined based on message type.

 The types and values for the message type code are as follows.

 +---------------+------+--+
 | Type | Code | Description |
 +---------------+------+--+
DATA_SEGMENT	0x1	Indicates the transmission of a segment of
		bundle data, as described in Section
		5.4.3.
ACK_SEGMENT	0x2	Acknowledges reception of a data segment,
		as described in Section 5.4.4.
REFUSE_BUNDLE	0x3	Indicates that the transmission of the
		current bundle SHALL be stopped, as
		described in Section 5.4.5.
KEEPALIVE	0x4	KEEPALIVE message for the session, as
		described in Section 5.2.1.
SHUTDOWN	0x5	Indicates that one of the nodes
		participating in the session wishes to
		cleanly terminate the session, as
		described in Section 6.
LENGTH	0x6	Contains the length (in octets) of the
		next bundle, as described in Section
		5.4.2.
REJECT	TBD	Contains a TCPCL message rejection, as
		described in Section 5.2.2.
 +---------------+------+--+

 Table 2: TCPCL Message Types

5.2. Upkeep and Status Messages

5.2.1. Session Upkeep (KEEPALIVE)

 The protocol includes a provision for transmission of KEEPALIVE
 messages over the TCPCL session to help determine if the underlying
 TCP connection has been disrupted.

 As described in Section 4.1, one of the parameters in the contact
 header is the Keepalive Interval. Both sides populate this field
 with their requested intervals (in seconds) between KEEPALIVE
 messages.

Sipos, et al. Expires May 31, 2017 [Page 12]

Internet-Draft DTN TCPCLv4 November 2016

 The format of a KEEPALIVE message is a one-octet message type code of
 KEEPALIVE (as described in Table 2) with no additional data. Both
 sides SHOULD send a KEEPALIVE message whenever the negotiated
 interval has elapsed with no transmission of any message (KEEPALIVE
 or other).

 If no message (KEEPALIVE or other) has been received for at least
 twice the Keepalive Interval, then either party MAY terminate the
 session by transmitting a one-octet SHUTDOWN message (as described in
 Table 2, with reason code "Idle Timeout") and by closing the session.

 Note: The Keepalive Interval SHOULD not be chosen too short as TCP
 retransmissions MAY occur in case of packet loss. Those will have to
 be triggered by a timeout (TCP retransmission timeout (RTO)), which
 is dependent on the measured RTT for the TCP connection so that
 KEEPALIVE messages MAY experience noticeable latency.

5.2.2. Message Rejection (REJECT)

 If a TCPCL endpoint receives a message which is unknown to it
 (possibly due to an unhandled protocol mismatch) or is inappropriate
 for the current session state (e.g. a KEEPALIVE message received
 after contact header negotation has disabled that feature), there is
 a protocol-level message to signal this condition in the form of a
 REJECT reply.

 The format of a REJECT message follows:

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Reason Code (U8) |
 +-----------------------------+
 | Rejected Message Header |
 +-----------------------------+

 Figure 5: Format of REJECT Messages

 The Rejected Message Header is a copy of the Message Header to which
 the REJECT message is sent as a response. The REJECT Reason Code is
 an 8-bit unsigned integer and indicates why the REJECT itself was
 sent. The specified values of the reason code are:

Sipos, et al. Expires May 31, 2017 [Page 13]

Internet-Draft DTN TCPCLv4 November 2016

 +-------------+------+--+
 | Name | Code | Description |
 +-------------+------+--+
Message	0x01	A message was received with a Message Type
Type		code unknown to the TCPCL endpoint.
Unknown		
Message	0x02	A message was received but the TCPCL
Unsupported		endpoint cannot comply with the message
		contents.
Message	0x03	A message was received while the session is
Unexpected		in a state in which the message is not
		expected.
 +-------------+------+--+

 Table 3: REJECT Reason Codes

5.3. Session Security

 This version of the TCPCL supports establishing a session-level
 Transport Layer Security (TLS) session within an existing TCPCL
 session. Negotation of whether or not to initiate TLS within TCPCL
 session is part of the contact header as described in Section 4.2.

 When TLS is used within the TCPCL it affects the entire session. By
 convention, this protocol uses the endpoint which initiated the
 underlying TCP connection as the "client" role of the TLS handshake
 request. Once a TLS session is established within TCPCL, there is no
 mechanism provided to end the TLS session and downgrade the session.
 If a non-TLS session is desired after a TLS session is started then
 the entire TCPCL session MUST be shutdown first.

 After negotiating an Enable TLS parameter of true, and before any
 other TCPCL messages are sent within the session, the session
 endpoints SHALL begin a TLS handshake in accordance with [RFC5246].
 The parameters within each TLS negotation are implementation
 dependent but any TCPCL endpoint SHOULD follow all recommended best
 practices of [RFC7525].

5.3.1. TLS Handshake Result

 If a TLS handshake cannot negotiate a TLS session, both endpoints of
 the TCPCL session SHALL cause a TCPCL shutdown with reason "TLS
 negotiation failed".

 After a TLS session is successfuly established, both TCPCL endpoints
 SHALL re-exchange TCPCL Contact Header messages. Any information

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7525

Sipos, et al. Expires May 31, 2017 [Page 14]

Internet-Draft DTN TCPCLv4 November 2016

 cached from the prior Contact Header exchange SHALL be discarded.
 This re-exchange avoids man-in-the-middle attack in identical fashion
 to [RFC2595].

5.3.2. Example TLS Initiation

 A summary of a typical CAN_TLS usage is shown in the sequence in
 Figure 6 below.

 Node A Node B
 ====== ======

 +-------------------------+
 | Open TCP Connnection | ->
 +-------------------------+ +-------------------------+
 <- | Accept Connection |
 +-------------------------+

 +-------------------------+ +-------------------------+
 | Contact Header | -> <- | Contact Header |
 +-------------------------+ +-------------------------+

 +-------------------------+ +-------------------------+
 | TLS Negotiation | -> <- | TLS Negotiation |
 | (as client) | | (as server) |
 +-------------------------+ +-------------------------+

 +-------------------------+ +-------------------------+
 | Contact Header | -> <- | Contact Header |
 +-------------------------+ +-------------------------+

 ... secured TCPCL messaging ...

 +-------------------------+ +-------------------------+
 | SHUTDOWN | -> <- | SHUTDOWN |
 +-------------------------+ +-------------------------+

 Figure 6: A simple visual example of TCPCL TLS Establishment between
 two nodes

5.4. Bundle Transfer

 All of the message in this section are directly associated with
 tranfering a bundle between TCPCL endpoints.

 A single TCPCL transfer results in a bundle (handled by the
 convergence layer as opaque data) being exchanged from one endpoint
 to the other. In TCPCL a transfer is accomplished by dividing a

https://datatracker.ietf.org/doc/html/rfc2595

Sipos, et al. Expires May 31, 2017 [Page 15]

Internet-Draft DTN TCPCLv4 November 2016

 single bundle up into "segments" based on the receving-side Segment
 MRU (see Section 4.1).

 A single transfer (and by extension a single segment) SHALL NOT
 contain data of more than a single bundle. This requirement is
 imposed on the agent using the TCPCL rather than TCPCL itself.

5.4.1. Bundle Transfer ID

 Each of the bundle transfer messages contains a Transfer ID number
 which is used to correlate messages originating from sender and
 receiver of a bundle. A Transfer ID does not attempt to address
 uniqueness of the bundle data itself and has no relation to concepts
 such as bundle fragmentation. Each invocation of TCPCL by the bundle
 protocol agent, requesting transmission of a bundle (fragmentary or
 otherwise), results in the initiation of a single TCPCL transfer.
 Each transfer entails the sending of a LENGTH message and some number
 of DATA_SEGMENT and ACK_SEGMENT messages; all are correlated by the
 same Transfer ID.

 Transfer IDs from each endpoint SHALL be unique within a single TCPCL
 session. The initial Transfer ID from each endpoint SHALL have value
 zero. Subsequent Transfer ID values SHALL be incremented from the
 prior Transfer ID value by one. Upon exhaustion of the entire 64-bit
 Transfer ID space, the sending endpoint SHALL terminate the session
 with SHUTDOWN reason code "Resource Exhaustion".

 For bidirectional bundle transfers, a TCPCL endpoint SHOULD NOT rely
 on any relation between Transfer IDs originating from each side of
 the TCPCL session.

5.4.2. Bundle Length (LENGTH)

 The LENGTH message contains the total length, in octets, of the
 bundle data in the associated transfer. The total length is
 formatted as a 64-bit unsigned integer.

 The purpose of the LENGTH message is to allow nodes to preemptively
 refuse bundles that would exceed their resources or to prepare
 storage on the receiving node for the upcoming bundle data. See

Section 5.4.5 for details on when refusal based on LENGTH content is
 acceptable.

 The Total Bundle Length field within a LENGTH message SHALL be used
 as informative data by the receiver. If, for whatever reason, the
 actual total length of bundle data received differs from the value
 indicated by the LENGTH message, the receiver SHOULD accept the full
 set of bundle data as valid.

Sipos, et al. Expires May 31, 2017 [Page 16]

Internet-Draft DTN TCPCLv4 November 2016

 The format of the LENGTH message is as follows:

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Transfer ID (U64) |
 +-----------------------------+
 | Total bundle length (U64) |
 +-----------------------------+

 Figure 7: Format of LENGTH Messages

 LENGTH messages SHALL be sent immediately before transmission of any
 DATA_SEGMENT messages. LENGTH messages MUST NOT be sent unless the
 next DATA_SEGMENT message has the 'S' bit set to "1" (i.e., just
 before the start of a new transfer).

 A receiver MAY send a BUNDLE_REFUSE message as soon as it receives a
 LENGTH message without waiting for the next DATA_SEGMENT message.
 The sender MUST be prepared for this and MUST associate the refusal
 with the correct bundle via the Transfer ID fields.

 Upon reception of a LENGTH message not immediately before the start
 of a starting DATA_SEGMENT the reciever SHALL send a REJECT message
 with a Reason Code of "Message Unexpected".

5.4.3. Bundle Data Transmission (DATA_SEGMENT)

 Each bundle is transmitted in one or more data segments. The format
 of a DATA_SEGMENT message follows in Figure 8 and its use of header
 flags is shown in Figure 9.

 +------------------------------+
 | Message Header |
 +------------------------------+
 | Transfer ID (U64) |
 +------------------------------+
 | Data length (U64) |
 +------------------------------+
 | Data contents (octet string) |
 +------------------------------+

 Figure 8: Format of DATA_SEGMENT Messages

Sipos, et al. Expires May 31, 2017 [Page 17]

Internet-Draft DTN TCPCLv4 November 2016

 4 5 6 7
 +-+-+-+-+
 |0|0|S|E|
 +-+-+-+-+

 Figure 9: Format of DATA_SEGMENT Header flags

 The flags portion of the message header octet contains two optional
 values in the two low-order bits, denoted 'S' and 'E' in Figure 9.
 The 'S' bit MUST be set to one if it precedes the transmission of the
 first segment of a transfer. The 'E' bit MUST be set to one when
 transmitting the last segment of a transfer. In the case where an
 entire transfer is accomplished in a single segment, both the 'S' and
 'E' bits MUST be set to one.

 Following the message header, the length field is a 64-bit unsigned
 integer containing the number of octets of bundle data that are
 transmitted in this segment. Following the length are the actual
 data contents.

 Once a transfer of a bundle has commenced, the node MUST only send
 segments containing sequential portions of that bundle until it sends
 a segment with the 'E' bit set. No interleaving of multiple
 transfers from the same endpoint is possible (within a single TCPCL
 session).

5.4.4. Bundle Acknowledgments (ACK_SEGMENT)

 Although the TCP transport provides reliable transfer of data between
 transport peers, the typical BSD sockets interface provides no means
 to inform a sending application of when the receiving application has
 processed some amount of transmitted data. Thus, after transmitting
 some data, a Bundle Protocol agent needs an additional mechanism to
 determine whether the receiving agent has successfully received the
 segment. To this end, the TCPCL protocol provides feedback messaging
 whereby a receiving node transmits acknowledgments of reception of
 data segments.

 The format of an ACK_SEGMENT message follows in Figure 10 and its use
 of header flags is the same as for DATA_SEGMENT (shown in Figure 9).
 The flags of an ACK_SEGMENT message SHALL be identical to the flags
 of the DATA_SEGMENT message for which it is a reply.

Sipos, et al. Expires May 31, 2017 [Page 18]

Internet-Draft DTN TCPCLv4 November 2016

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Transfer ID (U64) |
 +-----------------------------+
 | Acknowledged length (U64) |
 +-----------------------------+

 Figure 10: Format of ACK_SEGMENT Messages

 A receving TCPCL endpoing SHALL send an ACK_SEGMENT message in
 response to each received DATA_SEGMENT message. The flags portion of
 the ACK_SEGMENT header SHALL be set to match the corresponding
 DATA_SEGEMNT message being acknowledged. The acknowledged length of
 each ACK_SEGMENT contains the sum of the data length fields of all
 DATA_SEGMENT messages received so far in the course of the indicated
 transfer.

 For example, suppose the sending node transmits four segments of
 bundle data with lengths 100, 200, 500, and 1000, respectively.
 After receiving the first segment, the node sends an acknowledgment
 of length 100. After the second segment is received, the node sends
 an acknowledgment of length 300. The third and fourth
 acknowledgments are of length 800 and 1800, respectively.

5.4.5. Bundle Refusal (REFUSE_BUNDLE)

 As bundles can be large, the TCPCL supports an optional mechanism by
 which a receiving node MAY indicate to the sender that it does not
 want to receive the corresponding bundle.

 To do so, upon receiving a LENGTH or DATA_SEGMENT message, the node
 MAY transmit a REFUSE_BUNDLE message. As data segments and
 acknowledgments MAY cross on the wire, the bundle that is being
 refused SHALL be identified by the Transfer ID of the refusal.

 There is no required relation between the Transfer MRU of a TCPCL
 endpoint (which is supposed to represent a firm limitation of what
 the endpoint will accept) and sending of a REFUSE_BUNDLE message. A
 REFUSE_BUNDLE can be used in cases where the agent's bundle storage
 is temporarily depleted or somehow constrained. A REFUSE_BUNDLE can
 also be used after the bundle header or any bundle data is inspected
 by an agent and determined to be unacceptable.

 The format of the REFUSE_BUNDLE message is as follows:

Sipos, et al. Expires May 31, 2017 [Page 19]

Internet-Draft DTN TCPCLv4 November 2016

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Transfer ID (U64) |
 +-----------------------------+

 Figure 11: Format of REFUSE_BUNDLE Messages

 4 5 6 7
 +-+-+-+-+
 | RCode |
 +-+-+-+-+

 Figure 12: Format of REFUSE_BUNDLE Header flags

 The RCode field, which stands for "reason code", contains a value
 indicating why the bundle was refused. The following table contains
 semantics for some values. Other values MAY be registered with IANA,
 as defined in Section 8.

 +------------+-------+--+
 | Name | RCode | Semantics |
 +------------+-------+--+
Unknown	0x0	Reason for refusal is unknown or not
		specified.
Completed	0x1	The receiver now has the complete bundle.
		The sender MAY now consider the bundle as
		completely received.
No	0x2	The receiver's resources are exhausted. The
Resources		sender SHOULD apply reactive bundle
		fragmentation before retrying.
Retransmit	0x3	The receiver has encountered a problem that
		requires the bundle to be retransmitted in
		its entirety.
 +------------+-------+--+

 Table 4: REFUSE_BUNDLE Reason Codes

 The receiver MUST, for each transfer preceding the one to be refused,
 have either acknowledged all DATA_SEGMENTs or refused the bundle
 transfer.

 The bundle transfer refusal MAY be sent before an entire data segment
 is received. If a sender receives a REFUSE_BUNDLE message, the
 sender MUST complete the transmission of any partially sent

Sipos, et al. Expires May 31, 2017 [Page 20]

Internet-Draft DTN TCPCLv4 November 2016

 DATA_SEGMENT message. There is no way to interrupt an individual
 TCPCL message partway through sending it. The sender MUST NOT
 commence transmission of any further segments of the refused bundle
 subsequently. Note, however, that this requirement does not ensure
 that a node will not receive another DATA_SEGMENT for the same bundle
 after transmitting a REFUSE_BUNDLE message since messages MAY cross
 on the wire; if this happens, subsequent segments of the bundle
 SHOULD also be refused with a REFUSE_BUNDLE message.

 Note: If a bundle transmission is aborted in this way, the receiver
 MAY not receive a segment with the 'E' flag set to '1' for the
 aborted bundle. The beginning of the next bundle is identified by
 the 'S' bit set to '1', indicating the start of a new transfer, and
 with a distinct Transfer ID value.

6. Session Termination

 This section describes the procedures for ending a TCPCL session.

6.1. Shutdown Message (SHUTDOWN)

 To cleanly shut down a session, a SHUTDOWN message MUST be
 transmitted by either node at any point following complete
 transmission of any other message. A receiving node SHOULD
 acknowledge all received data segments before sending a SHUTDOWN
 message to end the session. A transmitting node SHALL treat a
 SHUTDOWN message received mid-transfer (i.e. before the final
 acknowledgement) as a failure of the transfer.

 The format of the SHUTDOWN message is as follows:

 +-----------------------------------+
 | Message Header |
 +-----------------------------------+
 | Reason Code (optional U8) |
 +-----------------------------------+
 | Reconnection Delay (optional U16) |
 +-----------------------------------+

 Figure 13: Format of SHUTDOWN Messages

 4 5 6 7
 +-+-+-+-+
 |0|0|R|D|
 +-+-+-+-+

 Figure 14: Format of SHUTDOWN Header flags

Sipos, et al. Expires May 31, 2017 [Page 21]

Internet-Draft DTN TCPCLv4 November 2016

 It is possible for a node to convey additional information regarding
 the reason for session termination. To do so, the node MUST set the
 'R' bit in the message header flags and transmit a one-octet reason
 code immediately following the message header. The specified values
 of the reason code are:

 +--------------+------+---+
 | Name | Code | Description |
 +--------------+------+---+
Idle timeout	0x00	The session is being closed due to
		idleness.
Version	0x01	The node cannot conform to the specified
mismatch		TCPCL protocol version.
Busy	0x02	The node is too busy to handle the current
		session.
Contact	0x03	The node cannot interpret or negotiate
Failure		contact header option.
TLS failure	0x04	The node failed to negotiate TLS session
		and cannot continue the session.
Resource	0x05	The node has run into some resoure limit
Exhaustion		and cannot continue the session.
 +--------------+------+---+

 Table 5: SHUTDOWN Reason Codes

 It is also possible to convey a requested reconnection delay to
 indicate how long the other node MUST wait before attempting session
 re-establishment. To do so, the node sets the 'D' bit in the message
 header flags and then transmits an 16-bit unsigned integer specifying
 the requested delay, in seconds, following the message header (and
 optionally, the SHUTDOWN reason code). The value 0 SHALL be
 interpreted as an infinite delay, i.e., that the connecting node MUST
 NOT re-establish the session. In contrast, if the node does not wish
 to request a delay, it SHOULD omit the reconnection delay field (and
 set the 'D' bit to zero).

 A session shutdown MAY occur immediately after TCP connection
 establishment or reception of a contact header (and prior to any
 further data exchange). This MAY, for example, be used to notify
 that the node is currently not able or willing to communicate.
 However, a node MUST always send the contact header to its peer
 before sending a SHUTDOWN message.

Sipos, et al. Expires May 31, 2017 [Page 22]

Internet-Draft DTN TCPCLv4 November 2016

 If either node terminates a session prematurely in this manner, it
 SHOULD send a SHUTDOWN message and MUST indicate a reason code unless
 the incoming connection did not include the magic string. If the
 magic string was not present, a node SHOULD close the TCP connection
 without sending a SHUTDOWN message. If a node does not want its peer
 to reopen a connection immediately, it SHOULD set the 'D' bit in the
 flags and include a reconnection delay to indicate when the peer is
 allowed to attempt another session setup.

 If a session is to be terminated before another protocol message has
 completed being sent, then the node MUST NOT transmit the SHUTDOWN
 message but still SHOULD close the TCP connection. This means that a
 SHUTDOWN cannot be used to preempt any other TCPCL messaging in-
 progress (particularly important when large segment sizes are being
 transmitted).

6.2. Idle Session Shutdown

 The protocol includes a provision for clean shutdown of idle
 sessions. Determining the length of time to wait before closing idle
 sessions, if they are to be closed at all, is an implementation and
 configuration matter.

 If there is a configured time to close idle links and if no bundle
 data (other than KEEPALIVE messages) has been received for at least
 that amount of time, then either node MAY terminate the session by
 transmitting a SHUTDOWN message indicating the reason code of 'Idle
 timeout' (as described in Table 5). After receiving a SHUTDOWN
 message in response, both sides MAY close the TCP connection.

7. Security Considerations

 One security consideration for this protocol relates to the fact that
 nodes present their endpoint identifier as part of the contact header
 exchange. It would be possible for a node to fake this value and
 present the identity of a singleton endpoint in which the node is not
 a member, essentially masquerading as another DTN node. If this
 identifier is used outside of a TLS-secured session or without
 further verification as a means to determine which bundles are
 transmitted over the session, then the node that has falsified its
 identity would be able to obtain bundles that it otherwise would not
 have. Therefore, a node SHALL NOT use the EID value of an unsecured
 contact header to derive a peer node's identity unless it can
 corroborate it via other means. When TCPCL session security is
 mandatory, an endpoint SHALL transmit initial unsecured contact
 header values indicated in Table 6 in order. These values avoid
 unnecessarily leaking endpoing parameters and will be ignored when
 secure contact header re-exchange occurs.

Sipos, et al. Expires May 31, 2017 [Page 23]

Internet-Draft DTN TCPCLv4 November 2016

 +--------------------+---+
 | Parameter | Value |
 +--------------------+---+
Flags	The USE_TLS flag is set.
Keepalive Interval	Zero, indicating no keepalive.
Segment MRU	Zero, indicating all segments are refused.
Transfer MRU	Zero, indicating all transfers are refused.
EID	Empty, indating lack of EID.
 +--------------------+---+

 Table 6: Recommended Unsecured Contact Header

 TCPCL can be used to provide point-to-point transport security, but
 does not provide security of data-at-rest and does not guarantee end-
 to-end bundle security. The mechanisms defined in [RFC6257] and
 [I-D.ietf-dtn-bpsec] are to be used instead.

 Even when using TLS to secure the TCPCL session, the actual
 ciphersuite negotiated between the TLS peers MAY be insecure. TLS
 can be used to perform authentication without data confidentiality,
 for example. It is up to security policies within each TCPCL node to
 ensure that the negotiated TLS ciphersuite meets transport security
 requirements. This is identical behavior to STARTTLS use in
 [RFC2595].

 Another consideration for this protocol relates to denial-of-service
 attacks. A node MAY send a large amount of data over a TCPCL
 session, requiring the receiving node to handle the data, attempt to
 stop the flood of data by sending a REFUSE_BUNDLE message, or
 forcibly terminate the session. This burden could cause denial of
 service on other, well-behaving sessions. There is also nothing to
 prevent a malicious node from continually establishing sessions and
 repeatedly trying to send copious amounts of bundle data. A
 listening node MAY take countermeasures such as ignoring TCP SYN
 messages, closing TCP connections as soon as they are established,
 waiting before sending the contact header, sending a SHUTDOWN message
 quickly or with a delay, etc.

8. IANA Considerations

 In this section, registration procedures are as defined in [RFC5226]

https://datatracker.ietf.org/doc/html/rfc6257
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc5226

Sipos, et al. Expires May 31, 2017 [Page 24]

Internet-Draft DTN TCPCLv4 November 2016

8.1. Port Number

 Port number 4556 has been previously assigned as the default port for
 the TCP convergence layer in [RFC7242]. This assignment is unchanged
 by protocol version 4.

 +------------------------+-------------------------------------+
 | Parameter | Value |
 +------------------------+-------------------------------------+
 | Service Name: | dtn-bundle |
 | | |
 | Transport Protocol(s): | TCP |
 | | |
 | Assignee: | Simon Perreault <simon@per.reau.lt> |
 | | |
 | Contact: | Simon Perreault <simon@per.reau.lt> |
 | | |
 | Description: | DTN Bundle TCP CL Protocol |
 | | |
 | Reference: | [RFC7242] |
 | | |
 | Port Number: | 4556 |
 +------------------------+-------------------------------------+

8.2. Protocol Versions

 IANA has created, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version
 Numbers" and initialized it with the following table. The
 registration procedure is RFC Required.

 +-------+-------------+---------------------+
 | Value | Description | Reference |
 +-------+-------------+---------------------+
 | 0 | Reserved | [RFC7242] |
 | | | |
 | 1 | Reserved | [RFC7242] |
 | | | |
 | 2 | Reserved | [RFC7242] |
 | | | |
 | 3 | TCPCL | [RFC7242] |
 | | | |
 | 4 | TCPCLbis | This specification. |
 | | | |
 | 5-255 | Unassigned |
 +-------+-------------+---------------------+

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires May 31, 2017 [Page 25]

Internet-Draft DTN TCPCLv4 November 2016

8.3. Message Types

 IANA has created, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Message Types"
 and initialized it with the contents below. The registration
 procedure is RFC Required.

 +----------+---------------+
 | Code | Message Type |
 +----------+---------------+
 | 0x0 | Reserved |
 | | |
 | 0x1 | DATA_SEGMENT |
 | | |
 | 0x2 | ACK_SEGMENT |
 | | |
 | 0x3 | REFUSE_BUNDLE |
 | | |
 | 0x4 | KEEPALIVE |
 | | |
 | 0x5 | SHUTDOWN |
 | | |
 | 0x6 | LENGTH |
 | | |
 | TBD | REJECT |
 | | |
 | TBD--0xf | Unassigned |
 +----------+---------------+

 Message Type Codes

8.4. REFUSE_BUNDLE Reason Codes

 IANA has created, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer REFUSE_BUNDLE
 Reason Codes" and initialized it with the contents of Table 3. The
 registration procedure is RFC Required.

Sipos, et al. Expires May 31, 2017 [Page 26]

Internet-Draft DTN TCPCLv4 November 2016

 +----------+---------------------------+
 | Code | Refusal Reason |
 +----------+---------------------------+
 | 0x0 | Unknown |
 | | |
 | 0x1 | Completed |
 | | |
 | 0x2 | No Resources |
 | | |
 | 0x3 | Retransmit |
 | | |
 | 0x4--0x7 | Unassigned |
 | | |
 | 0x8--0xf | Reserved for future usage |
 +----------+---------------------------+

 REFUSE_BUNDLE Reason Codes

8.5. SHUTDOWN Reason Codes

 IANA has created, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer SHUTDOWN
 Reason Codes" and initialized it with the contents of Table 4. The
 registration procedure is RFC Required.

 +-----------+------------------+
 | Code | Shutdown Reason |
 +-----------+------------------+
 | 0x00 | Idle timeout |
 | | |
 | 0x01 | Version mismatch |
 | | |
 | 0x02 | Busy |
 | | |
 | TBD | Contact Failure |
 | | |
 | TBD | TLS failure |
 | | |
 | TBD--0xFF | Unassigned |
 +-----------+------------------+

 SHUTDOWN Reason Codes

8.6. REJECT Reason Codes

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

Sipos, et al. Expires May 31, 2017 [Page 27]

Internet-Draft DTN TCPCLv4 November 2016

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer REJECT Reason
 Codes" and initialized it with the contents of Table 4. The
 registration procedure is RFC Required.

 +-----------+----------------------+
 | Code | Rejection Reason |
 +-----------+----------------------+
 | 0x00 | reserved |
 | | |
 | 0x01 | Message Type Unknown |
 | | |
 | 0x02 | Message Unsupported |
 | | |
 | 0x03 | Message Unexpected |
 | | |
 | 0x04-0xFF | Unassigned |
 +-----------+----------------------+

 REJECT Reason Codes

9. Acknowledgments

 This memo is based on comments on implementation of [RFC7242]
 provided from Scott Burleigh.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, DOI 10.17487/RFC5050, November
 2007, <http://www.rfc-editor.org/info/rfc5050>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5050
http://www.rfc-editor.org/info/rfc5050
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246

Sipos, et al. Expires May 31, 2017 [Page 28]

Internet-Draft DTN TCPCLv4 November 2016

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [I-D.ietf-dtn-bpbis]
 Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol",

draft-ietf-dtn-bpbis-06 (work in progress), October 2016.

 [refs.IANA-BP]
 IANA, "Bundle Protocol registry", May 2016.

10.2. Informative References

 [RFC2595] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
RFC 2595, DOI 10.17487/RFC2595, June 1999,

 <http://www.rfc-editor.org/info/rfc2595>.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,
 April 2007, <http://www.rfc-editor.org/info/rfc4838>.

 [RFC6257] Symington, S., Farrell, S., Weiss, H., and P. Lovell,
 "Bundle Security Protocol Specification", RFC 6257,
 DOI 10.17487/RFC6257, May 2011,
 <http://www.rfc-editor.org/info/rfc6257>.

 [RFC7242] Demmer, M., Ott, J., and S. Perreault, "Delay-Tolerant
 Networking TCP Convergence-Layer Protocol", RFC 7242,
 DOI 10.17487/RFC7242, June 2014,
 <http://www.rfc-editor.org/info/rfc7242>.

 [I-D.ietf-dtn-bpsec]
 Birrane, E. and K. McKeever, "Bundle Protocol Security
 Specification", draft-ietf-dtn-bpsec-03 (work in
 progress), October 2016.

Appendix A. Significant changes from RFC7242

 The areas in which changes from [RFC7242] have been made to existing
 messages are:

 o Changed contact header content to limit number of negotiated
 options.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bpbis-06
https://datatracker.ietf.org/doc/html/rfc2595
http://www.rfc-editor.org/info/rfc2595
https://datatracker.ietf.org/doc/html/rfc4838
http://www.rfc-editor.org/info/rfc4838
https://datatracker.ietf.org/doc/html/rfc6257
http://www.rfc-editor.org/info/rfc6257
https://datatracker.ietf.org/doc/html/rfc7242
http://www.rfc-editor.org/info/rfc7242
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bpsec-03
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires May 31, 2017 [Page 29]

Internet-Draft DTN TCPCLv4 November 2016

 o Added contact option to negotiate maximum segment size (per each
 direction).

 o Added a bundle transfer identification number to all bundle-
 related messages (LENGTH, DATA_SEGMENT, ACK_SEGMENT,
 REFUSE_BUNDLE).

 o Use flags in ACK_SEGMENT to mirror flags from DATA_SEGMENT.

 o Removed all uses of SDNV fields and replaced with fixed-bit-length
 fields.

 The areas in which extensions from [RFC7242] have been made as new
 messages and codes are:

 o Added contact negotation failure SHUTDOWN reason code.

 o Added REJECT message to indicate an unknown or unhandled message
 was received.

 o Added TLS session security mechanism.

 o Added TLS failure SHUTDOWN reason code.

Authors' Addresses

 Brian Sipos
 RKF Engineering Solutions, LLC
 1229 19th Street NW
 Wasington, DC 20036
 US

 Email: BSipos@rkf-eng.com

 Michael Demmer
 University of California, Berkeley
 Computer Science Division
 445 Soda Hall
 Berkeley, CA 94720-1776
 US

 Email: demmer@cs.berkeley.edu

https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires May 31, 2017 [Page 30]

Internet-Draft DTN TCPCLv4 November 2016

 Joerg Ott
 Aalto University
 Department of Communications and Networking
 PO Box 13000
 Aalto 02015
 Finland

 Email: jo@netlab.tkk.fi

 Simon Perreault
 Quebec, QC
 Canada

 Email: simon@per.reau.lt

Sipos, et al. Expires May 31, 2017 [Page 31]

