
EAP Working Group B. Aboba
Internet-Draft D. Simon
Expires: April 9, 2004 Microsoft
 J. Arkko
 Ericsson
 H. Levkowetz, Ed.
 ipUnplugged
 October 10, 2003

EAP Key Management Framework
<draft-ietf-eap-keying-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 9, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document provides a framework for EAP key management, including
 a statement of applicability and guidelines for generation, transport
 and usage of EAP keying material. Algorithms for key derivation or
 mechanisms for key transport are not specified in this document.
 Rather, this document provides a framework within which algorithms
 and transport mechanisms can be discussed and evaluated.

https://datatracker.ietf.org/doc/html/draft-ietf-eap-keying-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Aboba, et al. Expires April 9, 2004 [Page 1]

Internet-Draft EAP Key Management Framework October 2003

Table of Contents

1. Introduction . 4
1.1 Requirements Language 4
1.2 Terminology . 4
1.3 Conversation Overview 6

1.3.1 Discovery Phase 7
1.3.2 Authentication Phase 8
1.3.3 Secure Association Phase 9

1.4 Authorization issues 9
1.4.1 Correctness in fast handoff 11

2. EAP Key Hierarchy . 13
2.1 EAP Invariants . 14

2.1.1 Media Independence 14
2.1.2 Method Independence 14
2.1.3 Ciphersuite Independence 14

2.2 Key Hierarchy . 15
2.3 Exchanges . 19

3. Security Associations 22
3.1 EAP SA . 23
3.2 AAA-Key SA . 24
3.3 Unicast Secure Association SA 26
3.4 Multicast Secure Association SA 27
3.5 Key Naming . 28

4. Threat Model . 29
4.1 Security Assumptions 29
4.2 Security Requirements 32

4.2.1 EAP method requirements 32
4.2.2 AAA Protocol Requirements 34
4.2.3 Secure Association Protocol Requirements 36
4.2.4 Ciphersuite Requirements 37

5. IANA Considerations . 38
6. Security Considerations 38

6.1 Key Strength . 38
6.2 Key Wrap . 38
6.3 Man-in-the-middle Attacks 39
6.4 Impersonation . 39
6.5 Denial of Service Attacks 40

7. Acknowledgements . 41
 Normative References . 41
 Informative References 41
 Authors' Addresses . 45

A. Ciphersuite Keying Requirements 46
B. Transient EAP Key (TEK) Hierarchy 47
C. MSK and EMSK Hierarchy 48
D. Transient Session Key (TSK) Derivation 51
E. AAA-Key Derivation . 52
F. Open issues . 53

Aboba, et al. Expires April 9, 2004 [Page 2]

Internet-Draft EAP Key Management Framework October 2003

 Intellectual Property and Copyright Statements 54

Aboba, et al. Expires April 9, 2004 [Page 3]

Internet-Draft EAP Key Management Framework October 2003

1. Introduction

 The Extensible Authentication Protocol (EAP), defined in
 [I-D.ietf-eap-rfc2284bis], was designed to enable extensible
 authentication for network access in situations in which the IP
 protocol is not available. Originally developed for use with PPP
 [RFC1661], it has subsequently also been applied to IEEE 802 wired
 networks [IEEE8021X].

 This document provides a framework for the generation, transport and
 usage of keying material generated by EAP authentication algorithms,
 known as "methods". Since in EAP keying material is generated by EAP
 methods, transported by AAA protocols, transformed into session keys
 by secure association protocols and used by lower layer ciphersuites,
 it is necessary to describe each of these elements and provide a
 system-level security analysis.

1.1 Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized. The key
 words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
 are to be interpreted as described in BCP 14 [RFC2119].

1.2 Terminology

 This document frequently uses the following terms:

 authenticator
 The end of the link initiating EAP authentication. Where no
 backend authentication server is present, the authenticator acts
 as the EAP server, terminating the EAP conversation with the peer.
 Where a backend authentication server is present, the
 authenticator may act as a pass-through for one or more
 authentication methods and for non-local users. This terminology
 is also used in [IEEE8021X], and has the same meaning in this
 document.

 backend authentication server
 A backend authentication server is an entity that provides an
 authentication service to an authenticator. When used, this
 server typically executes EAP Methods for the authenticator. This
 terminology is also used in [IEEE8021X].

 AAA-Token
 The package within which keying material and one or more
 attributes is transported between the backend authentication

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Aboba, et al. Expires April 9, 2004 [Page 4]

Internet-Draft EAP Key Management Framework October 2003

 server and the authenticator. The attributes provide the
 authenticator with usage context and key names suitable to bind
 the key to the appropriate context. The format and wrapping of the
 AAA-Token, which is intended to be accessible only to the backend
 authentication server and authenticator, is defined by the AAA
 protocol. Examples include RADIUS [RFC2548], and Diameter
 [I-D.ietf-aaa-eap].

 Cryptographic binding
 The demonstration of the EAP peer to the EAP server that a single
 entity has acted as the EAP peer for all methods executed within a
 sequence or tunnel. Binding MAY also imply that the EAP server
 demonstrates to the peer that a single entity has acted as the EAP
 server for all methods executed within a sequence or tunnel. If
 executed correctly, binding serves to mitigate man-in-the-middle
 vulnerabilities.

 Cryptographic separation
 Two keys (x and y) are "cryptographically separate" if an
 adversary that knows all messages exchanged in the protocol cannot
 compute x from y or y from x without "breaking" some cryptographic
 assumption. In particular, this definition allows that the
 adversary has the knowledge of all nonces sent in cleartext as
 well as all predictable counter values used in the protocol.
 Breaking a cryptographic assumption would typically require
 inverting a one-way function or predicting the outcome of a
 cryptographic pseudo-random number generator without knowledge of
 the secret state. In other words, if the keys are
 cryptographically separate, there is no shortcut to compute x from
 y or y from x.

 EAP server
 The entity which terminates EAP authentication with the peer is
 known as the EAP server. Where pass-through is supported, the
 backend authentication server functions as the EAP server; where
 authentication occurs locally, the EAP server is the
 authenticator.

 AAA-Key
 A key derived by the EAP peer and EAP server and transported to
 the authenticator. In 802.11 terminology, the first 32 octets of
 the AAA-Key is known as the Pairwise Master Key (PMK).

 Key strength
 If the effective key strength is N bits, the best currently known
 methods to recover the key (with non-negligible probability)
 require an effort comparable to 2^N operations of a typical block
 cipher.

https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Expires April 9, 2004 [Page 5]

Internet-Draft EAP Key Management Framework October 2003

 Mutual authentication
 This refers to an EAP method in which, within an interlocked
 exchange, the authenticator authenticates the peer and the peer
 authenticates the authenticator. Two one-way conversations,
 running in opposite directions do not provide mutual
 authentication as defined here.

 peer
 The end of the link that responds to the authenticator. In
 [IEEE8021X], this end is known as the Supplicant.

1.3 Conversation Overview

 Where EAP key derivation is supported, EAP authentication is
 typically a component of a three phase exchange:

 Discovery phase (phase 0)
 EAP authentication, key derivation and transport (phase 1)
 Unicast and multicast secure association establishment (phase 2)

 In the discovery phase (phase 0), the EAP peers locate each other
 and discover their capabilities. This can include an EAP peer
 locating an authenticator suitable for access to a particular
 network, or it could involve an EAP peer locating an authenticator
 behind a bridge with which it desires to establish a secure
 association. Typically the discovery phase takes place between the
 EAP peer and authenticator.

 Once the EAP peer and authenticator discover each other, EAP
 authentication may begin (phase 1a). EAP enables deployment of new
 authentication methods without requiring development of new code on
 the authenticator. While the authenticator may implement some EAP
 methods locally and use those methods to authenticate local users, it
 may at the same time act as a pass-through for other users and
 methods, forwarding EAP packets back and forth between the backend
 authentication server and the peer.

 As described in Section 2, in addition to supporting authentication,
 EAP methods may also support derivation of keying material for
 purposes including protection of the EAP conversation and subsequent
 data exchanges. EAP key derivation takes place between the EAP peer
 and EAP server, and methods supporting key derivation MUST also
 support mutual authentication. Where an authenticator server is
 present, it acts as the EAP server and transports derived keying
 material (known as the AAA-Key) to the authenticator (phase 1b).

 EAP methods may mutually authenticate and derive keys. However a

Aboba, et al. Expires April 9, 2004 [Page 6]

Internet-Draft EAP Key Management Framework October 2003

 distinct secure association exchange is required in order to manage
 the creation and deletion of unicast (phase 2a) and multicast (phase
 2b) security associations between the EAP peer and authenticator.

 The phases and the relationship between the parties is illustrated
 below.

 EAP peer Authenticator Auth. Server
 -------- ------------- ------------
 |<----------------------------->| |
 | Discovery (phase 0) | |
 |<----------------------------->|<----------------------------->|
 | EAP auth (phase 1a) | AAA pass-through (optional) |
 | | |
 | |<----------------------------->|
 | | AAA-Key transport |
 | | (optional; phase 1b) |
 |<----------------------------->| |
 | Unicast Secure association | |
 | (phase 2a) | |
 | | |
 |<----------------------------->| |
 | Multicast Secure association | |
 | (optional; phase 2b) | |
 | | |

 Figure 1: Conversation Overview

1.3.1 Discovery Phase

 In the peer discovery exchange (phase 0), the EAP peer and
 authenticator locate each other and discover each other's
 capabilities. For example, PPPoE [RFC2516] includes support for a
 Discovery Stage to allow a peer to identify the Ethernet MAC address
 of one or more authenticators and establish a PPPoE SESSION_ID. In
 IEEE 802.11 [IEEE80211], the EAP peer (also known as the Station or
 STA) discovers the authenticator (Access Point or AP) and determines
 its capabilities using Beacon or Probe Request/Response frames.
 Since device discovery is handled outside of EAP, there is no need to
 provide this functionality within EAP.

 Device discovery can occur manually or automatically. In EAP
 implementations running over PPP, the EAP peer might be configured
 with a phone book providing phone numbers of authenticators and
 associated capabilities such as supported rates, authentication
 protocols or ciphersuites.

https://datatracker.ietf.org/doc/html/rfc2516

Aboba, et al. Expires April 9, 2004 [Page 7]

Internet-Draft EAP Key Management Framework October 2003

 Since device discovery can occur prior to authentication and key
 derivation, it may not be possible for the discovery phase to be
 protected using keying material derived during an authentication
 exchange. As a result, device discovery protocols may be insecure,
 leaving them vulnerable to spoofing unless the discovered parameters
 can subsequently be securely verified.

1.3.2 Authentication Phase

 Once the EAP peer and authenticator discover each other, they
 exchange EAP packets. Typically, the peer desires access to the
 network, and the authenticators are Network Access Servers (NASes)
 providing that access. In such a situation, access to the network
 can be provided by any authenticator attaching to the desired
 network, and the EAP peer is typically willing to send data traffic
 through any authenticator that can demonstrate that it is authorized
 to provide access to the desired network.

 An EAP authenticator may handle the authentication locally, or it may
 act as a pass-through to a backend authentication server. In the
 latter case the EAP exchange occurs between the EAP peer and a
 backend authenticator server, with the authenticator forwarding EAP
 packets between the two. The entity which terminates EAP
 authentication with the peer is known as the EAP server. Where
 pass-through is supported, the backend authentication server
 functions as the EAP server; where authentication occurs locally, the
 EAP server is the authenticator. Where a backend authentication
 server is present, at the successful completion of an authentication
 exchange, the AAA-Key is transported to the authenticator (phase 1b).

 EAP may also be used when it is desired for two network devices (e.g.
 two switches or routers) to authenticate each other, or where two
 peers desire to authenticate each other and set up a secure
 association suitable for protecting data traffic.

 Some EAP methods exist which only support one-way authentication;
 however, EAP methods deriving keys are required to support mutual
 authentication. In either case, it can be assumed that the parties
 do not utilize the link to exchange data traffic unless their
 authentication requirements have been met. For example, a peer
 completing mutual authentication with an EAP server will not send
 data traffic over the link until the EAP server has authenticated
 successfully to the peer, and a secure association has been
 negotiated.

 Since EAP is a peer-to-peer protocol, an independent and simultaneous
 authentication may take place in the reverse direction. Both peers
 may act as authenticators and authenticatees at the same time.

Aboba, et al. Expires April 9, 2004 [Page 8]

Internet-Draft EAP Key Management Framework October 2003

 Successful completion of EAP authentication and key derivation by an
 EAP peer and EAP server does not necessarily imply that the peer is
 committed to joining the network associated with an EAP server.
 Rather, this commitment is implied by the creation of a security
 association between the EAP peer and authenticator, as part of the
 secure association protocol (phase 2). As a result, EAP may be used
 for "pre-authentication" in situations where it is necessary to
 pre-establish EAP security associations in order to decrease handoff
 or roaming latency.

1.3.3 Secure Association Phase

 The secure association phase (phase 2) always occurs after the
 completion of EAP authentication (phase 1a) and key transport (phase
 1b), and typically supports the following features:

 [1] The secure negotiation of capabilities. This includes usage
 modes, session parameters and ciphersuites, and required filters,
 including confirmation of the capabilities discovered during
 phase 0. By securely negotiating session parameters, the secure
 association protocol protects against spoofing during the
 discovery phase and ensures that the peer and authenticator are
 in agreement about how data is to be secured.

 [2] Generation of fresh transient session keys. This is typically
 accomplished via the exchange of nonces within the secure
 association protocol, and includes generation of both unicast
 (phase 2a) and multicast (phase 2b) session keys. By not using
 the AAA-Key directly to protect data, the secure association
 protocol protects against compromise of the AAA-Key, and by
 guaranteeing the freshness of transient session key, assures that
 session keys are not reused.

 [3] Key activation and deletion.

 [4] Mutual proof of possession of the AAA-Key. This demonstrates
 that both the EAP peer and authenticator have been authenticated
 and authorized by the AAA server. Since mutual proof of
 possession is not the same as mutual authentication, the EAP peer
 cannot verify authenticator assertions (including the
 authenticator identity) as a result of this exchange.

1.4 Authorization issues

 In a typical network access scenario (dial-in, wireless LAN, etc.)
 access control mechanisms are typically applied. These mechanisms
 include user authentication as well as authorization for the offered

Aboba, et al. Expires April 9, 2004 [Page 9]

Internet-Draft EAP Key Management Framework October 2003

 service.

 As a part of the authentication process, the AAA network determines
 the user's authorization profile. The user authorizations are
 transmitted by the AAA server to the EAP authenticator (also known as
 the Network Access Server or NAS) included with the AAA-Token, which
 also contains the AAA-Key, in Phase 1b of the EAP conversation.
 Typically, the profile is determined based on the user identity, but
 a certificate presented by the user may also provide authorization
 information.

 The AAA server is responsible for making a user authorization
 decision, answering the following questions:

 o Is this a legitimate user for this particular network?

 o Is this user allowed the type of access he or she is requesting?

 o Are there any specific parameters (mandatory tunneling, bandwidth,
 filters, and so on) that the access network should be aware of for
 this user?

 o Is this user within the subscription rules regarding time of day?

 o Is this user within his limits for concurrent sessions?

 o Are there any fraud, credit limit, or other concerns that indicate
 that access should be denied?

 While the authorization decision is in principle simple, the process
 is complicated by the distributed nature of AAA decision making.
 Where brokering entities or proxies are involved, all of the AAA
 devices in the chain from the NAS to the home AAA server are involved
 in the decision. For instance, a broker can disallow access even if
 the home AAA server would allow it, or a proxy can add authorizations
 (e.g., bandwidth limits).

 Decisions can be based on static policy definitions and profiles as
 well as dynamic state (e.g. time of day or limits on the number of
 concurrent sessions). In addition to the Accept/Reject decision made
 by the AAA chain, parameters or constraints can be communicated to
 the NAS.

 The criteria for Accept/Reject decisions or the reasons for choosing
 particular authorizations are typically not communicated to the NAS,
 only the final result. As a result, the NAS has no way to know what
 the decision was based on. Was a set of authorization parameters
 sent because this service is always provided to the user, or was the

Aboba, et al. Expires April 9, 2004 [Page 10]

Internet-Draft EAP Key Management Framework October 2003

 decision based on the time/day and the capabilities of the requesting
 NAS device?

 Within EAP, "fast handoff" is defined as a conversation in which the
 EAP exchange (phase 1a) and associated AAA passthrough is bypassed,
 so as to reduce latency. Depending on the fast handoff mechanism,
 AAA-Key transport (phase 1b) may also be bypassed in favor a context
 transfer (see [IEEE80211f] and [I-D.aboba-802-context]) or it may be
 provided in a pre-emptive manner as in [IEEE-03-084] and
 [I-D.irtf-aaaarch-handoff].

 As we will discuss, the introduction of fast handoff creates a new
 class of security vulnerabilities as well as requirements for the
 secure handling of authorization context.

1.4.1 Correctness in fast handoff

 Bypassing all or portions of the AAA conversation creates challenges
 in ensuring that authorization is properly handled. These include:

 o Consistent application of session time limits. A fast handoff
 should not automatically increase the available session time,
 allowing a user to endlessly extend their network access by
 changing the point of attachment.

 o Avoidance of privilege elevation. A fast handoff should not
 result in a user being granted access to services which they are
 not entitled to.

 o Consideration of dynamic state. In situations in which dynamic
 state is involved in the access decision (day/time, simultaneous
 session limit) it should be possible to take this state into
 account either before or after access is granted. Note that
 consideration of network-wide state such as simultaneous session
 limits can typically only be taken into account by the AAA server.

 o Encoding of restrictions. Since a NAS may not be aware of the
 criteria considered by a AAA server when allowing access, in order
 to ensure consistent authorization during a fast handoff it may be
 necessary to explicitly encode the restrictions within the
 authorizations provided in the AAA-Token.

 o State validity. The introduction of fast handoff should not
 render the authentication server incapable of keeping track of
 network-wide state.

 A fast handoff mechanism capable of addressing these concerns is said
 to be "correct". One condition for correctness is as follows:

Aboba, et al. Expires April 9, 2004 [Page 11]

Internet-Draft EAP Key Management Framework October 2003

 For a fast handoff to be "correct" it MUST establish on the new
 device the same context as would have been created had the new device
 completed a AAA conversation with the authentication server.

 A properly designed fast handoff scheme will only succeed if it is
 "correct" in this way. If a successful fast handoff would establish
 "incorrect" state, it is preferable for it to fail, in order to avoid
 creation of incorrect context.

 Some AAA server and NAS configurations are incapable of meeting this
 definition of "correctness". For example, if the old and new device
 differ in their capabilities, it may be difficult to meet this
 definition of correctness in a fast handoff mechanism that bypasses
 AAA. AAA servers often perform conditional evaluation, in which the
 authorizations returned in an Access-Accept message are contingent on
 the NAS or on dynamic state such as the time of day or number of
 simultaneous sessions. For example, in a heterogeneous deployment,
 the AAA server might return different authorizations depending on the
 NAS making the request, in order to make sure that the requested
 service is consistent with the NAS capabilities.

 If differences between the new and old device would result in the AAA
 server sending a different set of messages to the new device than
 were sent to the old device, then if the fast handoff mechanism
 bypasses AAA, then the fast handoff cannot be carried out correctly.

 For example, if some NAS devices within a deployment support dynamic
 VLANs while others do not, then attributes present in the
 Access-Request (such as the NAS-IP-Address, NAS-Identifier,
 Vendor-Identifier, etc.) could be examined to determine when VLAN
 attributes will be returned, as described in [RFC3580]. VLAN
 support is defined in [IEEE8021Q]. If a fast handoff bypassing the
 AAA server were to occur between a NAS supporting dynamic VLANs and
 another NAS which does not, then a guest user with access restricted
 to a guest VLAN could be given unrestricted access to the network.

 Similarly, in a network where access is restricted based on the day
 and time, SSID, Calling-Station-Id or other factors, unless the
 restrictions are encoded within the authorizations, or a partial AAA
 conversation is included, then a fast handoff could result in the
 user bypassing the restrictions.

 In practice, these considerations limit the situations in which fast
 handoff mechanisms bypassing AAA can be expected to be successful.
 Where the deployed devices implement the same set of services, it may
 be possible to do successful fast handoffs within such mechanisms.
 However, where the supported services differ between devices, the
 fast handoff may not succeed. For example, [RFC2865], section 1.1

https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc2865#section-1.1

Aboba, et al. Expires April 9, 2004 [Page 12]

Internet-Draft EAP Key Management Framework October 2003

 states:

 "A NAS that does not implement a given service MUST NOT implement
 the RADIUS attributes for that service. For example, a NAS that
 is unable to offer ARAP service MUST NOT implement the RADIUS
 attributes for ARAP. A NAS MUST treat a RADIUS access-accept
 authorizing an unavailable service as an access-reject instead."

 Note that this behavior only applies to attributes that are known,
 but not implemented. For attributes that are unknown, section of 5
 of [RFC2865] states:

 "A RADIUS server MAY ignore Attributes with an unknown Type. A
 RADIUS client MAY ignore Attributes with an unknown Type."

 In order to perform a correct fast handoff, if a new device is
 provided with RADIUS context for a known but unavailable service,
 then it MUST process this context the same way it would handle a
 RADIUS Access-Accept requesting an unavailable service. This MUST
 cause the fast handoff to fail. However, if a new device is provided
 with RADIUS context that indicates an unknown attribute, then this
 attribute MAY be ignored.

 Although it may seem somewhat counter-intuitive, failure is indeed
 the "correct" result where a known but unsupported service is
 requested. Presumably a correctly configured AAA server would not
 request that a device carry out a service that it does not implement.
 This implies that if the new device were to complete a AAA
 conversation that it would be likely to receive different service
 instructions. In such a case, failure of the fast handoff is the
 desired result. This will cause the new device to go back to the AAA
 server in order to receive the appropriate service definition.

 In practice, this implies that fast handoff mechanisms which bypass
 AAA are most likely to be successful within a homogeneous device
 deployment within a single administrative domain. For example, it
 would not be advisable to carry out a fast handoff bypassing AAA
 between a NAS providing confidentiality and another NAS that does not
 support this service. The correct result of such a fast handoff
 would be a failure, since if the handoff were blindly carried out,
 then the user would be moved from a secure to an insecure channel
 without permission from the AAA server. Thus the definition of a
 "known but unsupported service" MUST encompass requests for
 unavailable security services. This includes vendor-specific
 attributes related to security, such as those described in
 [RFC2548]."

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Expires April 9, 2004 [Page 13]

Internet-Draft EAP Key Management Framework October 2003

2. EAP Key Hierarchy

2.1 EAP Invariants

 The EAP key management framework assumes that certain basic
 characteristics, known as the "EAP Invariants" hold true for all
 implementations of EAP. These include:

 Media independence
 Method independence
 Ciphersuite independence

2.1.1 Media Independence

 As described in [I-D.ietf-eap-rfc2284bis], EAP authentication can run
 over multiple lower layers, including PPP [RFC1661] and IEEE 802
 wired networks [IEEE8021X]. Use with IEEE 802.11 wireless LANs is
 also contemplated [IEEE80211i]. Since EAP methods cannot be assumed
 to have knowledge of the lower layer over which they are transported,
 EAP methods can function on any lower layer meeting the criteria
 outlined in [I-D.ietf-eap-rfc2284bis], Section 3.1. As a result, EAP
 methods should not utilize identifiers associated with a particular
 usage environment (e.g. MAC addresses).

2.1.2 Method Independence

 Supporting pass-through of authentication to the backend
 authentication server enables the authenticator to support any
 authentication method implemented on the backend authentication
 server and peer, not just locally implemented methods.

 This implies that the authenticator need not implement code for each
 EAP method required by authenticating peers. In fact, the
 authenticator is not required to implement any EAP methods at all,
 nor cannot it be assumed to implement code specific to any EAP
 method.

 This is useful where there is no single EAP method that is both
 mandatory-to-implement and offers acceptable security for the media
 in use. For example, the [I-D.ietf-eap-rfc2284bis]
 mandatory-to-implement EAP method (MD5-Challenge) does not provide
 dictionary attack resistance, mutual authentication or key
 derivation, and as a result is not appropriate for use in wireless
 authentication.

2.1.3 Ciphersuite Independence

https://datatracker.ietf.org/doc/html/rfc1661

Aboba, et al. Expires April 9, 2004 [Page 14]

Internet-Draft EAP Key Management Framework October 2003

 While EAP methods may negotiate the ciphersuite used in protection of
 the EAP conversation, the ciphersuite used for the protection of data
 is negotiated within the secure association protocol, out-of-band of
 EAP. The backend authentication server is not a party to this
 negotiation nor is it an intermediary in the data flow between the
 EAP peer and authenticator. The backend authentication server may
 not even have knowledge of the ciphersuites implemented by the peer
 and authenticator, or be aware of the ciphersuite negotiated between
 them, and therefore does not implement ciphersuite-specific code.

 Since ciphersuite negotiation occurs in the secure association
 protocol, not in EAP, ciphersuite-specific key generation, if
 implemented within an EAP method, would potentially conflict with the
 transient session key derivation occurring in the secure association
 protocol. As a result, EAP methods generate keying material that is
 ciphersuite-independent. Additional advantages of
 ciphersuite-independence include:

 Update requirements
 If EAP methods were to specify how to derive transient session
 keys for each ciphersuite, they would need to be updated each time
 a new ciphersuite is developed. In addition, backend
 authentication servers might not be usable with all EAP-capable
 authenticators, since the backend authentication server would also
 need to be updated each time support for a new ciphersuite is
 added to the authenticator.

 EAP method complexity
 Requiring each EAP method to include ciphersuite-specific code for
 transient session key derivation would increase the complexity of
 each EAP method and would result in duplicated effort.

 Knowledge of capabilities
 In practice, an EAP method may not have knowledge of the
 ciphersuite that has been negotiated between the peer and
 authenticator. In PPP, ciphersuite negotiation occurs in the
 Encryption Control Protocol (ECP) [RFC1968]. Since ECP
 negotiation occurs after authentication, unless an EAP method is
 utilized that supports ciphersuite negotiation, the peer,
 authenticator and backend authentication server may not be able to
 anticipate the negotiated ciphersuite and therefore this
 information cannot be provided to the EAP method. Since
 ciphersuite negotiation is assumed to occur out-of-band, there is
 no need for ciphersuite negotiation within EAP.

https://datatracker.ietf.org/doc/html/rfc1968

Aboba, et al. Expires April 9, 2004 [Page 15]

Internet-Draft EAP Key Management Framework October 2003

2.2 Key Hierarchy

 The EAP keying hierarchy, illustrated in Figure 2, makes use of the
 following types of keys:

 EAP Master key (MK)
 A key derived between the EAP client and server during the EAP
 authentication process, and that is kept local to the EAP method
 and not exported or made available to a third party.

 Master Session Key (MSK)
 Keying material (at least 64 octets) that is derived between the
 EAP client and server and exported by the EAP method.

 AAA-Key
 Where a backend authentication server is present, acting as an EAP
 server, keying material known as the AAA-Key is transported from
 the authentication server to the authenticator wrapped within the
 AAA-Token. The AAA-Key is used by the EAP peer and authenticator
 in the derivation of Transient Session Keys (TSKs) for the
 ciphersuite negotiated between the EAP peer and authenticator. As
 a result, the AAA-Key is typically known by all parties in the EAP
 exchange: the peer, authenticator and the authentication server
 (if present). AAA-Key derivation is discussed in Appendix E.

 Extended Master Session Key (EMSK)
 Additional keying material (64 octets) derived between the EAP
 client and server that is exported by the EAP method. The EMSK is
 known only to the EAP peer and server and is not provided to a
 third party.

 Initialization Vector (IV)
 A quantity of at least 64 octets, suitable for use in an
 initialization vector field, that is derived between the EAP
 client and server. Since the IV is a known value in methods such
 as EAP-TLS [RFC2716], it cannot be used by itself for computation
 of any quantity that needs to remain secret. As a result, its use
 has been deprecated and EAP methods are not required to generate
 it.

 Pairwise Master Key (PMK)
 The AAA-Key is divided into two halves, the "Peer to Authenticator
 Encryption Key" (Enc-RECV-Key) and "Authenticator to Peer
 Encryption Key" (Enc-SEND-Key) (reception is defined from the
 point of view of the authenticator). Within [IEEE80211i] Octets
 0-31 of the AAA-Key (Enc-RECV-Key) are known as the Pairwise
 Master Key (PMK). IEEE 802.11i ciphersuites [IEEE80211i] derive
 their Transient Session Keys (TSKs) solely from the PMK, whereas

https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Expires April 9, 2004 [Page 16]

Internet-Draft EAP Key Management Framework October 2003

 the WEP ciphersuite, when used with [IEEE8021X], as noted in
 [RFC3580], derives its TSKs from both halves of the AAA-Key, the
 Enc-RECV-Key and the Enc-SEND-Key.

 Transient EAP Keys (TEKs)
 Session keys which are used to establish a protected channel
 between the EAP peer and server during the EAP authentication
 exchange. The TEKs are appropriate for use with the ciphersuite
 negotiated between EAP peer and server for use in protecting the
 EAP conversation. Note that the ciphersuite used to set up the
 protected channel between the EAP peer and server during EAP
 authentication is unrelated to the ciphersuite used to
 subsequently protect data sent between the EAP peer and
 authenticator. An example TEK key hierarchy is described in

Appendix C.

https://datatracker.ietf.org/doc/html/rfc3580

Aboba, et al. Expires April 9, 2004 [Page 17]

Internet-Draft EAP Key Management Framework October 2003

 +-+ ---+
 | | ^
EAP Method									
+-+									
	EAP Method Key								
	Derivation								
			Local						
			to EAP						
+-+	Method								
V									
+-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+									
	TEK		MSK		EMSK		IV		
	Derivation		Derivation		Derivation		Derivation		
+-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+									
				V					
 +-+ ---+
 | | | ^
 | MSK (64B) | EMSK (64B) | IV (64B) |
 | | | |
 | | | Exported |
 | | | by EAP |
 V V V Method |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ |
 | AAA Key Derivation, | | Known | |
 | Naming & Binding | |(Not Secret) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ V
 | ---+
 | Transported |
 | AAA-Key by AAA |
 | Protocol |
 V V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---+
 | | ^
 | TSK | Ciphersuite |
 | Derivation | Specific |
 | | V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---+

 Figure 2: EAP Key Hierarchy

Aboba, et al. Expires April 9, 2004 [Page 18]

Internet-Draft EAP Key Management Framework October 2003

 Transient Session Keys (TSKs)
 Session keys used to protect data which are appropriate for the
 ciphersuite negotiated between the EAP peer and authenticator.
 The TSKs are derived from the keying material included in the
 AAA-Token via the secure association protocol. In the case of IEEE
 802.11, the role of the secure association protocol is handled by
 the 4-way handshake and group key derivation. An example TSK
 derivation is provided in Appendix D.

2.3 Exchanges

 EAP supports both a two party exchange between an EAP peer and an
 authenticator, as well as a three party exchange between an EAP peer,
 an authenticator and an EAP server.

 Figure 3 illustrates the two party exchange. Here EAP is spoken
 between the peer and authenticator, encapsulated within a lower layer
 protocol, such as PPP, defined in [RFC1661] or IEEE 802, defined in
 [IEEE802].

 Since the authenticator acts as an endpoint of the EAP conversation
 rather than a pass-through, EAP methods are implemented on the
 authenticator as well as the peer. If the EAP method negotiated
 between the EAP peer and authenticator supports mutual authentication
 and key derivation, the EAP Master Session Key (MSK) and Extended
 Master Session Key (EMSK) are derived on the EAP peer and
 authenticator and exported by the EAP method.

 Where no backend authentication server is present, the MSK and EMSK
 are known only to the peer and authenticator and neither is
 transported to a third party. As demonstrated in
 [I-D.ietf-roamops-cert], despite the absence of a backend
 authentication server, such exchanges can support roaming between
 providers; it is even possible to support fast handoff without
 re-authentication. However, this is typically only possible where
 both the EAP peer and authenticator support certificate-based
 authentication, or where the user base is sufficiently small that EAP
 authentication can occur locally.

 In order to protect the EAP conversation, the EAP method may
 negotiate a ciphersuite and derive Transient EAP Keys (TEKs) to
 provide keys for that ciphersuite in order to protect some or all of
 the EAP exchange. The TEKs are stored locally within the EAP method
 and are not exported.

 Once EAP mutual authentication completes and is successful, the
 secure association protocol is run between the peer and

https://datatracker.ietf.org/doc/html/rfc1661

Aboba, et al. Expires April 9, 2004 [Page 19]

Internet-Draft EAP Key Management Framework October 2003

 authenticator. This derives fresh transient session keys (TSKs),
 provides for the secure negotiation of the ciphersuite used to
 protect data, and supports mutual proof of possession of the AAA-Key.

 +-+-+-+-+-+ +-+-+-+-+-+
 | | | |
 | Cipher- | | Cipher- |
 | Suite | | Suite |
 | | | |
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 V V
 +-+-+-+-+-+ +-+-+-+-+-+
 | | | |
 | |===============| |
 | |EAP, TEK Deriv.|Authenti-|
 | |<------------->| cator |
 | | | |
 | | Secure Assoc. | |
 | peer |<------------->| (EAP |
 | |===============| server) |
 | | Link layer | |
 | | (PPP,IEEE802) | |
 | | | |
 |MSK,EMSK | |MSK,EMSK |
 | (TSKs) | | (TSKs) |
 | | | |
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | MSK, EMSK | MSK, EMSK
 | |
 +-+-+-+-+-+ +-+-+-+-+-+
 | | | |
 | EAP | | EAP |
 | Method | | Method |
 | | | |
 |(MK,TEKs)| |(MK,TEKs)|
 | | | |
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 3: Relationship between EAP peer and authenticator (acting as
 an EAP server), where no backend authentication server is present.

Aboba, et al. Expires April 9, 2004 [Page 20]

Internet-Draft EAP Key Management Framework October 2003

 +-+-+-+-+-+ +-+-+-+-+-+
 | | | |
 | | | |
 | Cipher- | | Cipher- |
 | Suite | | Suite |
 | | | |
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | |
 | |
 V V
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+
 | |===============| |========| |
 | |EAP, TEK Deriv.| | | |
 | |<-------------------------------->| backend |
 | | | | | |
 | | Secure Assoc. | | AAA-Key| |
 | peer |<------------->|Authenti-|<-------| auth |
 | |===============| cator |========| server |
 | | Link Layer | | AAA | (EAP |
 | | (PPP,IEEE 802)| |Protocol| server) |
 | | | | | |
 |MSK,EMSK | | MSK | |MSK,EMSK |
 | (TSKs) | | (TSKs) | | |
 | | | | | |
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | MSK, EMSK | MSK, EMSK
 | |
 | |
 +-+-+-+-+-+ +-+-+-+-+-+
 | | | |
 | EAP | | EAP |
 | Method | | Method |
 | | | |
 |(MK,TEKs)| |(MK,TEKs)|
 | | | |
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 4: Pass-through relationship between EAP peer, authenticator
 and backend authentication server.

 Where these conditions cannot be met, a backend authentication server
 is typically required. In this exchange, as described in [RFC3579],
 the authenticator acts as a pass-through between the EAP peer and a
 backend authentication server. In this model, the authenticator

https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Expires April 9, 2004 [Page 21]

Internet-Draft EAP Key Management Framework October 2003

 delegates the access control decision to the backend authentication
 server, which acts as a Key Distribution Center (KDC), supplying
 keying material to both the EAP peer and authenticator.

 Figure 4 illustrates the case where the authenticator acts as a
 pass-through. Here EAP is spoken between the peer and authenticator
 as before. The authenticator then encapsulates EAP packets within a
 AAA protocol such as RADIUS [RFC3579] or Diameter [I-D.ietf-aaa-eap],
 and forwards packets to and from the backend authentication server,
 which acts as the EAP server. Since the authenticator acts as a
 pass-through, EAP methods (as well as the derived EAP Master Key, and
 TEKs) reside only on the peer and backend authentication server.

 On completion of a successful authentication, EAP methods on the EAP
 peer and EAP server export the Master Session Key (MSK) and Extended
 Master Session Key (EMSK). The backend authentication server then
 sends a message to the authenticator indicating that authentication
 has been successful, providing the AAA-Key within a protected package
 known as the AAA-Token. Along with the keying material, the
 AAA-Token contains attributes naming the enclosed keys and providing
 context.

 The MSK and EMSK are used to derive the AAA-Key and key name which
 are enclosed within the AAA-Token, transported to the NAS by the AAA
 server, and used within the secure association protocol for
 derivation of Transient Session Keys (TSKs) required for the
 negotiated ciphersuite. The TSKs are known only to the peer and
 authenticator.

3. Security Associations

 The EAP model has four types of security associations (SAs):

 [1] An EAP SA. This is an SA between the EAP peer and the EAP
 server, created as the result of an EAP authentication exchange
 (phase 1a). This is a bi-directional SA; that is, both parties
 use the information in the SA for both sending and receiving.

 [2] A AAA-Key SA, known in [IEEE80211i] as a PMK SA. This is a
 bi-directional SA between the EAP peer and authenticator. The
 keying material for the AAA-Key SA (known as the AAA-Key) is
 derived on the EAP peer and server, and transported by the EAP
 server to the authenticator (phase 1b). The choice of keying
 material is proposed by the EAP peer and confirmed by the EAP
 authenticator during the unicast secure association protocol
 (phase 2a).

https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Expires April 9, 2004 [Page 22]

Internet-Draft EAP Key Management Framework October 2003

 [3] A unicast secure association SA. This is a bi-directional SA
 created as the result of a successful unicast secure association
 exchange (phase 2a). A unicast secure association SA is bound to
 a single EAP SA and a single AAA-Key SA.

 [4] A multicast secure association SA (phase 2b). This SA is created
 as the result of a successful multicast secure association
 exchange. This SA may be uni-directional (e.g. 802.11 group-key
 exchange) or bi-directional depending on the design of the
 multicast secure association protocol, and can be created either
 from the unicast secure association SA (phase 2a) or directly as
 the result of a multicast secure association exchange (phase 2b).

3.1 EAP SA

 An EAP SA exists between the EAP peer and server. It includes:

 the EAP peer identity
 the EAP server identity
 the EAP method type
 the EAP peer and server nonces
 the Transient EAP Keys (TEKs)
 the Master Session Key (MSK)
 the Extended Master Session Key (EMSK)

 The EAP SA is not explicitly bound to a particular port on the EAP
 peer. An EAP peer with multiple ports may create an EAP SA on one
 port and then choose to use that SA to subsequently create a phase 2
 SA on another port.

 It cannot be assumed that the EAP SA expires after the EAP
 authentication and key derivation is complete. Some methods may be
 support "fast resume" by caching EAP SA state on the EAP peer and
 server.

 EAP does not support SA lifetime negotiation or an SA "delete"
 operation, although some EAP methods may support this. Either the
 EAP peer or EAP server may delete an EAP SA at any time, and methods
 which allow an EAP SA to persist need to permit the EAP peer and
 server to recognize when they have gotten out of sync with respect to
 the EAP SA state.

 For example, EAP-TLS [RFC2716] supports "fast resume" (TLS session
 resumption), which assumes that both the EAP peer and server cache
 EAP master keys (the TLS master secret). An EAP peer attempting a
 fast resume provides the session-id identifying the session that it
 wishes to resume. If the EAP server retains the master key

https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Expires April 9, 2004 [Page 23]

Internet-Draft EAP Key Management Framework October 2003

 corresponding to this session in its cache, then the "fast resume"
 can proceed; otherwise a full TLS exchange ensues.

 An EAP peer may negotiate EAP SAs with one or more EAP servers as the
 result of pre-authentication or AAA load balancing and failover
 effects. For example, an EAP peer may pre-authenticate to one or
 more EAP servers, or may be directed to more than one EAP server as
 the result of an authentication server becoming unreachable. In
 general, EAP servers cannot be assumed to be synchronized with
 respect to EAP SA state, particularly since they may not exist within
 the same administrative domain. Since an EAP SA is typically created
 prior to secure association, the EAP SA is not bound to a particular
 target network.

3.2 AAA-Key SA

 An AAA-Key SA exists between the authenticator and authentication
 server. It includes:

 the EAP peer name
 the NAS/authenticator name
 the AAA-Key
 the AAA-Key maximum lifetime (if known)
 the AAA attributes sent in the Access-Accept

 The AAA-Key SA is created as the result of the transport of the
 AAA-Token from the authentication server to the NAS/authenticator.
 The AAA-Key SA is more specific than the EAP SA in that it is bound
 to a particular authenticator, as defined by the NAS identification
 attributes included in the AAA request.

 For example, within RADIUS the NAS is identified by the
 NAS-Identifier, NAS-IP-Address and NAS-IPv6-Address attributes.
 Unless the attributes providing explicit scoping are providing, it is
 assumed that the AAA-Key is usable by the NAS to which it is
 delivered, without restriction.

 Since the AAA-Key SA is bound to the NAS identified in the AAA
 Request, a NAS/authenticator that operates on a shared use network
 will share the AAA-Key SA between multiple virtual NAS devices.
 Since these virtual NAS devices might appear to the peer to be
 different NASes, a mechanism is needed for the EAP peer to
 differentiate them, so that the peer can determine which devices a
 AAA-Key can be used with.

 In the case of IEEE 802.11, it has been proposed that a "Group
 Identifier" be added to the Beacon and Probe Response messages,
 containing a MAC address uniquely identifying a particular Access

Aboba, et al. Expires April 9, 2004 [Page 24]

Internet-Draft EAP Key Management Framework October 2003

 Point. Such a "Group Identifier" could be included in the
 NAS-Identifier attribute so as to uniquely identify a particular NAS
 to the AAA server.

 Since a AAA-Key SA may be shared between virtual NASes, it is
 possible for an EAP peer to successfully complete a fast handoff
 between virtual NASes operating on the same physical NAS. Since the
 virtual NASes may have access to different networks or even exist
 within different administrative domains, this creates a security
 problem unless the AAA attributes are applied to the new session.

 For example, an EAP peer authenticating to a GUEST network could
 successfully complete a fast handoff to the CORPORATE network. This
 would be harmless if it only resulted in the peer receiving the GUEST
 service, without obtaining additional time on the network.

 Existing RADIUS attributes may not be adequate to this task. For
 example, today there are no standard attributes usable to indicate:

 [a] Which SSIDs a peer is authorized to attach to.

 [b] The absolute time at which a session is to end (as opposed to the
 Session-Time attribute which is relative)

 [c] The times of day during which access is allowed

 [d] The Calling-Station-Ids from which a client may access the
 network

 [e] Whether fast handoff is permitted.

 Attribute a) is useful so that when a client attempts a fast handoff
 to the CORPORATE network from the GUEST network, the NAS checking the
 AAA attributes will discover that the peer is only authorized for
 GUEST, not CORPORATE. As a result, the fast handoff attempt will
 fail.

 Attribute b) can be used to prevent a peer attempting a fast handoff
 between the GUEST network and another network from obtaining
 additional session time.

 Attribute c) can be used to prevent a peer from accessing the network
 outside of authorized hours.

 Attribute d) can be used to ensure that a peer is accessing the
 network only from an administrator-authorized NIC. This might be
 important in high security installations.

Aboba, et al. Expires April 9, 2004 [Page 25]

Internet-Draft EAP Key Management Framework October 2003

 Attribute e) might be useful in situations where the administrator
 desires to limit deployment of fast handoff.

 In fast handoff, a single EAP SA may be used to establish multiple
 AAA- Key SAs (see Appendix E for details). Although a AAA-Key SA may
 not persist longer than the maximum SA lifetime negotiated for an EAP
 SA (for methods that support such a negotiation), if an EAP SA is
 deleted by an EAP peer or authenticator, this does not necessarily
 imply deletion of the child AAA-Key SA. For example, fast handoff
 keying material provided by an authentication server may continue to
 be cached by NASes/authenticators after the corresponding EAP SA has
 been deleted by the authentication server and/or peer.

3.3 Unicast Secure Association SA

 The unicast secure association SA exists between the EAP peer and
 authenticator. It includes:

 the peer port identifier (Calling-Station-Id)
 the NAS port identifier (Called-Station-Id)
 the unicast Transient Session Keys (TSKs)
 the unicast secure association peer nonce
 the unicast secure association authenticator nonce
 the negotiated unicast capabilities and unicast ciphersuite.

 During the phase 2a exchange, the EAP peer and authenticator
 demonstrate mutual possession of the AAA-Key derived and transported
 in phase 1; securely negotiate the session capabilities (including
 unicast ciphersuites), and derive fresh unicast transient session
 keys. The AAA-Key SA (phase 1b) is therefore used to create the
 unicast secure association SA (phase 2a), and in the process the
 phase 2a unicast secure association SA is bound to ports on the EAP
 peer and authenticator. However in order for a phase 2a security
 association to be established, it is not necessary for the phase 1a
 exchange to be rerun each time. This enables the EAP exchange to be
 bypassed when fast handoff support is desired.

 Since both peer and authenticator nonces are used in the creation of
 the unicast secure association SA, the transient session keys (TSKs)
 are guaranteed to be fresh, even if the AAA-Key is not. As a result
 one or more unicast secure association SAs (phase 2a) may be derived
 from a single AAA-Key SA (phase 1b). The phase 2a security
 associations may utilize the same security parameters (e.g. mode,
 ciphersuite, etc.) or they may utilize different parameters.

 A unicast secure association SA (phase 2a) may not persist longer
 than the maximum lifetime of its parent AAA-Key SA (if known).

Aboba, et al. Expires April 9, 2004 [Page 26]

Internet-Draft EAP Key Management Framework October 2003

 However, the deletion of a parent EAP or AAA-Key SA does not
 necessarily imply deletion of the corresponding unicast secure
 association SA. Similarly, the deletion of a unicast secure
 association protocol SA does not imply the deletion of the parent
 AAA-key SA or EAP SA. Failure to mutually prove possession of the
 AAA-Key during the unicast secure association protocol exchange
 (phase 2a) need not be grounds for removal of a AAA-Key SA by both
 parties; rate-limiting unicast secure association exchanges should
 suffice to prevent a brute force attack.

 An EAP peer may be able to negotiate multiple phase 2a SAs with a
 single EAP authenticator, or may be able to maintain multiple phase
 2a SAs with multiple authenticators, based on a single EAP SA derived
 in phase 1a. For example, during a re-key of the secure association
 protocol SA, it is possible for two phase 2a SAs to exist during the
 period between when the new phase 2a SA parameters (such as the TSKs)
 are calculated and when they are installed. Except where explicitly
 specified by the semantics of the unicast secure association
 protocol, it should not be assumed that the installation of a new
 phase 2a SA necessarily implies deletion of the old phase 2a SA.

 On some media (e.g. 802.11) a port on an EAP peer may only establish
 phase 2a and 2b SAs with a single port of an authenticator within a
 given Local Area Network (LAN). This implies that the successful
 negotiation of phase 2a and/or 2b SAs between an EAP peer port and a
 new authentiator port within a given LAN implies the deletion of
 existing phase 2a and 2b SAs with authenticators offering access to
 that Local Area Network (LAN). However, since a given IEEE 802.11
 SSID may be comprised of multiple LANs, this does not imply an
 implicit binding of phase 2a and 2b SAs to an SSID.

3.4 Multicast Secure Association SA

 The multicast secure association SA includes:

 the multicast Transient Session Keys
 the direction vector (for a uni-directional SA)
 the negotiated multicast capabilities and multicast ciphersuite

 It is possible for more than one multicast secure association SA to
 be derived from a single unicast secure association SA. However, a
 multicast secure association SA is bound to a single EAP SA and a
 single AAA-Key SA.

 During a re-key of the multicast secure association protocol SA, it
 is possible for two phase 2b SAs to exist during the period between
 when the new phase 2b SA parameters (such as the multicast TSKs) are
 calculated and when they are installed. Except where explicitly

Aboba, et al. Expires April 9, 2004 [Page 27]

Internet-Draft EAP Key Management Framework October 2003

 specified by the semantics of the multicast secure association
 protocol, it should not be assumed that the installation of a new
 phase 2b SA necessarily implies deletion of the old phase 2b SA.

 A multicast secure association SA (phase 2b) may not persist longer
 than the maximum lifetime of its parent AAA-Key or unicast secure
 association SA. However, the deletion of a parent EAP, AAA-Key or
 unicast secure association SA does not necessarily imply deletion of
 the corresponding multicast secure association SA. For example, a
 unicast secure association SA may be rekeyed without implying a rekey
 of the multicast secure association SA.

 Similarly, the deletion of a multicast secure association protocol SA
 does not imply the deletion of the parent EAP, AAA-Key or unicast
 secure association SA. Failure to mutually prove possession of the
 AAA-Key during the unicast secure association protocol exchange
 (phase 2a) need not be grounds for removal of the AAA-Key, unicast
 secure association and multicast secure association SAs;
 rate-limiting unicast secure association exchanges should suffice to
 prevent a brute force attack.

3.5 Key Naming

 In order to support the correct processing of phase 2 security
 associations, the secure association (phase 2) protocol supports the
 naming of phase 2 security associations and associated transient
 session keys, so that the correct set of transient session keys can
 be identified for processing a given packet. Explicit creation and
 deletion operations are also typically supported so that
 establishment and re-establishment of transient session keys can be
 synchronized between the parties.

 In order to securely bind the AAA-Key security association (phase 1b)
 to its child phase 2 security associations, the phase 2 secure
 association protocol allows the EAP peer and authenticator to
 mutually prove possession of the AAA-Key. In order to avoid
 confusion in the case where an EAP peer has more than one AAA-Key
 (phase 1b) applicable to establishment of a phase 2 security
 association, it is necessary for the secure association protocol
 (phase 2) to support key selection, so that the appropriate phase 1b
 keying material can be utilized by both parties in the secure
 association protocol exchange.

 For example, a peer might be pre-configured with policy indicating
 the ciphersuite to be used in communicating with a given
 authenticator. Within PPP, the ciphersuite is negotiated within the
 Encryption Control Protocol (ECP), after EAP authentication is
 completed. Within [IEEE80211i], the AP ciphersuites are advertised

Aboba, et al. Expires April 9, 2004 [Page 28]

Internet-Draft EAP Key Management Framework October 2003

 in the Beacon and Probe Responses, and are securely verified during a
 4-way exchange after EAP authentication has completed.

 As part of the secure association protocol (phase 2), it is necessary
 to bind the Transient Session Keys (TSKs) to the keying material
 provided in the AAA-Token. This ensures that the EAP peer and
 authenticator are both clear about what key to use to provide mutual
 proof of possession. Keys within the EAP key hierarchy are named as
 follows:

 EAP SA name
 The EAP security association is negotiated between the EAP peer
 and EAP server, and is uniquely named as follows <EAP peer name,
 EAP server name, EAP Method Type, EAP peer nonce, EAP server
 nonce>. Here the EAP peer name and EAP server name are the
 identifiers securely exchanged within the EAP method. Since
 multiple EAP SAs may exist between an EAP peer and EAP server, the
 EAP peer nonce and EAP server nonce allow EAP SAs to be
 differentiated. The inclusion of the Method Type in the EAP SA
 name ensures that each EAP method has a distinct EAP SA space.

 MK Name
 The EAP Master Key, if supported by an EAP method, is named by the
 concatenation of the EAP SA name and a method-specific session-id.

 AAA-Key Name
 The AAA-Key is named by the concatenation of the EAP SA name,
 "AAA-Key" and the authenticator name, since the AAA-Key is bound
 to a particular authenticator. For the purpose of identification,
 the NAS-Identifier attribute is recommended. In order to ensure
 that all parties can agree on the NAS name this requires the NAS
 to advertise its name (typically using a media-specific mechanism,
 such as the 802.11 Beacon/Probe Response)."

4. Threat Model

4.1 Security Assumptions

 Figure 5 illustrates the relationship between the peer, authenticator
 and backend authentication server. As noted in the figure, each party
 in the exchange mutually authenticates with each of the other
 parties, and derives a unique key. All parties in the diagram have
 access to the AAA-Key.

Aboba, et al. Expires April 9, 2004 [Page 29]

Internet-Draft EAP Key Management Framework October 2003

 EAP peer
 /\\
 / \\
 Protocol: EAP / \\ Protocol: Secure Association
 Auth: Mutual / \\ Auth: Mutual
 Unique keys: MK, / \\ Unique keys: TSKs
 TEKs,EMSK / \\
 / \\
 Auth. server +--------------+ Authenticator
 Protocol: AAA
 Auth: Mutual
 Unique key: AAA session key

 Figure 5: Three-party EAP key distribution

 The EAP peer and backend authentication server mutually authenticate
 via the EAP method, and derive the MK, TEKs and EMSK which are known
 only to them. The TEKs are used to protect some or all of the EAP
 conversation between the peer and authenticator, so as to guard
 against modification or insertion of EAP packets by an attacker. The
 degree of protection afforded by the TEKs is determined by the EAP
 method; some methods may protect the entire EAP packet, including the
 EAP header, while other methods may only protect the contents of the
 Type-Data field, defined in [I-D.ietf-eap-rfc2284bis].

 Since EAP is spoken only between the EAP peer and server, if a
 backend authentication server is present then the EAP conversation
 does not provide mutual authentication between the peer and
 authenticator, only between the EAP peer and EAP server (backend
 authentication server). As a result, mutual authentication between
 the peer and authenticator only occurs where a secure association
 protocol is used, such the unicast and group key derivation handshake
 supported in [IEEE80211i]. This means that absent use of a secure
 association protocol, from the point of view of the peer, EAP mutual
 authentication only proves that the authenticator is trusted by the
 backend authentication server; the identity of the authenticator is
 not confirmed.

 Utilizing the AAA protocol, the authenticator and backend
 authentication server mutually authenticate and derive session keys
 known only to them, used to provide per-packet integrity and replay
 protection, authentication and confidentiality. The MSK is
 distributed by the backend authentication server to the authenticator
 over this channel, bound to attributes constraining its usage, as
 part of the AAA-Token. The binding of attributes to the MSK within a
 protected package is important so the authenticator receiving the
 AAA-Token can determine that it has not been compromised, and that
 the keying material has not been replayed, or mis-directed in some

Aboba, et al. Expires April 9, 2004 [Page 30]

Internet-Draft EAP Key Management Framework October 2003

 way.

 The security properties of the EAP exchange are dependent on each leg
 of the triangle: the selected EAP method, AAA protocol and the secure
 association protocol.

 Assuming that the AAA protocol provides protection against rogue
 authenticators forging their identity, then the AAA-Token can be
 assumed to be sent to the correct authenticator, and where it is
 wrapped appropriately, it can be assumed to be immune to compromise
 by a snooping attacker.

 Where an untrusted AAA intermediary is present, the AAA-Token must
 not be provided to the intermediary so as to avoid compromise of the
 AAA-Token. This can be avoided by use of re-direct as defined in
 [RFC3588].

 When EAP is used for authentication on PPP or wired IEEE 802
 networks, it is typically assumed that the link is physically secure,
 so that an attacker cannot gain access to the link, or insert a rogue
 device. EAP methods defined in [I-D.ietf-eap-rfc2284bis] reflect this
 usage model. These include EAP MD5, as well as One-Time Password
 (OTP) and Generic Token Card. These methods support one-way
 authentication (from EAP peer to authenticator) but not mutual
 authentication or key derivation. As a result, these methods do not
 bind the initial authentication and subsequent data traffic, even
 when the the ciphersuite used to protect data supports per-packet
 authentication and integrity protection. As a result, EAP methods not
 supporting mutual authentication are vulnerable to session hijacking
 as well as attacks by rogue devices.

 On wireless networks such as IEEE 802.11 [IEEE80211], these attacks
 become easy to mount, since any attacker within range can access the
 wireless medium, or act as an access point. As a result, new
 ciphersuites have been proposed for use with wireless LANs
 [IEEE80211i] which provide per-packet authentication, integrity and
 replay protection. In addition, mutual authentication and key
 derivation, provided by methods such as EAP-TLS [RFC2716] are
 required [IEEE80211i], so as to address the threat of rogue devices,
 and provide keying material to bind the initial authentication to
 subsequent data traffic.

 If the selected EAP method does not support mutual authentication,
 then the peer will be vulnerable to attack by rogue authenticators
 and backend authentication servers. If the EAP method does not derive
 keys, then TSKs will not be available for use with a negotiated
 ciphersuite, and there will be no binding between the initial EAP
 authentication and subsequent data traffic, leaving the session

https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Expires April 9, 2004 [Page 31]

Internet-Draft EAP Key Management Framework October 2003

 vulnerable to hijack.

 If the backend authentication server does not protect against
 authenticator masquerade, or provide the proper binding of the
 AAA-Key to the session within the AAA-Token, then one or more
 AAA-Keys may be sent to an unauthorized party, and an attacker may be
 able to gain access to the network. If the AAA-Token is provided to
 an untrusted AAA intermediary, then that intermediary may be able to
 modify the AAA-Key, or the attributes associated with it, as
 described in [RFC2607].

 If the secure association protocol does not provide mutual proof of
 possession of the AAA-Key material, then the peer will not have
 assurance that it is connected to the correct authenticator, only
 that the authenticator and backend authentication server share a
 trust relationship (since AAA protocols support mutual
 authentication). This distinction can become important when multiple
 authenticators receive AAA-Keys from the backend authentication
 server, such as where fast handoff is supported. If the TSK
 derivation does not provide for protected ciphersuite and
 capabilities negotiation, then downgrade attacks are possible.

4.2 Security Requirements

 This section describes the security requirements for EAP methods, AAA
 protocols, secure association protocols and Ciphersuites. These
 requirements MUST be met by specifications requesting publication as
 an RFC. Based on these requirements, the security properties of EAP
 exchanges are analyzed.

4.2.1 EAP method requirements

 It is possible for the peer and EAP server to mutually authenticate
 and derive keys. In order to provide keying material for use in a
 subsequently negotiated ciphersuite, an EAP method supporting key
 derivation MUST export a Master Session Key (MSK) of at least 64
 octets, and an Extended Master Session Key (EMSK) of at least 64
 octets. EAP Methods deriving keys MUST provide for mutual
 authentication between the EAP peer and the EAP Server.

 The MSK and EMSK MUST NOT be used directly to protect data; however,
 they are of sufficient size to enable derivation of a AAA-Key
 subsequently used to derive Transient Session Keys (TSKs) for use
 with the selected ciphersuite. Each ciphersuite is responsible for
 specifying how to derive the TSKs from the AAA-Key.

 The AAA-Key is derived from the keying material exported by the EAP
 method (MSK and EMSK). This derivation occurs on the AAA server. In

https://datatracker.ietf.org/doc/html/rfc2607

Aboba, et al. Expires April 9, 2004 [Page 32]

Internet-Draft EAP Key Management Framework October 2003

 many existing protocols that use EAP, the AAA-Key and MSK are
 equivalent, but more complicated mechanisms are possible (see

Appendix E for details).

 EAP methods SHOULD ensure the freshness of the MSK and EMSK even in
 cases where one party may not have a high quality random number
 generator. A RECOMMENDED method is for each party to provide a nonce
 of at least 128 bits, used in the derivation of the MSK and EMSK.

 EAP methods export the MSK and EMSK and not Transient Session Keys so
 as to allow EAP methods to be ciphersuite and media independent.
 Keying material exported by EAP methods MUST be independent of the
 ciphersuite negotiated to protect data.

 Depending on the lower layer, EAP methods may run before or after
 ciphersuite negotiation, so that the selected ciphersuite may not be
 known to the EAP method. By providing keying material usable with
 any ciphersuite, EAP methods can used with a wide range of
 ciphersuites and media.

 It is RECOMMENDED that methods providing integrity protection of EAP
 packets include coverage of all the EAP header fields, including the
 Code, Identifier, Length, Type and Type-Data fields.

 In order to preserve algorithm independence, EAP methods deriving
 keys SHOULD support (and document) the protected negotiation of the
 ciphersuite used to protect the EAP conversation between the peer and
 server. This is distinct from the ciphersuite negotiated between the
 peer and authenticator, used to protect data.

 The strength of Transient Session Keys (TSKs) used to protect data is
 ultimately dependent on the strength of keys generated by the EAP
 method. If an EAP method cannot produce keying material of
 sufficient strength, then the TSKs may be subject to brute force
 attack. In order to enable deployments requiring strong keys, EAP
 methods supporting key derivation SHOULD be capable of generating an
 MSK and EMSK, each with an effective key strength of at least 128
 bits.

 Methods supporting key derivation MUST demonstrate cryptographic
 separation between the MSK and EMSK branches of the EAP key
 hierarchy. Without violating a fundamental cryptographic assumption
 (such as the non-invertibility of a one-way function) an attacker
 recovering the MSK or EMSK MUST NOT be able to recover the other
 quantity with a level of effort less than brute force.

 Non-overlapping substrings of the MSK MUST be cryptographically
 separate from each other. That is, knowledge of one substring MUST

Aboba, et al. Expires April 9, 2004 [Page 33]

Internet-Draft EAP Key Management Framework October 2003

 NOT help in recovering some other substring without breaking some
 hard cryptographic assumption. This is required because some
 existing ciphersuites form TSKs by simply splitting the AAA-Key to
 pieces of appropriate length. Likewise, non-overlapping substrings
 of the EMSK MUST be cryptographically separate from each other, and
 from substrings of the MSK.

 The EMSK MUST remain on the EAP peer and EAP server where it is
 derived; it MUST NOT be transported to, or shared with, additional
 parties, or used to derive any other keys.

 Since EAP does not provide for explicit key lifetime negotiation, EAP
 peers, authenticators and authentication servers MUST be prepared for
 situations in which one of the parties discards key state which
 remains valid on another party.

 The development and validation of key derivation algorithms is
 difficult, and as a result EAP methods SHOULD reuse well established
 and analyzed mechanisms for key derivation (such as those specified
 in IKE [RFC2409] or TLS [RFC2246]), rather than inventing new ones.
 EAP methods SHOULD also utilize well established and analyzed
 mechanisms for MSK and EMSK derivation.

4.2.2 AAA Protocol Requirements

 AAA protocols suitable for use in transporting EAP MUST provide the
 following facilities:

 Security services
 AAA protocols used for transport of EAP keying material MUST
 implement and SHOULD use per-packet integrity and authentication,
 replay protection and confidentiality. These requirements are met
 by Diameter EAP [I-D.ietf-aaa-eap], as well as RADIUS over IPsec
 [RFC3579].

 Session Keys
 AAA protocols used for transport of EAP keying material MUST
 implement and SHOULD use dynamic key management in order to derive
 fresh session keys, as in Diameter EAP [I-D.ietf-aaa-eap] and
 RADIUS over IPsec [RFC3579], rather than using a static key, as
 originally defined in RADIUS [RFC2865].

 Mutual authentication
 AAA protocols used for transport of EAP keying material MUST
 provide for mutual authentication between the authenticator and
 backend authentication server. These requirements are met by
 Diameter EAP [I-D.ietf-aaa-eap] as well as by RADIUS EAP
 [RFC3579].

https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Expires April 9, 2004 [Page 34]

Internet-Draft EAP Key Management Framework October 2003

 Authorization
 AAA protocols used for transport of EAP keying material SHOULD
 provide protection against rogue authenticators masquerading as
 other authenticators. This can be accomplished, for example, by
 requiring that AAA agents check the source address of packets
 against the origin attributes (Origin-Host AVP in Diameter,
 NAS-IP-Address, NAS-IPv6-Address, NAS-Identifier in RADIUS). For
 details, see Section 4.3.7 of [RFC3579].

 Key transport
 Since EAP methods do not export Transient Session Keys (TSKs) in
 order to maintain media and ciphersuite independence, the AAA
 server MUST NOT transport TSKs from the backend authentication
 server to authenticator.

 Key transport specification
 In order to enable backend authentication servers to provide
 keying material to the authenticator in a well defined format, AAA
 protocols suitable for use with EAP MUST define the format and
 wrapping of the AAA-Token.

 EMSK transport
 Since the EMSK is a secret known only to the backend
 authentication server and peer, the AAA-Token MUST NOT transport
 the EMSK from the backend authentication server to the
 authenticator.

 AAA-Token protection
 To ensure against compromise, the AAA-Token MUST be integrity
 protected, authenticated, replay protected and encrypted in
 transit, using well-established cryptographic algorithms.

 Session Keys
 The AAA-Token SHOULD be protected with session keys as in Diameter
 [RFC3588] or RADIUS over IPsec [RFC3579] rather than static keys,
 as in [RFC2548].

 Key naming
 In order to ensure against confusion between the appropriate
 keying material to be used in a given secure association protocol
 exchange, the AAA-Token SHOULD include explicit key names and
 context appropriate for informing the authenticator how the keying
 material is to be used.

 Key Compromise
 Where untrusted intermediaries are present, the AAA-Token SHOULD
 NOT be provided to the intermediaries. In Diameter, handling of
 keys by intermediaries can be avoided using Redirect functionality

https://datatracker.ietf.org/doc/html/rfc3579#section-4.3.7
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Expires April 9, 2004 [Page 35]

Internet-Draft EAP Key Management Framework October 2003

 [RFC3588].

4.2.3 Secure Association Protocol Requirements

 The Secure Association Protocol supports the following:

 Mutual proof of possession
 The peer and authenticator MUST each demonstrate possession of the
 keying material transported between the AAA server and
 authenticator (AAA-Key).

 Key Naming
 The Secure Association Protocol MUST explicitly name the keys used
 in the proof of possession exchange, so as to prevent confusion
 when more than one set of keying material could potentially be
 used as the basis for the exchange.

 Creation and Deletion
 In order to support the correct processing of phase 2 security
 associations, the secure association (phase 2) protocol MUST
 support the naming of phase 2 security associations and associated
 transient session keys, so that the correct set of transient
 session keys can be identified for processing a given packet. The
 phase 2 secure association protocol also MUST support transient
 session key activation and SHOULD support deletion, so that
 establishment and re-establishment of transient session keys can
 be synchronized between the parties.

 Integrity and Replay Protection
 The Secure Association Protocol MUST support integrity and replay
 protection of all messages.

 Direct operation
 Since the phase 2 secure association protocol is concerned with
 the establishment of security associations between the EAP peer
 and authenticator, including the derivation of transient session
 keys, only those parties have "a need to know" the transient
 session keys. The secure association protocol MUST operate
 directly between the peer and authenticator, and MUST NOT be
 passed-through to the backend authentication server, or include
 additional parties.

 Derivation of transient session keys
 The secure association protocol negotiation MUST support
 derivation of unicast and multicast transient session keys
 suitable for use with the negotiated ciphersuite.

https://datatracker.ietf.org/doc/html/rfc3588

Aboba, et al. Expires April 9, 2004 [Page 36]

Internet-Draft EAP Key Management Framework October 2003

 TSK freshness
 The secure association (phase 2) protocol MUST support the
 derivation of fresh unicast and multicast transient session keys,
 even when the keying material provided by the AAA server is not
 fresh. This is typically supported by including an exchange of
 nonces within the secure association protocol.

 Bi-directional operation
 While some ciphersuites only require a single set of transient
 session keys to protect traffic in both directions, other
 ciphersuites require a unique set of transient session keys in
 each direction. The phase 2 secure association protocol SHOULD
 provide for the derivation of unicast and multicast keys in each
 direction, so as not to require two separate phase 2 exchanges in
 order to create a bi-directional phase 2 security association.

 Secure capabilities negotiation
 The Secure Association Protocol MUST support secure capabilities
 negotiation. This includes security parameters such as the
 security association identifier (SAID) and ciphersuites. It also
 includes confirmation of the capabilities discovered during the
 discovery phase (phase 0), so as to ensure that the announced
 capabilities have not been forged.

4.2.4 Ciphersuite Requirements

 Ciphersuites suitable for keying by EAP methods MUST provide the
 following facilities:

 TSK derivation
 In order to allow a ciphersuite to be usable within the EAP keying
 framework, a specification MUST be provided describing how
 transient session keys suitable for use with the ciphersuite are
 derived from the AAA-Key.

 EAP method independence
 Algorithms for deriving transient session keys from the AAA-Key
 MUST NOT depend on the EAP method. However, algorithms for
 deriving TEKs MAY be specific to the EAP method.

 Cryptographic separation
 The TSKs derived from the AAA-Key MUST be cryptographically
 separate from each other. Similarly, TEKs MUST be
 cryptographically separate from each other. In addition, the TSKs
 MUST be cryptographically separate from the TEKs.

Aboba, et al. Expires April 9, 2004 [Page 37]

Internet-Draft EAP Key Management Framework October 2003

5. IANA Considerations

 This specification does not create any new registries, or define any
 new EAP codes or types.

6. Security Considerations

6.1 Key Strength

 In order to guard against brute force attacks, EAP methods deriving
 keys need to be capable of generating keys with an appropriate
 effective symmetric key strength. In order to ensure that key
 generation is not the weakest link, it is necessary for EAP methods
 utilizing public key cryptography to choose a public key that has a
 cryptographic strength meeting the symmetric key strength
 requirement.

 As noted in Section 5 of [I-D.orman-public-key-lengths], this results
 in the following required RSA or DH module and DSA subgroup size in
 bits, for a given level of attack resistance in bits:

 Attack Resistance RSA or DH Modulus DSA subgroup
 (bits) size (bits) size (bits)
 ----------------- ----------------- ------------
 70 947 128
 80 1228 145
 90 1553 153
 100 1926 184
 150 4575 279
 200 8719 373
 250 14596 475

6.2 Key Wrap

 As described in [RFC3579], Section 4.3, known problems exist in the
 key wrap specified in [RFC2548]. Where the same RADIUS shared secret
 is used by a PAP authenticator and an EAP authenticator, there is a
 vulnerability to known plaintext attack. Since RADIUS uses the
 shared secret for multiple purposes, including per-packet
 authentication, attribute hiding, considerable information is exposed
 about the shared secret with each packet. This exposes the shared
 secret to dictionary attacks. MD5 is used both to compute the RADIUS
 Response Authenticator and the Message-Authenticator attribute, and
 some concerns exist relating to the security of this hash
 [MD5Attack]. As discussed in [RFC3579], Section 4.2, these and other
 RADIUS vulnerabilities may be addressed by running RADIUS over IPsec.

https://datatracker.ietf.org/doc/html/rfc3579#section-4.3
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc3579#section-4.2

Aboba, et al. Expires April 9, 2004 [Page 38]

Internet-Draft EAP Key Management Framework October 2003

 Where an untrusted AAA intermediary is present (such as a RADIUS
 proxy or a Diameter agent), and data object security is not used, the
 AAA-Key may be recovered by an attacker in control of the untrusted
 intermediary. Possession of the AAA-Key enables decryption of data
 traffic sent between the peer and a specific authenticator; however
 where key separation is implemented, compromise of the AAA-Key does
 not enable an attacker to impersonate the peer to another
 authenticator, since that requires possession of the MK or EMSK,
 which are not transported by the AAA protocol. This vulnerability
 may be mitigated by implementation of redirect functionality, as
 provided in[RFC3588].

6.3 Man-in-the-middle Attacks

 As described in [I-D.puthenkulam-eap-binding], EAP method sequences
 and compound authentication mechanisms may be subject to
 man-in-the-middle attacks. When such attacks are successfully
 carried out, the attacker acts as an intermediary between a victim
 and a legitimate authenticator. This allows the attacker to
 authenticate successfully to the authenticator, as well as to obtain
 access to the network.

 In order to prevent these attacks, [I-D.puthenkulam-eap-binding]
 recommends derivation of a compound key by which the EAP peer and
 server can prove that they have participated in the entire EAP
 exchange. Since the compound key must not be known to an attacker
 posing as an authenticator, and yet must be derived from quantities
 that are exported by EAP methods, it may be desirable to derive the
 compound key from a portion of the EMSK. In order to provide proper
 key hygiene, it is recommended that the compound key used for
 man-in-the-middle protection be cryptographically separate from other
 keys derived from the EMSK, such as fast handoff keys, discussed in

Appendix E.

6.4 Impersonation

 Both the RADIUS and Diameter protocols are potentially vulnerable to
 impersonation by a rogue authenticator.

 When RADIUS requests are forwarded by a proxy, the NAS-IP-Address or
 NAS-IPv6-Address attributes may not correspond to the source address.
 Since the NAS-Identifier attribute need not contain an FQDN, it also
 may not correspond to the source address, even indirectly. [RFC2865]
 Section 3 states:

 A RADIUS server MUST use the source IP address of the RADIUS
 UDP packet to decide which shared secret to use, so that
 RADIUS requests can be proxied.

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc2865#section-3

Aboba, et al. Expires April 9, 2004 [Page 39]

Internet-Draft EAP Key Management Framework October 2003

 This implies that it is possible for a rogue authenticator to forge
 NAS-IP-Address, NAS-IPv6-Address or NAS-Identifier attributes within
 a RADIUS Access-Request in order to impersonate another
 authenticator. Among other things, this can result in messages (and
 MSKs) being sent to the wrong authenticator. Since the rogue
 authenticator is authenticated by the RADIUS proxy or server purely
 based on the source address, other mechanisms are required to detect
 the forgery. In addition, it is possible for attributes such as the
 Called-Station-Id and Calling-Station-Id to be forged as well.

 As recommended in [RFC3579], this vulnerability can be mitigated by
 having RADIUS proxies check authenticator identification attributes
 against the source address.

 To allow verification of session parameters such as the
 Called-Station- Id and Calling-Station-Id, these can be sent by the
 EAP peer to the server, protected by the TEKs. The RADIUS server can
 then check the parameters sent by the EAP peer against those claimed
 by the authenticator. If a discrepancy is found, an error can be
 logged.

 While [RFC3588] requires use of the Route-Record AVP, this utilizes
 FQDNs, so that impersonation detection requires DNS A/AAAA and PTR
 RRs to be properly configured. As a result, it appears that Diameter
 is as vulnerable to this attack as RADIUS, if not more so. To address
 this vulnerability, it is necessary to allow the backend
 authentication server to communicate with the authenticator directly,
 such as via the redirect functionality supported in [RFC3588].

6.5 Denial of Service Attacks

 The caching of security associations may result in vulnerability to
 denial of service attacks. Since an EAP peer may derive multiple EAP
 SAs with a given EAP server, and creation of a new EAP SA does not
 implicitly delete a previous EAP SA, EAP methods that result in
 creation of persistant state may be vulnerable to denial of service
 attacks by a rogue EAP peer.

 As a result, EAP methods creating persistent state may wish to limit
 the number of cached EAP SAs (Phase 1a) corresponding to an EAP peer.
 For example, an EAP server may choose to only retain a few EAP SAs
 for each peer. This prevents a rogue peer from denying access to
 other peers.

 Similarly, an authenticator may have multiple AAA-Key SAs
 corresponding to a given EAP peer; to conserve resources an
 authenticator may choose to limit the number of cached AAA-Key (Phase
 1 b) SAs for each peer.

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3588

Aboba, et al. Expires April 9, 2004 [Page 40]

Internet-Draft EAP Key Management Framework October 2003

 Depending on the media, creation of a new unicast secure association
 SA may or may not imply deletion of a previous unicast secure
 association SA. Where there is no implied deletion, the
 authenticator may choose to limit Phase 2 (unicast and multicast)
 secure association SAs for each peer.

7. Acknowledgements

 Thanks to Arun Ayyagari, Ashwin Palekar, and Tim Moore of Microsoft,
 Dorothy Stanley of Agere, Bob Moskowitz of TruSecure, and Russ
 Housley of Vigil Security for useful feedback.

Normative References

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
RFC 1661, July 1994.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [I-D.ietf-eap-rfc2284bis]
 Blunk, L., "Extensible Authentication Protocol (EAP)",

draft-ietf-eap-rfc2284bis-06 (work in progress), September
 2003.

 [IEEE802] Institute of Electrical and Electronics Engineers, "IEEE
 Standards for Local and Metropolitan Area Networks:
 Overview and Architecture", ANSI/IEEE Standard 802, 1990.

Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1968] Meyer, G. and K. Fox, "The PPP Encryption Control Protocol
 (ECP)", RFC 1968, June 1996.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-eap-rfc2284bis-06
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1968
https://datatracker.ietf.org/doc/html/rfc2104

Aboba, et al. Expires April 9, 2004 [Page 41]

Internet-Draft EAP Key Management Framework October 2003

 [RFC2246] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A.
 and P. Kocher, "The TLS Protocol Version 1.0", RFC 2246,
 January 1999.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC2419] Sklower, K. and G. Meyer, "The PPP DES Encryption
 Protocol, Version 2 (DESE-bis)", RFC 2419, September 1998.

 [RFC2420] Kummert, H., "The PPP Triple-DES Encryption Protocol
 (3DESE)", RFC 2420, September 1998.

 [RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.
 and R. Wheeler, "A Method for Transmitting PPP Over
 Ethernet (PPPoE)", RFC 2516, February 1999.

 [RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes",
RFC 2548, March 1999.

 [RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC2716] Aboba, B. and D. Simon, "PPP EAP TLS Authentication
 Protocol", RFC 2716, October 1999.

 [RFC2855] Fujisawa, K., "DHCP for IEEE 1394", RFC 2855, June 2000.

 [RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC

2865, June 2000.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L. and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3078] Pall, G. and G. Zorn, "Microsoft Point-To-Point Encryption
 (MPPE) Protocol", RFC 3078, March 2001.

 [RFC3079] Zorn, G., "Deriving Keys for use with Microsoft
 Point-to-Point Encryption (MPPE)", RFC 3079, March 2001.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc2516
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2607
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2855
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc3079
https://datatracker.ietf.org/doc/html/rfc3394

Aboba, et al. Expires April 9, 2004 [Page 42]

Internet-Draft EAP Key Management Framework October 2003

 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

 [RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G. and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [FIPSDES] National Institute of Standards and Technology, "Data
 Encryption Standard", FIPS PUB 46, January 1977.

 [DESMODES]
 National Institute of Standards and Technology, "DES Modes
 of Operation", FIPS PUB 81, December 1980, <http://

www.itl.nist.gov/fipspubs/fip81.htm>.

 [FIPS197] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [FIPS.180-1.1995]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-1, April 1995, <http://

www.itl.nist.gov/fipspubs/fip180-1.htm>.

 [IEEE80211]
 Institute of Electrical and Electronics Engineers,
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific Requirements Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE IEEE Standard
 802.11-1997, 1997.

 [IEEE8021X]
 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2001, June 2002.

 [IEEE8021Q]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standards for Local and Metropolitan Area Networks: Draft
 Standard for Virtual Bridged Local Area Networks", IEEE
 Standard 802.1Q/D8, January 1998.

 [IEEE80211f]
 Institute of Electrical and Electronics Engineers,
 "Recommended Practice for Multi-Vendor Access Point

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc3588
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm

Aboba, et al. Expires April 9, 2004 [Page 43]

Internet-Draft EAP Key Management Framework October 2003

 Interoperability via an Inter-Access Point Protocol Across
 Distribution Systems Supporting IEEE 802.11 Operation",
 IEEE 802.11F, July 2003.

 [IEEE80211i]
 Institute of Electrical and Electronics Engineers, "Draft
 Supplement to STANDARD FOR Telecommunications and
 Information Exchange between Systems - LAN/MAN Specific
 Requirements - Part 11: Wireless Medium Access Control
 (MAC) and physical layer (PHY) specifications:
 Specification for Enhanced Security", IEEE Draft 802.11I/
 D6.1, August 2003.

 [IEEE-02-758]
 Mishra, A., Shin, M., Arbaugh, W., Lee, I. and K. Jang,
 "Proactive Caching Strategies for IAPP Latency Improvement
 during 802.11 Handoff", IEEE 802.11 Working Group,
 IEEE-02-758r1-F Draft 802.11I/D5.0, November 2002.

 [IEEE-03-084]
 Mishra, A., Shin, M., Arbaugh, W., Lee, I. and K. Jang,
 "Proactive Key Distribution to support fast and secure
 roaming", IEEE 802.11 Working Group, IEEE-03-084r1-I,

http://www.ieee802.org/11/Documents/DocumentHolder/
3-084.zip, January 2003.

 [IEEE-03-155]
 Aboba, B., "Fast Handoff Issues", IEEE 802.11 Working
 Group, IEEE-03-155r0-I, http://www.ieee802.org/11/

Documents/DocumentHolder/3-155.zip, March 2003.

 [EAPAPI] Microsoft Developer Network, "Windows 2000 EAP API",
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/eap/eapport_0fj9.asp, August 2000.

 [I-D.ietf-roamops-cert]
 Aboba, B., "Certificate-Based Roaming",

draft-ietf-roamops-cert-02 (work in progress), April 1999.

 [I-D.ietf-aaa-eap]
 Eronen, P., Hiller, T. and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application",

draft-ietf-aaa-eap-02 (work in progress), July 2003.

 [I-D.irtf-aaaarch-handoff]
 Arbaugh, W. and B. Aboba, "Experimental Handoff Extension
 to RADIUS", draft-irtf-aaaarch-handoff-02 (work in
 progress), May 2003.

http://www.ieee802.org/11/Documents/DocumentHolder/3-084.zip
http://www.ieee802.org/11/Documents/DocumentHolder/3-084.zip
http://www.ieee802.org/11/Documents/DocumentHolder/3-155.zip
http://www.ieee802.org/11/Documents/DocumentHolder/3-155.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/eap/eapport_0fj9.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/eap/eapport_0fj9.asp
https://datatracker.ietf.org/doc/html/draft-ietf-roamops-cert-02
https://datatracker.ietf.org/doc/html/draft-ietf-aaa-eap-02
https://datatracker.ietf.org/doc/html/draft-irtf-aaaarch-handoff-02

Aboba, et al. Expires April 9, 2004 [Page 44]

Internet-Draft EAP Key Management Framework October 2003

 [I-D.orman-public-key-lengths]
 Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys",

draft-orman-public-key-lengths-05 (work in progress),
 January 2002.

 [I-D.puthenkulam-eap-binding]
 Puthenkulam, J., "The Compound Authentication Binding
 Problem", draft-puthenkulam-eap-binding-03 (work in
 progress), July 2003.

 [I-D.aboba-802-context]
 Aboba, B. and T. Moore, "A Model for Context Transfer in
 IEEE 802", draft-aboba-802-context-03 (work in progress),
 October 2003.

 [8021XHandoff]
 Pack, S. and Y. Choi, "Pre-Authenticated Fast Handoff in a
 Public Wireless LAN Based on IEEE 802.1X Model", School of
 Computer Science and Engineering, Seoul National
 University, Seoul, Korea, 2002.

 [MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes, Vol.2 No.2, 1996.

Authors' Addresses

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 706 6605
 Fax: +1 425 936 6605
 EMail: bernarda@microsoft.com

https://datatracker.ietf.org/doc/html/draft-orman-public-key-lengths-05
https://datatracker.ietf.org/doc/html/draft-puthenkulam-eap-binding-03
https://datatracker.ietf.org/doc/html/draft-aboba-802-context-03

Aboba, et al. Expires April 9, 2004 [Page 45]

Internet-Draft EAP Key Management Framework October 2003

 Dan Simon
 Microsoft Research
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 706 6711
 Fax: +1 425 936 7329
 EMail: dansimon@microsoft.com

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 Phone:
 EMail: jari.arkko@ericsson.com

 Henrik Levkowetz
 ipUnplugged AB
 Arenavagen 27
 Stockholm S-121 28
 SWEDEN

 Phone: +46 708 32 16 08
 EMail: henrik@levkowetz.com

Appendix A. Ciphersuite Keying Requirements

 To date, PPP and IEEE 802.11 ciphersuites are suitable for keying by
 EAP. This Appendix describes the keying requirements of common PPP
 and 802.11 ciphersuites.

 PPP ciphersuites include DESEbis [RFC2419], 3DES [RFC2420], and MPPE
 [RFC3078]. The DES algorithm is described in [FIPSDES], and DES modes
 (such as CBC, used in [RFC2419] and DES-EDE3-CBC, used in [RFC2420])
 are described in [DESMODES]. For PPP DESEbis, a single 56-bit
 encryption key is required, used in both directions. For PPP 3DES, a
 168-bit encryption key is needed, used in both directions. As
 described in [RFC2419] for DESEbis and [RFC2420] for 3DES, the IV,
 which is different in each direction, is "deduced from an explicit
 64-bit nonce, which is exchanged in the clear during the ECP
 negotiation phase [RFC1968]." There is therefore no need for the IV
 to be provided by EAP.

 For MPPE, 40-bit, 56-bit or 128-bit encryption keys are required in

https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc1968

Aboba, et al. Expires April 9, 2004 [Page 46]

Internet-Draft EAP Key Management Framework October 2003

 each direction, as described in [RFC3078]. No initialization vector
 is required.

 While these PPP ciphersuites provide encryption, they do not provide
 per-packet authentication or integrity protection, so an
 authentication key is not required in either direction.

 Within [IEEE80211], Transient Session Keys (TSKs) are required both
 for unicast traffic as well as for multicast traffic, and therefore
 separate key hierarchies are required for unicast keys and multicast
 keys. IEEE 802.11 ciphersuites include WEP-40, described in
 [IEEE80211], which requires a 40-bit encryption key, the same in
 either direction; and WEP-128, which requires a 104-bit encryption
 key, the same in either direction. These ciphersuites also do not
 support per-packet authentication and integrity protection. In
 addition to these unicast keys, authentication and encryption keys
 are required to wrap the multicast encryption key.

 Recently, new ciphersuites have been proposed for use with IEEE
 802.11 that provide per-packet authentication and integrity
 protection as well as encryption [IEEE80211i]. These include TKIP,
 which requires a single 128-bit encryption key and a 128-bit
 authentication key (used in both directions); AES CCMP, which
 requires a single 128-bit key (used in both directions) in order to
 authenticate and encrypt data; and WRAP, which requires a single
 128-bit key (used in both directions).

 As with WEP, authentication and encryption keys are also required to
 wrap the multicast encryption (and possibly, authentication) keys.

Appendix B. Transient EAP Key (TEK) Hierarchy

 Figure B-1 illustrates the TEK key hierarchy for EAP-TLS [RFC2716],
 which is based on the TLS key hierarchy [RFC2246]. The TLS-negotiated
 ciphersuite is used to set up a protected channel for use in
 protecting the EAP conversation, keyed by the derived TEKs. The TEK
 derivation proceeds as follows:

 master_secret = TLS-PRF-48(pre_master_secret, "master secret",
 client.random || server.random)

 TEK = TLS-PRF-X(master_secret, "key expansion",
 server.random || client.random)

 Where:

https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2246

Aboba, et al. Expires April 9, 2004 [Page 47]

Internet-Draft EAP Key Management Framework October 2003

 TLS-PRF-X = TLS pseudo-random function [RFC2246], computed to X
 octets.

 master_secret = TLS term for the MK.

 | | |
 | | pre_master_secret |
 server| | | client
 Random| V | Random
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | | |
 | | | |
 +---->| master_secret |<------+
 | | (MK) | |
 | | | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | |
 | | |
 | | |
 V V V
 +-+
 | |
 | |
 | Key Block |
 | (TEKs) |
 | |
 +-+
 | | | | | |
 | client | server | client | server | client | server
 | MAC | MAC | write | write | IV | IV
 | | | | | |
 V V V V V V

 Figure B-1 - TLS [RFC2246] Key Hierarchy

Appendix C. MSK and EMSK Hierarchy

 In EAP-TLS [RFC2716], the MSK is divided into two halves,
 corresponding to the "Peer to Authenticator Encryption Key"
 (Enc-RECV-Key, 32 octets, also known as the PMK) and "Authenticator
 to Peer Encryption Key" (Enc-SEND-Key, 32 octets). In [RFC2548], the
 Enc-RECV-Key (the PMK) is transported in the MS-MPPE-Recv-Key
 attribute, and the Enc-SEND-Key is transported in the
 MS-MPPE-Send-Key attribute.

 The EMSK is also divided into two halves, corresponding to the "Peer

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Expires April 9, 2004 [Page 48]

Internet-Draft EAP Key Management Framework October 2003

 to Authenticator Authentication Key" (Auth-RECV-Key, 32 octets) and
 "Authenticator to Peer Authentication Key" (Auth-SEND-Key, 32
 octets). The IV is a 64 octet quantity that is a known value; octets
 0-31 are known as the "Peer to Authenticator IV" or RECV-IV, and
 Octets 32-63 are known as the "Authenticator to Peer IV", or SEND-IV.

 In EAP-TLS, the MSK, EMSK and IV are derived from the MK via a
 one-way function. This ensures that the MK cannot be derived from
 the MSK, EMSK or IV unless the one-way function (TLS PRF) is broken.
 Since the MSK is derived from the MK, if the MK is compromised then
 the MSK is also compromised.

 As described in [RFC2716], the formula for the derivation of the MSK,
 EMSK and IV from the MK is as follows:

 MSK = TLS-PRF-64(MK, "client EAP encryption",
 client.random || server.random)

 EMSK = second 64 octets of:
 TLS-PRF-128(MK, "client EAP encryption",
 client.random || server.random)

 IV = TLS-PRF-64("", "client EAP encryption",
 client.random || server.random)

 AAA-Key(0,31) = Peer to Authenticator Encryption Key (Enc-RECV-Key)
 (MS-MPPE-Recv-Key in [RFC2548]). Also known as the
 PMK.

 AAA-Key(32,63) = Authenticator to Peer Encryption Key (Enc-SEND-Key)
 (MS-MPPE-Send-Key in [RFC2548])

 EMSK(0,31) = Peer to Authenticator Authentication Key
 (Auth-RECV-Key)

 EMSK(32,63) = Authenticator to Peer Authentication Key
 (Auth-Send-Key)

 IV(0,31) = Peer to Authenticator Initialization Vector
 (RECV-IV)

 IV(32,63) = Authenticator to Peer Initialization vector
 (SEND-IV)

 Where:

https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Expires April 9, 2004 [Page 49]

Internet-Draft EAP Key Management Framework October 2003

 AAA-Key(W,Z) = Octets W through Z includes of the AAA-Key.

 IV(W,Z) = Octets W through Z inclusive of the IV.

 MSK(W,Z) = Octets W through Z inclusive of the MSK.

 EMSK(W,Z) = Octets W through Z inclusive of the EMSK.

 MK = TLS master_secret

 TLS-PRF-X = TLS PRF function [RFC2246], computed to X octets

 client.random = Nonce generated by the TLS client.

 server.random = Nonce generated by the TLS server.

 Figure C-1 describes the process by which the MSK,EMSK,IV and
 ultimately the TSKs, are derived from the MK. Note that in
 [RFC2716], the MK is referred to as the "TLS Master Secret".

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Expires April 9, 2004 [Page 50]

Internet-Draft EAP Key Management Framework October 2003

 ---+
 | ^
 | TLS Master Secret (MK) |
 | |
 V |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | EAP
 | Master Session Key (MSK) | Method
 | Derivation | |
 | | V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---+
 | | | ^
 | MSK | EMSK | IV EAP
 | | | API
 V V V v
 +-+ ---+
 | | |
 | | |
 | AAA server | |
 | | |
 | | V
 +-+ ---+
 | | ^
 | AAA-Key(0,31) | AAA-Key(32,63) |
 | (PMK) | Transported
 | | via AAA
 | | |
 V V V
 +-+ ---+
 | | ^
 | Ciphersuite-Specific Transient Session | Auth.
 | Key Derivation | |
 | | V
 +-+ ---+

 Figure C-1 - EAP TLS [RFC2716] Key hierarchy

Appendix D. Transient Session Key (TSK) Derivation

 Within IEEE 802.11 RSN, the Pairwise Transient Key (PTK), a transient
 session key used to protect unicast traffic, is derived from the PMK
 (octets 0-31 of the MSK), known in [RFC2716] as the Peer to
 Authenticator Encryption Key. In [IEEE80211i], the PTK is derived
 from the PMK via the following formula:

https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Expires April 9, 2004 [Page 51]

Internet-Draft EAP Key Management Framework October 2003

 PTK = EAPOL-PRF-X(PMK, "Pairwise key expansion",
 Min(AA,SA) || Max(AA, SA) || Min(ANonce,SNonce) ||
 Max(ANonce,SNonce))

 Where:

 PMK = AAA-Key(0,31)

 SA = Station MAC address (Calling-Station-Id)

 AA = Access Point MAC address (Called-Station-Id)

 ANonce = Access Point Nonce

 SNonce = Station Nonce

 EAPOL-PRF-X = Pseudo-Random Function based on HMAC-SHA1,
 generating a PTK of size X octets.

 TKIP uses X = 64, while CCMP, WRAP, and WEP use X = 48.

 The EAPOL-Key Confirmation Key (KCK) is used to provide data origin
 authenticity in the TSK derivation. It utilizes the first 128 bits
 (bits 0-127) of the PTK. The EAPOL-Key Encryption Key (KEK) provides
 confidentiality in the TSK derivation. It utilizes bits 128-255 of
 the PTK. Bits 256-383 of the PTK are used by Temporal Key 1, and
 Bits 384-511 are used by Temporal Key 2. Usage of TK1 and TK2 is
 ciphersuite specific. Details are available in [IEEE80211i].

Appendix E. AAA-Key Derivation

 As discussed in [I-D.irtf-aaaarch-handoff], [IEEE-02-758],
 [IEEE-03-084], and [8021XHandoff], keying material may be required
 for use in fast handoff between IEEE 802.11 authenticators. Where the
 backend authentication server provides keying material to multiple
 authenticators in order to fascilitate fast handoff, it is highly
 desirable for the keying material used on different authenticators to
 be cryptographically separate, so that if one authenticator is
 compromised, it does not lead to the compromise of other
 authenticators. Where keying material is provided by the backend
 authentication server, a key hierarchy derived from the EMSK, as
 suggested in [IEEE-03-155] can be used to provide cryptographically
 separate keying material for use in fast handoff:

 AAA-Key-A = MSK(0,63)

Aboba, et al. Expires April 9, 2004 [Page 52]

Internet-Draft EAP Key Management Framework October 2003

 AAA-Key-B = PRF(EMSK(0,63),AAA-Key-A,
 B-Called-Station-Id,Calling-Station-Id)

 AAA-Key-E = PRF(EMSK(0,63),AAA-Key-A,
 E-Called-Station-Id,Calling-Station-Id)

 Where:

 Calling-Station-Id = STA MAC address

 B-Called-Station-Id = AP B MAC address

 E-Called-Station-Id = AP E MAC address

 Here AAA-Key-A is the AAA-Key derived during the initial EAP
 authentication between the peer and authenticator A. Based on this
 initial EAP authentication, the EMSK is also derived, which can be
 used to derive AAA-Keys for fast authentication between the EAP peer
 and authenticators B and E. Since the EMSK is cryptographically
 separate from the MSK, each of these AAA-Keys is cryptographically
 separate from each other, and are guaranteed to be unique between the
 EAP peer (also known as the STA) and the authenticator (also known as
 the AP).

Appendix F. Open issues

 (This section should be removed by the RFC editor before publication)

 Open issues relating to this specification are tracked on the
 following web site:

http://www.drizzle.com/~aboba/EAP/eapissues.html

 The current working documents for this draft are available at this
 web site:

http://www.levkowetz.com/pub/ietf/drafts/eap/keying/

http://www.drizzle.com/~aboba/EAP/eapissues.html
http://www.levkowetz.com/pub/ietf/drafts/eap/keying/

Aboba, et al. Expires April 9, 2004 [Page 53]

Internet-Draft EAP Key Management Framework October 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Aboba, et al. Expires April 9, 2004 [Page 54]

Internet-Draft EAP Key Management Framework October 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Aboba, et al. Expires April 9, 2004 [Page 55]

