
EAP Working Group Bernard Aboba
INTERNET-DRAFT Dan Simon
Category: Standards Track Microsoft
<draft-ietf-eap-keying-06.txt> J. Arkko
1 April 2005 Ericsson
 P. Eronen
 Nokia
 H. Levkowetz, Ed.
 ipUnplugged

 Extensible Authentication Protocol (EAP) Key Management Framework

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 22, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

 The Extensible Authentication Protocol (EAP), defined in [RFC3748],
 enables extensible network access authentication. This document
 provides a framework for the generation, transport and usage of
 keying material generated by EAP authentication algorithms, known as
 "methods". It also specifies the EAP key hierarchy.

Aboba, et al. Standards Track [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-eap-keying-06.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3748

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Table of Contents

1. Introduction .. 4
1.1 Requirements Language 4
1.2 Terminology 4
1.3 Overview .. 5
1.4 EAP Invariants 11

2. Key Derivation .. 13
2.1 Key Terminology 13
2.2 Key Hierarchy 15
2.3 AAA-Key Derivation 19
2.4 Key Naming 20

3. Security associations 22
3.1 EAP Method SA 23
3.2 EAP-Key SA 24
3.3 AAA SA(s) 24
3.4 Service SA(s) 24

4. Key Management .. 27
4.1 Key Caching 28
4.2 Parent-Child Relationships 29
4.3 Local Key Lifetimes 29
4.4 Exported and Calculated Key Lifetimes 30
4.5 Key Cache Synchronization 31
4.6 Key Scope 32
4.7 Key Strength 33
4.8 Key Wrap .. 34

5. Handoff Vulnerabilities 35
5.1 Authorization 35
5.2 Correctness 36

6. Security Considerations 39
6.1 Security Terminology 39
6.2 Threat Model 39
6.3 Security Analysis 41
6.4 Man-in-the-middle Attacks 44
6.5 Denial of Service Attacks 45
6.6 Impersonation 45
6.7 Channel Binding 46

Aboba, et al. Standards Track [Page 2]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

7. Security Requirements 47
7.1 EAP Method Requirements 47
7.2 AAA Protocol Requirements 50
7.3 Secure Association Protocol Requirements 51
7.4 Ciphersuite Requirements 53

8. IANA Considerations 54
9. References .. 54

9.1 Normative References 54
9.2 Informative References 54

 Acknowledgments .. 58
 Author's Addresses ... 58

Appendix A - Ciphersuite Keying Requirements 60
Appendix B - Example Transient EAP Key (TEK) Hierarchy 61
Appendix C - EAP-TLS Key Hierarchy 62
Appendix D - Example Transient Session Key (TSK) Derivation .. 64
Appendix E - Key Names and Scope in Existing Methods 65
Appendix F - Security Association Examples 66

 Intellectual Property Statement 69
 Disclaimer of Validity 70
 Copyright Statement .. 70

Aboba, et al. Standards Track [Page 3]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

1. Introduction

 The Extensible Authentication Protocol (EAP), defined in [RFC3748],
 was designed to enable extensible authentication for network access
 in situations in which the IP protocol is not available. Originally
 developed for use with PPP [RFC1661], it has subsequently also been
 applied to IEEE 802 wired networks [IEEE-802.1X].

 This document provides a framework for the generation, transport and
 usage of keying material generated by EAP authentication algorithms,
 known as "methods". In EAP keying material is generated by EAP
 methods. Part of this keying material may be used by EAP methods
 themselves and part of this material may be exported. The exported
 keying material may be transported by AAA protocols or transformed by
 Secure Association Protocols into session keys which are used by
 lower layer ciphersuites. This document describes each of these
 elements and provides a system-level security analysis. It also
 specifies the EAP key hierarchy.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 [RFC2119].

1.2. Terminology

 This document frequently uses the following terms:

authenticator
 The end of the link initiating EAP authentication. The term
 Authenticator is used in [IEEE-802.1X], and authenticator has the
 same meaning in this document.

peer The end of the link that responds to the authenticator. In
 [IEEE-802.1X], this end is known as the Supplicant.

Supplicant
 The end of the link that responds to the authenticator in
 [IEEE-802.1X]. In this document, this end of the link is called
 the peer.

backend authentication server
 A backend authentication server is an entity that provides an
 authentication service to an authenticator. When used, this server
 typically executes EAP methods for the authenticator. This
 terminology is also used in [IEEE-802.1X].

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Aboba, et al. Standards Track [Page 4]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

AAA Authentication, Authorization and Accounting. AAA protocols with
 EAP support include RADIUS [RFC3579] and Diameter [I-D.ietf-aaa-
 eap]. In this document, the terms "AAA server" and "backend
 authentication server" are used interchangeably.

EAP server
 The entity that terminates the EAP authentication method with the
 peer. In the case where no backend authentication server is used,
 the EAP server is part of the authenticator. In the case where the
 authenticator operates in pass-through mode, the EAP server is
 located on the backend authentication server.

security association
 A set of policies and cryptographic state used to protect
 information. Elements of a security association may include
 cryptographic keys, negotiated ciphersuites and other parameters,
 counters, sequence spaces, authorization attributes, etc.

1.3. Overview

 EAP is typically deployed in order to support extensible network
 access authentication in situations where a peer desires network
 access via one or more authenticators. Since both the peer and
 authenticator may have more than one physical or logical port, a
 given peer may simultaneously access the network via multiple
 authenticators, or via multiple physical or logical ports on a given
 authenticator. Similarly, an authenticator may offer network access
 to multiple peers, each via a separate physical or logical port. The
 situation is illustrated in Figure 1.

 Where authenticators are deployed standalone, the EAP conversation
 occurs between the peer and authenticator, and the authenticator must
 locally implement an EAP method acceptable to the peer. However, one
 of the advantages of EAP is that it enables deployment of new
 authentication methods without requiring development of new code on
 the authenticator. While the authenticator may implement some EAP
 methods locally and use those methods to authenticate local users, it
 may at the same time act as a pass-through for other users and
 methods, forwarding EAP packets back and forth between the backend
 authentication server and the peer.

 This is accomplished by encapsulating EAP packets within the
 Authentication, Authorization and Accounting (AAA) protocol, spoken
 between the authenticator and backend authentication server. AAA
 protocols supporting EAP include RADIUS [RFC3579] and Diameter [I-
 D.ietf-aaa-eap].

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Standards Track [Page 5]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 +-+-+-+-+
 | |
 | EAP |
 | Peer |
 | |
 +-+-+-+-+
 | | | Peer Ports
 / | \
 / | \
 / | \
 / | \
 / | \
 / | \
 / | \
 / | \
 | | | | | | | | | Authenticator Ports
 +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
 | | | | | |
 | Auth. | | Auth. | | Auth. |
 | | | | | |
 +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
 \ | /
 \ | /
 \ | /
 EAP over AAA \ | /
 (optional) \ | /
 \ | /
 \ | /
 \ | /
 +-+-+-+-+
 | |
 | AAA |
 |Server |
 | |
 +-+-+-+-+

Figure 1: Relationship between peer, authenticator and backend server

 Where EAP key derivation is supported, the conversation between the
 peer and the authenticator typically takes place in three phases:

 Phase 0: Discovery
 Phase 1: Authentication
 1a: EAP authentication
 1b: AAA-Key Transport (optional)
 Phase 2: Secure Association Establishment
 2a: Unicast Secure Association
 2b: Multicast Secure Association (optional)

Aboba, et al. Standards Track [Page 6]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 In the discovery phase (phase 0), peers locate authenticators and
 discover their capabilities. For example, a peer may locate an
 authenticator providing access to a particular network, or a peer may
 locate an authenticator behind a bridge with which it desires to
 establish a Secure Association.

 The authentication phase (phase 1) may begin once the peer and
 authenticator discover each other. This phase always includes EAP
 authentication (phase 1a). Where the chosen EAP method supports key
 derivation, in phase 1a keying material is derived on both the peer
 and the EAP server. This keying material may be used for multiple
 purposes, including protection of the EAP conversation and subsequent
 data exchanges.

 An additional step (phase 1b) is required in deployments which
 include a backend authentication server, in order to transport keying
 material (known as the AAA-Key) from the backend authentication
 server to the authenticator.

 A Secure Association exchange (phase 2) then occurs between the peer
 and authenticator in order to manage the creation and deletion of
 unicast (phase 2a) and multicast (phase 2b) security associations
 between the peer and authenticator.

 The conversation phases and relationship between the parties is shown
 in Figure 2.

 EAP peer Authenticator Auth. Server
 -------- ------------- ------------
 |<----------------------------->| |
 | Discovery (phase 0) | |
 |<----------------------------->|<----------------------------->|
 | EAP auth (phase 1a) | AAA pass-through (optional) |
 | | |
 | |<----------------------------->|
 | | AAA-Key transport |
 | | (optional; phase 1b) |
 |<----------------------------->| |
 | Unicast Secure association | |
 | (phase 2a) | |
 | | |
 |<----------------------------->| |
 | Multicast Secure association | |
 | (optional; phase 2b) | |
 | | |

 Figure 2: Conversation Overview

Aboba, et al. Standards Track [Page 7]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

1.3.1. Discovery Phase

 In the discovery phase (phase 0), the EAP peer and authenticator
 locate each other and discover each other's capabilities. Discovery
 can occur manually or automatically, depending on the lower layer
 over which EAP runs. Since authenticator discovery is handled
 outside of EAP, there is no need to provide this functionality within
 EAP.

 For example, where EAP runs over PPP, the EAP peer might be
 configured with a phone book providing phone numbers of
 authenticators and associated capabilities such as supported rates,
 authentication protocols or ciphersuites. In contrast, PPPoE
 [RFC2516] provides support for a Discovery Stage to allow a peer to
 identify the Ethernet MAC address of one or more authenticators and
 establish a PPPoE SESSION_ID.

 IEEE 802.11 [IEEE-802.11] also provides integrated discovery support
 utilizing Beacon and/or Probe Request/Response frames, allowing the
 peer (known as the station or STA) to determine the MAC address and
 capabilities of one or more authenticators (known as Access Point or
 APs).

1.3.2. Authentication Phase

 Once the peer and authenticator discover each other, they exchange
 EAP packets. Typically, the peer desires access to the network, and
 the authenticators provide that access. In such a situation, access
 to the network can be provided by any authenticator attaching to the
 desired network, and the EAP peer is typically willing to send data
 traffic through any authenticator that can demonstrate that it is
 authorized to provide access to the desired network.

 An EAP authenticator may handle the authentication locally, or it may
 act as a pass-through to a backend authentication server. In the
 latter case the EAP exchange occurs between the EAP peer and a
 backend authenticator server, with the authenticator forwarding EAP
 packets between the two. The entity which terminates EAP
 authentication with the peer is known as the EAP server. Where pass-
 through is supported, the backend authentication server functions as
 the EAP server; where authentication occurs locally, the EAP server
 is the authenticator. Where a backend authentication server is
 present, at the successful completion of an authentication exchange,
 the AAA-Key is transported to the authenticator (phase 1b).

 EAP may also be used when it is desired for two network devices (e.g.
 two switches or routers) to authenticate each other, or where two
 peers desire to authenticate each other and set up a secure

https://datatracker.ietf.org/doc/html/rfc2516

Aboba, et al. Standards Track [Page 8]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 association suitable for protecting data traffic.

 Some EAP methods exist which only support one-way authentication;
 however, EAP methods deriving keys are required to support mutual
 authentication. In either case, it can be assumed that the parties
 do not utilize the link to exchange data traffic unless their
 authentication requirements have been met. For example, a peer
 completing mutual authentication with an EAP server will not send
 data traffic over the link until the EAP server has authenticated
 successfully to the peer, and a Secure Association has been
 negotiated.

 Since EAP is a peer-to-peer protocol, an independent and simultaneous
 authentication may take place in the reverse direction. Both peers
 may act as authenticators and authenticatees at the same time.

 Successful completion of EAP authentication and key derivation by a
 peer and EAP server does not necessarily imply that the peer is
 committed to joining the network associated with an EAP server.
 Rather, this commitment is implied by the creation of a security
 association between the EAP peer and authenticator, as part of the
 Secure Association Protocol (phase 2). As a result, EAP may be used
 for "pre-authentication" in situations where it is necessary to pre-
 establish EAP security associations in order to decrease handoff or
 roaming latency.

1.3.3. Secure Association Phase

 The Secure Association phase (phase 2), if it occurs, begins after
 the completion of EAP authentication (phase 1a) and key transport
 (phase 1b). A Secure Association Protocol used with EAP typically
 supports the following features:

[1] Generation of fresh transient session keys (TSKs). Where AAA-Key
 caching is supported, the EAP peer may initiate a new session using
 a AAA-Key that was used in a previous session. Were the TSKs to be
 derived from a portion of the AAA-Key, this would result in reuse
 of the session keys which could expose the underlying ciphersuite
 to attack.

 As a result, where AAA-Key caching is supported, the Secure
 Association Protocol phase is REQUIRED, and MUST provide for
 freshness of the TSKs. This is typically handled via the exchange
 of nonces or counters, which are then mixed with the AAA-Key in
 order to generate fresh unicast (phase 2a) and possibly multicast
 (phase 2b) session keys. By not using the AAA-Key directly to
 protect data, the Secure Association Protocol protects against
 compromise of the AAA-Key.

Aboba, et al. Standards Track [Page 9]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[2] Entity Naming. A basic feature of a Secure Association Protocol is
 the explicit naming of the parties engaged in the exchange.
 Explicit identification of the parties is critical, since without
 this the parties engaged in the exchange are not identified and the
 scope of the transient session keys (TSKs) generated during the
 exchange is undefined. As illustrated in Figure 1, both the peer
 and NAS may have more than one physical or virtual port, so that
 port identifiers are NOT RECOMMENDED as a naming mechanism.

[3] Secure capabilities negotiation. This includes the secure
 negotiation of usage modes, session parameters (such as key
 lifetimes), ciphersuites and required filters, including
 confirmation of the capabilities discovered during phase 0. It is
 RECOMMENDED that the Secure Association Protocol support secure
 capabilities negotiation, in order to protect against spoofing
 during the discovery phase, and to ensure agreement between the
 peer and authenticator about how data is to be secured.

[4] Key management. EAP as defined in [RFC3748] supports key
 derivation, but not key management. While EAP methods may derive
 keying material, EAP does provide for the management of exported or
 derived keys. For example, EAP does not support negotiation of the
 key lifetime of exported or derived keys, nor does it support
 rekey. Although EAP methods may support "fast reconnect" as
 defined in [RFC3748] Section 7.2.1, rekey of exported keys cannot
 occur without reauthentication. In order to provide method
 independence, key management of exported or derived keys SHOULD NOT
 be provided within EAP methods.

 Since neither EAP nor EAP methods provide key management support,
 it is RECOMMENDED that key management facilities be provided within
 the Secure Association Protocol. This includes key lifetime
 management (such as via explicit key lifetime negotiation, or
 seamless rekey), as well synchronization of the installation and
 deletion of keys so as to enable recovery from partial or complete
 loss of key state by the peer or authenticator. Since key
 management requires a key naming scheme, Secure Association
 Protocols supporting key management support MUST also support key
 naming.

[5] Mutual proof of possession of the AAA-Key. The Secure Association
 Protocol MUST demonstrate mutual proof of posession of the AAA-Key,
 in order to show that both the peer and authenticator have been
 authenticated and authorized by the backend authentication server.
 Since mutual proof of possession is not the same as mutual
 authentication, the peer cannot verify authenticator assertions
 (including the authenticator identity) as a result of this
 exchange.

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748#section-7.2.1

Aboba, et al. Standards Track [Page 10]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

1.4. EAP Invariants

 Certain basic characteristics, known as the "EAP Invariants" hold
 true for EAP implementations on all media:

 Media independence
 Method independence
 Ciphersuite independence

1.4.1. Media Independence

 One of the goals of EAP is to allow EAP methods to function on any
 lower layer meeting the criteria outlined in [RFC3748], Section 3.1.
 For example, as described in [RFC3748], EAP authentication can be run
 over PPP [RFC1661], IEEE 802 wired networks [IEEE-802.1X], and IEEE
 802.11 wireless LANs [IEEE-802.11i].

 In order to maintain media independence, it is necessary for EAP to
 avoid inclusion of media-specific elements. For example, EAP methods
 cannot be assumed to have knowledge of the lower layer over which
 they are transported, and cannot utilize identifiers associated with
 a particular usage environment (e.g. MAC addresses).

 The need for media independence has also motivated the development of
 the three phase exchange. Since discovery is typically media-
 specific, this function is handled outside of EAP, rather than being
 incorporated within it. Similarly, the Secure Association Protocol
 often contains media dependencies such as negotiation of media-
 specific ciphersuites or session parameters, and as a result this
 functionality also cannot be incorporated within EAP.

 Note that media independence may be retained within EAP methods that
 support channel binding or method-specific identification. An EAP
 method need not be aware of the content of an identifier in order to
 use it. This enables an EAP method to use media-specific identifiers
 such as MAC addresses without compromising media independence. To
 support channel binding, an EAP method can pass binding parameters to
 the AAA server in the form of an opaque blob, and receive
 confirmation of whether the parameters match, without requiring
 media-specific knowledge.

1.4.2. Method Independence

 By enabling pass-through, authenticators can support any method
 implemented on the peer and server, not just locally implemented
 methods. This allows the authenticator to avoid implementing code
 for each EAP method required by peers. In fact, since a pass-through
 authenticator is not required to implement any EAP methods at all, it

https://datatracker.ietf.org/doc/html/rfc3748#section-3.1
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc1661

Aboba, et al. Standards Track [Page 11]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 cannot be assumed to support any EAP method-specific code.

 As a result, as noted in [RFC3748], authenticators must by default be
 capable of supporting any EAP method. Since the Discovery and Secure
 Association exchanges are also method independent, an authenticator
 can carry out the three phase exchange without having an EAP method
 in common with the peer.

 This is useful where there is no single EAP method that is both
 mandatory-to-implement and offers acceptable security for the media
 in use. For example, the [RFC3748] mandatory-to-implement EAP method
 (MD5-Challenge) does not provide dictionary attack resistance, mutual
 authentication or key derivation, and as a result is not appropriate
 for use in wireless LAN authentication [RFC4017]. However, despite
 this it is possible for the peer and authenticator to interoperate as
 long as a suitable EAP method is supported on the EAP server.

1.4.3. Ciphersuite Independence

 While EAP methods may negotiate the ciphersuite used in protection of
 the EAP conversation, the ciphersuite used for the protection of the
 data exchanged after EAP authentication has completed is negotiated
 between the peer and authenticator out-of-band of EAP. Since
 ciphersuite negotiation is assumed to occur out-of-band, there is no
 need for ciphersuite negotiation within EAP. Since ciphersuite
 negotiation occurs outside of EAP, EAP methods generate keying
 material that is ciphersuite-independent.

 For example, within PPP, the ciphersuite is negotiated within the
 Encryption Control Protocol (ECP) defined in [RFC1968], after EAP
 authentication is completed. Within [IEEE-802.11i], the AP
 ciphersuites are advertised in the Beacon and Probe Responses prior
 to EAP authentication, and are securely verified during a 4-way
 handshake exchange after EAP authentication has completed.

 Advantages of ciphersuite-independence include:

Reduced update requirements
 If EAP methods were to specify how to derive transient session keys
 for each ciphersuite, they would need to be updated each time a new
 ciphersuite is developed. In addition, backend authentication
 servers might not be usable with all EAP-capable authenticators,
 since the backend authentication server would also need to be
 updated each time support for a new ciphersuite is added to the
 authenticator.

Reduced EAP method complexity
 Requiring each EAP method to include ciphersuite-specific code for

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc1968

Aboba, et al. Standards Track [Page 12]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 transient session key derivation would increase method complexity
 and result in duplicated effort.

Simplified configuration
 The ciphersuite is negotiated between the peer and authenticator
 out-of-band of EAP. The backend authentication server is neither a
 party to this negotiation, nor is it an intermediary in the data
 flow between the EAP peer and authenticator. The backend
 authentication server may not have knowledge of the ciphersuites
 and negotiation policies implemented by the peer and authenticator,
 or be aware of the ciphersuite negotiated between them. This
 simplifies the configuration of the backend authentication server.
 For example, since ECP negotiation occurs after authentication,
 when run over PPP, the EAP peer, authenticator and backend
 authentication server may not anticipate the negotiated ciphersuite
 and therefore this information cannot be provided to the EAP
 method.

2. Key Derivation

2.1. Key Terminology

 The EAP Key Hierarchy makes use of the following types of keys:

Long Term Credential
 EAP methods frequently make use of long term secrets in order to
 enable authentication between the peer and server. In the case of
 a method based on pre-shared key authentication, the long term
 credential is the pre-shared key. In the case of a public-key
 based method, the long term credential is the corresponding private
 key.

Master Session Key (MSK)
 Keying material that is derived between the EAP peer and server and
 exported by the EAP method. The MSK is at least 64 octets in
 length.

Extended Master Session Key (EMSK)
 Additional keying material derived between the peer and server that
 is exported by the EAP method. The EMSK is at least 64 octets in
 length, and is never shared with a third party.

AAA-Key
 A key derived by the peer and EAP server, used by the peer and
 authenticator in the derivation of Transient Session Keys (TSKs).
 Where a backend authentication server is present, the AAA-Key is
 transported from the backend authentication server to the
 authenticator, wrapped within the AAA-Token; it is therefore known

Aboba, et al. Standards Track [Page 13]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 by the peer, authenticator and backend authentication server.
 Despite the name, the AAA-Key is computed regardless of whether a
 backend authentication server is present. AAA-Key derivation is
 discussed in Section 2.3; in existing implementations the MSK is
 used as the AAA-Key.

AAA-Token
 Where a backend server is present, the AAA-Key and one or more
 attributes is transported between the backend authentication server
 and the authenticator within a package known as the AAA-Token. The
 format and wrapping of the AAA-Token, which is intended to be
 accessible only to the backend authentication server and
 authenticator, is defined by the AAA protocol. Examples include
 RADIUS [RFC2548] and Diameter [I-D.ietf-aaa-eap].

Initialization Vector (IV)
 A quantity of at least 64 octets, suitable for use in an
 initialization vector field, that is derived between the peer and
 EAP server. Since the IV is a known value in methods such as EAP-
 TLS [RFC2716], it cannot be used by itself for computation of any
 quantity that needs to remain secret. As a result, its use has
 been deprecated and EAP methods are not required to generate it.
 However, when it is generated it MUST be unpredictable.

Pairwise Master Key (PMK)
 The AAA-Key is divided into two halves, the "Peer to Authenticator
 Encryption Key" (Enc-RECV-Key) and "Authenticator to Peer
 Encryption Key" (Enc-SEND-Key) (reception is defined from the point
 of view of the authenticator). Within [IEEE-802.11i] Octets 0-31
 of the AAA-Key (Enc-RECV-Key) are known as the Pairwise Master Key
 (PMK). In [IEEE-802.11i] the TKIP and AES CCMP ciphersuites derive
 their Transient Session Keys (TSKs) solely from the PMK, whereas
 the WEP ciphersuite as noted in [RFC3580], derives its TSKs from
 both halves of the AAA-Key.

Transient EAP Keys (TEKs)
 Session keys which are used to establish a protected channel
 between the EAP peer and server during the EAP authentication
 exchange. The TEKs are appropriate for use with the ciphersuite
 negotiated between EAP peer and server for use in protecting the
 EAP conversation. Note that the ciphersuite used to set up the
 protected channel between the EAP peer and server during EAP
 authentication is unrelated to the ciphersuite used to subsequently
 protect data sent between the EAP peer and authenticator. An
 example TEK key hierarchy is described in Appendix C.

Transient Session Keys (TSKs)
 Session keys used to protect data exchanged between the peer and

https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc3580

Aboba, et al. Standards Track [Page 14]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 the authenticator after the EAP authentication has successfully
 completed. TSKs are appropriate for the lower layer ciphersuite
 negotiated between the EAP peer and authenticator. Examples of TSK
 derivation are provided in Appendix D.

2.2. Key Hierarchy

 The EAP Key Hierarchy, illustrated in Figure 3, has at the root the
 long term credential utilized by the selected EAP method. If
 authentication is based on a pre-shared key, the parties store the
 EAP method to be used and the pre-shared key. The EAP server also
 stores the peer's identity and/or other information necessary to
 decide whether access to some service should be granted. The peer
 stores information necessary to choose which secret to use for which
 service.

 If authentication is based on proof of possession of the private key
 corresponding to the public key contained within a certificate, the
 parties store the EAP method to be used and the trust anchors used to
 validate the certificates. The EAP server also stores the peer's
 identity and/or other information necessary to decide whether access
 to some service should be granted. The peer stores information
 necessary to choose which certificate to use for which service.

 Based on the long term credential established between the peer and
 the server, EAP derives two types of keys:

 [1] Keys calculated locally by the EAP method but not exported
 by the EAP method, such as the TEKs.
 [2] Keys exported by the EAP method: MSK, EMSK, IV

 From the keys exported by the EAP method, two other types of keys may
 be derived:

 [3] Keys calculated from exported quantities: AAA-Key.
 [4] Keys calculated by the Secure Association Protocol from the
 AAA-Key: TSKs.

 In order to protect the EAP conversation, methods supporting key
 derivation typically negotiate a ciphersuite and derive Transient EAP
 Keys (TEKs) for use with that ciphersuite. The TEKs are stored
 locally by the EAP method and are not exported.

 As noted in [RFC3748] Section 7.10, EAP methods generating keys are
 required to calculate and export the MSK and EMSK, which must be at
 least 64 octets in length. EAP methods also may export the IV;
 however, the use of the IV is deprecated. On both the peer and EAP
 server, the exported MSK is utilized in order to calculate the AAA-

https://datatracker.ietf.org/doc/html/rfc3748#section-7.10

Aboba, et al. Standards Track [Page 15]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Key, as described in Section 2.3. Where a backend authentication
 server is present, the AAA-Key is transported from the backend
 authentication server to the authenticator within the AAA-Token,
 using the AAA protocol.

 Once EAP authentication completes and is successful, the peer and
 authenticator obtain the AAA-Key and the Secure Association Protocol
 is run between the peer and authenticator in order to securely
 negotiate the ciphersuite, derive fresh TSKs used to protect data,
 and provide mutual proof of possession of the AAA-Key.

 When the authenticator acts as an endpoint of the EAP conversation
 rather than a pass-through, EAP methods are implemented on the
 authenticator as well as the peer. If the EAP method negotiated
 between the EAP peer and authenticator supports mutual authentication
 and key derivation, the EAP Master Session Key (MSK) and Extended
 Master Session Key (EMSK) are derived on the EAP peer and
 authenticator and exported by the EAP method. In this case, the MSK
 and EMSK are known only to the peer and authenticator and no other
 parties. The TEKs and TSKs also reside solely on the peer and
 authenticator. This is illustrated in Figure 4. As demonstrated in
 [I-D.ietf-roamops-cert], in this case it is still possible to support
 roaming between providers, using certificate-based authentication.

 Where a backend authentication server is utilized, the situation is
 illustrated in Figure 5. Here the authenticator acts as a pass-
 through between the EAP peer and a backend authentication server. In
 this model, the authenticator delegates the access control decision
 to the backend authentication server, which acts as a Key
 Distribution Center (KDC). In this case, the authenticator
 encapsulates EAP packet with a AAA protocol such as RADIUS [RFC3579]
 or Diameter [I-D.ietf-aaa-eap], and forwards packets to and from the
 backend authentication server, which acts as the EAP server. Since
 the authenticator acts as a pass-through, EAP methods reside only on
 the peer and EAP server As a result, the TEKs, MSK and EMSK are
 derived on the peer and EAP server.

 On completion of EAP authentication, EAP methods on the peer and EAP
 server export the Master Session Key (MSK) and Extended Master
 Session Key (EMSK). The peer and EAP server then calculate the AAA-
 Key from the MSK and EMSK, and the backend authentication server
 sends an Access-Accept to the authenticator, providing the AAA-Key
 within a protected package known as the AAA-Token.

 The AAA-Key is then used by the peer and authenticator within the
 Secure Association Protocol to derive Transient Session Keys (TSKs)
 required for the negotiated ciphersuite. The TSKs are known only to
 the peer and authenticator.

https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Standards Track [Page 16]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

+-+ ---+
| | ^
EAP Method									
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+									
	EAP Method Key	<->	Long-Term						
	Derivation		Credential						
		+-+-+-+-+-+-+-+	Local to						
			EAP						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	Method								
V									
+-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+									
	TEK		MSK		EMSK		IV		
	Derivation		Derivation		Derivation		Derivation		
+-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+									
				V					
+-+ ---+
 | | | ^
 | | | |
 | MSK (64B) | EMSK (64B) | IV (64B) |
 | | | Exported|
 | | | by |
 | V V EAP v
 | ---+
 | AAA-Key Transported |
 | by AAA |
 | Protocol |
 V V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---+
 | | ^
 | TSK Derivation | Lower layer |
 | [AAA-Key Cache] | Specific |
 | | V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---+

 Figure 3: EAP Key Hierarchy

Aboba, et al. Standards Track [Page 17]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 +-+-+-+-+-+ +-+-+-+-+-+
Cipher-		Cipher-
Suite		Suite
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | |
 | |
 V V
 +-+-+-+-+-+ +-+-+-+-+-+
	===============	
	EAP, TEK Deriv.	Authenti-
	<------------->	cator
	Secure Assoc.	
peer	<------------->	(EAP
	===============	server)
	Link layer	
	(PPP,IEEE802)	
MSK,EMSK		MSK,EMSK
(TSKs)		(TSKs)
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | MSK, EMSK | MSK, EMSK
 | |
 | |
 +-+-+-+-+-+ +-+-+-+-+-+
EAP		EAP
Method		Method
(TEKs)		(TEKs)
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 4: Relationship between EAP peer and authenticator (acting as
 an EAP server), where no backend authentication server is present.

Aboba, et al. Standards Track [Page 18]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 +-+-+-+-+-+ +-+-+-+-+-+
Cipher-		Cipher-
Suite		Suite
 +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | |
 | |
 V V
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+
	===============		========	
	EAP, TEK Deriv.			
	<-------------------------------->	backend		
			AAA-Key/	
	Secure Assoc.		Name	
peer	<------------->	Authenti-	<-------	auth
	===============	cator	========	server
	Link Layer		AAA	(EAP
	(PPP,IEEE 802)		Protocol	server)
MSK,EMSK		MSK		MSK,EMSK
(TSKs)		(TSKs)		
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | MSK, EMSK | MSK, EMSK
 | |
 | |
 +-+-+-+-+-+ +-+-+-+-+-+
EAP		EAP
Method		Method
(TEKs)		(TEKs)
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 5: Pass-through relationship between EAP peer, authenticator
 and backend authentication server.

2.3. AAA-Key Derivation

 In existing usage, where a AAA-Key is generated as the result of a
 successful EAP authentication with the authenticator, the AAA-Key is

Aboba, et al. Standards Track [Page 19]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 based on the MSK: AAA-Key = MSK(0,63).

2.4. Key Naming

 Each key created within the EAP key management framework has a name
 (the identifier by which the key can be identified), as well as a
 scope (the parties to whom the key is available). This section
 describes how keys are named, and the scope within which that name
 applies.

Session-Id

 EAP methods supporting key naming MUST specify a temporally unique
 method identifier known as the EAP Method-Id, which is typically
 constructed from nonces or counters used within the exchange. Since
 multiple EAP sessions may exist between an EAP peer and EAP server,
 the Method-Id allows MSKs to be differentiated.

 The concatenation of the EAP Type (expressed in ASCII text), ":" and
 the Method-Id (also expressed in ASCII text) is known as the EAP
 Session-Id. The inclusion of the Type in the EAP Session-Id ensures
 that each EAP method has a distinct name space.

 The EAP Session-Id uniquely identifies the EAP session to the EAP
 peer and server terminating the EAP conversation. However, suitable
 EAP peer and server names may not always be available. As described
 in [RFC3748] Section 7.3, the identity provided in the EAP-
 Response/Identity, may be different from the identity authenticated
 by the EAP method, and as a result the EAP-Response/Identity is
 unsuitable for determination of the peer identity. As a result, the
 Session-Id scope is defined by the EAP peer name (if securely
 exchanged within the method) concatenated with the EAP server name
 (also only if securely exchanged). Where a peer or server name is
 missing the null string is used. Since an EAP session is not bound
 to a particular authentication or specific ports on the peer and
 authenticator, the authenticator port or identity are not included in
 the Session-Id scope.

 The EAP Session-Id is exported by the EAP method along with the
 Session-Id scope, if available, and is used to construct names for
 other EAP keys. Note that the EAP Session-Id and scope are only
 known by the EAP method. As a result, the format of the EAP Session-
 Id and the definition of the Session-Id scope needs to be specified
 within the method. Appendix E defines the EAP Session-Id and scope
 provided by existing methods.

MSK Name

https://datatracker.ietf.org/doc/html/rfc3748#section-7.3

Aboba, et al. Standards Track [Page 20]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 This key is created between the EAP peer and EAP server, and can be
 referred to using the string "MSK:", concatenated with the EAP
 Session-Id. As with the EAP Session-Id, the MSK scope is defined by
 the EAP peer name (if securely exchanged within the method) and the
 EAP server name (also only if securely exchanged). Where a peer or
 server name is missing the null string is used.

EMSK Name

 The EMSK can be referred to using the string "EMSK:", concatenated
 with the EAP Session-Id.

 As with the EAP Session-Id, the EMSK scope is defined by the EAP peer
 name (if securely exchanged within the method) and the EAP server
 name (also only if securely exchanged). Where a peer or server name
 is missing the null string is used.

AAA-Key Name

 In existing usage, the AAA-Key is always derived from the MSK so can
 be referred to using the MSK name.

 The AAA-Key scope is provided by the concatenation of the EAP peer
 name (if securely provided to the authenticator), and the
 authenticator name (if securely provided to the peer).

 For the purpose of identifying the authenticator to the peer, the
 value of the NAS-Identifier attribute is recommended. The
 authenticator may include the NAS-Identifier attribute to the AAA
 server in an Access-Request, and the authenticator may provide the
 NAS-Identifier to the EAP peer. Mechanisms for this include use of
 the EAP-Request/Identity (unsecured) or a lower layer mechanism (such
 as the 802.11 Beacon/Probe Response). Where the NAS-Identifier is
 provided by the authenticator to the peer a secure mechanism is
 RECOMMENDED.

 For the purpose of identifying the peer to the authenticator, the EAP
 peer identifier provided within the EAP method is recommended. It
 cannot be assumed that the authenticator is aware of the EAP peer
 name used within the method. Therefore alternatives mechanisms need
 to be used to provide the EAP peer name to the authenticator. For
 example, the AAA server may include the EAP peer name in the User-
 Name attribute of the Access-Accept or the peer may provide the
 authenticator with its name via a lower layer mechanism.

 Absent an explicit binding step within the Secure Association
 Protocol, the AAA-Key is not bound to a specific peer or
 authenticator port. As a result, the peer or authenticator port over

Aboba, et al. Standards Track [Page 21]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 which the EAP conversation takes place is not included in the AAA-Key
 scope.

PMK Name

 This document does not specify a naming scheme for the PMK. The PMK
 is only identified by the AAA-Key from which it is derived.
 Similarly, the PMK scope is the same as the AAA-Key scope.

 Note: IEEE 802.11i names the PMKID for the purposes of being able to
 refer to it in the Secure Association protocol; this naming is based
 on a hash of the PMK itself as well as some other parameters (see

Section 8.5.1.2 [IEEE-802.11i]).

TEKs

 The TEKs may or may not be named. Their naming is specified in the
 EAP method. Since the TEKs are only known by the EAP peer and
 server, the TEK scope is the same as the Session-Id scope.

TSKs

 The TSKs are typically named. Their naming is specified in the Secure
 Association (phase 2) protocol, so that the correct set of transient
 session keys can be identified for processing a given packet. The
 scope of the TSKs is negotiated within the Secure Association
 Protocol.

 TSK creation and deletion operations are typically supported so that
 establishment and re-establishment of TSKs can be synchronized
 between the parties.

 In order to avoid confusion in the case where an EAP peer has more
 than one AAA-Key (phase 1b) applicable to establishment of a phase 2
 security association, the secure Association protocol needs to
 utilize the AAA-Key name so that the appropriate phase 1b keying
 material can be identified for use in the Secure Association Protocol
 exchange.

3. Security Associations

 During EAP authentication and subsequent exchanges, four types of
 security associations (SAs) are created:

[1] EAP method SA. This SA is between the peer and EAP server. It
 stores state that can be used for "fast reconnect" or other
 functionality in some EAP methods. Not all EAP methods create such
 an SA.

Aboba, et al. Standards Track [Page 22]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[2] EAP-Key SA. This is an SA between the peer and EAP server, which
 is used to store the keying material exported by the EAP method.
 Current EAP server implementations do not retain this SA after the
 EAP conversation completes.

[3] AAA SA(s). These SAs are between the authenticator and the backend
 authentication server. They permit the parties to mutually
 authenticate each other and protect the communications between
 them.

[4] Service SA(s). These SAs are between the peer and authenticator,
 and they are created as a result of phases 1-2 of the conversation
 (see Section 1.3).

 Examples of security associations are provided in Appendix F.

3.1. EAP Method SA (peer - EAP server)

 An EAP method may store some state on the peer and EAP server even
 after phase 1a has completed.

 Typically, this is used for "fast reconnect": the peer and EAP server
 can confirm that they are still talking to the same party, perhaps
 using fewer round-trips or less computational power. In this case,
 the EAP method SA is essentially a cache for performance
 optimization, and either party may remove the SA from its cache at
 any point.

 An EAP method may also keep state in order to support pseudonym-based
 identity protection. This is typically a cache as well (the
 information can be recreated if the original EAP method SA is lost),
 but may be stored for longer periods of time.

 The EAP method SA is not restricted to a particular service or
 authenticator and is most useful when the peer accesses many
 different authenticators. An EAP method is responsible for
 specifying how the parties select if an existing EAP method SA should
 be used, and if so, which one. Where multiple backend authentication
 servers are used, EAP method SAs are not typically synchronized
 between them.

 EAP method implementations should consider the appropriate lifetime
 for the EAP method SA. "Fast reconnect" assumes that the information
 required (primarily the keys in the EAP method SA) hasn't been
 compromised. In case the original authentication was carried out
 using, for instance, a smart card, it may be easier to compromise the
 EAP method SA (stored on the PC, for instance), so typically the EAP
 method SAs have a limited lifetime.

Aboba, et al. Standards Track [Page 23]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Contents:

 o Implicitly, the EAP method this SA refers to
 o Internal (non-exported) cryptographic state
 o EAP method SA name
 o SA lifetime

3.2. EAP-Key SA

 This is an SA between the peer and EAP server, which is used to store
 the keying material exported by the EAP method. Current EAP server
 implementations do not retain this SA after the EAP conversation
 completes. As a result, all keys exported by the EAP method
 (including the MSK, EMSK and IV) on the AAA server are discarded and
 are not cached. Calculated keys (such as the AAA-Key) are also
 discarded and not cached.

3.3. AAA SA(s) (authenticator - backend authentication server)

 In order for the authenticator and backend authentication server to
 authenticate each other, they need to store some information.

 In case the authenticator and backend authentication server are
 colocated, and they communicate using local procedure calls or shared
 memory, this SA need not necessarily contain any information.

3.4. Service SA(s) (peer - authenticator)

 The service SAs store information about the service being provided.
 These include the Root service SA and derived unicast and multicast
 service SAs.

 The Root service SA is established as the result of the completion of
 EAP authentication (phase 1a) and AAA-Key derivation or transport
 (phase 1b). It includes:

 o Service parameters (or at least those parameters
 that are still needed)
 o On the authenticator, service authorization
 information received from the backend authentication
 server (or necessary parts of it)
 o On the peer, usually locally configured service
 authorization information.
 o The AAA-Key, if it can be needed again (to refresh
 and/or resynchronize other keys or for another reason)
 o AAA-Key lifetime

 Unicast and (optionally) multicast service SAs are derived from the

Aboba, et al. Standards Track [Page 24]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Root service SA, via the Secure Association Protocol. In order for
 unicast and multicast service SAs and associated TSKs to be
 established, it is not necessary for EAP authentication (phase 1a) to
 be rerun each time. Instead, the Secure Association Protocol can be
 used to mutually prove possession of the AAA-Key and create
 associated unicast (phase 2a) and multicast (phase 2b) service SAs
 and TSKs, enabling the EAP exchange to be bypassed. Unicast and
 multicast service SAs include:

 o Service parameters negotiated by the Secure Association Protocol.
 o Endpoint identifiers.
 o Transient Session Keys used to protect the communication.
 o Transient Session Key lifetime.

 One function of the Secure Association Protocol is to bind the the
 unicast and multicast service SAs and TSKs to endpoint identifiers.
 For example, within [IEEE802.11i], the 4-way handshake binds the TSKs
 to the MAC addresses of the endpoints; in [IKEv2], the TSKs are bound
 to the IP addresses of the endpoints and the negotiated SPI.

 It is possible for more than one unicast or multicast service SA to
 be derived from a single Root service SA. However, a unicast or
 multicast service SA is always descended from only one Root service
 SA. Unicast or multicast service SAs descended from the same Root
 service SA may utilize the same security parameters (e.g. mode,
 ciphersuite, etc.) or they may utilize different parameters.

 An EAP peer may be able to negotiate multiple service SAs with a
 given authenticator, or may be able to maintain one or more service
 SAs with multiple authenticators, depending on the properties of the
 media.

 Except where explicitly specified by the Secure Association Protocol,
 it should not be assumed that the installation of new service SAs
 implies deletion of old service SAs. It is possible for multicast
 Root service SAs to between the same EAP peer and authenticator;
 during a re-key of a unicast or multicast service SA it is possible
 for two service SAs to exist during the period between when the new
 service SA and corresponding TSKs are calculated and when they are
 installed.

 Similarly, deletion or creation of a unicast or multicast service SA
 does not necessarily imply deletion or creation of related unicast or
 multicast service SAs, unless specified by the Secure Association
 protocol. For example, a unicast service SA may be rekeyed without
 implying a rekey of the multicast service SA.

 The deletion of the Root service SA does not necessarily imply the

Aboba, et al. Standards Track [Page 25]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 deletion of the derived unicast and multicast service SAs and
 associated TSKs. Failure to mutually prove possession of the AAA-Key
 during the Secure Association Protocol exchange need not be grounds
 for deletion of the AAA-Key by both parties; the action to be taken
 is defined by the Secure Association Protocol.

3.4.1. Sharing service SAs

 A single service may be provided by multiple logical or physical
 service elements. Each service is responsible for specifying how
 changing service elements is handled. Some approaches include:

Transparent sharing
 If the service parameters visible to the other party (either peer
 or authenticator) do not change, the service can be moved without
 requiring cooperation from the other party.

 Whether such a move should be supported or used depends on
 implementation and administrative considerations. For instance, an
 administrator may decide to configure a group of IKEv2/IPsec
 gateways in a cluster for high-availability purposes, if the
 implementation used supports this. The peer does not necessarily
 have any way of knowing when the change occurs.

No sharing
 If the service parameters require changing, some changes may
 require terminating the old service, and starting a new
 conversation from phase 0. This approach is used by all services
 for at least some parameters, and it doesn't require any protocol
 for transferring the service SA between the service elements.

 The service may support keeping the old service element active
 while the new conversation takes phase, to decrease the time the
 service is not available.

Some sharing
 The service may allow changing some parameters by simply agreeing
 about the new values. This may involve a similar exchange as in
 phase 2, or perhaps a shorter conversation.

 This option usually requires some protocol for transferring the
 service SA between the elements. An administrator may decide not to
 enable this feature at all, and typically the sharing is restricted
 to some particular service elements (defined either by a service
 parameter, or simple administrative decision). If the old and new
 service element do not support such "context transfer", this
 approach falls back to the previous option (no transfer).

Aboba, et al. Standards Track [Page 26]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Services supporting this feature should also consider what changes
 require new authorization from the backend authentication server
 (see Section 4.2).

 Note that these considerations are not limited to service
 parameters related to the authenticator--they apply to peer
 parameters as well.

4. Key Management

 EAP supports key derivation, but not key management. As a result,
 key management functionality needs to be provided by the Secure
 Association Protocol. This includes:

[a] Generation of fresh transient session keys (TSKs). Where AAA-Key
 caching is supported, the EAP peer may initiate a new session using
 a AAA-Key that was used in a previous session. Were the TSKs to be
 derived from a portion of the AAA-Key, this would result in reuse
 of the session keys which could expose the underlying ciphersuite
 to attack. As a result, where AAA-Key caching is supported, the
 Secure Association Protocol phase is REQUIRED, and MUST provide for
 freshness of the TSKs.

[b] Key lifetime determination. EAP does not support negotiation of
 key lifetimes, nor does it support rekey without reauthentication.
 As a result, the Secure Association Protocol may handle rekey and
 determination of the key lifetime. Where key caching is supported,
 secure negotiation of key lifetimes is RECOMMENDED. Lower layers
 that support rekey, but not key caching, may not require key
 lifetime negotiation. To take an example from IKE, the difference
 between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes were
 negotiated. In IKEv2, each end of the SA is responsible for
 enforcing its own lifetime policy on the SA and rekeying the SA
 when necessary.

[c] Key resynchronization. It is possible for the peer or
 authenticator to reboot or reclaim resources, clearing portions or
 all of the key cache. Therefore, key lifetime negotiation cannot
 guarantee that the key cache will remain synchronized, and the peer
 may not be able to determine before attempting to use a AAA-Key
 whether it exists within the authenticator cache. It is therefore
 RECOMMENDED for the Secure Association Protocol to provide a
 mechanism for key state resynchronization. Since in this situation
 one or more of the parties initially do not possess a key with
 which to protect the resynchronization exchange, securing this
 mechanism may be difficult.

Aboba, et al. Standards Track [Page 27]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[d] Key selection. Where key caching is supported, it may be possible
 for the EAP peer and authenticator to share more than one key of a
 given type. As a result, the Secure Association Protocol needs to
 support key selection, using the EAP Key Naming scheme described in
 this document.

[e] Key scope determination. Since the Discovery phase is handled out-
 of-band, EAP does not provide a mechanism by which the peer can
 determine the authenticator identity. As a result, where the
 authenticator has multiple ports and AAA-Key caching is supported,
 the EAP peer may not be able to determine the scope of validity of
 a AAA-Key. Similarly, where the EAP peer has multiple ports, the
 authenticator may not be able to determine whether a peer has
 authorization to use a particular AAA-Key. To allow key scope
 determination, the lower layer SHOULD provide a mechanism by which
 the peer can determine the scope of the AAA-Key cache on each
 authenticator, and by which the authenticator can determine the
 scope of the AAA-Key cache on a peer.

4.1. Key Caching

 In existing implementations, key caching may be supported on the EAP
 peer and authenticator but not on the backend server. Where
 explicitly supported by the lower layer, the EAP peer and
 authenticator MAY cache the AAA-Key and/or TSKs. The structure of
 the key cache on the peer and authenticator is defined by the lower
 layer. Unless specified by the lower layer, the EAP peer and
 authenticator MUST assume that peers and authenticators do not cache
 the AAA-Key or TSKs.

 In existing AAA server implementations, all keys exported by EAP
 methods (including the MSK, EMSK and IV) and calculated keys (e.g.
 AAA-Key) are not cached and are lost after EAP authentication
 completes:

[1] In order to avoid key reuse, on the EAP server, transported keys
 are deleted once they are sent. An EAP server MUST NOT retain keys
 that it has previously sent to the authenticator. For example, an
 EAP server that has transported a AAA-Key based on the MSK MUST
 delete the MSK, and no keys may be derived from the MSK from that
 point forward by the server.

[2] Keys which are not transported, such as the EMSK, are also deleted
 by existing implementations.

Aboba, et al. Standards Track [Page 28]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

4.2. Parent-Child Relationships

 When keying material exported by EAP methods expires, all keying
 material derived from the exported keying material expires, including
 the AAA-Key and TSKs.

 When an EAP reauthentication takes place, new keying material is
 derived and exported by the EAP method, which eventually results in
 replacement of calculated keys, including the AAA-Key and TSKs.

 As a result, while the lifetime of calculated keys can be less than
 or equal that of the exported keys they are derived from, it cannot
 be greater. For example, TSK rekey may occur prior to EAP
 reauthentication.

 Failure to mutually prove possession of the AAA-Key during the Secure
 Association Protocol exchange need not be grounds for deletion of the
 AAA-Key by both parties; rate-limiting Secure Association Protocol
 exchanges could be used to prevent a brute force attack.

4.3. Local Key Lifetimes

 The Transient EAP Keys (TEKs) are session keys used to protect the
 EAP conversation. The TEKs are internal to the EAP method and are
 not exported. TEKs are typically created during an EAP conversation,
 used until the end of the conversation and then discarded. However,
 methods may rekey TEKs during a conversation.

 When using TEKs within an EAP conversation or across conversations,
 it is necessary to ensure that replay protection and key separation
 requirements are fulfilled. For instance, if a replay counter is
 used, TEK rekey MUST occur prior to wrapping of the counter.
 Similarly, TSKs MUST remain cryptographically separate from TEKs
 despite TEK rekeying or caching. This prevents TEK compromise from
 leading directly to compromise of the TSKs and vice versa.

 EAP methods may cache local keying material which may persist for
 multiple EAP conversations when fast reconnect is used [RFC 3748].
 For example, EAP methods based on TLS (such as EAP-TLS [RFC2716])
 derive and cache the TLS Master Secret, typically for substantial
 time periods. The lifetime of other local keying material calculated
 within the EAP method is defined by the method. Note that in
 general, when using fast reconnect, there is no guarantee to that the
 original long-term credentials are still in the possession of the
 peer. For instance, a card hold holding the private key for EAP-TLS
 may have been removed. EAP servers SHOULD also verify that the long-
 term credentials are still valid, such as by checking that
 certificate used in the original authentication has not yet expired.

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Standards Track [Page 29]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

4.4. Exported and Calculated Key Lifetimes

 All EAP methods generating keys are required to generate the MSK and
 EMSK, and may optionally generate the IV. However, EAP, defined in
 [RFC3748], does not support the negotiation of lifetimes for exported
 keying material such as the MSK, EMSK and IV.

 Several mechanisms exist for managing key lifetimes:

[a] AAA attributes. AAA protocols such as RADIUS [RFC2865] and
 Diameter [I-D.ietf-aaa-eap] support the Session-Timeout attribute.
 The Session-Timeout value represents the maximum lifetime of the
 exported keys, and all keys calculated from it, on the
 authenticator. Since existing AAA servers do not cache keys
 exported by EAP methods, or keys calculated from exported keys, the
 value of the Session-Timeout attribute has no bearing on the key
 lifetime within the AAA server.

 On the authenticator, where EAP is used for authentication, the
 Session-Timeout value represents the maximum session time prior to
 re-authentication, as described in [RFC3580]. Where EAP is used
 for pre-authentication, the session may not start until some future
 time, or may never occur. Nevertheless, the Session-Timeout value
 represents the time after which the AAA-Key, and all keys
 calculated from it, will have expired on the authenticator. If the
 session subsequently starts, re-authentication will be initiated
 once the Session-Time has expired. If the session never started,
 or started and ended, the AAA-Key and all keys calculated from it
 will be expired by the authenticator prior to the future time
 indicated by Session-Timeout.

 Since the TSK lifetime is often determined by authenticator
 resources, the AAA server has no insight into the TSK derivation
 process, and by the principle of ciphersuite independence, it is
 not appropriate for the AAA server to manage any aspect of the TSK
 derivation process, including the TSK lifetime.

[b] Lower layer mechanisms. While AAA attributes can communicate the
 maximum exported key lifetime, this only serves to synchronize the
 key lifetime between the backend authentication server and the
 authenticator. Lower layer mechanisms such as the Secure
 Association Protocol can then be used to enable the lifetime of
 exported and calculated keys to be negotiated between the peer and
 authenticator.

 Where TSKs are established as the result of a Secure Association
 Protocol exchange, it is RECOMMENDED that the Secure Association
 Protocol include support for TSK resynchronization. Where the TSK

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3580

Aboba, et al. Standards Track [Page 30]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 is taken from the AAA-Key, there is no need to manage the TSK
 lifetime as a separate parameter, since the TSK lifetime and AAA-
 Key lifetime are identical.

[c] System defaults. Where the EAP method does not support the
 negotiation of the exported key lifetime, and a key lifetime
 negotiation mechanism is not provided by the lower lower, there may
 be no way for the peer to learn the exported key lifetime. In this
 case it is RECOMMENDED that the peer assume a default value of the
 exported key lifetime; 8 hours is recommended. Similarly, the
 lifetime of calculated keys can also be managed as a system
 parameter on the authenticator.

[d] Method specific negotiation within EAP. While EAP itself does not
 support lifetime negotiation, it would be possible to specify
 methods that do. However, systems that rely on such negotiation
 for exported keys would only function with these methods. As a
 result, it is NOT RECOMMENDED to use this approach as the sole way
 to determine key lifetimes.

4.5. Key cache synchronization

 Issues arise when attempting to synchronize the key cache on the peer
 and authenticator. Lifetime negotiation alone cannot guarantee key
 cache synchronization.

 One problem is that the AAA protocol cannot guarantee synchronization
 of key lifetimes between the peer and authenticator. Where the
 Secure Association Protocol is not run immediately after EAP
 authentication, the exported and calculated key lifetimes will not be
 known by the peer during the hiatus. Where EAP pre-authentication
 occurs, this can leave the peer uncertain whether a subsequent
 attempt to use the exported keys will prove successful.

 However, even where the Secure Association Protocol is run
 immediately after EAP, it is still possible for the authenticator to
 reclaim resources if the created key state is not immediately
 utilized.

 The lower layer may utilize Discovery mechanisms to assist in this.
 For example, the authenticator manages the AAA-Key cache by deleting
 the oldest AAA-Key first (LIFO), the relative creation time of the
 last AAA-Key to be deleted could be advertised with the Discovery
 phase, enabling the peer to determine whether a given AAA-Key had
 been expired from the authenticator key cache prematurely.

Aboba, et al. Standards Track [Page 31]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

4.6. Key Scope

 As described in Section 2.3, in existing applications the AAA-Key is
 derived from the MSK by the EAP peer and server, and is used as the
 root of the ciphersuite-specific key hierarchy. Where a backend
 authentication server is present, the AAA-Key is transported from the
 EAP server to the authenticator; where it is not present, the AAA-Key
 is calculated on the authenticator.

 Regardless of how many sessions are initiated using it, the AAA-Key
 scope is between the EAP peer that calculates it, and the
 authenticator that either calculates it (where no backend
 authenticator is present) or receives it from the server (where a
 backend authenticator server is present).

 It should be understood that an authenticator or peer:

 [a] may contain multiple physical ports;
 [b] may advertise itself as multiple "virtual" authenticators
 or peers;
 [c] may utilize multiple CPUs;
 [d] may support clustering services for load balancing or failover.

 As illustrated in Figure 1, an EAP peer with multiple ports may be
 attached to one or more authenticators, each with multiple ports.
 Where the peer and authenticator identify themselves using a port
 identifier such as a link layer address, it may not be obvious to the
 peer which authenticator ports are associated with which
 authenticators. Similarly, it may not be obvious to the
 authenticator which peer ports are associated with which peers. As a
 result, the peer and authenticator may not be able to determine the
 scope of the AAA-Key.

 When a single physical authenticator advertises itself as multiple
 "virtual authenticators", the EAP peer and authenticator also may not
 be able to agree on the scope of the AAA-Key, creating a security
 vulnerability. For example, the peer may assume that the "virtual
 authenticators" are distinct and do not share a key cache, whereas,
 depending on the architecture of the physical AP, a shared key cache
 may or may not be implemented.

 Where the AAA-Key is shared between "virtual authenticators" an
 attacker acting as a peer could authenticate with the "Guest"
 "virtual authenticator" and derive a AAA-Key. If the virtual
 authenticators share a key cache, then the peer can utilize the AAA-
 Key derived for the "Guest" network to obtain access to the
 "Corporate Intranet" virtual authenticator.

Aboba, et al. Standards Track [Page 32]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Several measures are recommended to address these issues:

[a] Authenticators are REQUIRED to cache associated authorizations
 along with the AAA-Key and apply authorizations consistently. This
 ensures that an attacker cannot obtain elevated privileges even
 where the AAA-Key cache is shared between "virtual authenticators".

[b] It is RECOMMENDED that physical authenticators maintain separate
 AAA-Key caches for each "virtual authenticator".

[c] It is RECOMMENDED that each "virtual authenticator" identify itself
 distinctly to the AAA server, such as by utilizing a distinct NAS-
 identifier attribute. This enables the AAA server to utilize a
 separate credential to authenticate each "virtual authenticator".

[d] It is RECOMMENDED that Secure Association Protocols identify peers
 and authenticators unambiguously, without incorporating implicit
 assumptions about peer and authenticator architectures. Using
 port-specific MAC addresses as identifiers is NOT RECOMMENDED where
 peers and authenticators may support multiple ports.

[e] The AAA server and authenticator MAY implement additional
 attributes in order to further restrict the AAA-Key scope. For
 example, in 802.11, the AAA server may provide the authenticator
 with a list of authorized Called or Calling-Station-Ids and/or
 SSIDs for which the AAA-Key is valid.

[f] Where the AAA server provides attributes restricting the key scope,
 it is RECOMMENDED that restrictions be securely communicated by the
 authenticator to the peer. This can be accomplished using the
 Secure Association Protocol, but also can be accomplished via the
 EAP method or the lower layer.

4.7. Key Strength

 In order to guard against brute force attacks, EAP methods deriving
 keys need to be capable of generating keys with an appropriate
 effective symmetric key strength. In order to ensure that key
 generation is not the weakest link, it is RECOMMENDED that EAP
 methods utilizing public key cryptography choose a public key that
 has a cryptographic strength meeting the symmetric key strength
 requirement.

 As noted in [RFC3766] Section 5, this results in the following
 required RSA or DH module and DSA subgroup size in bits, for a given
 level of attack resistance in bits:

https://datatracker.ietf.org/doc/html/rfc3766#section-5

Aboba, et al. Standards Track [Page 33]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Attack Resistance RSA or DH Modulus DSA subgroup
 (bits) size (bits) size (bits)
 ----------------- ----------------- ------------
 70 947 128
 80 1228 145
 90 1553 153
 100 1926 184
 150 4575 279
 200 8719 373
 250 14596 475

4.8. Key Wrap

 As described in [RFC3579] Section 4.3, known problems exist in the
 key wrap specified in [RFC2548]. Where the same RADIUS shared secret
 is used by a PAP authenticator and an EAP authenticator, there is a
 vulnerability to known plaintext attack. Since RADIUS uses the
 shared secret for multiple purposes, including per-packet
 authentication, attribute hiding, considerable information is exposed
 about the shared secret with each packet. This exposes the shared
 secret to dictionary attacks. MD5 is used both to compute the RADIUS
 Response Authenticator and the Message-Authenticator attribute, and
 some concerns exist relating to the security of this hash
 [MD5Attack].

 As discussed in [RFC3579] Section 4.3, the security vulnerabilities
 of RADIUS are extensive, and therefore development of an alternative
 key wrap technique based on the RADIUS shared secret would not
 substantially improve security. As a result, [RFC3759] Section 4.2
 recommends running RADIUS over IPsec. The same approach is taken in
 Diameter EAP [I-D.ietf-aaa-eap], which defines cleartext key
 attributes, to be protected by IPsec or TLS.

 Where an untrusted AAA intermediary is present (such as a RADIUS
 proxy or a Diameter agent), and data object security is not used, the
 AAA-Key may be recovered by an attacker in control of the untrusted
 intermediary. Possession of the AAA-Key enables decryption of data
 traffic sent between the peer and a specific authenticator. However,
 as long as a AAA-Key or keys derived from it is only utilized by a
 single authenticator, compromise of the AAA-Key does not enable an
 attacker to impersonate the peer to another authenticator.
 Vulnerability to an untrusted AAA intermediary can be mitigated by
 implementation of redirect functionality, as described in [RFC3588]
 and [I-D.ietf-aaa-eap].

https://datatracker.ietf.org/doc/html/rfc3579#section-4.3
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc3579#section-4.3
https://datatracker.ietf.org/doc/html/rfc3759#section-4.2
https://datatracker.ietf.org/doc/html/rfc3588

Aboba, et al. Standards Track [Page 34]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

5. Handoff Vulnerabilities

 With EAP, a number of mechanisms are be utilized in order to reduce
 the latency of handoff between authenticators. One such mechanism is
 EAP pre-authentication, in which EAP is utilized to pre-establish a
 AAA-Key on an authenticator prior to arrival of the peer. Another
 such mechanism is AAA-Key caching, in which an EAP peer can re-attach
 to an authenticator without having to re-authenticate using EAP. Yet
 another mechanism is context transfer, such as is defined in
 [IEEE-802.11F] and [CTP]. These mechanisms introduce new security
 vulnerabilities, as discussed in the sections that follow.

5.1. Authorization

 In a typical network access scenario (dial-in, wireless LAN, etc.)
 access control mechanisms are typically applied. These mechanisms
 include user authentication as well as authorization for the offered
 service.

 As a part of the authentication process, the AAA network determines
 the user's authorization profile. The user authorizations are
 transmitted by the backend authentication server to the EAP
 authenticator (also known as the Network Access Server or
 authenticator) included with the AAA-Token, which also contains the
 AAA-Key, in Phase 1b of the EAP conversation. Typically, the profile
 is determined based on the user identity, but a certificate presented
 by the user may also provide authorization information.

 The backend authentication server is responsible for making a user
 authorization decision, answering the following questions:

[a] Is this a legitimate user for this particular network?

[b] Is this user allowed the type of access he or she is requesting?

[c] Are there any specific parameters (mandatory tunneling, bandwidth,
 filters, and so on) that the access network should be aware of for
 this user?

[d] Is this user within the subscription rules regarding time of day?

[e] Is this user within his limits for concurrent sessions?

[f] Are there any fraud, credit limit, or other concerns that indicate
 that access should be denied?

 While the authorization decision is in principle simple, the process
 is complicated by the distributed nature of AAA decision making.

Aboba, et al. Standards Track [Page 35]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Where brokering entities or proxies are involved, all of the AAA
 devices in the chain from the authenticator to the home AAA server
 are involved in the decision. For instance, a broker can disallow
 access even if the home AAA server would allow it, or a proxy can add
 authorizations (e.g., bandwidth limits).

 Decisions can be based on static policy definitions and profiles as
 well as dynamic state (e.g. time of day or limits on the number of
 concurrent sessions). In addition to the Accept/Reject decision made
 by the AAA chain, parameters or constraints can be communicated to
 the authenticator.

 The criteria for Accept/Reject decisions or the reasons for choosing
 particular authorizations are typically not communicated to the
 authenticator, only the final result. As a result, the authenticator
 has no way to know what the decision was based on. Was a set of
 authorization parameters sent because this service is always provided
 to the user, or was the decision based on the time/day and the
 capabilities of the requesting authenticator device?

5.2. Correctness

 When the AAA exchange is bypassed via use of techniques such as AAA-
 Key caching, this creates challenges in ensuring that authorization
 is properly handled. These include:

[a] Consistent application of session time limits. Bypassing AAA
 should not automatically increase the available session time,
 allowing a user to endlessly extend their network access by
 changing the point of attachment.

[b] Avoidance of privilege elevation. Bypassing AAA should not result
 in a user being granted access to services which they are not
 entitled to.

[c] Consideration of dynamic state. In situations in which dynamic
 state is involved in the access decision (day/time, simultaneous
 session limit) it should be possible to take this state into
 account either before or after access is granted. Note that
 consideration of network-wide state such as simultaneous session
 limits can typically only be taken into account by the backend
 authentication server.

[d] Encoding of restrictions. Since a authenticator may not be aware
 of the criteria considered by a backend authentication server when
 allowing access, in order to ensure consistent authorization during
 a fast handoff it may be necessary to explicitly encode the
 restrictions within the authorizations provided in the AAA-Token.

Aboba, et al. Standards Track [Page 36]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[e] State validity. The introduction of fast handoff should not render
 the authentication server incapable of keeping track of network-
 wide state.

 A handoff mechanism capable of addressing these concerns is said to
 be "correct". One condition for correctness is as follows: For a
 handoff to be "correct" it MUST establish on the new device the same
 context as would have been created had the new device completed a AAA
 conversation with the authentication server.

 A properly designed handoff scheme will only succeed if it is
 "correct" in this way. If a successful handoff would establish
 "incorrect" state, it is preferable for it to fail, in order to avoid
 creation of incorrect context.

 Some backend authentication server and authenticator configurations
 are incapable of meeting this definition of "correctness". For
 example, if the old and new device differ in their capabilities, it
 may be difficult to meet this definition of correctness in a handoff
 mechanism that bypasses AAA. Backend authentication servers often
 perform conditional evaluation, in which the authorizations returned
 in an Access-Accept message are contingent on the authenticator or on
 dynamic state such as the time of day or number of simultaneous
 sessions. For example, in a heterogeneous deployment, the backend
 authentication server might return different authorizations depending
 on the authenticator making the request, in order to make sure that
 the requested service is consistent with the authenticator
 capabilities.

 If differences between the new and old device would result in the
 backend authentication server sending a different set of messages to
 the new device than were sent to the old device, then if the handoff
 mechanism bypasses AAA, then the handoff cannot be carried out
 correctly.

 For example, if some authenticator devices within a deployment
 support dynamic VLANs while others do not, then attributes present in
 the Access-Request (such as the authenticator-IP-Address,
 authenticator-Identifier, Vendor-Identifier, etc.) could be examined
 to determine when VLAN attributes will be returned, as described in
 [RFC3580]. VLAN support is defined in [IEEE-802.1Q]. If a handoff
 bypassing the backend authentication server were to occur between a
 authenticator supporting dynamic VLANs and another authenticator
 which does not, then a guest user with access restricted to a guest
 VLAN could be given unrestricted access to the network.

 Similarly, in a network where access is restricted based on the day
 and time, Service Set Identifier (SSID), Calling-Station-Id or other

https://datatracker.ietf.org/doc/html/rfc3580

Aboba, et al. Standards Track [Page 37]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 factors, unless the restrictions are encoded within the
 authorizations, or a partial AAA conversation is included, then a
 handoff could result in the user bypassing the restrictions.

 In practice, these considerations limit the situations in which fast
 handoff mechanisms bypassing AAA can be expected to be successful.
 Where the deployed devices implement the same set of services, it may
 be possible to do successful handoffs within such mechanisms.
 However, where the supported services differ between devices, the
 handoff may not succeed. For example, [RFC2865] section 1.1 states:

 "A authenticator that does not implement a given service MUST NOT
 implement the RADIUS attributes for that service. For example, a
 authenticator that is unable to offer ARAP service MUST NOT
 implement the RADIUS attributes for ARAP. A authenticator MUST
 treat a RADIUS access-accept authorizing an unavailable service as
 an access-reject instead."

 Note that this behavior only applies to attributes that are known,
 but not implemented. For attributes that are unknown, [RFC2865]
 Section 5 states:

 "A RADIUS server MAY ignore Attributes with an unknown Type. A
 RADIUS client MAY ignore Attributes with an unknown Type."

 In order to perform a correct handoff, if a new device is provided
 with RADIUS context for a known but unavailable service, then it MUST
 process this context the same way it would handle a RADIUS Access-
 Accept requesting an unavailable service. This MUST cause the
 handoff to fail. However, if a new device is provided with RADIUS
 context that indicates an unknown attribute, then this attribute MAY
 be ignored.

 Although it may seem somewhat counter-intuitive, failure is indeed
 the "correct" result where a known but unsupported service is
 requested. Presumably a correctly configured backend authentication
 server would not request that a device carry out a service that it
 does not implement. This implies that if the new device were to
 complete a AAA conversation that it would be likely to receive
 different service instructions. In such a case, failure of the
 handoff is the desired result. This will cause the new device to go
 back to the AAA server in order to receive the appropriate service
 definition.

 In practice, this implies that handoff mechanisms which bypass AAA
 are most likely to be successful within a homogeneous device
 deployment within a single administrative domain. For example, it
 would not be advisable to carry out a fast handoff bypassing AAA

https://datatracker.ietf.org/doc/html/rfc2865#section-1.1
https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5

Aboba, et al. Standards Track [Page 38]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 between a authenticator providing confidentiality and another
 authenticator that does not support this service. The correct result
 of such a handoff would be a failure, since if the handoff were
 blindly carried out, then the user would be moved from a secure to an
 insecure channel without permission from the backend authentication
 server. Thus the definition of a "known but unsupported service"
 MUST encompass requests for unavailable security services. This
 includes vendor-specific attributes related to security, such as
 those described in [RFC2548].

6. Security Considerations

6.1. Security Terminology

 "Cryptographic binding", "Cryptographic separation", "Key strength"
 and "Mutual authentication" are defined in [RFC3748] and are used
 with the same meaning here.

6.2. Threat Model

 The EAP threat model is described in [RFC3748] Section 7.1. In order
 to address these threats, EAP relies on the security properties of
 EAP methods (known as "security claims", described in [RFC3784]
 Section 7.2.1). EAP method requirements for application such as
 Wireless LAN authentication are described in [RFC4017].

 The RADIUS threat model is described in [RFC3579] Section 4.1, and
 responses to these threats are described in [RFC3579] Sections 4.2
 and 4.3. Among other things, [RFC3579] Section 4.2 recommends the
 use of IPsec ESP with non-null transform to provide per-packet
 authentication and confidentiality, integrity and replay protection
 for RADIUS/EAP.

 Given the existing documentation of EAP and AAA threat models and
 responses, there is no need to duplicate that material here.
 However, there are many other system-level threats no covered in
 these document which have not been described or analyzed elsewhere.
 These include:

[1] An attacker may try to modify or spoof Secure Association Protocol
 packets.

[2] An attacker compromising an authenticator may provide incorrect
 information to the EAP peer and/or server via out-of-band
 mechanisms (such as via a AAA or lower layer protocol). This
 includes impersonating another authenticator, or providing
 inconsistent information to the peer and EAP server.

https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748#section-7.1
https://datatracker.ietf.org/doc/html/rfc3784#section-7.2.1
https://datatracker.ietf.org/doc/html/rfc3784#section-7.2.1
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc3579#section-4.1
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579#section-4.2

Aboba, et al. Standards Track [Page 39]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[3] An attacker may attempt to perform downgrading attacks on the
 ciphersuite negotiation within the Secure Association Protocol in
 order to ensure that a weaker ciphersuite is used to protect data.

 Depending on the lower layer, these attacks may be carried out
 without requiring physical proximity.

 In order to address these threats, [Housley56] describes the
 mandatory system security properties:

Algorithm independence
 Wherever cryptographic algorithms are chosen, the algorithms must
 be negotiable, in order to provide resilient against compromise of
 a particular algorithm. Algorithm independence must be
 demonstrated within all aspects of the system, including within
 EAP, AAA and the Secure Association Protocol. However, for
 interoperability, at least one suite of algorithms MUST be
 implemented.

Strong, fresh session keys
 Session keys must be demonstrated to be strong and fresh in all
 circumstances, while at the same time retaining algorithm
 independence.

Replay protection
 All protocol exchanges must be replay protected. This includes
 exchanges within EAP, AAA, and the Secure Association Protocol.

Authentication
 All parties need to be authenticated. The confidentiality of the
 authenticator must be maintained. No plaintext passwords are
 allowed.

Authorization
 EAP peer and authenticator authorization must be performed.

Session keys
 Confidentiality of session keys must be maintained.

Ciphersuite negotiation
 The selection of the "best" ciphersuite must be securely confirmed.

Unique naming
 Session keys must be uniquely named.

Domino effect
 Compromise of a single authenticator cannot compromise any other
 part of the system, including session keys and long-term secrets.

Aboba, et al. Standards Track [Page 40]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Key binding
 The key must be bound to the appropriate context.

6.3. Security Analysis

 Figure 6 illustrates the relationship between the peer, authenticator
 and backend authentication server.

 EAP peer
 /\
 / \
 Protocol: EAP / \ Protocol: Secure Association
 Auth: Mutual / \ Auth: Mutual
 Unique keys: / \ Unique keys: TSKs
 TEKs,EMSK / \
 / \
 EAP server +--------------+ Authenticator
 Protocol: AAA
 Auth: Mutual
 Unique key: AAA session key

 Figure 6: Relationship between peer, authenticator and auth. server

 The peer and EAP server communicate using EAP [RFC3748]. The
 security properties of this communication are largely determined by
 the chosen EAP method. Method security claims are described in

[RFC3748] Section 7.2. These include the key strength, protected
 ciphersuite negotiation, mutual authentication, integrity protection,
 replay protection, confidentiality, key derivation, key strength,
 dictionary attack resistance, fast reconnect, cryptographic binding,
 session independence, fragmentation and channel binding claims. At a
 minimum, methods claiming to support key derivation must also support
 mutual authentication. As noted in [RFC3748] Section 7.10:

 EAP Methods deriving keys MUST provide for mutual authentication
 between the EAP peer and the EAP Server.

 Ciphersuite independence is also required:

 Keying material exported by EAP methods MUST be independent of the
 ciphersuite negotiated to protect data.

 In terms of key strength and freshness, [RFC3748] Section 10 says:

 EAP methods SHOULD ensure the freshness of the MSK and EMSK even
 in cases where one party may not have a high quality random number
 generator.... In order to preserve algorithm independence, EAP
 methods deriving keys SHOULD support (and document) the protected

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748#section-7.2
https://datatracker.ietf.org/doc/html/rfc3748#section-7.10
https://datatracker.ietf.org/doc/html/rfc3748#section-10

Aboba, et al. Standards Track [Page 41]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 negotiation of the ciphersuite used to protect the EAP
 conversation between the peer and server... In order to enable
 deployments requiring strong keys, EAP methods supporting key
 derivation SHOULD be capable of generating an MSK and EMSK, each
 with an effective key strength of at least 128 bits.

 The authenticator and backend authentication server communicate using
 a AAA protocol such as RADIUS [RFC3579] or Diameter [I-D.ietf-aaa-
 eap]. As noted in [RFC3588] Section 13, Diameter must be protected
 by either IPsec ESP with non-null transform or TLS. As a result,
 Diameter requires per-packet integrity and confidentiality. Replay
 protection must be supported. For RADIUS, [RFC3579] Section 4.2
 recommends that RADIUS be protected by IPsec ESP with a non-null
 transform, and where IPsec is implemented replay protection must be
 supported.

 The peer and authenticator communicate using the Secure Association
 Protocol.

 As noted in the figure, each party in the exchange mutually
 authenticates with each of the other parties, and derives a unique
 key. All parties in the diagram have access to the AAA-Key.

 The EAP peer and backend authentication server mutually authenticate
 via the EAP method, and derive the TEKs and EMSK which are known only
 to them. The TEKs are used to protect some or all of the EAP
 conversation between the peer and authenticator, so as to guard
 against modification or insertion of EAP packets by an attacker. The
 degree of protection afforded by the TEKs is determined by the EAP
 method; some methods may protect the entire EAP packet, including the
 EAP header, while other methods may only protect the contents of the
 Type-Data field, defined in [RFC3748].

 Since EAP is spoken only between the EAP peer and server, if a
 backend authentication server is present then the EAP conversation
 does not provide mutual authentication between the peer and
 authenticator, only between the EAP peer and EAP server (backend
 authentication server). As a result, mutual authentication between
 the peer and authenticator only occurs where a Secure Association
 protocol is used, such the unicast and group key derivation handshake
 supported in [IEEE-802.11i]. This means that absent use of a secure
 Association Protocol, from the point of view of the peer, EAP mutual
 authentication only proves that the authenticator is trusted by the
 backend authentication server; the identity of the authenticator is
 not confirmed.

 Utilizing the AAA protocol, the authenticator and backend
 authentication server mutually authenticate and derive session keys

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3588#section-13
https://datatracker.ietf.org/doc/html/rfc3579#section-4.2
https://datatracker.ietf.org/doc/html/rfc3748

Aboba, et al. Standards Track [Page 42]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 known only to them, used to provide per-packet integrity and replay
 protection, authentication and confidentiality. The AAA-Key is
 distributed by the backend authentication server to the authenticator
 over this channel, bound to attributes constraining its usage, as
 part of the AAA-Token. The binding of attributes to the AAA-Key
 within a protected package is important so the authenticator
 receiving the AAA-Token can determine that it has not been
 compromised, and that the keying material has not been replayed, or
 mis-directed in some way.

 The security properties of the EAP exchange are dependent on each leg
 of the triangle: the selected EAP method, AAA protocol and the Secure
 Association Protocol.

 Assuming that the AAA protocol provides protection against rogue
 authenticators forging their identity, then the AAA-Token can be
 assumed to be sent to the correct authenticator, and where it is
 wrapped appropriately, it can be assumed to be immune to compromise
 by a snooping attacker.

 Where an untrusted AAA intermediary is present, the AAA-Token must
 not be provided to the intermediary so as to avoid compromise of the
 AAA-Token. This can be avoided by use of re-direct as defined in
 [RFC3588].

 When EAP is used for authentication on PPP or wired IEEE 802
 networks, it is typically assumed that the link is physically secure,
 so that an attacker cannot gain access to the link, or insert a rogue
 device. EAP methods defined in [RFC3748] reflect this usage model.
 These include EAP MD5, as well as One-Time Password (OTP) and Generic
 Token Card. These methods support one-way authentication (from EAP
 peer to authenticator) but not mutual authentication or key
 derivation. As a result, these methods do not bind the initial
 authentication and subsequent data traffic, even when the the
 ciphersuite used to protect data supports per-packet authentication
 and integrity protection. As a result, EAP methods not supporting
 mutual authentication are vulnerable to session hijacking as well as
 attacks by rogue devices.

 On wireless networks such as IEEE 802.11 [IEEE-802.11], these attacks
 become easy to mount, since any attacker within range can access the
 wireless medium, or act as an access point. As a result, new
 ciphersuites have been proposed for use with wireless LANs
 [IEEE-802.11i] which provide per-packet authentication, integrity and
 replay protection. In addition, mutual authentication and key
 derivation, provided by methods such as EAP-TLS [RFC2716] are
 required [IEEE-802.11i], so as to address the threat of rogue
 devices, and provide keying material to bind the initial

https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Standards Track [Page 43]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 authentication to subsequent data traffic.

 If the selected EAP method does not support mutual authentication,
 then the peer will be vulnerable to attack by rogue authenticators
 and backend authentication servers. If the EAP method does not derive
 keys, then TSKs will not be available for use with a negotiated
 ciphersuite, and there will be no binding between the initial EAP
 authentication and subsequent data traffic, leaving the session
 vulnerable to hijack.

 If the backend authentication server does not protect against
 authenticator masquerade, or provide the proper binding of the AAA-
 Key to the session within the AAA-Token, then one or more AAA-Keys
 may be sent to an unauthorized party, and an attacker may be able to
 gain access to the network. If the AAA-Token is provided to an
 untrusted AAA intermediary, then that intermediary may be able to
 modify the AAA-Key, or the attributes associated with it, as
 described in [RFC2607].

 If the Secure Association Protocol does not provide mutual proof of
 possession of the AAA-Key material, then the peer will not have
 assurance that it is connected to the correct authenticator, only
 that the authenticator and backend authentication server share a
 trust relationship (since AAA protocols support mutual
 authentication). This distinction can become important when multiple
 authenticators receive AAA-Keys from the backend authentication
 server, such as where fast handoff is supported. If the TSK
 derivation does not provide for protected ciphersuite and
 capabilities negotiation, then downgrade attacks are possible.

6.4. Man-in-the-middle Attacks

 As described in [I-D.puthenkulam-eap-binding], EAP method sequences
 and compound authentication mechanisms may be subject to man-in-the-
 middle attacks. When such attacks are successfully carried out, the
 attacker acts as an intermediary between a victim and a legitimate
 authenticator. This allows the attacker to authenticate successfully
 to the authenticator, as well as to obtain access to the network.

 In order to prevent these attacks, [I-D.puthenkulam-eap-binding]
 recommends derivation of a compound key by which the EAP peer and
 server can prove that they have participated in the entire EAP
 exchange. Since the compound key must not be known to an attacker
 posing as an authenticator, and yet must be derived from quantities
 that are exported by EAP methods, it may be desirable to derive the
 compound key from a portion of the EMSK. In order to provide proper
 key hygiene, it is recommended that the compound key used for man-in-
 the-middle protection be cryptographically separate from other keys

https://datatracker.ietf.org/doc/html/rfc2607

Aboba, et al. Standards Track [Page 44]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 derived from the EMSK, such as fast handoff keys, discussed in
Section 2.3.

6.5. Denial of Service Attacks

 The caching of security associations may result in vulnerability to
 denial of service attacks. Since an EAP peer may derive multiple EAP
 SAs with a given EAP server, and creation of a new EAP SA does not
 implicitly delete a previous EAP SA, EAP methods that result in
 creation of persistent state may be vulnerable to denial of service
 attacks by a rogue EAP peer.

 As a result, EAP methods creating persistent state may wish to limit
 the number of cached EAP SAs (Phase 1a) corresponding to an EAP peer.
 For example, an EAP server may choose to only retain a few EAP SAs
 for each peer. This prevents a rogue peer from denying access to
 other peers.

 Similarly, an authenticator may have multiple AAA-Key SAs
 corresponding to a given EAP peer; to conserve resources an
 authenticator may choose to limit the number of cached AAA-Key (Phase
 1 b) SAs for each peer.

 Depending on the media, creation of a new unicast Secure Association
 SA may or may not imply deletion of a previous unicast secure
 association SA. Where there is no implied deletion, the
 authenticator may choose to limit Phase 2 (unicast and multicast)
 Secure Association SAs for each peer.

6.6. Impersonation

 Both the RADIUS and Diameter protocols are potentially vulnerable to
 impersonation by a rogue authenticator.

 While AAA protocols such as RADIUS [RFC2865] or Diameter [RFC3588]
 support mutual authentication between the authenticator (known as the
 AAA client) and the backend authentication server (known as the AAA
 server), the security mechanisms vary according to the AAA protocol.

 In RADIUS, the shared secret used for authentication is determined by
 the source address of the RADIUS packet. As noted in [RFC3579]
 Section 4.3.7, it is highly desirable that the source address be
 checked against one or more NAS identification attributes so as to
 detect and prevent impersonation attacks.

 When RADIUS requests are forwarded by a proxy, the NAS-IP-Address or
 NAS-IPv6-Address attributes may not correspond to the source address.
 Since the NAS-Identifier attribute need not contain an FQDN, it also

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3579#section-4.3.7
https://datatracker.ietf.org/doc/html/rfc3579#section-4.3.7

Aboba, et al. Standards Track [Page 45]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 may not correspond to the source address, even indirectly. [RFC2865]
 Section 3 states:

 A RADIUS server MUST use the source IP address of the RADIUS
 UDP packet to decide which shared secret to use, so that
 RADIUS requests can be proxied.

 This implies that it is possible for a rogue authenticator to forge
 NAS-IP-Address, NAS-IPv6-Address or NAS-Identifier attributes within
 a RADIUS Access-Request in order to impersonate another
 authenticator. Among other things, this can result in messages (and
 MSKs) being sent to the wrong authenticator. Since the rogue
 authenticator is authenticated by the RADIUS proxy or server purely
 based on the source address, other mechanisms are required to detect
 the forgery. In addition, it is possible for attributes such as the
 Called-Station-Id and Calling-Station-Id to be forged as well.

 As recommended in [RFC3579], this vulnerability can be mitigated by
 having RADIUS proxies check authenticator identification attributes
 against the source address.

 To allow verification of session parameters such as the Called-
 Station- Id and Calling-Station-Id, these can be sent by the EAP peer
 to the server, protected by the TEKs. The RADIUS server can then
 check the parameters sent by the EAP peer against those claimed by
 the authenticator. If a discrepancy is found, an error can be
 logged.

 While [RFC3588] requires use of the Route-Record AVP, this utilizes
 FQDNs, so that impersonation detection requires DNS A/AAAA and PTR
 RRs to be properly configured. As a result, it appears that Diameter
 is as vulnerable to this attack as RADIUS, if not more so. To address
 this vulnerability, it is necessary to allow the backend
 authentication server to communicate with the authenticator directly,
 such as via the redirect functionality supported in [RFC3588].

6.7. Channel binding

 It is possible for a compromised or poorly implemented EAP
 authenticator to communicate incorrect information to the EAP peer
 and/or server. This may enable an authenticator to impersonate
 another authenticator or communicate incorrect information via out-
 of-band mechanisms (such as via AAA or the lower layer protocol).

 Where EAP is used in pass-through mode, the EAP peer typically does
 not verify the identity of the pass-through authenticator, it only
 verifies that the pass-through authenticator is trusted by the EAP
 server. This creates a potential security vulnerability, described in

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3588

Aboba, et al. Standards Track [Page 46]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 [RFC3748] Section 7.15.

 [RFC3579] Section 4.3.7 describes how an EAP pass-through
 authenticator acting as a AAA client can be detected if it attempts
 to impersonate another authenticator (such by sending incorrect NAS-
 Identifier [RFC2865], NAS-IP-Address [RFC2865] or NAS-IPv6-Address
 [RFC3162] attributes via the AAA protocol). However, it is possible
 for a pass-through authenticator acting as a AAA client to provide
 correct information to the AAA server while communicating misleading
 information to the EAP peer via a lower layer protocol.

 For example, it is possible for a compromised authenticator to
 utilize another authenticator's Called-Station-Id or NAS-Identifier
 in communicating with the EAP peer via a lower layer protocol, or for
 a pass-through authenticator acting as a AAA client to provide an
 incorrect peer Calling-Station-Id [RFC2865][RFC3580] to the AAA
 server via the AAA protocol.

 As noted in [RFC3748] Section 7.15, this vulnerability can be
 addressed by use of EAP methods that support a protected exchange of
 channel properties such as endpoint identifiers, including (but not
 limited to): Called-Station-Id [RFC2865][RFC3580], Calling-Station-Id
 [RFC2865][RFC3580], NAS-Identifier [RFC2865], NAS-IP-Address
 [RFC2865], and NAS-IPv6-Address [RFC3162].

 Using such a protected exchange, it is possible to match the channel
 properties provided by the authenticator via out-of-band mechanisms
 against those exchanged within the EAP method. For example, see
 [ServiceIdent].

7. Security Requirements

 This section summarizes the security requirements that must be met by
 EAP methods, AAA protocols, Secure Association Protocols and
 Ciphersuites in order to address the security threats described in
 this document. These requirements MUST be met by specifications
 requesting publication as an RFC. Each requirement provides a
 pointer to the sections of this document describing the threat that
 it mitigates.

7.1. EAP Method Requirements

 It is possible for the peer and EAP server to mutually authenticate
 and derive keys. In order to provide keying material for use in a
 subsequently negotiated ciphersuite, an EAP method supporting key
 derivation MUST export a Master Session Key (MSK) of at least 64
 octets, and an Extended Master Session Key (EMSK) of at least 64
 octets. EAP Methods deriving keys MUST provide for mutual

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3162
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3748#section-7.15
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3162

Aboba, et al. Standards Track [Page 47]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 authentication between the EAP peer and the EAP Server.

 The MSK and EMSK MUST NOT be used directly to protect data; however,
 they are of sufficient size to enable derivation of a AAA-Key
 subsequently used to derive Transient Session Keys (TSKs) for use
 with the selected ciphersuite. Each ciphersuite is responsible for
 specifying how to derive the TSKs from the AAA-Key.

 The AAA-Key is derived from the keying material exported by the EAP
 method (MSK and EMSK). This derivation occurs on the AAA server. In
 many existing protocols that use EAP, the AAA-Key and MSK are
 equivalent, but more complicated mechanisms are possible (see Section

2.3 for details).

 EAP methods SHOULD ensure the freshness of the MSK and EMSK even in
 cases where one party may not have a high quality random number
 generator. A RECOMMENDED method is for each party to provide a nonce
 of at least 128 bits, used in the derivation of the MSK and EMSK.

 EAP methods export the MSK and EMSK and not Transient Session Keys so
 as to allow EAP methods to be ciphersuite and media independent.
 Keying material exported by EAP methods MUST be independent of the
 ciphersuite negotiated to protect data.

 Depending on the lower layer, EAP methods may run before or after
 ciphersuite negotiation, so that the selected ciphersuite may not be
 known to the EAP method. By providing keying material usable with
 any ciphersuite, EAP methods can used with a wide range of
 ciphersuites and media.

 It is RECOMMENDED that methods providing integrity protection of EAP
 packets include coverage of all the EAP header fields, including the
 Code, Identifier, Length, Type and Type-Data fields.

 In order to preserve algorithm independence, EAP methods deriving
 keys SHOULD support (and document) the protected negotiation of the
 ciphersuite used to protect the EAP conversation between the peer and
 server. This is distinct from the ciphersuite negotiated between the
 peer and authenticator, used to protect data.

 The strength of Transient Session Keys (TSKs) used to protect data is
 ultimately dependent on the strength of keys generated by the EAP
 method. If an EAP method cannot produce keying material of
 sufficient strength, then the TSKs may be subject to brute force
 attack. In order to enable deployments requiring strong keys, EAP
 methods supporting key derivation SHOULD be capable of generating an
 MSK and EMSK, each with an effective key strength of at least 128
 bits.

Aboba, et al. Standards Track [Page 48]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 Methods supporting key derivation MUST demonstrate cryptographic
 separation between the MSK and EMSK branches of the EAP key
 hierarchy. Without violating a fundamental cryptographic assumption
 (such as the non-invertibility of a one-way function) an attacker
 recovering the MSK or EMSK MUST NOT be able to recover the other
 quantity with a level of effort less than brute force.

 Non-overlapping substrings of the MSK MUST be cryptographically
 separate from each other. That is, knowledge of one substring MUST
 NOT help in recovering some other non-overlapping substring without
 breaking some hard cryptographic assumption. This is required
 because some existing ciphersuites form TSKs by simply splitting the
 AAA-Key to pieces of appropriate length. Likewise, non-overlapping
 substrings of the EMSK MUST be cryptographically separate from each
 other, and from substrings of the MSK. The EMSK MUST NOT be
 transported to, or shared with, additional parties.

 Since EAP does not provide for explicit key lifetime negotiation, EAP
 peers, authenticators and authentication servers MUST be prepared for
 situations in which one of the parties discards key state which
 remains valid on another party.

 The development and validation of key derivation algorithms is
 difficult, and as a result EAP methods SHOULD reuse well established
 and analyzed mechanisms for MSK and EMSK key derivation (such as
 those specified in IKE [RFC2409] or TLS [RFC2246]), rather than
 inventing new ones.

7.1.1. Requirements for EAP methods

 In order for an EAP method to meet the guidelines for EMSK usage it
 must meet the following requirements:

 o It MUST specify how to derive the EMSK

 o The key material used for the EMSK MUST be
 computationally independent of the MSK and TEKs.

 o The EMSK MUST NOT be used for any other purpose than the key
 derivation described in this document.

 o The EMSK MUST be secret and not known to someone observing
 the authentication mechanism protocol exchange.

 o The EMSK MUST NOT be exported from the EAP server.

 o The EMSK MUST be unique for each session.

https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2246

Aboba, et al. Standards Track [Page 49]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 o The EAP mechanism SHOULD a unique identifier suitable for naming the
EMSK.

7.1.2. Requirements for EAP applications

 In order for an application to meet the guidelines for EMSK usage it
 must meet the following requirements:

 o New applications following this specification SHOULD NOT use the
 MSK. If more than one application uses the MSK, then the
 cryptographic separation is not achieved. Implementations SHOULD
 prevent such combinations.

 o A peer MUST NOT use the EMSK directly for cryptographic
 protection of data.

7.2. AAA Protocol Requirements

 AAA protocols suitable for use in transporting EAP MUST provide the
 following facilities:

Security services
 AAA protocols used for transport of EAP keying material MUST
 implement and SHOULD use per-packet integrity and authentication,
 replay protection and confidentiality. These requirements are met
 by Diameter EAP [I-D.ietf-aaa-eap], as well as RADIUS over IPsec
 [RFC3579].

Session Keys
 AAA protocols used for transport of EAP keying material MUST
 implement and SHOULD use dynamic key management in order to derive
 fresh session keys, as in Diameter EAP [I-D.ietf-aaa-eap] and
 RADIUS over IPsec [RFC3579], rather than using a static key, as
 originally defined in RADIUS [RFC2865].

Mutual authentication
 AAA protocols used for transport of EAP keying material MUST
 provide for mutual authentication between the authenticator and
 backend authentication server. These requirements are met by
 Diameter EAP [I-D.ietf-aaa-eap] as well as by RADIUS EAP [RFC3579].

Authorization
 AAA protocols used for transport of EAP keying material SHOULD
 provide protection against rogue authenticators masquerading as
 other authenticators. This can be accomplished, for example, by
 requiring that AAA agents check the source address of packets
 against the origin attributes (Origin-Host AVP in Diameter, NAS-IP-
 Address, NAS-IPv6-Address, NAS-Identifier in RADIUS). For details,
 see [RFC3579] Section 4.3.7.

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579#section-4.3.7

Aboba, et al. Standards Track [Page 50]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Key transport
 Since EAP methods do not export Transient Session Keys (TSKs) in
 order to maintain media and ciphersuite independence, the AAA
 server MUST NOT transport TSKs from the backend authentication
 server to authenticator.

Key transport specification
 In order to enable backend authentication servers to provide keying
 material to the authenticator in a well defined format, AAA
 protocols suitable for use with EAP MUST define the format and
 wrapping of the AAA-Token.

EMSK transport
 Since the EMSK is a secret known only to the backend authentication
 server and peer, the AAA-Token MUST NOT transport the EMSK from the
 backend authentication server to the authenticator.

AAA-Token protection
 To ensure against compromise, the AAA-Token MUST be integrity
 protected, authenticated, replay protected and encrypted in
 transit, using well-established cryptographic algorithms.

Session Keys
 The AAA-Token SHOULD be protected with session keys as in Diameter
 [RFC3588] or RADIUS over IPsec [RFC3579] rather than static keys,
 as in [RFC2548].

Key naming
 In order to ensure against confusion between the appropriate keying
 material to be used in a given Secure Association Protocol
 exchange, the AAA-Token SHOULD include explicit key names and
 context appropriate for informing the authenticator how the keying
 material is to be used.

Key Compromise
 Where untrusted intermediaries are present, the AAA-Token SHOULD
 NOT be provided to the intermediaries. In Diameter, handling of
 keys by intermediaries can be avoided using Redirect functionality
 [RFC3588].

7.3. Secure Association Protocol Requirements

 The Secure Association Protocol supports the following:

Entity Naming
 The peer and authenticator SHOULD identify themselves in a manner
 that is independent of their attached ports.

https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc3588

Aboba, et al. Standards Track [Page 51]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Mutual proof of possession
 The peer and authenticator MUST each demonstrate possession of the
 keying material transported between the backend authentication
 server and authenticator (AAA-Key).

Key Naming
 The Secure Association Protocol MUST explicitly name the keys used
 in the proof of possession exchange, so as to prevent confusion
 when more than one set of keying material could potentially be used
 as the basis for the exchange.

Creation and Deletion
 In order to support the correct processing of phase 2 security
 associations, the Secure Association (phase 2) protocol MUST
 support the naming of phase 2 security associations and associated
 transient session keys, so that the correct set of transient
 session keys can be identified for processing a given packet. The
 phase 2 Secure Association Protocol also MUST support transient
 session key activation and SHOULD support deletion, so that
 establishment and re-establishment of transient session keys can be
 synchronized between the parties.

Integrity and Replay Protection
 The Secure Association Protocol MUST support integrity and replay
 protection of all messages.

Direct operation
 Since the phase 2 Secure Association Protocol is concerned with the
 establishment of security associations between the EAP peer and
 authenticator, including the derivation of transient session keys,
 only those parties have "a need to know" the transient session
 keys. The Secure Association Protocol MUST operate directly between
 the peer and authenticator, and MUST NOT be passed-through to the
 backend authentication server, or include additional parties.

Derivation of transient session keys
 The Secure Association Protocol negotiation MUST support derivation
 of unicast and multicast transient session keys suitable for use
 with the negotiated ciphersuite.

TSK freshness
 The Secure Association (phase 2) Protocol MUST support the
 derivation of fresh unicast and multicast transient session keys,
 even when the keying material provided by the backend
 authentication server is not fresh. This is typically supported by
 including an exchange of nonces within the Secure Association
 Protocol.

Aboba, et al. Standards Track [Page 52]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Bi-directional operation
 While some ciphersuites only require a single set of transient
 session keys to protect traffic in both directions, other
 ciphersuites require a unique set of transient session keys in each
 direction. The phase 2 Secure Association Protocol SHOULD provide
 for the derivation of unicast and multicast keys in each direction,
 so as not to require two separate phase 2 exchanges in order to
 create a bi-directional phase 2 security association.

Secure capabilities negotiation
 The Secure Association Protocol MUST support secure capabilities
 negotiation. This includes security parameters such as the
 security association identifier (SAID) and ciphersuites, as well as
 negotiation of the lifetime of the TSKs, AAA-Key and exported EAP
 keys. Secure capabilities negotiation also includes confirmation
 of the capabilities discovered during the discovery phase (phase
 0), so as to ensure that the announced capabilities have not been
 forged.

Key Scoping
 The Secure Association Protocol MUST ensure the synchronization of
 key scope between the peer and authenticator. This includes
 negotiation of restrictions on key usage.

7.4. Ciphersuite Requirements

 Ciphersuites suitable for keying by EAP methods MUST provide the
 following facilities:

TSK derivation
 In order to allow a ciphersuite to be usable within the EAP keying
 framework, a specification MUST be provided describing how
 transient session keys suitable for use with the ciphersuite are
 derived from the AAA-Key.

EAP method independence
 Algorithms for deriving transient session keys from the AAA-Key
 MUST NOT depend on the EAP method. However, algorithms for
 deriving TEKs MAY be specific to the EAP method.

Cryptographic separation
 The TSKs derived from the AAA-Key MUST be cryptographically
 separate from each other. Similarly, TEKs MUST be
 cryptographically separate from each other. In addition, the TSKs
 MUST be cryptographically separate from the TEKs.

Aboba, et al. Standards Track [Page 53]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

8. IANA Considerations

 This document does not create any new name spaces nor does it
 allocate any protocol parameters.

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and H.
 Lefkowetz, "Extensible Authentication Protocol (EAP)", RFC

3748, June 2004.

9.2. Informative References

[RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

[RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
1661, July 1994.

[RFC1968] Meyer, G. and K. Fox, "The PPP Encryption Control Protocol
 (ECP)", RFC 1968, June 1996.

[RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

[RFC2246] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A.
 and P. Kocher, "The TLS Protocol Version 1.0", RFC 2246,
 January 1999.

[RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

[RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.

[RFC2419] Sklower, K. and G. Meyer, "The PPP DES Encryption Protocol,
 Version 2 (DESE-bis)", RFC 2419, September 1998.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1968
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2419

Aboba, et al. Standards Track [Page 54]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[RFC2420] Kummert, H., "The PPP Triple-DES Encryption Protocol (3DESE)",
RFC 2420, September 1998.

[RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D. and
 R. Wheeler, "A Method for Transmitting PPP Over Ethernet
 (PPPoE)", RFC 2516, February 1999.

[RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC
2548, March 1999.

[RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

[RFC2716] Aboba, B. and D. Simon, "PPP EAP TLS Authentication Protocol",
RFC 2716, October 1999.

[RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

[RFC3078] Pall, G. and G. Zorn, "Microsoft Point-To-Point Encryption
 (MPPE) Protocol", RFC 3078, March 2001.

[RFC3079] Zorn, G., "Deriving Keys for use with Microsoft Point-to-Point
 Encryption (MPPE)", RFC 3079, March 2001.

[RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication Dial
 In User Service) Support For Extensible Authentication
 Protocol (EAP)", RFC 3579, September 2003.

[RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

[RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G. and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

[RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For Public
 Keys Used For Exchanging Symmetric Keys", RFC 3766, April
 2004.

[RFC4017] Stanley, D., Walker, J. and B. Aboba, "EAP Method Requirements
 for Wireless LANs", RFC 4017, March 2005.

[CTP] Loughney, J., Nakhjiri, M., Perkins, C. and R. Koodli,
 "Context Transfer Protocol", draft-ietf-seamoby-ctp-11.txt,
 Internet draft (work in progress), August 2004.

https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc2516
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2607
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc3079
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/draft-ietf-seamoby-ctp-11.txt

Aboba, et al. Standards Track [Page 55]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[DESMODES]
 National Institute of Standards and Technology, "DES Modes of
 Operation", FIPS PUB 81, December 1980, <http://

www.itl.nist.gov/fipspubs/fip81.htm>.

[FIPSDES] National Institute of Standards and Technology, "Data
 Encryption Standard", FIPS PUB 46, January 1977.

[IEEE-802]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standards for Local and Metropolitan Area Networks: Overview
 and Architecture", ANSI/IEEE Standard 802, 1990.

[IEEE-802.11]
 Institute of Electrical and Electronics Engineers,
 "Information technology - Telecommunications and information
 exchange between systems - Local and metropolitan area
 networks - Specific Requirements Part 11: Wireless LAN Medium
 Access Control (MAC) and Physical Layer (PHY) Specifications",
 IEEE IEEE Standard 802.11-2003, 2003.

[IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "Local and
 Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004, December 2004.

[IEEE-802.1Q]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standards for Local and Metropolitan Area Networks: Draft
 Standard for Virtual Bridged Local Area Networks", IEEE
 Standard 802.1Q/D8, January 1998.

[IEEE-802.11i]
 Institute of Electrical and Electronics Engineers, "Supplement
 to STANDARD FOR Telecommunications and Information Exchange
 between Systems - LAN/MAN Specific Requirements - Part 11:
 Wireless Medium Access Control (MAC) and physical layer (PHY)
 specifications: Specification for Enhanced Security", IEEE
 802.11i, December 2004.

[IEEE-802.11F]
 Institute of Electrical and Electronics Engineers,
 "Recommended Practice for Multi-Vendor Access Point
 Interoperability via an Inter-Access Point Protocol Across
 Distribution Systems Supporting IEEE 802.11 Operation", IEEE
 802.11F, July 2003.

http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip81.htm

Aboba, et al. Standards Track [Page 56]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[IEEE-02-758]
 Mishra, A., Shin, M., Arbaugh, W., Lee, I. and K. Jang,
 "Proactive Caching Strategies for IAPP Latency Improvement
 during 802.11 Handoff", IEEE 802.11 Working Group,
 IEEE-02-758r1-F Draft 802.11I/D5.0, November 2002.

[IEEE-03-084]
 Mishra, A., Shin, M., Arbaugh, W., Lee, I. and K. Jang,
 "Proactive Key Distribution to support fast and secure
 roaming", IEEE 802.11 Working Group, IEEE-03-084r1-I,

http://www.ieee802.org/11/Documents/DocumentHolder/ 3-084.zip,
 January 2003.

[IEEE-03-155]
 Aboba, B., "Fast Handoff Issues", IEEE 802.11 Working Group,
 IEEE-03-155r0-I, http://www.ieee802.org/11/

Documents/DocumentHolder/3-155.zip, March 2003.

[I-D.ietf-roamops-cert]
 Aboba, B., "Certificate-Based Roaming", draft-ietf-roamops-

cert-02 (work in progress), April 1999.

[I-D.ietf-aaa-eap]
 Eronen, P., Hiller, T. and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", draft-ietf-aaa-

eap-10 (work in progress), November 2004.

[I-D.puthenkulam-eap-binding]
 Puthenkulam, J., "The Compound Authentication Binding
 Problem", draft-puthenkulam-eap-binding-04 (work in progress),
 October 2003.

[I-D.arkko-pppext-eap-aka]
 Arkko, J. and H. Haverinen, "EAP AKA Authentication", draft-

arkko-pppext-eap-aka-15.txt (work in progress), December 2004.

[IKEv2] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", draft-
ietf-ipsec-ikev2-17 (work in progress), September 2004.

[8021XHandoff]
 Pack, S. and Y. Choi, "Pre-Authenticated Fast Handoff in a
 Public Wireless LAN Based on IEEE 802.1X Model", School of
 Computer Science and Engineering, Seoul National University,
 Seoul, Korea, 2002.

[MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes, Vol.2 No.2, 1996.

http://www.ieee802.org/11/Documents/DocumentHolder/
http://www.ieee802.org/11/Documents/DocumentHolder/3-155.zip
http://www.ieee802.org/11/Documents/DocumentHolder/3-155.zip
https://datatracker.ietf.org/doc/html/draft-ietf-roamops-cert-02
https://datatracker.ietf.org/doc/html/draft-ietf-roamops-cert-02
https://datatracker.ietf.org/doc/html/draft-ietf-aaa-eap-10
https://datatracker.ietf.org/doc/html/draft-ietf-aaa-eap-10
https://datatracker.ietf.org/doc/html/draft-puthenkulam-eap-binding-04
https://datatracker.ietf.org/doc/html/draft-arkko-pppext-eap-aka-15.txt
https://datatracker.ietf.org/doc/html/draft-arkko-pppext-eap-aka-15.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-17
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-17

Aboba, et al. Standards Track [Page 57]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

[Housley56]
 Housley, R., "Key Management in AAA", Presentation to the AAA
 WG at IETF 56,

http://www.ietf.org/proceedings/03mar/slides/aaa-5/index.html,
 March 2003.

Acknowledgments

 Thanks to Arun Ayyagari, Ashwin Palekar, and Tim Moore of Microsoft,
 Dorothy Stanley of Agere, Bob Moskowitz of TruSecure, Jesse Walker of
 Intel, Joe Salowey of Cisco and Russ Housley of Vigil Security for
 useful feedback.

Author Addresses

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 EMail: bernarda@microsoft.com
 Phone: +1 425 706 6605
 Fax: +1 425 936 7329

 Dan Simon
 Microsoft Research
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 EMail: dansimon@microsoft.com
 Phone: +1 425 706 6711
 Fax: +1 425 936 7329

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 Phone:
 EMail: jari.arkko@ericsson.com

 Pasi Eronen
 Nokia Research Center
 P.O. Box 407
 FIN-00045 Nokia Group
 Finland

http://www.ietf.org/proceedings/03mar/slides/aaa-5/index.html

Aboba, et al. Standards Track [Page 58]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 EMail: pasi.eronen@nokia.com

 Henrik Levkowetz (editor)
 ipUnplugged AB
 Arenavagen 27
 Stockholm S-121 28
 SWEDEN

 Phone: +46 708 32 16 08
 EMail: henrik@levkowetz.com

Aboba, et al. Standards Track [Page 59]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix A - Ciphersuite Keying Requirements

 To date, PPP and IEEE 802.11 ciphersuites are suitable for keying by
 EAP. This Appendix describes the keying requirements of common PPP
 and 802.11 ciphersuites.

 PPP ciphersuites include DESEbis [RFC2419], 3DES [RFC2420], and MPPE
 [RFC3078]. The DES algorithm is described in [FIPSDES], and DES
 modes (such as CBC, used in [RFC2419] and DES-EDE3-CBC, used in
 [RFC2420]) are described in [DESMODES]. For PPP DESEbis, a single
 56-bit encryption key is required, used in both directions. For PPP
 3DES, a 168-bit encryption key is needed, used in both directions. As
 described in [RFC2419] for DESEbis and [RFC2420] for 3DES, the IV,
 which is different in each direction, is "deduced from an explicit
 64-bit nonce, which is exchanged in the clear during the [ECP]
 negotiation phase." There is therefore no need for the IV to be
 provided by EAP.

 For MPPE, 40-bit, 56-bit or 128-bit encryption keys are required in
 each direction, as described in [RFC3078]. No initialization vector
 is required.

 While these PPP ciphersuites provide encryption, they do not provide
 per-packet authentication or integrity protection, so an
 authentication key is not required in either direction.

 Within [IEEE-802.11], Transient Session Keys (TSKs) are required both
 for unicast traffic as well as for multicast traffic, and therefore
 separate key hierarchies are required for unicast keys and multicast
 keys. IEEE 802.11 ciphersuites include WEP-40, described in
 [IEEE-802.11], which requires a 40-bit encryption key, the same in
 either direction; and WEP-128, which requires a 104-bit encryption
 key, the same in either direction. These ciphersuites also do not
 support per-packet authentication and integrity protection. In
 addition to these unicast keys, authentication and encryption keys
 are required to wrap the multicast encryption key.

 Recently, new ciphersuites have been proposed for use with IEEE
 802.11 that provide per-packet authentication and integrity
 protection as well as encryption [IEEE-802.11i]. These include TKIP,
 which requires a single 128-bit encryption key and two 64-bit
 authentication keys (one for each direction); and AES CCMP, which
 requires a single 128-bit key (used in both directions) in order to
 authenticate and encrypt data.

 As with WEP, authentication and encryption keys are also required to
 wrap the multicast encryption (and possibly, authentication) keys.

https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc3078

Aboba, et al. Standards Track [Page 60]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix B - Transient EAP Key (TEK) Hierarchy

 Figure B-1 illustrates the TEK key hierarchy for EAP-TLS [RFC2716],
 which is based on the TLS key hierarchy described in [RFC2246]. The
 TLS-negotiated ciphersuite is used to set up a protected channel for
 use in protecting the EAP conversation, keyed by the derived TEKs.
 The TEK derivation proceeds as follows:

 master_secret = TLS-PRF-48(pre_master_secret, "master secret",
 client.random || server.random)
 TEK = TLS-PRF-X(master_secret, "key expansion",
 server.random || client.random)
 Where:
 TLS-PRF-X = TLS pseudo-random function defined in [RFC2246],
 computed to X octets.

 | | |
 | | pre_master_secret |
 server| | | client
 Random| V | Random
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | | |
 | | | |
 +---->| master_secret |<------+
 | | (TMS) | |
 | | | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | |
 | | |
 | | |
 V V V
 +-+
 | |
 | |
 | Key Block |
 | (TEKs) |
 | |
 +-+
 | | | | | |
 | client | server | client | server | client | server
 | MAC | MAC | write | write | IV | IV
 | | | | | |
 V V V V V V

 Figure B-1 - TLS [RFC2246] Key Hierarchy

https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246

Aboba, et al. Standards Track [Page 61]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix C - EAP-TLS Key Hierarchy

 In EAP-TLS [RFC2716], the MSK is divided into two halves,
 corresponding to the "Peer to Authenticator Encryption Key" (Enc-
 RECV-Key, 32 octets, also known as the PMK) and "Authenticator to
 Peer Encryption Key" (Enc-SEND-Key, 32 octets). In [RFC2548], the
 Enc-RECV-Key (the PMK) is transported in the MS-MPPE-Recv-Key
 attribute, and the Enc-SEND-Key is transported in the MS-MPPE-Send-
 Key attribute.

 The EMSK is also divided into two halves, corresponding to the "Peer
 to Authenticator Authentication Key" (Auth-RECV-Key, 32 octets) and
 "Authenticator to Peer Authentication Key" (Auth-SEND-Key, 32
 octets). The IV is a 64 octet quantity that is a known value; octets
 0-31 are known as the "Peer to Authenticator IV" or RECV-IV, and
 Octets 32-63 are known as the "Authenticator to Peer IV", or SEND-IV.

 In EAP-TLS, the MSK, EMSK and IV are derived from the TLS master
 secret via a one-way function. This ensures that the TLS master
 secret cannot be derived from the MSK, EMSK or IV unless the one-way
 function (TLS PRF) is broken. Since the MSK is derived from the the
 TLS master secret, if the TLS master secret is compromised then the
 MSK is also compromised.

 The key derivation scheme specified in RFC 2716 that was specified
 prior to the introduction of the terminology MSK and EMSK MUST be
 interpreted as follows:

 MSK = TLS-PRF-64(TMS, "client EAP encryption",
 client.random || server.random)
 EMSK = second 64 octets of:
 TLS-PRF-128(TMS, "client EAP encryption",
 client.random || server.random)
 IV = TLS-PRF-64("", "client EAP encryption",
 client.random || server.random)

 AAA-Key(0,31) = Peer to Authenticator Encryption Key (Enc-RECV-Key)
 (MS-MPPE-Recv-Key in [RFC2548]). Also known as the
 PMK.
 AAA-Key(32,63)= Authenticator to Peer Encryption Key (Enc-SEND-Key)
 (MS-MPPE-Send-Key in [RFC2548])
 EMSK(0,31) = Peer to Authenticator Authentication Key (Auth-RECV-Key)
 EMSK(32,63) = Authenticator to Peer Authentication Key (Auth-Send-Key)
 IV(0,31) = Peer to Authenticator Initialization Vector (RECV-IV)
 IV(32,63) = Authenticator to Peer Initialization vector (SEND-IV)

 Where:

https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2548

Aboba, et al. Standards Track [Page 62]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 AAA-Key(W,Z) = Octets W through Z includes of the AAA-Key.
 IV(W,Z) = Octets W through Z inclusive of the IV.
 MSK(W,Z) = Octets W through Z inclusive of the MSK.
 EMSK(W,Z) = Octets W through Z inclusive of the EMSK.
 TMS = TLS master_secret
 TLS-PRF-X = TLS PRF function defined in [RFC2246] computed to X octets
 client.random = Nonce generated by the TLS client.
 server.random = Nonce generated by the TLS server.

 Figure C-1 describes the process by which the MSK,EMSK,IV and
 ultimately the TSKs, are derived from the TLS Master Secret.

 ---+
 | ^
 | TLS Master Secret (TMS) |
 | |
 V |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | EAP |
 | Master Session Key (MSK) | Method |
 | Derivation | |
 | | V
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ EAP ---+
 | | | API ^
 | MSK | EMSK | IV |
 | | | |
 V V V v
 +-+ ---+
backend authentication server	
	V
 +-+ ---+
 | | ^
 | AAA-Key(0,31) | AAA-Key(32,63) |
 | (PMK) | Transported |
 | | via AAA |
 | | |
 V V V
 +-+ ---+
 | | ^
 | Ciphersuite-Specific Transient Session | Auth.|
 | Key Derivation | |
 | | V
 +-+ ---+

 Figure C-1 - EAP TLS [RFC2716] Key hierarchy

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Standards Track [Page 63]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix D - Example Transient Session Key (TSK) Derivation

 Within IEEE 802.11 RSN, the Pairwise Transient Key (PTK), a transient
 session key used to protect unicast traffic, is derived from the PMK
 (octets 0-31 of the MSK), known in [RFC2716] as the Peer to
 Authenticator Encryption Key. In [IEEE-802.11i], the PTK is derived
 from the PMK via the following formula:

 PTK = EAPOL-PRF-X(PMK, "Pairwise key expansion", Min(AA,SA) ||
 Max(AA, SA) || Min(ANonce,SNonce) || Max(ANonce,SNonce))

 Where:

 PMK = AAA-Key(0,31)
 SA = Station MAC address (Calling-Station-Id)
 AA = Access Point MAC address (Called-Station-Id)
 ANonce = Access Point Nonce
 SNonce = Station Nonce
 EAPOL-PRF-X = Pseudo-Random Function based on HMAC-SHA1, generating
 a PTK of size X octets.

 TKIP uses X = 64, while CCMP, WRAP, and WEP use X = 48.

 The EAPOL-Key Confirmation Key (KCK) is used to provide data origin
 authenticity in the TSK derivation. It utilizes the first 128 bits
 (bits 0-127) of the PTK. The EAPOL-Key Encryption Key (KEK) provides
 confidentiality in the TSK derivation. It utilizes bits 128-255 of
 the PTK. Bits 256-383 of the PTK are used by Temporal Key 1, and Bits
 384-511 are used by Temporal Key 2. Usage of TK1 and TK2 is
 ciphersuite specific. Details are available in [IEEE-802.11i].

https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Standards Track [Page 64]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix E - Key Names and Scope in Existing Methods

 This appendix specifies the key names and scope in methods that have
 been published prior to the publication of this RFC. What is needed
 in addition to the rules in Section 2.4 is the definition of what EAP
 peer and server names are used, what Method-Id is used, and how these
 are encoded.

EAP-TLS

 The EAP-TLS Method-Id is provided by the concatenation of the peer
 and server nonces.

 Where certificates are used, the Session-Id scope is determined via
 the EAP peer and server names, deduced from the altSubjectName in the
 peer and server certificates.

 Issue: What happens if a pre-shaked key ciphersuite is negotiated?
 How are the EAP peer and server names determined?

EAP-AKA

 The EAP-AKA Method-Id is the contents of the RAND field from the
 AT_RAND attribute, followed by the contents of the AUTN field in the
 AT_AUTN attribute.

 The EAP peer name is the contents of the Identity field from the
 AT_IDENTITY attribute, using only the Actual Identity Length octets
 from the beginning, however. Note that the contents are used as they
 are transmitted, regardless of whether the transmitted identity was a
 permanent, pseudonym, or fast reauthentication identity. The EAP
 server name is an empty string.

EAP-SIM

 The Method-Id is the contents of the RAND field from the AT_RAND
 attribute, followed by the contents of the NONCE_MT field in the
 AT_NONCE_MT attribute.

 The EAP peer name is the contents of the Identity field from the
 AT_IDENTITY attribute, using only the Actual Identity Length octets
 from the beginning, however. Note that the contents are used as they
 are transmitted, regardless of whether the transmitted identity was a
 permanent, pseudonym, or fast reauthentication identity. The EAP
 server name is an empty string.

Aboba, et al. Standards Track [Page 65]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

Appendix F - Security Association Examples

EAP Method SA Example: EAP-TLS

 In EAP-TLS [RFC2716], after the EAP authentication the client (peer)
 and server can store the following information:

 o Implicitly, the EAP method this SA refers to (EAP-TLS)
 o Session identifier (a value selected by the server)
 o Certificate of the other party (server stores the client's
 certificate and vice versa)
 o Ciphersuite and compression method
 o TLS Master secret (known as the EAP-TLS Master Key)
 o SA lifetime (ensuring that the SA is not stored forever)
 o If the client has multiple different credentials (certificates
 and corresponding private keys), a pointer to those credentials

 When the server initiates EAP-TLS, the client can look up the EAP-TLS
 SA based on the credentials it was going to use (certificate and
 private key), and the expected credentials (certificate or name) of
 the server. If an EAP-TLS SA exists, and it is not too old, the
 client informs the server about the existence of this SA by including
 its Session-Id in the TLS ClientHello message. The server then looks
 up the correct SA based on the Session-Id (or detects that it doesn't
 yet have one).

EAP Method SA Example: EAP-AKA

 In EAP-AKA [I-D.arkko-pppext-eap-aka], after EAP authentication the
 client and server can store the following information:

 o Implicitly, the EAP method this SA refers to (EAP-AKA)
 o A re-authentication pseudonym
 o The client's permanent identity (IMSI)
 o Replay protection counter
 o Authentication key (K_aut)
 o Encryption key (K_encr)
 o Original Master Key (MK)
 o SA lifetime (ensuring that the SA is not stored forever)

 When the server initiates EAP-AKA, the client can look up the EAP-AKA
 SA based on the credentials it was going to use (permanent identity).
 If an EAP-AKA SA exists, and it is not too old, the client informs
 the server about the existence of this SA by sending its re-
 authentication pseudonym as its identity in EAP Identity Response
 message, instead of its permanent identity. The server then looks up
 the correct SA based on this identity.

https://datatracker.ietf.org/doc/html/rfc2716

Aboba, et al. Standards Track [Page 66]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

AAA SA Example: RADIUS

 In RADIUS, where shared secret authentication is used, the client and
 server store each other's IP address and the shared secret, which is
 used to calculate the Response Authenticator [RFC2865] and Message-
 Authenticator [RFC3579] values, and to encrypt some attributes (such
 as the AAA-Key, see [RFC3580] Section 3.16).

 Where IPsec is used to protect RADIUS [RFC3579] and IKE is used for
 key management, the parties store information necessary to
 authenticate and authorize the other party (e.g. certificates, trust
 anchors and names). The IKE exchange results in IKE Phase 1 and Phase
 2 SAs containing information used to protect the conversation
 (session keys, selected ciphersuite, etc.)

AAA SA Example: Diameter with TLS

 When using Diameter protected by TLS, the parties store information
 necessary to authenticate and authorize the other party (e.g.
 certificates, trust anchors and names). The TLS handshake results in
 a short-term TLS SA that contains information used to protect the
 actual communications (session keys, selected TLS ciphersuite, etc.).

Service SA Example: 802.11i

 [IEEE802.11i] Section 8.4.1.1 defines the security associations used
 within IEEE 802.11. A summary follows; the standard should be
 consulted for details.

 o Pairwise Master Key Security Association (PMKSA)

 The PMKSA is a bi-directional SA, used by both parties for sending
 and receiving. The PMKSA is the Root Service SA. It is created
 on the peer when EAP authentication completes successfully or a
 pre-shared key is configured. The PMKSA is created on the
 authenticator when the PMK is received or created on the
 authenticator or a pre-shared key is configured. The PMKSA is
 used to create the PTKSA. PMKSAs are cached for their lifetimes.
 The PMKSA consists of the following elements:

 - PMKID (security association identifier)
 - Authenticator MAC address
 - PMK
 - Lifetime
 - Authenticated Key Management Protocol (AKMP)
 - Authorization parameters specified by the AAA server or
 by local configuration. This can include
 parameters such as the peer's authorized SSID.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3580#section-3.16
https://datatracker.ietf.org/doc/html/rfc3579

Aboba, et al. Standards Track [Page 67]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 On the peer, this information can be locally
 configured.
 - Key replay counters (for EAPOL-Key messages)
 - Reference to PTKSA (if any), needed to:
 o delete it (e.g. AAA server-initiated disconnect)
 o replace it when a new four-way handshake is done
 - Reference to accounting context, the details of which depend
 on the accounting protocol used, the implementation
 and administrative details. In RADIUS, this could include
 (e.g. packet and octet counters, and Acct-Multi-Session-Id).

 o Pairwise Transient Key Security Association (PTKSA)

 The PTKSA is a bi-directional SA created as the result of a
 successful four-way handshake. The PTKSA is a unicast service SA.
 There may only be one PTKSA between a pair of peer and
 authenticator MAC addresses. PTKSAs are cached for the lifetime
 of the PMKSA. Since the PTKSA is tied to the PMKSA, it only has
 the additional information from the 4-way handshake. The PTKSA
 consists of the following:

 - Key (PTK)
 - Selected ciphersuite
 - MAC addresses of the parties
 - Replay counters, and ciphersuite specific state
 - Reference to PMKSA: This is needed when:
 o A new four-way handshake is needed (lifetime, TKIP
 countermeasures), and we need to know which PMKSA to use

 o Group Transient Key Security Association (GTKSA)

 The GTKSA is a uni-directional SA created based on the four-way
 handshake or the group key handshake. The GTKSA is a multicast
 service SA. A GTKSA consists of the following:

 - Direction vector (whether the GTK is used for transmit or receive)
 - Group cipher suite selector
 - Key (GTK)
 - Authenticator MAC address
 - Via reference to PMKSA, or copied here:
 o Authorization parameters
 o Reference to accounting context

 Service SA Example: IKEv2/IPsec

 Note that this example is intended to be informative, and it does
 not necessarily include all information stored.

Aboba, et al. Standards Track [Page 68]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 o IKEv2 SA

 - Protocol version
 - Identities of the parties
 - IKEv2 SPIs
 - Selected ciphersuite
 - Replay protection counters (Message ID)
 - Keys for protecting IKEv2 messages (SK_ai/SK_ar/SK_ei/SK_er)
 - Key for deriving keys for IPsec SAs (SK_d)
 - Lifetime information
 - On the authenticator, service authorization information
 received from the backend authentication server.

 When processing an incoming message, the correct SA is looked up
 based on the SPIs.

 o IPsec SAs/SPD

 - Traffic selectors
 - Replay protection counters
 - Selected ciphersuite
 - IPsec SPI
 - Keys
 - Lifetime information
 - Protocol mode (tunnel or transport)

 The correct SA is looked up based on SPI (for inbound packets), or
 SPD traffic selectors (for outbound traffic). A separate IPsec SA
 exists for each direction.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary

https://datatracker.ietf.org/doc/html/bcp11

Aboba, et al. Standards Track [Page 69]

INTERNET-DRAFT EAP Key Management Framework 1 April 2005

 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Open Issues

 Open issues relating to this specification are tracked on the
 following web site:

http://www.drizzle.com/~aboba/EAP/eapissues.html

https://datatracker.ietf.org/doc/html/bcp78
http://www.drizzle.com/~aboba/EAP/eapissues.html

Aboba, et al. Standards Track [Page 70]

