
Delay Tolerant Networking B. Sipos
Internet-Draft RKF Engineering
Obsoletes: 7242 (if approved) M. Demmer
Intended status: Standards Track UC Berkeley
Expires: October 2, 2019 J. Ott
 Aalto University
 S. Perreault
 March 31, 2019

Delay-Tolerant Networking TCP Convergence Layer Protocol Version 4
draft-ietf-dtn-tcpclv4-12

Abstract

 This document describes a revised protocol for the TCP-based
 convergence layer (TCPCL) for Delay-Tolerant Networking (DTN). The
 protocol revision is based on implementation issues in the original
 TCPCL Version 3 of RFC7242 and updates to the Bundle Protocol
 contents, encodings, and convergence layer requirements in Bundle
 Protocol Version 7. Specifically, the TCPCLv4 uses CBOR-encoded BPv7
 bundles as its service data unit being transported and provides a
 reliable transport of such bundles. Several new IANA registries are
 defined for TCPCLv4 which define some behaviors inherited from
 TCPCLv3 but with updated encodings and/or semantics.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 2, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Sipos, et al. Expires October 2, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft DTN TCPCLv4 March 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Convergence Layer Services 4

2. Requirements Language . 6
2.1. Definitions Specific to the TCPCL Protocol 6

3. General Protocol Description 9
3.1. TCPCL Session Overview 9
3.2. TCPCL States and Transitions 11
3.3. Transfer Segmentation Policies 16
3.4. Example Message Exchange 17

4. Session Establishment . 19
4.1. TCP Connection . 19
4.2. Contact Header . 19
4.3. Contact Validation and Negotiation 20
4.4. Session Security . 21
4.4.1. TLS Handshake Result 22
4.4.2. Example TLS Initiation 22

4.5. Message Type Codes 23
4.6. Session Initialization Message (SESS_INIT) 24
4.7. Session Parameter Negotiation 26
4.8. Session Extension Items 27

5. Established Session Operation 28
5.1. Upkeep and Status Messages 28
5.1.1. Session Upkeep (KEEPALIVE) 28
5.1.2. Message Rejection (MSG_REJECT) 29

5.2. Bundle Transfer . 30
5.2.1. Bundle Transfer ID 30
5.2.2. Data Transmission (XFER_SEGMENT) 31
5.2.3. Data Acknowledgments (XFER_ACK) 33
5.2.4. Transfer Refusal (XFER_REFUSE) 34
5.2.5. Transfer Extension Items 36

6. Session Termination . 38
6.1. Session Termination Message (SESS_TERM) 38
6.2. Idle Session Shutdown 40

7. Implementation Status . 40
8. Security Considerations 41
9. IANA Considerations . 42

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Sipos, et al. Expires October 2, 2019 [Page 2]

Internet-Draft DTN TCPCLv4 March 2019

9.1. Port Number . 42
9.2. Protocol Versions . 43
9.3. Session Extension Types 43
9.4. Transfer Extension Types 44
9.5. Message Types . 45
9.6. XFER_REFUSE Reason Codes 45
9.7. SESS_TERM Reason Codes 46
9.8. MSG_REJECT Reason Codes 47

10. Acknowledgments . 48
11. References . 48
11.1. Normative References 48
11.2. Informative References 49

Appendix A. Significant changes from RFC7242 49
 Authors' Addresses . 50

1. Introduction

 This document describes the TCP-based convergence-layer protocol for
 Delay-Tolerant Networking. Delay-Tolerant Networking is an end-to-
 end architecture providing communications in and/or through highly
 stressed environments, including those with intermittent
 connectivity, long and/or variable delays, and high bit error rates.
 More detailed descriptions of the rationale and capabilities of these
 networks can be found in "Delay-Tolerant Network Architecture"
 [RFC4838].

 An important goal of the DTN architecture is to accommodate a wide
 range of networking technologies and environments. The protocol used
 for DTN communications is the Bundle Protocol Version 7 (BPv7)
 [I-D.ietf-dtn-bpbis], an application-layer protocol that is used to
 construct a store-and-forward overlay network. BPv7 requires the
 services of a "convergence-layer adapter" (CLA) to send and receive
 bundles using the service of some "native" link, network, or Internet
 protocol. This document describes one such convergence-layer adapter
 that uses the well-known Transmission Control Protocol (TCP). This
 convergence layer is referred to as TCP Convergence Layer Version 4
 (TCPCLv4). For the remainder of this document, the abbreviation "BP"
 without the version suffix refers to BPv7. For the remainder of this
 document, the abbreviation "TCPCL" without the version suffix refers
 to TCPCLv4.

 The locations of the TCPCL and the BP in the Internet model protocol
 stack (described in [RFC1122]) are shown in Figure 1. In particular,
 when BP is using TCP as its bearer with TCPCL as its convergence
 layer, both BP and TCPCL reside at the application layer of the
 Internet model.

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc1122

Sipos, et al. Expires October 2, 2019 [Page 3]

Internet-Draft DTN TCPCLv4 March 2019

 +-------------------------+
 | DTN Application | -\
 +-------------------------| |
 | Bundle Protocol (BP) | -> Application Layer
 +-------------------------+ |
 | TCP Conv. Layer (TCPCL) | |
 +-------------------------+ |
 | TLS (optional) | -/
 +-------------------------+
 | TCP | ---> Transport Layer
 +-------------------------+
 | IPv4/IPv6 | ---> Network Layer
 +-------------------------+
 | Link-Layer Protocol | ---> Link Layer
 +-------------------------+

 Figure 1: The Locations of the Bundle Protocol and the TCP
 Convergence-Layer Protocol above the Internet Protocol Stack

 This document describes the format of the protocol data units passed
 between entities participating in TCPCL communications. This
 document does not address:

 o The format of protocol data units of the Bundle Protocol, as those
 are defined elsewhere in [RFC5050] and [I-D.ietf-dtn-bpbis]. This
 includes the concept of bundle fragmentation or bundle
 encapsulation. The TCPCL transfers bundles as opaque data blocks.

 o Mechanisms for locating or identifying other bundle entities
 within an internet.

1.1. Convergence Layer Services

 This version of the TCPCL provides the following services to support
 the overlaying Bundle Protocol agent. In all cases, this is not an
 API defintion but a logical description of how the CL may interact
 with the BP agent. Each of these interactions may be associated with
 any number of additional metadata items as necessary to support the
 operation of the CL or BP agent.

 Attempt Session The TCPCL allows a BP agent to pre-emptively attempt
 to establish a TCPCL session with a peer entity. Each session
 attempt can send a different set of session negotiation parameters
 as directed by the BP agent.

 Terminate Session The TCPCL allows a BP agent to pre-emptively
 terminate an established TCPCL session with a peer entity. The
 terminate request is on a per-session basis.

https://datatracker.ietf.org/doc/html/rfc5050

Sipos, et al. Expires October 2, 2019 [Page 4]

Internet-Draft DTN TCPCLv4 March 2019

 Session State Changed The TCPCL supports indication when the session
 state changes. The top-level session states indicated are:

 Contact Negotating: A TCP connection has been made (as either
 active or passive entity) and contact negotiation has begun.

 Session Negotiating: Contact negotation has been completed
 (including possible TLS use) and session negotiation has begun.

 Established: The session has been fully established and is ready
 for its first transfer.

 Closing: The entity received a SESS_TERM message and is in the
 closing state.

 Terminated: The session has finished normal termination
 sequencing..

 Failed: The session ended without normal termination sequencing.

 Session Idle Changed The TCPCL supports indication when the live/
 idle sub-state changes. This occurs only when the top-level
 session state is Established. Because TCPCL transmits serially
 over a TCP connection, it suffers from "head of queue blocking"
 this indication provides information about when a session is
 available for immediate transfer start.

 Begin Transmission The principal purpose of the TCPCL is to allow a
 BP agent to transmit bundle data over an established TCPCL
 session. Transmission request is on a per-session basis, the CL
 does not necessarily perform any per-session or inter-session
 queueing. Any queueing of transmissions is the obligation of the
 BP agent.

 Transmission Success The TCPCL supports positive indication when a
 bundle has been fully transferred to a peer entity.

 Transmission Intermediate Progress The TCPCL supports positive
 indication of intermediate progress of transferr to a peer entity.
 This intermediate progress is at the granularity of each
 transferred segment.

 Transmission Failure The TCPCL supports positive indication of
 certain reasons for bundle transmission failure, notably when the
 peer entity rejects the bundle or when a TCPCL session ends before
 transferr success. The TCPCL itself does not have a notion of
 transfer timeout.

Sipos, et al. Expires October 2, 2019 [Page 5]

Internet-Draft DTN TCPCLv4 March 2019

 Reception Initialized The TCPCL supports indication to the reciver
 just before any transmssion data is sent. This corresponds to
 reception of the XFER_SEGMENT message with the START flag set.

 Interrupt Reception The TCPCL allows a BP agent to interrupt an
 individual transfer before it has fully completed (successfully or
 not). Interruption can occur any time after the reception is
 initialized.

 Reception Success The TCPCL supports positive indication when a
 bundle has been fully transferred from a peer entity.

 Reception Intermediate Progress The TCPCL supports positive
 indication of intermediate progress of transfer from the peer
 entity. This intermediate progress is at the granularity of each
 transferred segment. Intermediate reception indication allows a
 BP agent the chance to inspect bundle header contents before the
 entire bundle is available, and thus supports the "Reception
 Interruption" capability.

 Reception Failure The TCPCL supports positive indication of certain
 reasons for reception failure, notably when the local entity
 rejects an attempted transfer for some local policy reason or when
 a TCPCL session ends before transfer success. The TCPCL itself
 does not have a notion of transfer timeout.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions Specific to the TCPCL Protocol

 This section contains definitions specific to the TCPCL protocol.

 TCPCL Entity: This is the notional TCPCL application that initiates
 TCPCL sessions. This design, implementation, configuration, and
 specific behavior of such an entity is outside of the scope of
 this document. However, the concept of an entity has utility
 within the scope of this document as the container and initiator
 of TCPCL sessions. The relationship between a TCPCL entity and
 TCPCL sessions is defined as follows:

 A TCPCL Entity MAY actively initiate any number of TCPCL
 Sessions and should do so whenever the entity is the initial
 transmitter of information to another entity in the network.

https://datatracker.ietf.org/doc/html/rfc2119

Sipos, et al. Expires October 2, 2019 [Page 6]

Internet-Draft DTN TCPCLv4 March 2019

 A TCPCL Entity MAY support zero or more passive listening
 elements that listen for connection requests from other TCPCL
 Entities operating on other entitys in the network.

 A TCPCL Entity MAY passivley initiate any number of TCPCL
 Sessions from requests received by its passive listening
 element(s) if the entity uses such elements.

 These relationships are illustrated in Figure 2. For most TCPCL
 behavior within a session, the two entities are symmetric and
 there is no protocol distinction between them. Some specific
 behavior, particularly during session establishment, distinguishes
 between the active entity and the passive entity. For the
 remainder of this document, the term "entity" without the prefix
 "TCPCL" refers to a TCPCL entity.

 TCP Connection: The term Connection in this specification
 exclusively refers to a TCP connection and any and all behaviors,
 sessions, and other states association with that TCP connection.

 TCPCL Session: A TCPCL session (as opposed to a TCP connection) is a
 TCPCL communication relationship between two TCPCL entities.
 Within a single TCPCL session there are two possible transfer
 streams; one in each direction, with one stream from each entity
 being the outbound stream and the other being the inbound stream.
 The lifetime of a TCPCL session is bound to the lifetime of an
 underlying TCP connection. A TCPCL session is terminated when the
 TCP connection ends, due either to one or both entities actively
 terminating the TCP connection or due to network errors causing a
 failure of the TCP connection. For the remainder of this
 document, the term "session" without the prefix "TCPCL" refers to
 a TCPCL session.

 Session parameters: These are a set of values used to affect the
 operation of the TCPCL for a given session. The manner in which
 these parameters are conveyed to the bundle entity and thereby to
 the TCPCL is implementation dependent. However, the mechanism by
 which two entities exchange and negotiate the values to be used
 for a given session is described in Section 4.3.

 Transfer Stream: A Transfer stream is a uni-directional user-data
 path within a TCPCL Session. Messages sent over a transfer stream
 are serialized, meaning that one set of user data must complete
 its transmission prior to another set of user data being
 transmitted over the same transfer stream. Each uni-directional
 stream has a single sender entity and a single receiver entity.

Sipos, et al. Expires October 2, 2019 [Page 7]

Internet-Draft DTN TCPCLv4 March 2019

 Transfer: This refers to the procedures and mechanisms for
 conveyance of an individual bundle from one node to another. Each
 transfer within TCPCL is identified by a Transfer ID number which
 is unique only to a single direction within a single Session.

 Transfer Segment: A subset of a transfer of user data being
 communicated over a trasnfer stream.

 Idle Session: A TCPCL session is idle while the only messages being
 transmitted or received are KEEPALIVE messages.

 Live Session: A TCPCL session is live while any messages are being
 transmitted or received.

 Reason Codes: The TCPCL uses numeric codes to encode specific
 reasons for individual failure/error message types.

 The relationship between connections, sessions, and streams is shown
 in Figure 3.

+--+
| TCPCL Entity |
| | +----------------+
| +--------------------------------+ | | |-+
	Actively Inititated Session #1 +------------->	Other	
+--------------------------------+		TCPCL Entity's	
...		Passive	
+--------------------------------+		Listener	
	Actively Inititated Session #n +------------->		
+--------------------------------+	+----------------+		
	+-----------------+		
+---------------------------+			
+---	+---------------------------+	+----------------+	
			Optional Passive
	+-	Listener(s) +<-------------+	
	+---------------------------+		
			Other
	+---------------------------------+		TCPCL Entity's
+--->	Passively Inititated Session #1 +-------->	Active	
	+---------------------------------+		Initiator(s)
	+---------------------------------+		
+--->	Passively Inititated Session #n +-------->		
+---------------------------------+	+----------------+		
	+-----------------+		
+--+

 Figure 2: The relationships between TCPCL entities

Sipos, et al. Expires October 2, 2019 [Page 8]

Internet-Draft DTN TCPCLv4 March 2019

+----------------------------+ +--------------------------+
TCPCL Session		TCPCL "Other" Session								
+-----------------------+		+---------------------+								
	TCP Connection				TCP Connection					
	+-------------------+				+-----------------+					
		Optional Inbound						Peer Outbound		
		Transfer Stream	<-[Seg]--[Seg]--[Seg]-		Transfer Stream					
		-----						-----		
		RECEIVER						SENDER		
	+-------------------+				+-----------------+					
	+-------------------+				+-----------------+					
		Optional Outbound						Peer Inbound		
		Transfer Stream	------[Seg]---[Seg]---->	Transfer Stream						
		-----						-----		
		SENDER						RECEIVER		
	+-------------------+				+-----------------+					
+-----------------------+		+---------------------+								
+----------------------------+ +--------------------------+

 Figure 3: The relationship within a TCPCL Session of its two streams

3. General Protocol Description

 The service of this protocol is the transmission of DTN bundles via
 the Transmission Control Protocol (TCP). This document specifies the
 encapsulation of bundles, procedures for TCP setup and teardown, and
 a set of messages and node requirements. The general operation of
 the protocol is as follows.

3.1. TCPCL Session Overview

 First, one node establishes a TCPCL session to the other by
 initiating a TCP connection in accordance with [RFC0793]. After
 setup of the TCP connection is complete, an initial contact header is
 exchanged in both directions to establish a shared TCPCL version and
 possibly initiate TLS security. Once contact negotiation is
 complete, TCPCL messaging is available and the session negotiation is
 used to set parameters of the TCPCL session. One of these parameters
 is a singleton endpoint identifier for each node (not the singleton
 Endpoint Identifier (EID) of any application running on the node) to
 denote the bundle-layer identity of each DTN node. This is used to
 assist in routing and forwarding messages (e.g. to prevent loops).

 Once negotiated, the parameters of a TCPCL session cannot change and
 if there is a desire by either peer to transfer data under different

https://datatracker.ietf.org/doc/html/rfc0793

Sipos, et al. Expires October 2, 2019 [Page 9]

Internet-Draft DTN TCPCLv4 March 2019

 parameters then a new session must be established. This makes CL
 logic simpler but relies on the assumption that establishing a TCP
 connection is lightweight enough that TCP connection overhead is
 negligable compared to TCPCL data sizes.

 Once the TCPCL session is established and configured in this way,
 bundles can be transferred in either direction. Each transfer is
 performed by an sequence of logical segments of data within
 XFER_SEGMENT messages. Multiple bundles can be transmitted
 consecutively in a single direction on a single TCPCL connection.
 Segments from different bundles are never interleaved. Bundle
 interleaving can be accomplished by fragmentation at the BP layer or
 by establishing multiple TCPCL sessions between the same peers.

 A feature of this protocol is for the receiving node to send
 acknowledgment (XFER_ACK) messages as bundle data segments arrive.
 The rationale behind these acknowledgments is to enable the sender
 node to determine how much of the bundle has been received, so that
 in case the session is interrupted, it can perform reactive
 fragmentation to avoid re-sending the already transmitted part of the
 bundle. In addition, there is no explicit flow control on the TCPCL
 layer.

 A TCPCL receiver can interrupt the transmission of a bundle at any
 point in time by replying with a XFER_REFUSE message, which causes
 the sender to stop transmission of the associated bundle (if it
 hasn't already finished transmission) Note: This enables a cross-
 layer optimization in that it allows a receiver that detects that it
 already has received a certain bundle to interrupt transmission as
 early as possible and thus save transmission capacity for other
 bundles.

 For sessions that are idle, a KEEPALIVE message is sent at a
 negotiated interval. This is used to convey node live-ness
 information during otherwise message-less time intervals.

 A SESS_TERM message is used to start the closing of a TCPCL session
 (see Section 6.1). During shutdown sequencing, in-progress transfers
 can be completed but no new transfers can be initiated. A SESS_TERM
 message can also be used to refuse a session setup by a peer (see

Section 4.3). It is an implementation matter to determine whether or
 not to close a TCPCL session while there are no transfers queued or
 in-progress.

 Once a session is established established, TCPCL is a symmetric
 protocol between the peers. Both sides can start sending data
 segments in a session, and one side's bundle transfer does not have
 to complete before the other side can start sending data segments on

Sipos, et al. Expires October 2, 2019 [Page 10]

Internet-Draft DTN TCPCLv4 March 2019

 its own. Hence, the protocol allows for a bi-directional mode of
 communication. Note that in the case of concurrent bidirectional
 transmission, acknowledgment segments MAY be interleaved with data
 segments.

3.2. TCPCL States and Transitions

 The states of a nominal TCPCL session (i.e. without session failures)
 are indicated in Figure 4.

Sipos, et al. Expires October 2, 2019 [Page 11]

Internet-Draft DTN TCPCLv4 March 2019

 +-------+
 | START |
 +-------+
 |
 TCP Establishment
 |
 V
 +-----------+ +---------------------+
 | TCP |----------->| Contact / Session |
 | Connected | | Negotiation |
 +-----------+ +---------------------+
 |
 +-----Session Parameters-----+
 | Negotiated
 V
 +-------------+ +-------------+
Established	----New Transfer---->	Established
Session		Session
Idle	<---Transfers Done---	Live
 +-------------+ +-------------+
 | |
 +------------------------------------+
 |
 SESS_TERM Exchange
 |
 V
 +-------------+
 | Established | +-------------+
 | Session |----Transfers------>| TCP |
 | Ending | Done | Terminating |
 +-------------+ +-------------+
 |
 +------------Close Message------------+
 |
 V
 +-------+
 | END |
 +-------+

 Figure 4: Top-level states of a TCPCL session

 Notes on Established Session states:

 Session "Live" means transmitting or reeiving over a transfer
 stream.

 Session "Idle" means no transmission/reception over a transfer
 stream.

Sipos, et al. Expires October 2, 2019 [Page 12]

Internet-Draft DTN TCPCLv4 March 2019

 Session "Closing" means no new transfers will be allowed.

 The contact negotiation sequencing is performed either as the active
 or passive peer, and is illustrated in Figure 5 and Figure 6
 respectively which both share the data validation and analyze final
 states of Figure 7.

 +-------+
 | START |-----TCP-----+
 +-------+ Connecting |
 V
 +-----------+ +---------+
 | Connected |--OK-->| Send CH |--OK-->[PCH]
 +-----------+ +---------+
 | |
 Error Error
 | |
 V |
 [TCPTERM]<-------------+

 Figure 5: Contact Initiation as Active peer

 +-------+
 | START |-----TCP----->[PCH]
 +-------+ Connected

 Figure 6: Contact Initiation as Passive peer

Sipos, et al. Expires October 2, 2019 [Page 13]

Internet-Draft DTN TCPCLv4 March 2019

 +-------->[TCPTERM]<----------+
 | |
 Timeout Error
 or Error |
 | |
 +-------+ +---------+ Contact +----------+
 | START |---->| Waiting |---- Header --->| Validate |
 +-------+ +---------+ Received +----------+
 |
 +---------------------------+
 |
 V
 +---------+
 +--Error--| Analyze |---No TLS---->[SI]
 | | | ^
 | +---------+ |
 | | |
 V TLS |
 [TCPTERM] Negotiated |
 ^ | |
 | V |
 | +-----------+ |
 | | Establish |---Success---+
 +--Error--| TLS |
 +-----------+

 Figure 7: Processing of Contact Header (PCH)

 The session negotiation sequencing is performed either as the active
 or passive peer, and is illustrated in Figure 8 and Figure 9
 respectively which both share the data validation and analyze final
 states of Figure 10.

 +-------+ TCPCL
 | START |--Messaging--+
 +-------+ Available |
 V
 +----------------+
 | Send SESS_INIT |--OK-->[PSI]
 +----------------+
 |
 Error
 |
 V
 [SESSTERM]

 Figure 8: Session Initiation as Active peer

Sipos, et al. Expires October 2, 2019 [Page 14]

Internet-Draft DTN TCPCLv4 March 2019

 +-------+ TCPCL
 | START |---Messaging-->[PSI]
 +-------+ Available

 Figure 9: Session Initiation as Passive peer

 +------->[SESSTERM]<--------+
 | |
 Timeout Error
 or Error |
 | |
 +-------+ +---------+ +----------+
 | START |---->| Waiting |---SESS_INIT--->| Validate |
 +-------+ +---------+ Received +----------+
 |
 +---------------------------+
 |
 V
 +---------+ +--------------+
 +--Error--| Analyze |---->| Established |
 | | | | Session Idle |
 | +---------+ +--------------+
 V
 [SESSTERM]

 Figure 10: Processing of Session Initiation (PSI)

 Transfers can occur after a session is established and it's not in
 the ending state. Each transfer occurs within a single logical
 transfer stream between a sender and a receiver, as illustrated in
 Figure 11 and Figure 12 respectively.

 +--Send XFER_SEGMENT--+
 +--------+ | |
 | Stream | +-------------+ |
 | Idle |---Send XFER_SEGMENT-->| In Progress |<------------+
 +--------+ +-------------+
 |
 +---------All segments sent-------+
 |
 V
 +---------+ +--------+
 | Waiting |---- Receive Final---->| Stream |
 | for Ack | XFER_ACK | IDLE |
 +---------+ +--------+

 Figure 11: Transfer sender states

Sipos, et al. Expires October 2, 2019 [Page 15]

Internet-Draft DTN TCPCLv4 March 2019

 Notes on transfer sending:

 Pipelining of transfers can occur when the sending entity begins a
 new transfer while in the "Waiting for Ack" state.

 +-Receive XFER_SEGMENT-+
 +--------+ | Send XFER_ACK |
 | Stream | +-------------+ |
 | IDLE |--Receive XFER_SEGMENT-->| In Progress |<-------------+
 +--------+ +-------------+
 |
 +--------Sent Final XFER_ACK--------+
 |
 V
 +--------+
 | Stream |
 | IDLE |
 +--------+

 Figure 12: Transfer receiver states

3.3. Transfer Segmentation Policies

 Each TCPCL session allows a negotiated transfer segmentation polcy to
 be applied in each transfer direction. A receiving node can set the
 Segment MRU in its contact header to determine the largest acceptable
 segment size, and a transmitting node can segment a transfer into any
 sizes smaller than the receiver's Segment MRU. It is a network
 administration matter to determine an appropriate segmentation policy
 for entities operating TCPCL, but guidance given here can be used to
 steer policy toward performance goals. It is also advised to
 consider the Segment MRU in relation to chunking/packetization
 performed by TLS, TCP, and any intermediate network-layer nodes.

 Minimum Overhead For a simple network expected to exchange
 relatively small bundles, the Segment MRU can be set to be
 identical to the Transfer MRU which indicates that all transfers
 can be sent with a single data segment (i.e. no actual
 segmentation). If the network is closed and all transmitters are
 known to follow a single-segment transfer policy, then receivers
 can avoid the necessity of segment reassembly. Because this CL
 operates over a TCP stream, which suffers from a form of head-of-
 queue blocking between messages, while one node is transmitting a
 single XFER_SEGMENT message it is not able to transmit any
 XFER_ACK or XFER_REFUSE for any associated received transfers.

 Predictable Message Sizing In situations where the maximum message
 size is desired to be well-controlled, the Segment MRU can be set

Sipos, et al. Expires October 2, 2019 [Page 16]

Internet-Draft DTN TCPCLv4 March 2019

 to the largest acceptable size (the message size less XFER_SEGMENT
 header size) and transmitters can always segment a transfer into
 maximum-size chunks no larger than the Segment MRU. This
 guarantees that any single XFER_SEGMENT will not monopolize the
 TCP stream for too long, which would prevent outgoing XFER_ACK and
 XFER_REFUSE associated with received transfers.

 Dynamic Segmentation Even after negotiation of a Segment MRU for
 each receiving node, the actual transfer segmentation only needs
 to guarantee than any individual segment is no larger than that
 MRU. In a situation where network "goodput" is dynamic, the
 transfer segmentation size can also be dynamic in order to control
 message transmission duration.

 Many other policies can be established in a TCPCL network between
 these two extremes. Different policies can be applied to each
 direction to/from any particular node. Additionally, future header
 and transfer extension types can apply further nuance to transfer
 policies and policy negotiation.

3.4. Example Message Exchange

 The following figure depicts the protocol exchange for a simple
 session, showing the session establishment and the transmission of a
 single bundle split into three data segments (of lengths "L1", "L2",
 and "L3") from Entity A to Entity B.

 Note that the sending node can transmit multiple XFER_SEGMENT
 messages without waiting for the corresponding XFER_ACK responses.
 This enables pipelining of messages on a transfer stream. Although
 this example only demonstrates a single bundle transmission, it is
 also possible to pipeline multiple XFER_SEGMENT messages for
 different bundles without necessarily waiting for XFER_ACK messages
 to be returned for each one. However, interleaving data segments
 from different bundles is not allowed.

 No errors or rejections are shown in this example.

Sipos, et al. Expires October 2, 2019 [Page 17]

Internet-Draft DTN TCPCLv4 March 2019

 Entity A Entity B
 ======== ========
 +-------------------------+
 | Contact Header | -> +-------------------------+
 +-------------------------+ <- | Contact Header |
 +-------------------------+
 +-------------------------+
 | SESS_INIT | -> +-------------------------+
 +-------------------------+ <- | SESS_INIT |
 +-------------------------+

 +-------------------------+
 | XFER_SEGMENT (start) | ->
 | Transfer ID [I1] |
 | Length [L1] |
 | Bundle Data 0..(L1-1) |
 +-------------------------+
 +-------------------------+ +-------------------------+
 | XFER_SEGMENT | -> <- | XFER_ACK (start) |
 | Transfer ID [I1] | | Transfer ID [I1] |
 | Length [L2] | | Length [L1] |
 |Bundle Data L1..(L1+L2-1)| +-------------------------+
 +-------------------------+
 +-------------------------+ +-------------------------+
 | XFER_SEGMENT (end) | -> <- | XFER_ACK |
 | Transfer ID [I1] | | Transfer ID [I1] |
 | Length [L3] | | Length [L1+L2] |
 |Bundle Data | +-------------------------+
 | (L1+L2)..(L1+L2+L3-1)|
 +-------------------------+
 +-------------------------+
 <- | XFER_ACK (end) |
 | Transfer ID [I1] |
 | Length [L1+L2+L3] |
 +-------------------------+

 +-------------------------+
 | SESS_TERM | -> +-------------------------+
 +-------------------------+ <- | SESS_TERM |
 +-------------------------+

 Figure 13: An example of the flow of protocol messages on a single
 TCP Session between two entities

Sipos, et al. Expires October 2, 2019 [Page 18]

Internet-Draft DTN TCPCLv4 March 2019

4. Session Establishment

 For bundle transmissions to occur using the TCPCL, a TCPCL session
 MUST first be established between communicating entities. It is up
 to the implementation to decide how and when session setup is
 triggered. For example, some sessions MAY be opened proactively and
 maintained for as long as is possible given the network conditions,
 while other sessions MAY be opened only when there is a bundle that
 is queued for transmission and the routing algorithm selects a
 certain next-hop node.

4.1. TCP Connection

 To establish a TCPCL session, an entity MUST first establish a TCP
 connection with the intended peer entity, typically by using the
 services provided by the operating system. Destination port number
 4556 has been assigned by IANA as the Registered Port number for the
 TCP convergence layer. Other destination port numbers MAY be used
 per local configuration. Determining a peer's destination port
 number (if different from the registered TCPCL port number) is up to
 the implementation. Any source port number MAY be used for TCPCL
 sessions. Typically an operating system assigned number in the TCP
 Ephemeral range (49152-65535) is used.

 If the entity is unable to establish a TCP connection for any reason,
 then it is an implementation matter to determine how to handle the
 connection failure. An entity MAY decide to re-attempt to establish
 the connection. If it does so, it MUST NOT overwhelm its target with
 repeated connection attempts. Therefore, the entity MUST retry the
 connection setup no earlier than some delay time from the last
 attempt, and it SHOULD use a (binary) exponential backoff mechanism
 to increase this delay in case of repeated failures.

 Once a TCP connection is established, each entity MUST immediately
 transmit a contact header over the TCP connection. The format of the
 contact header is described in Section 4.2.

4.2. Contact Header

 Once a TCP connection is established, both parties exchange a contact
 header. This section describes the format of the contact header and
 the meaning of its fields.

 Upon receipt of the contact header, both entities perform the
 validation and negotiation procedures defined in Section 4.3. After
 receiving the contact header from the other entity, either entity MAY
 refuse the session by sending a SESS_TERM message with an appropriate
 reason code.

Sipos, et al. Expires October 2, 2019 [Page 19]

Internet-Draft DTN TCPCLv4 March 2019

 The format for the Contact Header is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | magic='dtn!' |
 +---------------+---------------+---------------+---------------+
 | Version | Flags |
 +---------------+---------------+

 Figure 14: Contact Header Format

 See Section 4.3 for details on the use of each of these contact
 header fields.

 The fields of the contact header are:

 magic: A four-octet field that always contains the octet sequence
 0x64 0x74 0x6E 0x21, i.e., the text string "dtn!" in US-ASCII (and
 UTF-8).

 Version: A one-octet field value containing the value 4 (current
 version of the protocol).

 Flags: A one-octet field of single-bit flags, interpreted according
 to the descriptions in Table 1.

 +----------+--------+---+
 | Name | Code | Description |
 +----------+--------+---+
CAN_TLS	0x01	If bit is set, indicates that the sending
		peer is capable of TLS security.
Reserved	others	
 +----------+--------+---+

 Table 1: Contact Header Flags

4.3. Contact Validation and Negotiation

 Upon reception of the contact header, each node follows the following
 procedures to ensure the validity of the TCPCL session and to
 negotiate values for the session parameters.

 If the magic string is not present or is not valid, the connection
 MUST be terminated. The intent of the magic string is to provide
 some protection against an inadvertent TCP connection by a different
 protocol than the one described in this document. To prevent a flood

Sipos, et al. Expires October 2, 2019 [Page 20]

Internet-Draft DTN TCPCLv4 March 2019

 of repeated connections from a misconfigured application, an entity
 MAY elect to hold an invalid connection open and idle for some time
 before closing it.

 The first negotiation is on the TCPCL protocol version to use. The
 active node always sends its Contact Header first and waits for a
 response from the passive node. The active node can repeatedly
 attempt different protocol versions in descending order until the
 passive node accepts one with a corresponding Contact Header reply.
 Only upon response of a Contact Header from the passive node is the
 TCPCL protocol version established and parameter negotiation begun.

 During contact initiation, the active TCPCL node SHALL send the
 highest TCPCL protocol version on a first session attempt for a TCPCL
 peer. If the active node receives a Contact Header with a different
 protocol version than the one sent earlier on the TCP connection, the
 TCP connection SHALL be terminated. If the active node receives a
 SESS_TERM message with reason of "Version Mismatch", that node MAY
 attempt further TCPCL sessions with the peer using earlier protocol
 version numbers in decreasing order. Managing multi-TCPCL-session
 state such as this is an implementation matter.

 If the passive node receives a contact header containing a version
 that is greater than the current version of the protocol that the
 node implements, then the node SHALL shutdown the session with a
 reason code of "Version mismatch". If the passive node receives a
 contact header with a version that is lower than the version of the
 protocol that the node implements, the node MAY either terminate the
 session (with a reason code of "Version mismatch") or the node MAY
 adapt its operation to conform to the older version of the protocol.
 The decision of version fall-back is an implementation matter.

4.4. Session Security

 This version of the TCPCL supports establishing a Transport Layer
 Security (TLS) session within an existing TCP connection. When TLS
 is used within the TCPCL it affects the entire session. Once
 established, there is no mechanism available to downgrade a TCPCL
 session to non-TLS operation. If this is desired, the entire TCPCL
 session MUST be terminated and a new non-TLS-negotiated session
 established.

 The use of TLS is negotated using the Contact Header as described in
Section 4.3. After negotiating an Enable TLS parameter of true, and

 before any other TCPCL messages are sent within the session, the
 session entities SHALL begin a TLS handshake in accordance with
 [RFC5246]. The parameters within each TLS negotiation are
 implementation dependent but any TCPCL node SHALL follow all

https://datatracker.ietf.org/doc/html/rfc5246

Sipos, et al. Expires October 2, 2019 [Page 21]

Internet-Draft DTN TCPCLv4 March 2019

 recommended practices of [BCP195], or any updates or successors that
 become part of [BCP195]. By convention, this protocol uses the node
 which initiated the underlying TCP connection as the "client" role of
 the TLS handshake request.

 The TLS handshake, if it occurs, is considered to be part of the
 contact negotiation before the TCPCL session itself is established.
 Specifics about sensitive data exposure are discussed in Section 8.

4.4.1. TLS Handshake Result

 If a TLS handshake cannot negotiate a TLS session, both entities of
 the TCPCL session SHALL terminate the TCP connection. At this point
 the TCPCL session has not yet been established so there is no TCPCL
 session to terminate. This also avoids any potential security issues
 assoicated with further TCP communication with an untrusted peer.

 After a TLS session is successfully established, the active peer
 SHALL send a SESS_INIT message to begin session negotiation. This
 session negotation and all subsequent messaging are secured.

4.4.2. Example TLS Initiation

 A summary of a typical CAN_TLS usage is shown in the sequence in
 Figure 15 below.

Sipos, et al. Expires October 2, 2019 [Page 22]

Internet-Draft DTN TCPCLv4 March 2019

 Entity A Entity B
 ======== ========

 +-------------------------+
 | Open TCP Connnection | ->
 +-------------------------+ +-------------------------+
 <- | Accept Connection |
 +-------------------------+

 +-------------------------+
 | Contact Header | ->
 +-------------------------+ +-------------------------+
 <- | Contact Header |
 +-------------------------+

 +-------------------------+ +-------------------------+
 | TLS Negotiation | -> <- | TLS Negotiation |
 | (as client) | | (as server) |
 +-------------------------+ +-------------------------+

 ... secured TCPCL messaging, starting with SESS_INIT ...

 +-------------------------+ +-------------------------+
 | SESS_TERM | -> <- | SESS_TERM |
 +-------------------------+ +-------------------------+

 Figure 15: A simple visual example of TCPCL TLS Establishment between
 two entities

4.5. Message Type Codes

 After the initial exchange of a contact header, all messages
 transmitted over the session are identified by a one-octet header
 with the following structure:

 0 1 2 3 4 5 6 7
 +---------------+
 | Message Type |
 +---------------+

 Figure 16: Format of the Message Header

 The message header fields are as follows:

 Message Type: Indicates the type of the message as per Table 2
 below. Encoded values are listed in Section 9.5.

Sipos, et al. Expires October 2, 2019 [Page 23]

Internet-Draft DTN TCPCLv4 March 2019

 +--------------+------+---+
 | Name | Code | Description |
 +--------------+------+---+
SESS_INIT	0x07	Contains the session parameter inputs from
		one of the entities, as described in
		Section 4.6.
SESS_TERM	0x05	Indicates that one of the entities
		participating in the session wishes to
		cleanly terminate the session, as described
		in Section 6.
XFER_SEGMENT	0x01	Indicates the transmission of a segment of
		bundle data, as described in Section 5.2.2.
XFER_ACK	0x02	Acknowledges reception of a data segment,
		as described in Section 5.2.3.
XFER_REFUSE	0x03	Indicates that the transmission of the
		current bundle SHALL be stopped, as
		described in Section 5.2.4.
KEEPALIVE	0x04	Used to keep TCPCL session active, as
		described in Section 5.1.1.
MSG_REJECT	0x06	Contains a TCPCL message rejection, as
		described in Section 5.1.2.
 +--------------+------+---+

 Table 2: TCPCL Message Types

4.6. Session Initialization Message (SESS_INIT)

 Before a session is established and ready to transfer bundles, the
 session parameters are negotiated between the connected entities.
 The SESS_INIT message is used to convey the per-entity parameters
 which are used together to negotiate the per-session parameters as
 described in Section 4.7.

 The format of a SESS_INIT message is as follows in Figure 17.

Sipos, et al. Expires October 2, 2019 [Page 24]

Internet-Draft DTN TCPCLv4 March 2019

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Keepalive Interval (U16) |
 +-----------------------------+
 | Segment MRU (U64) |
 +-----------------------------+
 | Transfer MRU (U64) |
 +-----------------------------+
 | EID Length (U16) |
 +-----------------------------+
 | EID Data (variable) |
 +-----------------------------+
 | Session Extension |
 | Items Length (U32) |
 +-----------------------------+
 | Session Extension |
 | Items (var.) |
 +-----------------------------+

 Figure 17: SESS_INIT Format

 The fields of the SESS_INIT message are:

 Keepalive Interval: A 16-bit unsigned integer indicating the
 interval, in seconds, between any subsequent messages being
 transmitted by the peer. The peer receiving this contact header
 uses this interval to determine how long to wait after any last-
 message transmission and a necessary subsequent KEEPALIVE message
 transmission.

 Segment MRU: A 64-bit unsigned integer indicating the largest
 allowable single-segment data payload size to be received in this
 session. Any XFER_SEGMENT sent to this peer SHALL have a data
 payload no longer than the peer's Segment MRU. The two entities
 of a single session MAY have different Segment MRUs, and no
 relation between the two is required.

 Transfer MRU: A 64-bit unsigned integer indicating the largest
 allowable total-bundle data size to be received in this session.
 Any bundle transfer sent to this peer SHALL have a Total Bundle
 Length payload no longer than the peer's Transfer MRU. This value
 can be used to perform proactive bundle fragmentation. The two
 entities of a single session MAY have different Transfer MRUs, and
 no relation between the two is required.

 EID Length and EID Data: Together these fields represent a variable-
 length text string. The EID Length is a 16-bit unsigned integer

Sipos, et al. Expires October 2, 2019 [Page 25]

Internet-Draft DTN TCPCLv4 March 2019

 indicating the number of octets of EID Data to follow. A zero EID
 Length SHALL be used to indicate the lack of EID rather than a
 truly empty EID. This case allows an entity to avoid exposing EID
 information on an untrusted network. A non-zero-length EID Data
 SHALL contain the UTF-8 encoded EID of some singleton endpoint in
 which the sending entity is a member, in the canonical format of
 <scheme name>:<scheme-specific part>. This EID encoding is
 consistent with [I-D.ietf-dtn-bpbis].

 Session Extension Length and Session Extension Items: Together these
 fields represent protocol extension data not defined by this
 specification. The Session Extension Length is the total number
 of octets to follow which are used to encode the Session Extension
 Item list. The encoding of each Session Extension Item is within
 a consistent data container as described in Section 4.8. The full
 set of Session Extension Items apply for the duration of the TCPCL
 session to follow. The order and mulitplicity of these Session
 Extension Items MAY be significant, as defined in the associated
 type specification(s).

4.7. Session Parameter Negotiation

 An entity calculates the parameters for a TCPCL session by
 negotiating the values from its own preferences (conveyed by the
 contact header it sent to the peer) with the preferences of the peer
 node (expressed in the contact header that it received from the
 peer). The negotiated parameters defined by this specification are
 described in the following paragraphs.

 Transfer MTU and Segment MTU: The maximum transmit unit (MTU) for
 whole transfers and individual segments are idententical to the
 Transfer MRU and Segment MRU, respectively, of the recevied
 contact header. A transmitting peer can send individual segments
 with any size smaller than the Segment MTU, depending on local
 policy, dynamic network conditions, etc. Determining the size of
 each transmitted segment is an implementation matter.

 Session Keepalive: Negotiation of the Session Keepalive parameter is
 performed by taking the minimum of this two contact headers'
 Keepalive Interval. The Session Keepalive interval is a parameter
 for the behavior described in Section 5.1.1.

 Enable TLS: Negotiation of the Enable TLS parameter is performed by
 taking the logical AND of the two contact headers' CAN_TLS flags.
 A local security policy is then applied to determine of the
 negotated value of Enable TLS is acceptable. It can be a
 reasonable security policy to both require or disallow the use of
 TLS depending upon the desired network flows. If the Enable TLS

Sipos, et al. Expires October 2, 2019 [Page 26]

Internet-Draft DTN TCPCLv4 March 2019

 state is unacceptable, the node SHALL terminate the session with a
 reason code of "Contact Failure". Note that this contact failure
 is different than a failure of TLS handshake after an agreed-upon
 and acceptable Enable TLS state. If the negotiated Enable TLS
 value is true and acceptable then TLS negotiation feature
 (described in Section 4.4) begins immediately following the
 contact header exchange.

 Once this process of parameter negotiation is completed (which
 includes a possible completed TLS handshake of the connection to use
 TLS), this protocol defines no additional mechanism to change the
 parameters of an established session; to effect such a change, the
 TCPCL session MUST be terminated and a new session established.

4.8. Session Extension Items

 Each of the Session Extension Items SHALL be encoded in an identical
 Type-Length-Value (TLV) container form as indicated in Figure 18.

 The fields of the Session Extension Item are:

 Flags: A one-octet field containing generic bit flags about the
 Item, which are listed in Table 3. If a TCPCL entity receives a
 Session Extension Item with an unknown Item Type and the CRITICAL
 flag set, the entity SHALL close the TCPCL session with SESS_TERM
 reason code of "Contact Failure". If the CRITICAL flag is not
 set, an entity SHALL skip over and ignore any item with an unknown
 Item Type.

 Item Type: A 16-bit unsigned integer field containing the type of
 the extension item. This specification does not define any
 extension types directly, but does allocate an IANA registry for
 such codes (see Section 9.3).

 Item Length: A 16-bit unsigned integer field containing the number
 of Item Value octets to follow.

 Item Value: A variable-length data field which is interpreted
 according to the associated Item Type. This specification places
 no restrictions on an extension's use of available Item Value
 data. Extension specifications SHOULD avoid the use of large data
 lengths, as no bundle transfers can begin until the full extension
 data is sent.

Sipos, et al. Expires October 2, 2019 [Page 27]

Internet-Draft DTN TCPCLv4 March 2019

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Item Flags | Item Type | Item Length...|
 +---------------+---------------+---------------+---------------+
 | length contd. | Item Value... |
 +---------------+---------------+---------------+---------------+

 Figure 18: Session Extension Item Format

 +----------+--------+---+
 | Name | Code | Description |
 +----------+--------+---+
CRITICAL	0x01	If bit is set, indicates that the receiving
		peer must handle the extension item.
Reserved	others	
 +----------+--------+---+

 Table 3: Session Extension Item Flags

5. Established Session Operation

 This section describes the protocol operation for the duration of an
 established session, including the mechanism for transmitting bundles
 over the session.

5.1. Upkeep and Status Messages

5.1.1. Session Upkeep (KEEPALIVE)

 The protocol includes a provision for transmission of KEEPALIVE
 messages over the TCPCL session to help determine if the underlying
 TCP connection has been disrupted.

 As described in Section 4.3, a negotiated parameter of each session
 is the Session Keepalive interval. If the negotiated Session
 Keepalive is zero (i.e. one or both contact headers contains a zero
 Keepalive Interval), then the keepalive feature is disabled. There
 is no logical minimum value for the keepalive interval, but when used
 for many sessions on an open, shared network a short interval could
 lead to excessive traffic. For shared network use, entities SHOULD
 choose a keepalive interval no shorter than 30 seconds. There is no
 logical maximum value for the keepalive interval, but an idle TCP
 connection is liable for closure by the host operating system if the
 keepalive time is longer than tens-of-minutes. Entities SHOULD
 choose a keepalive interval no longer than 10 minutes (600 seconds).

Sipos, et al. Expires October 2, 2019 [Page 28]

Internet-Draft DTN TCPCLv4 March 2019

 Note: The Keepalive Interval SHOULD NOT be chosen too short as TCP
 retransmissions MAY occur in case of packet loss. Those will have to
 be triggered by a timeout (TCP retransmission timeout (RTO)), which
 is dependent on the measured RTT for the TCP connection so that
 KEEPALIVE messages MAY experience noticeable latency.

 The format of a KEEPALIVE message is a one-octet message type code of
 KEEPALIVE (as described in Table 2) with no additional data. Both
 sides SHALL send a KEEPALIVE message whenever the negotiated interval
 has elapsed with no transmission of any message (KEEPALIVE or other).

 If no message (KEEPALIVE or other) has been received in a session
 after some implementation-defined time duration, then the node SHALL
 terminate the session by transmitting a SESS_TERM message (as
 described in Section 6.1) with reason code "Idle Timeout". If
 configurable, the idle timeout duration SHOULD be no shorter than
 twice the keepalive interval. If not configurable, the idle timeout
 duration SHOULD be exactly twice the keepalive interval.

5.1.2. Message Rejection (MSG_REJECT)

 If a TCPCL node receives a message which is unknown to it (possibly
 due to an unhandled protocol mismatch) or is inappropriate for the
 current session state (e.g. a KEEPALIVE message received after
 contact header negotiation has disabled that feature), there is a
 protocol-level message to signal this condition in the form of a
 MSG_REJECT reply.

 The format of a MSG_REJECT message is as follows in Figure 19.

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Reason Code (U8) |
 +-----------------------------+
 | Rejected Message Header |
 +-----------------------------+

 Figure 19: Format of MSG_REJECT Messages

 The fields of the MSG_REJECT message are:

 Reason Code: A one-octet refusal reason code interpreted according
 to the descriptions in Table 4.

 Rejected Message Header: The Rejected Message Header is a copy of
 the Message Header to which the MSG_REJECT message is sent as a
 response.

Sipos, et al. Expires October 2, 2019 [Page 29]

Internet-Draft DTN TCPCLv4 March 2019

 +-------------+------+--+
 | Name | Code | Description |
 +-------------+------+--+
Message	0x01	A message was received with a Message Type
Type		code unknown to the TCPCL node.
Unknown		
Message	0x02	A message was received but the TCPCL node
Unsupported		cannot comply with the message contents.
Message	0x03	A message was received while the session is
Unexpected		in a state in which the message is not
		expected.
 +-------------+------+--+

 Table 4: MSG_REJECT Reason Codes

5.2. Bundle Transfer

 All of the messages in this section are directly associated with
 transferring a bundle between TCPCL entities.

 A single TCPCL transfer results in a bundle (handled by the
 convergence layer as opaque data) being exchanged from one node to
 the other. In TCPCL a transfer is accomplished by dividing a single
 bundle up into "segments" based on the receiving-side Segment MRU
 (see Section 4.2). The choice of the length to use for segments is
 an implementation matter, but each segment MUST be no larger than the
 receiving node's maximum receive unit (MRU) (see the field "Segment
 MRU" of Section 4.2). The first segment for a bundle MUST set the
 'START' flag, and the last one MUST set the 'end' flag in the
 XFER_SEGMENT message flags.

 A single transfer (and by extension a single segment) SHALL NOT
 contain data of more than a single bundle. This requirement is
 imposed on the agent using the TCPCL rather than TCPCL itself.

 If multiple bundles are transmitted on a single TCPCL connection,
 they MUST be transmitted consecutively without interleaving of
 segments from multiple bundles.

5.2.1. Bundle Transfer ID

 Each of the bundle transfer messages contains a Transfer ID which is
 used to correlate messages (from both sides of a transfer) for each
 bundle. A Transfer ID does not attempt to address uniqueness of the
 bundle data itself and has no relation to concepts such as bundle
 fragmentation. Each invocation of TCPCL by the bundle protocol

Sipos, et al. Expires October 2, 2019 [Page 30]

Internet-Draft DTN TCPCLv4 March 2019

 agent, requesting transmission of a bundle (fragmentary or
 otherwise), results in the initiation of a single TCPCL transfer.
 Each transfer entails the sending of a sequence of some number of
 XFER_SEGMENT and XFER_ACK messages; all are correlated by the same
 Transfer ID.

 Transfer IDs from each node SHALL be unique within a single TCPCL
 session. The initial Transfer ID from each node SHALL have value
 zero. Subsequent Transfer ID values SHALL be incremented from the
 prior Transfer ID value by one. Upon exhaustion of the entire 64-bit
 Transfer ID space, the sending node SHALL terminate the session with
 SESS_TERM reason code "Resource Exhaustion".

 For bidirectional bundle transfers, a TCPCL node SHOULD NOT rely on
 any relation between Transfer IDs originating from each side of the
 TCPCL session.

5.2.2. Data Transmission (XFER_SEGMENT)

 Each bundle is transmitted in one or more data segments. The format
 of a XFER_SEGMENT message follows in Figure 20.

 +------------------------------+
 | Message Header |
 +------------------------------+
 | Message Flags (U8) |
 +------------------------------+
 | Transfer ID (U64) |
 +------------------------------+
 | Transfer Extension |
 | Items Length (U32) |
 | (only for START segment) |
 +------------------------------+
 | Transfer Extension |
 | Items (var.) |
 | (only for START segment) |
 +------------------------------+
 | Data length (U64) |
 +------------------------------+
 | Data contents (octet string) |
 +------------------------------+

 Figure 20: Format of XFER_SEGMENT Messages

 The fields of the XFER_SEGMENT message are:

 Message Flags: A one-octet field of single-bit flags, interpreted
 according to the descriptions in Table 5.

Sipos, et al. Expires October 2, 2019 [Page 31]

Internet-Draft DTN TCPCLv4 March 2019

 Transfer ID: A 64-bit unsigned integer identifying the transfer
 being made.

 Transfer Extension Length and Transfer Extension Items: Together
 these fields represent protocol extension data for this
 specification. The Transfer Extension Length and Transfer
 Extension Item fields SHALL only be present when the 'START' flag
 is set on the message. The Transfer Extension Length is the total
 number of octets to follow which are used to encode the Transfer
 Extension Item list. The encoding of each Transfer Extension Item
 is within a consistent data container as described in

Section 5.2.5. The full set of transfer extension items apply
 only to the assoicated single transfer. The order and
 mulitplicity of these transfer extension items MAY be significant,
 as defined in the associated type specification(s).

 Data length: A 64-bit unsigned integer indicating the number of
 octets in the Data contents to follow.

 Data contents: The variable-length data payload of the message.

 +----------+--------+---+
 | Name | Code | Description |
 +----------+--------+---+
END	0x01	If bit is set, indicates that this is the
		last segment of the transfer.
START	0x02	If bit is set, indicates that this is the
		first segment of the transfer.
Reserved	others	
 +----------+--------+---+

 Table 5: XFER_SEGMENT Flags

 The flags portion of the message contains two optional values in the
 two low-order bits, denoted 'START' and 'END' in Table 5. The
 'START' bit MUST be set to one if it precedes the transmission of the
 first segment of a transfer. The 'END' bit MUST be set to one when
 transmitting the last segment of a transfer. In the case where an
 entire transfer is accomplished in a single segment, both the 'START'
 and 'END' bits MUST be set to one.

 Once a transfer of a bundle has commenced, the node MUST only send
 segments containing sequential portions of that bundle until it sends
 a segment with the 'END' bit set. No interleaving of multiple
 transfers from the same node is possible within a single TCPCL

Sipos, et al. Expires October 2, 2019 [Page 32]

Internet-Draft DTN TCPCLv4 March 2019

 session. Simultaneous transfers between two entities MAY be achieved
 using multiple TCPCL sessions.

5.2.3. Data Acknowledgments (XFER_ACK)

 Although the TCP transport provides reliable transfer of data between
 transport peers, the typical BSD sockets interface provides no means
 to inform a sending application of when the receiving application has
 processed some amount of transmitted data. Thus, after transmitting
 some data, the TCPCL needs an additional mechanism to determine
 whether the receiving agent has successfully received the segment.
 To this end, the TCPCL protocol provides feedback messaging whereby a
 receiving node transmits acknowledgments of reception of data
 segments.

 The format of an XFER_ACK message follows in Figure 21.

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Message Flags (U8) |
 +-----------------------------+
 | Transfer ID (U64) |
 +-----------------------------+
 | Acknowledged length (U64) |
 +-----------------------------+

 Figure 21: Format of XFER_ACK Messages

 The fields of the XFER_ACK message are:

 Message Flags: A one-octet field of single-bit flags, interpreted
 according to the descriptions in Table 5.

 Transfer ID: A 64-bit unsigned integer identifying the transfer
 being acknowledged.

 Acknowledged length: A 64-bit unsigned integer indicating the total
 number of octets in the transfer which are being acknowledged.

 A receiving TCPCL node SHALL send an XFER_ACK message in response to
 each received XFER_SEGMENT message. The flags portion of the
 XFER_ACK header SHALL be set to match the corresponding DATA_SEGMENT
 message being acknowledged. The acknowledged length of each XFER_ACK
 contains the sum of the data length fields of all XFER_SEGMENT
 messages received so far in the course of the indicated transfer.
 The sending node SHOULD transmit multiple XFER_SEGMENT messages

Sipos, et al. Expires October 2, 2019 [Page 33]

Internet-Draft DTN TCPCLv4 March 2019

 without waiting for the corresponding XFER_ACK responses. This
 enables pipelining of messages on a transfer stream.

 For example, suppose the sending node transmits four segments of
 bundle data with lengths 100, 200, 500, and 1000, respectively.
 After receiving the first segment, the node sends an acknowledgment
 of length 100. After the second segment is received, the node sends
 an acknowledgment of length 300. The third and fourth
 acknowledgments are of length 800 and 1800, respectively.

5.2.4. Transfer Refusal (XFER_REFUSE)

 The TCPCL supports a mechanism by which a receiving node can indicate
 to the sender that it does not want to receive the corresponding
 bundle. To do so, upon receiving an XFER_SEGMENT message, the node
 MAY transmit a XFER_REFUSE message. As data segments and
 acknowledgments MAY cross on the wire, the bundle that is being
 refused SHALL be identified by the Transfer ID of the refusal.

 There is no required relation between the Transfer MRU of a TCPCL
 node (which is supposed to represent a firm limitation of what the
 node will accept) and sending of a XFER_REFUSE message. A
 XFER_REFUSE can be used in cases where the agent's bundle storage is
 temporarily depleted or somehow constrained. A XFER_REFUSE can also
 be used after the bundle header or any bundle data is inspected by an
 agent and determined to be unacceptable.

 A receiver MAY send an XFER_REFUSE message as soon as it receives any
 XFER_SEGMENT message. The sender MUST be prepared for this and MUST
 associate the refusal with the correct bundle via the Transfer ID
 fields.

 The format of the XFER_REFUSE message is as follows in Figure 22.

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Reason Code (U8) |
 +-----------------------------+
 | Transfer ID (U64) |
 +-----------------------------+

 Figure 22: Format of XFER_REFUSE Messages

 The fields of the XFER_REFUSE message are:

 Reason Code: A one-octet refusal reason code interpreted according
 to the descriptions in Table 6.

Sipos, et al. Expires October 2, 2019 [Page 34]

Internet-Draft DTN TCPCLv4 March 2019

 Transfer ID: A 64-bit unsigned integer identifying the transfer
 being refused.

 +------------+------+---+
 | Name | Code | Description |
 +------------+------+---+
Unknown	0x00	Reason for refusal is unknown or not
		specified.
Extension	0x01	A failure processing the Transfer Extension
Failure		Items ha occurred.
Completed	0x02	The receiver already has the complete bundle.
		The sender MAY consider the bundle as
		completely received.
No	0x03	The receiver's resources are exhausted. The
Resources		sender SHOULD apply reactive bundle
		fragmentation before retrying.
Retransmit	0x04	The receiver has encountered a problem that
		requires the bundle to be retransmitted in
		its entirety.
 +------------+------+---+

 Table 6: XFER_REFUSE Reason Codes

 The receiver MUST, for each transfer preceding the one to be refused,
 have either acknowledged all XFER_SEGMENTs or refused the bundle
 transfer.

 The bundle transfer refusal MAY be sent before an entire data segment
 is received. If a sender receives a XFER_REFUSE message, the sender
 MUST complete the transmission of any partially sent XFER_SEGMENT
 message. There is no way to interrupt an individual TCPCL message
 partway through sending it. The sender MUST NOT commence
 transmission of any further segments of the refused bundle
 subsequently. Note, however, that this requirement does not ensure
 that an entity will not receive another XFER_SEGMENT for the same
 bundle after transmitting a XFER_REFUSE message since messages MAY
 cross on the wire; if this happens, subsequent segments of the bundle
 SHALL also be refused with a XFER_REFUSE message.

 Note: If a bundle transmission is aborted in this way, the receiver
 MAY not receive a segment with the 'END' flag set to '1' for the
 aborted bundle. The beginning of the next bundle is identified by
 the 'START' bit set to '1', indicating the start of a new transfer,
 and with a distinct Transfer ID value.

Sipos, et al. Expires October 2, 2019 [Page 35]

Internet-Draft DTN TCPCLv4 March 2019

5.2.5. Transfer Extension Items

 Each of the Transfer Extension Items SHALL be encoded in an identical
 Type-Length-Value (TLV) container form as indicated in Figure 23.

 The fields of the Transfer Extension Item are:

 Flags: A one-octet field containing generic bit flags about the
 Item, which are listed in Table 7. If a TCPCL node receives a
 Transfer Extension Item with an unknown Item Type and the CRITICAL
 flag set, the node SHALL refuse the transfer with an XFER_REFUSE
 reason code of "Extension Failure". If the CRITICAL flag is not
 set, an entity SHALL skip over and ignore any item with an unknown
 Item Type.

 Item Type: A 16-bit unsigned integer field containing the type of
 the extension item. This specification allocates an IANA registry
 for such codes (see Section 9.4).

 Item Length: A 16-bit unsigned integer field containing the number
 of Item Value octets to follow.

 Item Value: A variable-length data field which is interpreted
 according to the associated Item Type. This specification places
 no restrictions on an extension's use of available Item Value
 data. Extension specifications SHOULD avoid the use of large data
 lengths, as the associated transfer cannot begin until the full
 extension data is sent.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Item Flags | Item Type | Item Length...|
 +---------------+---------------+---------------+---------------+
 | length contd. | Item Value... |
 +---------------+---------------+---------------+---------------+

 Figure 23: Transfer Extension Item Format

Sipos, et al. Expires October 2, 2019 [Page 36]

Internet-Draft DTN TCPCLv4 March 2019

 +----------+--------+---+
 | Name | Code | Description |
 +----------+--------+---+
CRITICAL	0x01	If bit is set, indicates that the receiving
		peer must handle the extension item.
Reserved	others	
 +----------+--------+---+

 Table 7: Transfer Extension Item Flags

5.2.5.1. Transfer Length Extension

 The purpose of the Transfer Length extension is to allow entities to
 preemptively refuse bundles that would exceed their resources or to
 prepare storage on the receiving node for the upcoming bundle data.

 Multiple Transfer Length extension items SHALL NOT occur within the
 same transfer. The lack of a Transfer Length extension item in any
 transfer SHALL NOT imply anything about the potential length of the
 transfer. The Transfer Length extension SHALL be assigned transfer
 extension type ID 0x0001.

 If a transfer occupies exactly one segment (i.e. both START and END
 bits are set) the Transfer Length extension SHOULD NOT be present.
 The extension does not provide any additional information for single-
 segment transfers.

 The format of the Transfer Length data is as follows in Figure 24.

 +----------------------+
 | Total Length (U64) |
 +----------------------+

 Figure 24: Format of Transfer Length data

 The fields of the Transfer Length extension are:

 Total Length: A 64-bit unsigned integer indicating the size of the
 data-to-be-transferred. The Total Length field SHALL be treated
 as authoritative by the receiver. If, for whatever reason, the
 actual total length of bundle data received differs from the value
 indicated by the Total Length value, the receiver SHALL treat the
 transmitted data as invalid.

Sipos, et al. Expires October 2, 2019 [Page 37]

Internet-Draft DTN TCPCLv4 March 2019

6. Session Termination

 This section describes the procedures for ending a TCPCL session.

6.1. Session Termination Message (SESS_TERM)

 To cleanly shut down a session, a SESS_TERM message SHALL be
 transmitted by either node at any point following complete
 transmission of any other message. When sent to initiate a
 termination, the REPLY bit of a SESS_TERM message SHALL NOT be set.
 Upon receiving a SESS_TERM message after not sending a SESS_TERM
 message in the same session, an entity SHALL send an acknowledging
 SESS_TERM message. When sent to acknowledge a termination, a
 SESS_TERM message SHALL have identical data content from the message
 being acknowledged except for the REPLY bit, which is set to indicate
 acknowledgement.

 After sending a SESS_TERM message, an entity MAY continue a possible
 in-progress transfer in either direction. After sending a SESS_TERM
 message, an entity SHALL NOT begin any new outgoing transfer (i.e.
 send an XFER_SEGMENT message) for the remainder of the session.
 After receving a SESS_TERM message, an entity SHALL NOT accept any
 new incoming transfer for the remainder of the session.

 Instead of following a clean shutdown sequence, after transmitting a
 SESS_TERM message an entity MAY immediately close the associated TCP
 connection. When performing an unclean shutdown, a receiving node
 SHOULD acknowledge all received data segments before closing the TCP
 connection. Not acknowledging received segments can result in
 unnecessary retransmission. When performing an unclean shutodwn, a
 transmitting node SHALL treat either sending or receiving a SESS_TERM
 message (i.e. before the final acknowledgment) as a failure of the
 transfer. Any delay between request to terminate the TCP connection
 and actual closing of the connection (a "half-closed" state) MAY be
 ignored by the TCPCL node.

 The format of the SESS_TERM message is as follows in Figure 25.

 +-----------------------------+
 | Message Header |
 +-----------------------------+
 | Message Flags (U8) |
 +-----------------------------+
 | Reason Code (U8) |
 +-----------------------------+

 Figure 25: Format of SESS_TERM Messages

Sipos, et al. Expires October 2, 2019 [Page 38]

Internet-Draft DTN TCPCLv4 March 2019

 The fields of the SESS_TERM message are:

 Message Flags: A one-octet field of single-bit flags, interpreted
 according to the descriptions in Table 8.

 Reason Code: A one-octet refusal reason code interpreted according
 to the descriptions in Table 9.

 +----------+--------+---+
 | Name | Code | Description |
 +----------+--------+---+
REPLY	0x01	If bit is set, indicates that this message is
		an acknowledgement of an earlier SESS_TERM
		message.
Reserved	others	
 +----------+--------+---+

 Table 8: SESS_TERM Flags

 +--------------+------+---+
 | Name | Code | Description |
 +--------------+------+---+
Unknown	0x00	A termination reason is not available.
Idle timeout	0x01	The session is being closed due to
		idleness.
Version	0x02	The node cannot conform to the specified
mismatch		TCPCL protocol version.
Busy	0x03	The node is too busy to handle the current
		session.
Contact	0x04	The node cannot interpret or negotiate
Failure		contact header option.
Resource	0x05	The node has run into some resource limit
Exhaustion		and cannot continue the session.
 +--------------+------+---+

 Table 9: SESS_TERM Reason Codes

 A session shutdown MAY occur immediately after transmission of a
 contact header (and prior to any further message transmit). This
 MAY, for example, be used to notify that the node is currently not
 able or willing to communicate. However, an entity MUST always send
 the contact header to its peer before sending a SESS_TERM message.

Sipos, et al. Expires October 2, 2019 [Page 39]

Internet-Draft DTN TCPCLv4 March 2019

 If reception of the contact header itself somehow fails (e.g. an
 invalid "magic string" is recevied), an entity SHALL close the TCP
 connection without sending a SESS_TERM message. If the content of
 the Session Extension Items data disagrees with the Session Extension
 Length (i.e. the last Item claims to use more octets than are present
 in the Session Extension Length), the reception of the contact header
 is considered to have failed.

 If a session is to be terminated before a protocol message has
 completed being sent, then the node MUST NOT transmit the SESS_TERM
 message but still SHALL close the TCP connection. Each TCPCL message
 is contiguous in the octet stream and has no ability to be cut short
 and/or preempted by an other message. This is particularly important
 when large segment sizes are being transmitted; either entire
 XFER_SEGMENT is sent before a SESS_TERM message or the connection is
 simply terminated mid-XFER_SEGMENT.

6.2. Idle Session Shutdown

 The protocol includes a provision for clean shutdown of idle
 sessions. Determining the length of time to wait before closing idle
 sessions, if they are to be closed at all, is an implementation and
 configuration matter.

 If there is a configured time to close idle links and if no TCPCL
 messages (other than KEEPALIVE messages) has been received for at
 least that amount of time, then either node MAY terminate the session
 by transmitting a SESS_TERM message indicating the reason code of
 "Idle timeout" (as described in Table 9).

7. Implementation Status

 [NOTE to the RFC Editor: please remove this section before
 publication, as well as the reference to [RFC7942] and
 [github-dtn-bpbis-tcpcl].]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942

Sipos, et al. Expires October 2, 2019 [Page 40]

Internet-Draft DTN TCPCLv4 March 2019

 An example implementation of the this draft of TCPCLv4 has been
 created as a GitHub project [github-dtn-bpbis-tcpcl] and is intented
 to use as a proof-of-concept and as a possible source of
 interoperability testing. This example implementation uses D-Bus as
 the CL-BP Agent interface, so it only runs on hosts which provide the
 Python "dbus" library.

8. Security Considerations

 One security consideration for this protocol relates to the fact that
 entities present their endpoint identifier as part of the contact
 header exchange. It would be possible for an entity to fake this
 value and present the identity of a singleton endpoint in which the
 node is not a member, essentially masquerading as another DTN node.
 If this identifier is used outside of a TLS-secured session or
 without further verification as a means to determine which bundles
 are transmitted over the session, then the node that has falsified
 its identity would be able to obtain bundles that it otherwise would
 not have. Therefore, an entity SHALL NOT use the EID value of an
 unsecured contact header to derive a peer node's identity unless it
 can corroborate it via other means. When TCPCL session security is
 mandated by a TCPCL peer, that peer SHALL transmit initial unsecured
 contact header values indicated in Table 10 in order. These values
 avoid unnecessarily leaking session parameters and will be ignored
 when secure contact header re-exchange occurs.

 +--------------------+---+
 | Parameter | Value |
 +--------------------+---+
Flags	The USE_TLS flag is set.
Keepalive Interval	Zero, indicating no keepalive.
Segment MRU	Zero, indicating all segments are refused.
Transfer MRU	Zero, indicating all transfers are refused.
EID	Empty, indicating lack of EID.
 +--------------------+---+

 Table 10: Recommended Unsecured Contact Header

 TCPCL can be used to provide point-to-point transport security, but
 does not provide security of data-at-rest and does not guarantee end-
 to-end bundle security. The mechanisms defined in [RFC6257] and
 [I-D.ietf-dtn-bpsec] are to be used instead.

https://datatracker.ietf.org/doc/html/rfc6257

Sipos, et al. Expires October 2, 2019 [Page 41]

Internet-Draft DTN TCPCLv4 March 2019

 Even when using TLS to secure the TCPCL session, the actual
 ciphersuite negotiated between the TLS peers MAY be insecure. TLS
 can be used to perform authentication without data confidentiality,
 for example. It is up to security policies within each TCPCL node to
 ensure that the negotiated TLS ciphersuite meets transport security
 requirements. This is identical behavior to STARTTLS use in
 [RFC2595].

 Another consideration for this protocol relates to denial-of-service
 attacks. An entity MAY send a large amount of data over a TCPCL
 session, requiring the receiving entity to handle the data, attempt
 to stop the flood of data by sending a XFER_REFUSE message, or
 forcibly terminate the session. This burden could cause denial of
 service on other, well-behaving sessions. There is also nothing to
 prevent a malicious entity from continually establishing sessions and
 repeatedly trying to send copious amounts of bundle data. A
 listening entity MAY take countermeasures such as ignoring TCP SYN
 messages, closing TCP connections as soon as they are established,
 waiting before sending the contact header, sending a SESS_TERM
 message quickly or with a delay, etc.

9. IANA Considerations

 In this section, registration procedures are as defined in [RFC8126].

 Some of the registries below are created new for TCPCLv4 but share
 code values with TCPCLv3. This was done to disambiguate the use of
 these values between TCPCLv3 and TCPCLv4 while preserving the
 semantics of some values.

9.1. Port Number

 Port number 4556 has been previously assigned as the default port for
 the TCP convergence layer in [RFC7242]. This assignment is unchanged
 by protocol version 4. Each TCPCL entity identifies its TCPCL
 protocol version in its initial contact (see Section 9.2), so there
 is no ambiguity about what protocol is being used.

https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires October 2, 2019 [Page 42]

Internet-Draft DTN TCPCLv4 March 2019

 +------------------------+-------------------------------------+
 | Parameter | Value |
 +------------------------+-------------------------------------+
 | Service Name: | dtn-bundle |
 | | |
 | Transport Protocol(s): | TCP |
 | | |
 | Assignee: | Simon Perreault <simon@per.reau.lt> |
 | | |
 | Contact: | Simon Perreault <simon@per.reau.lt> |
 | | |
 | Description: | DTN Bundle TCP CL Protocol |
 | | |
 | Reference: | [RFC7242] |
 | | |
 | Port Number: | 4556 |
 +------------------------+-------------------------------------+

9.2. Protocol Versions

 IANA has created, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version
 Numbers" and initialize it with the following table. The
 registration procedure is RFC Required.

 +-------+-------------+---------------------+
 | Value | Description | Reference |
 +-------+-------------+---------------------+
 | 0 | Reserved | [RFC7242] |
 | | | |
 | 1 | Reserved | [RFC7242] |
 | | | |
 | 2 | Reserved | [RFC7242] |
 | | | |
 | 3 | TCPCL | [RFC7242] |
 | | | |
 | 4 | TCPCLv4 | This specification. |
 | | | |
 | 5-255 | Unassigned |
 +-------+-------------+---------------------+

9.3. Session Extension Types

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires October 2, 2019 [Page 43]

Internet-Draft DTN TCPCLv4 March 2019

 Session Extension Types" and initialize it with the contents of
 Table 11. The registration procedure is RFC Required within the
 lower range 0x0001--0x7FFF. Values in the range 0x8000--0xFFFF are
 reserved for use on private networks for functions not published to
 the IANA.

 +----------------+--------------------------+
 | Code | Session Extension Type |
 +----------------+--------------------------+
 | 0x0000 | Reserved |
 | | |
 | 0x0001--0x7FFF | Unassigned |
 | | |
 | 0x8000--0xFFFF | Private/Experimental Use |
 +----------------+--------------------------+

 Table 11: Session Extension Type Codes

9.4. Transfer Extension Types

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4
 Transfer Extension Types" and initialize it with the contents of
 Table 12. The registration procedure is RFC Required within the
 lower range 0x0001--0x7FFF. Values in the range 0x8000--0xFFFF are
 reserved for use on private networks for functions not published to
 the IANA.

 +----------------+---------------------------+
 | Code | Transfer Extension Type |
 +----------------+---------------------------+
 | 0x0000 | Reserved |
 | | |
 | 0x0001 | Transfer Length Extension |
 | | |
 | 0x0002--0x7FFF | Unassigned |
 | | |
 | 0x8000--0xFFFF | Private/Experimental Use |
 +----------------+---------------------------+

 Table 12: Transfer Extension Type Codes

Sipos, et al. Expires October 2, 2019 [Page 44]

Internet-Draft DTN TCPCLv4 March 2019

9.5. Message Types

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4
 Message Types" and initialize it with the contents of Table 13. The
 registration procedure is RFC Required.

 +-----------+--------------+
 | Code | Message Type |
 +-----------+--------------+
 | 0x00 | Reserved |
 | | |
 | 0x01 | XFER_SEGMENT |
 | | |
 | 0x02 | XFER_ACK |
 | | |
 | 0x03 | XFER_REFUSE |
 | | |
 | 0x04 | KEEPALIVE |
 | | |
 | 0x05 | SESS_TERM |
 | | |
 | 0x06 | MSG_REJECT |
 | | |
 | 0x07 | SESS_INIT |
 | | |
 | 0x08--0xf | Unassigned |
 +-----------+--------------+

 Table 13: Message Type Codes

9.6. XFER_REFUSE Reason Codes

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4
 XFER_REFUSE Reason Codes" and initialize it with the contents of
 Table 14. The registration procedure is RFC Required.

Sipos, et al. Expires October 2, 2019 [Page 45]

Internet-Draft DTN TCPCLv4 March 2019

 +------------+---------------------------+
 | Code | Refusal Reason |
 +------------+---------------------------+
 | 0x00 | Unknown |
 | | |
 | 0x01 | Extension Failure |
 | | |
 | 0x02 | Completed |
 | | |
 | 0x03 | No Resources |
 | | |
 | 0x04 | Retransmit |
 | | |
 | 0x05--0x07 | Unassigned |
 | | |
 | 0x08--0xFF | Reserved for future usage |
 +------------+---------------------------+

 Table 14: XFER_REFUSE Reason Codes

9.7. SESS_TERM Reason Codes

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4
 SESS_TERM Reason Codes" and initialize it with the contents of
 Table 15. The registration procedure is RFC Required.

Sipos, et al. Expires October 2, 2019 [Page 46]

Internet-Draft DTN TCPCLv4 March 2019

 +------------+---------------------+
 | Code | Termination Reason |
 +------------+---------------------+
 | 0x00 | Unknown |
 | | |
 | 0x01 | Idle timeout |
 | | |
 | 0x02 | Version mismatch |
 | | |
 | 0x03 | Busy |
 | | |
 | 0x04 | Contact Failure |
 | | |
 | 0x05 | Resource Exhaustion |
 | | |
 | 0x06--0xFF | Unassigned |
 +------------+---------------------+

 Table 15: SESS_TERM Reason Codes

9.8. MSG_REJECT Reason Codes

 EDITOR NOTE: sub-registry to-be-created upon publication of this
 specification.

 IANA will create, under the "Bundle Protocol" registry, a sub-
 registry titled "Bundle Protocol TCP Convergence-Layer Version 4
 MSG_REJECT Reason Codes" and initialize it with the contents of
 Table 16. The registration procedure is RFC Required.

 +-----------+----------------------+
 | Code | Rejection Reason |
 +-----------+----------------------+
 | 0x00 | reserved |
 | | |
 | 0x01 | Message Type Unknown |
 | | |
 | 0x02 | Message Unsupported |
 | | |
 | 0x03 | Message Unexpected |
 | | |
 | 0x04-0xFF | Unassigned |
 +-----------+----------------------+

 Table 16: MSG_REJECT Reason Codes

Sipos, et al. Expires October 2, 2019 [Page 47]

Internet-Draft DTN TCPCLv4 March 2019

10. Acknowledgments

 This specification is based on comments on implementation of
 [RFC7242] provided from Scott Burleigh.

11. References

11.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015.

 [I-D.ietf-dtn-bpbis]
 Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol
 Version 7", draft-ietf-dtn-bpbis-12 (work in progress),
 November 2018.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bpbis-12
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126

Sipos, et al. Expires October 2, 2019 [Page 48]

Internet-Draft DTN TCPCLv4 March 2019

11.2. Informative References

 [github-dtn-bpbis-tcpcl]
 Sipos, B., "TCPCL Example Implementation",
 <https://github.com/BSipos-RKF/dtn-bpbis-tcpcl/tree/

develop>.

 [I-D.ietf-dtn-bpsec]
 Birrane, E. and K. McKeever, "Bundle Protocol Security
 Specification", draft-ietf-dtn-bpsec-09 (work in
 progress), February 2019.

 [RFC2595] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
RFC 2595, DOI 10.17487/RFC2595, June 1999,

 <https://www.rfc-editor.org/info/rfc2595>.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,
 April 2007, <https://www.rfc-editor.org/info/rfc4838>.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, DOI 10.17487/RFC5050, November
 2007, <https://www.rfc-editor.org/info/rfc5050>.

 [RFC6257] Symington, S., Farrell, S., Weiss, H., and P. Lovell,
 "Bundle Security Protocol Specification", RFC 6257,
 DOI 10.17487/RFC6257, May 2011,
 <https://www.rfc-editor.org/info/rfc6257>.

 [RFC7242] Demmer, M., Ott, J., and S. Perreault, "Delay-Tolerant
 Networking TCP Convergence-Layer Protocol", RFC 7242,
 DOI 10.17487/RFC7242, June 2014,
 <https://www.rfc-editor.org/info/rfc7242>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

Appendix A. Significant changes from RFC7242

 The areas in which changes from [RFC7242] have been made to existing
 headers and messages are:

 o Split contact header into pre-TLS protocol negotiation and
 SESS_INIT parameter negotiation. The contact header is now fixed-
 length.

https://github.com/BSipos-RKF/dtn-bpbis-tcpcl/tree/develop
https://github.com/BSipos-RKF/dtn-bpbis-tcpcl/tree/develop
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bpsec-09
https://datatracker.ietf.org/doc/html/rfc2595
https://www.rfc-editor.org/info/rfc2595
https://datatracker.ietf.org/doc/html/rfc4838
https://www.rfc-editor.org/info/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://www.rfc-editor.org/info/rfc5050
https://datatracker.ietf.org/doc/html/rfc6257
https://www.rfc-editor.org/info/rfc6257
https://datatracker.ietf.org/doc/html/rfc7242
https://www.rfc-editor.org/info/rfc7242
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://datatracker.ietf.org/doc/html/rfc7242
https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires October 2, 2019 [Page 49]

Internet-Draft DTN TCPCLv4 March 2019

 o Changed contact header content to limit number of negotiated
 options.

 o Added contact option to negotiate maximum segment size (per each
 direction).

 o Added session extension capability.

 o Added transfer extension capability. Moved transfer total length
 into an extension item.

 o Defined new IANA registries for message / type / reason codes to
 allow renaming some codes for clarity.

 o Expanded Message Header to octet-aligned fields instead of bit-
 packing.

 o Added a bundle transfer identification number to all bundle-
 related messages (XFER_SEGMENT, XFER_ACK, XFER_REFUSE).

 o Use flags in XFER_ACK to mirror flags from XFER_SEGMENT.

 o Removed all uses of SDNV fields and replaced with fixed-bit-length
 fields.

 o Renamed SHUTDOWN to SESS_TERM to deconflict term "shutdown".

 o Removed the notion of a re-connection delay parameter.

 The areas in which extensions from [RFC7242] have been made as new
 messages and codes are:

 o Added contact negotiation failure SESS_TERM reason code.

 o Added MSG_REJECT message to indicate an unknown or unhandled
 message was received.

 o Added TLS session security mechanism.

 o Added Resource Exhaustion SESS_TERM reason code.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc7242

Sipos, et al. Expires October 2, 2019 [Page 50]

Internet-Draft DTN TCPCLv4 March 2019

 Brian Sipos
 RKF Engineering Solutions, LLC
 7500 Old Georgetown Road
 Suite 1275
 Bethesda, MD 20814-6198
 United States of America

 Email: BSipos@rkf-eng.com

 Michael Demmer
 University of California, Berkeley
 Computer Science Division
 445 Soda Hall
 Berkeley, CA 94720-1776
 United States of America

 Email: demmer@cs.berkeley.edu

 Joerg Ott
 Aalto University
 Department of Communications and Networking
 PO Box 13000
 Aalto 02015
 Finland

 Email: ott@in.tum.de

 Simon Perreault
 Quebec, QC
 Canada

 Email: simon@per.reau.lt

Sipos, et al. Expires October 2, 2019 [Page 51]

