
Workgroup: ecrit

Internet-Draft:

draft-ietf-ecrit-lost-planned-changes-06

Published: 7 November 2022

Intended Status: Informational

Expires: 11 May 2023

Authors: B. Rosen

Validation of Locations Around a Planned Change

Abstract

This document defines an extension to the Location to Service

Translation (LoST) protocol (RFC5222) that allows a LoSR server ti

notify a client of planned changes to the data. This extension is

only useful with the validation function of LoST. It is beneficial

for LoST validation clients to be aware of planned changes, as

records that previously were valid may become invalid at a known

future date, and new locations may become valid after the date. This

extension adds an element to the <findService> request: a date that

allows the LoST client to request that the server perform validation

as of the date specified. It adds an optional Time-To-Live element

to the response, which informs clients of the current expected

lifetime of a validation. It also adds a separate interface to the

LoST server that allows a client to poll for planned changes.

Additionally, this document provides a conventional XML schema for

LoST, as a backwards compatible alternative to the RelaxNG schema in

RFC5222.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions used in this document

3. Planned Change Poll Interface

4. <plannedChange> element

5. "expires" in Response

6. Replacement XML schema

7. Extension XML Schema

8. plannedChangePoll Interface Description

9. Security Considerations

10. IANA Considerations

10.1. Replacement XML Schema Registration

10.2. Planned Change Extension XML Schema Registration

11. Normative References

Author's Address

1. Introduction

Validation of civic locations involves dealing with data that may

change over time. A typical example is when a portion of a county or

district that was not part of a municipality is "annexed" to a

municipality. Prior to the change, a Presence Information Data

Format Location Object (PIDF-LO) [RFC4119] specifying a civic

location in the affected area would have a blank A3 element, or

would contain some other value; after the change, a PIDF-LO

specifying the same location would contain an A3 element set to the

name of the municipality that annexed that part of the county/

district. This kind of annexation has an effective date and time

(typically 00:00 on the first or last day of a month), known in

advance. Other kinds of changes may also occur, and these will

almost always also have an effective date that is known in advance.

Records in a LIS must change around these kinds of events. The old

record must be discarded, and a new, validated record must be loaded

into the LIS. It is often difficult for the LIS operator to know

that records must be changed around such events. There are other

circumstances where locations that were previously valid become

invalid, such as a street renaming or renumbering event. Using

¶

¶

https://trustee.ietf.org/license-info

[RFC5222] validation, the only way for a LIS to discover such

changes is to periodically revalidate its entire database. Of

course, this does not facilitate timely changes, is not coordinated

with the actual change event, and also adds significant load to the

LoST server as well as the LIS. Even if re-validation is

contemplated, the server has no mechanism to control, or even

suggest the time period for revalidation.

This extension allows a LoST client to obtain from the LoST server

sets of locations which may change. It makes use of "partial

location information" which is a set of location elements and values

that, when compared against the client's location records, identify

which of the clients records may change as a result of the planned

change. A set of such partial locations is termed a "ChangeSet".

ChangeSets have an ID, and a date when the change is effective. IDs

are ordered. The planned change interface is a REST/JSON interface

that allows the client to poll the server using the last ID that it

obtained from that server. The response to the poll is a list of all

the newer planned changes the server knows about beyond the

ChangeSet whose ID was included in the poll. The ID for the last

ChangeSet in the returned list will be used by the client for the

next poll.

When a LIS receives a new ChangeSet, it may prepare one or more new

records so that, at the precise planned event date and time, it may

insert the new records into in its active database and delete the

old records. As part of preparing the new records in advance of the

change, the LIS may use the "asOf" date component of this extension

to perform a LoST validation of the new record as of the effective

date. In its response, the LoST server may include a new "expires"

element that expressly states when the location should be re-

validated, rather than blindly revalidating every address on a

schedule chosen by the client.

The "asOf" date component of this extension in a <FindService>

request allow a LIS to be prepared for and smoothly transition to

planned changes. The polling mechanism allows a LIS to be alerted to

planned changes, while the "asOf" date allows the LIS to verify the

validity of locations before they become active.

Unplanned changes will occur, and periodic revalidation can still be

used to maintain the data in the LIS. However, the LoST server

should be able to influence the rate of such revalidation. For this

purpose, this extension adds a "expires" element to the

<findServiceResponse> which provides advice from the server to the

LIS of when validation is suggested.

There are quite a few implementations of LoST. Experience with these

implementations indicates that the RelaxNG schema is very difficult

¶

¶

¶

¶

¶

to deal with, both because many commonly used development tools

don't support it, and development staff is often unfamiliar with it.

Informal alternative schemas have been circulated, which is

undesirable as they may not be in conformance with the RelaxNG

schema in [RFC5222]. This document provides an XML schema that

replaces the RelaxNG schema. It can be used by any implementation

interchangeably with the RelaxNG schema.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

"Server" in this document refers to the LoST server and "Client" is

the LoST client, even when the server is performing an operation on

the client.

3. Planned Change Poll Interface

This document defines a new interface to the LoST server. The

interface has three entry points. One, Versions, returns the current

version(s) the interface supports. This allows the interface to

evolve over time. Another entry point, PlannedChangePoll, is a poll.

The poll returns a list of changeSetIds which identify ChangeSet

objects. The third, GetChangeSet, accepts a changeSetId and returns

the ChangeSet object which contains the identifier (changeSetId), a

date (changeSetEffective) and an array of partial locations. A

partial location is an array of location information element name

and value pairs. The client compares the location elements with its

records. For each of the clients records where all of the location

elements provided in the partial location have the same values as

those in the partial location, that client record may be affected by

the planned change. The client's records may have other location

elements, but those are not considered in the comparison. So, for

example, a partial location may have a Country, A1, A2, A3 and A4

location elements, which means that any address with that Country,

A1, A2, A3 and A4 values may be affected by the planned change

regardless of street name and number. As another example, a partial

location with Country, A1, A2, A3, A4, RD and POD but not HN means

any address number on the specified street.

The changeSetId is string, which the server maintains as an ordered

list of changeSetIds. The id itself may not show the ordering. For

example, it could be a hashed timestamp, or a hashed sequence

number. Given a changeSetId returned by it in a prior poll, the

server can identify which ChangeSets it has that come after, in

¶

¶

¶

¶

order, after the one with the proffered changeSetId. A new client

does not know any ids, or a client may lose the id that it had. The

client would poll omitting the changeSetId in the poll query, and in

the response, the server returns all the ChangeSets it knows about.

The effective date of a ChangeSet returned by the server need not

always be in the future. Tardy clients may not keep up. On the other

hand, the server is not obligated to keep change sets whose

changeSetEffective date has passed for more than some arbitrary

time. A 12 month time period may be appropriate for a server whose

service area doesn't have many changes, where a 3 month time period

may be needed in a fast changing service area where many changes

occur regularly. A tardy client in a fast changing environment may

receive a large number of ChangeSets in response to a poll.

Polls are expected every few minutes. A new client omits the ID in

its first poll, and the server responds with all the changeSetsIds

that it knows about. Thereafter, the client retains the last

changeSetId in its most recent poll and uses that in the next poll.

If the response to that poll is no changeSetIds, it means the

changeSetId the client has is the latest change the server knows

about, and that same changeSetId will be used in subsequent polls

until the server returns a new one.

The version mechanism returns a list of versions of the web service

it supports. This document describes version 1.0. Versions are

described as a major version and a minor version, where major and

minor versions are integers. A backwards compatible change within a

major version MAY increment only the minor version number. A non-

backwards compatible change MUST increment the major version number.

To achieve backwards compatibility, implementations MUST ignore any

object members they do not implement. Minor version definitions

SHALL only add objects, non-required members of existing objects,

and non-mandatory-to-use functions and SHALL NOT delete any objects,

members of objects or functions. This means an implementation of a

specific major version and minor version is backwards compatible

with all minor versions of the major version. The versions mechanism

returns an array of supported versions, one for each major version

supported, with the minor version listed being the highest supported

minor version. When versions are written or used as a string, the

major version is first and separated from the minor version with a

period. For example major version 3, minor version 2 would be

written as "3.2"

4. <plannedChange> element

This document defines a new element in the <findService> request

called "zHxogxRv8SoYre6p1feA7odJF7a0SlwKhPwv". This element contains

an attribute: 'asOf' which contains a date and time in dateTime

format with a required timezone. The server validates the location

¶

¶

¶

in the request as of the date and time specified, taking into

account planned changes. This allows a client to verify that it can

make changes in the LIS commensurate with changes in the LoST server

by validating locations in advance of a change.

5. "expires" in Response

This extension adds the 'expires' element to the

<findServiceResponse>. The 'expires' element contains a date and

time after which the client may wish to revalidate the location at

the server. A server MAY add this attribute to the response if

validation is requested. This element takes the form of the

'expires' attribute pattern of [RFC5222], which allows the values

"NO-CACHE" or "NO-EXPIRATION" to be returned instead of a dateTime

value. However, for the 'expires'; attribute "NO-CACHE" has no

meaning and MUST NOT be returned. "NO-EXPIRATION" means the server

does not have a suggested revalidation period.

Selecting a revalidation interval is a complex balancing of

timeliness, server load, stability of the underlying data, and

policy of the LoST server. Too short, and load on the server may

overwhelm it. Too long and invalid data may persist in the server

for unacceptable lengths of time. The URI notification mechanism

provides timely notice to coordinate changes, but even with it, it

is often advisable to revalidate data eventually. In areas that have

little change in data, such as fully built out, stable communities

already part of a municipality, it may be reasonable to set

revalidation periods of 6 months or longer, especially if the URI

mechanism is widely deployed at both the server and the clients. In

areas that are quickly growing, 20-30 day revalidation may be more

appropriate even though such revalidation would be the majority of

the traffic on the LoST server.

When a planned change is made, typically the expires value for the

affected records is lowered, so that revalidation is forced soon

after the change is implemented. It is not advisable to set the

expiration precisely at the planned change time if a large number of

records will be changed, since that would cause a large spike in

traffic at the change time. Rather, the expiration time should have

a random additional time added to it to spread out the load.

6. Replacement XML schema

This schema is an alternative to The Relax NG schema in [RFC5222].

Future extensions to LoST are expected to use this schema as the

base for the extensions, rather than the Relax NG schema. Existing

extensions described using the Relax NG schema continue to be valid.

¶

¶

¶

¶

¶

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:ietf:params:xml:ns:lost1"

 targetNamespace="urn:ietf:params:xml:ns:lost1"

 elementFormDefault="qualified">

 <xs:element name="findService">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="requestLocation"/>

 <xs:group ref="commonRequestPattern"/>

 </xs:sequence>

 <xs:attribute name="validateLocation" type="xs:boolean"/>

 <xs:attribute name="serviceBoundary">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="reference"/>

 <xs:enumeration value="value"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="recursive" type="xs:boolean"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="listServices">

 <xs:complexType>

 <xs:group ref="commonRequestPattern"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="listServicesByLocation">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="requestLocation"/>

 <xs:group ref="commonRequestPattern"/>

 </xs:sequence>

 <xs:attribute name="recursive" type="xs:boolean"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="getServiceBoundary">

 <xs:complexType>

 <xs:group ref="extensionPoint"/>

 <xs:attributeGroup ref="serviceBoundaryKey"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="findServiceResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="mapping" maxOccurs="unbounded"/>

 <xs:element ref="locationValidation" minOccurs="0"/>

 <xs:group ref="commonResponsePattern"/>

 <xs:group ref="locationUsed"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="listServicesResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="serviceList"/>

 <xs:group ref="commonResponsePattern"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="listServicesByLocationResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="serviceList"/>

 <xs:group ref="commonResponsePattern"/>

 <xs:group ref="locationUsed"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getServiceBoundaryResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="serviceBoundary"/>

 <xs:group ref="commonResponsePattern"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:group name="commonRequestPattern">

 <xs:sequence>

 <xs:group ref="service"/>

 <xs:element ref="path" minOccurs="0"/>

 <xs:group ref="extensionPoint"/>

 </xs:sequence>

 </xs:group>

 <xs:group name="commonResponsePattern">

 <xs:sequence>

 <xs:element ref="warnings" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="path"/>

 <xs:group ref="extensionPoint"/>

 </xs:sequence>

 </xs:group>

 <xs:group name="requestLocation">

 <xs:sequence>

 <xs:element ref="location" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="location">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="locationInformation">

 <xs:attribute name="id" type="xs:token" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="locationInformation">

 <xs:group ref="extensionPoint" maxOccurs="unbounded"/>

 <xs:attribute name="profile" type="xs:NMTOKEN"/>

 </xs:complexType>

 <xs:group name="serviceBoundary">

 <xs:sequence>

 <xs:element ref="serviceBoundary" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="serviceBoundary" type="locationInformation"/>

 <xs:element name="serviceBoundaryReference">

 <xs:complexType>

 <xs:group ref="extensionPoint"/>

 <xs:attributeGroup ref="source"/>

 <xs:attributeGroup ref="serviceBoundaryKey"/>

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="serviceBoundaryKey">

 <xs:attribute name="key" type="xs:token" use="required"/>

 </xs:attributeGroup>

 <xs:element name="path">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="via" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="via">

 <xs:complexType>

 <xs:group ref="extensionPoint"/>

 <xs:attributeGroup ref="source"/>

 </xs:complexType>

 </xs:element>

 <xs:group name="locationUsed">

 <xs:sequence>

 <xs:element ref="locationUsed" minOccurs="0"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="locationUsed">

 <xs:complexType>

 <xs:attribute name="id" type="xs:token" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="expires">

 <xs:attribute name="expires" use="required">

 <xs:simpleType>

 <xs:union memberTypes="xs:dateTime">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="NO-CACHE"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="NO-EXPIRATION"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 </xs:attribute>

 </xs:attributeGroup>

 <xs:simpleType name="qnameList">

 <xs:list itemType="xs:QName"/>

 </xs:simpleType>

 <xs:element name="mapping">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="displayName"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:group ref="service"/>

 <xs:choice minOccurs="0">

 <xs:group ref="serviceBoundary"/>

 <xs:element ref="serviceBoundaryReference"/>

 </xs:choice>

 <xs:element ref="uri"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="serviceNumber" minOccurs="0"/>

 <xs:group ref="extensionPoint"/>

 </xs:sequence>

 <xs:attributeGroup ref="expires"/>

 <xs:attribute name="lastUpdated" type="xs:dateTime"

 use="required"/>

 <xs:attributeGroup ref="source"/>

 <xs:attribute name="sourceId" type="xs:token"

 use="required"/>

 <xs:attributeGroup ref="message"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="displayName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute ref="xml:lang" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="uri" type="xs:anyURI"/>

 <xs:element name="serviceNumber">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:pattern value="[0-9*#]+"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="locationValidation">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="valid" minOccurs="0"/>

 <xs:element ref="invalid" minOccurs="0"/>

 <xs:element ref="unchecked" minOccurs="0"/>

 <xs:group ref="extensionPoint"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="valid" type="qnameList"/>

 <xs:element name="invalid" type="qnameList"/>

 <xs:element name="unchecked" type="qnameList"/>

 <xs:complexType name="exceptionContainer">

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element ref="badRequest"/>

 <xs:element ref="internalError"/>

 <xs:element ref="serviceSubstitution"/>

 <xs:element ref="defaultMappingReturned"/>

 <xs:element ref="forbidden"/>

 <xs:element ref="notFound"/>

 <xs:element ref="loop"/>

 <xs:element ref="serviceNotImplemented"/>

 <xs:element ref="serverTimeout"/>

 <xs:element ref="serverError"/>

 <xs:element ref="locationInvalid"/>

 <xs:element ref="locationProfileUnrecognized"/>

 </xs:choice>

 <xs:group ref="extensionPoint"/>

 </xs:sequence>

 <xs:attributeGroup ref="source"/>

 </xs:complexType>

 <xs:element name="errors" type="exceptionContainer"/>

 <xs:element name="warnings" type="exceptionContainer"/>

 <xs:complexType name="basicException">

 <xs:annotation>

 <xs:documentation>

 Exception pattern.

 </xs:documentation>

 </xs:annotation>

 <xs:group ref="extensionPoint"/>

 <xs:attributeGroup ref="message"/>

 </xs:complexType>

 <xs:element name="badRequest" type="basicException"/>

 <xs:element name="internalError" type="basicException"/>

 <xs:element name="serviceSubstitution" type="basicException"/>

 <xs:element name="defaultMappingReturned" type="basicException"/>

 <xs:element name="forbidden" type="basicException"/>

 <xs:element name="notFound" type="basicException"/>

 <xs:element name="loop" type="basicException"/>

 <xs:element name="serviceNotImplemented" type="basicException"/>

 <xs:element name="serverTimeout" type="basicException"/>

 <xs:element name="serverError" type="basicException"/>

 <xs:element name="SRSinvalid" type="basicException"/>

 <xs:element name="locationInvalid" type="basicException"/>

 <xs:element name="locationValidationUnavailable"

 type="basicException"/>

 <xs:element name="locationProfileUnrecognized">

 type="basicException"/>

 <xs:element name="redirect">

 <xs:complexType>

 <xs:group ref="extensionPoint"/>

 <xs:attribute name="target" type="appUniqueString"

 use="required"/>

 <xs:attributeGroup ref="source"/>

 <xs:attributeGroup ref="message"/>

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="message">

 <xs:attribute name="message" type="xs:token"/>

 <xs:attribute ref="xml:lang"/>

 </xs:attributeGroup>

 <xs:group name="service">

 <xs:sequence>

 <xs:element ref="service" minOccurs="0"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="service" type="xs:anyURI"/>

 <xs:simpleType name="appUniqueString">

 <xs:restriction base="xs:token">

 <xs:pattern value="([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9]+"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:attributeGroup name="source">

 <xs:attribute name="source" type="appUniqueString" use="required"/>

 </xs:attributeGroup>

 <xs:element name="serviceList">

 <xs:simpleType>

 <xs:list itemType="xs:anyURI"/>

 </xs:simpleType>

 </xs:element>

 <xs:group name="notLost">

 <xs:annotation>

 <xs:documentation>

 Any element not in the LoST namespace.

 </xs:documentation>

 </xs:annotation>

 <xs:choice>

 <xs:any namespace="##other" processContents="skip"/>

 <xs:any namespace="##local" processContents="skip"/>

 </xs:choice>

 </xs:group>

 <xs:group name="anyElement">

 <xs:annotation>

 <xs:documentation>

 A wildcard pattern for including any element

 from any other namespace.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:any processContents="skip"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:group>

 <xs:attributeGroup name="anyElement">

 <xs:annotation>

 <xs:documentation>

 A wildcard pattern for including any element

 from any other namespace.

 </xs:documentation>

 </xs:annotation>

 <xs:anyAttribute processContents="skip"/>

 </xs:attributeGroup>

 <xs:group name="extensionPoint">

 <xs:annotation>

 <xs:documentation>

 A point where future extensions

 (elements from other namespaces)

 can be added.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:group ref="notLost"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:group>

</xs:schema>

7. Extension XML Schema

This schema provides the extension to the prior section schema for

planned changes:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:ietf:params:xml:ns:lostPlannedChange1"

 targetNamespace="urn:ietf:params:xml:ns:lostPlannedChange1"

 elementFormDefault="qualified">

 <!-- Import base Lost -->

 <xs:import namespace="urn:ietf:params:xml:ns:lost1"/>

<!-- extend the extensionPoint of commonRequestPattern of findService

 to include: -->

 <xs:element ref="asOf" type="xs:dateTime" minOccurs="1"/>

<!-- extend the extensionPoint of commonResponsePattern in

 findServiceResponse to include: -->

 <xs:element ref="expires" type="xs:dateTime" minOccurs="0" />

</xs:schema>

¶

¶

¶

8. plannedChangePoll Interface Description

 openapi: 3.0.1

 info:

 title: LoST plannedChange

 version: "1.0"

 servers:

 - url: http://localhost/LoST/v1

 paths:

 /PlannedChangePoll:

 get:

 summary: Get a list of planned changeSetIds

 operationId: getPlannedChangeIds

 responses:

 '200':

 description: Planned Changes

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/PlannedChangeIdList'

 /GetChangeSet:

 get:

 summary: Get a ChangeSet

 operationId: getChangeSet

 parameters:

 - in: query

 name: changeSetId

 schema:

 type: string

 description: Id of a ChangeSet

 responses:

 '200':

 description: return ChangeSet object

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ChangeSet'

 /Versions:

 servers:

 - url: https://api.example.com/rum

 description: Override base path for Versions query

 get:

 summary: Retrieves all supported versions

 operationId: RetrieveVersions

 responses:

 '200':

 description: Versions supported

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/VersionsArray'

 components:

 schemas:

 PlannedChangeIdList:

 type: array

 items:

 type: string

 ChangeSet:

 type: object

 properties:

 changeSetId:

 type: string

 description: Id of the ChangeSet

 changeSetEffective:

 type: string

 format: datetime

 description: date and time change will come into

 effect in dateTime format with a required timezone

 partialLocationList:

 type: array

 items:

 type: object

 properties:

 caType:

 type: string

 description: CAtype name from IANA registry

 value:

 type: string

 description: value for this caType

 VersionsArray:

 type: object

 required:

 - versions

 properties:

 versions:

 type: array

 items:

 type: object

 required:

 - major

 - minor

 properties:

 major:

 type: integer

 format: int32

 description: Version major number

 minor:

 type: integer

 format: int32

 description: Version minor number

9. Security Considerations

As an extension to LoST, this document inherits the security issues

raised in [RFC5222]. The server could be tricked into storing a

malicious URI which, when sent the revalidateLocation object could

trigger something untoward. The server MUST NOT accept any data from

the client in response to POSTing the revalidateLocation.

The server is subject to abuse by clients because it is being asked

to store something and may need to send data to an uncontrolled URI.

Clients could request many URIs for the same location, for example.

The server MUST have policy that limits use of this mechanism by a

given client. If the policy is exceeded, the server returns the

<uriNotStored> warning. The server MUST validate that the content of

the 'uri' attribute sent is syntactically valid and meets the 256

bytes limit. When sending the <revalidateLocation> object to the URI

stored, the server MUST protect itself against common HTTP

vulnerabilities.

The mutual authentication between client and server is RECOMMENDED

for both the initial <findServiceRequest> operation that requests

storing the URI and the sending of the <revalidateLocation> object.

The server should be well known to the client, and its credential

should be learned in a reliable way. For example, a public safety

system operating the LoST server may have a credential traceable to

a well known Certificate Authority known to provide credentials for

public safety agencies. Clients may be operated by local ISPs or

other service providers that can reasonably obtain a good credential

to use for the server side of the LoST server's POST transaction

using the URI. Where the loST server does not recognize the client,

its policy MAY limit the use of this feature beyond what it would

limit a client it recognizes.

¶

¶

¶

¶

10. IANA Considerations

10.1. Replacement XML Schema Registration

The XML Schema is found in Section 6.

 URI: urn:ietf:params:xml:schema:lost3

 Registrant Contact: IETF ECRIT Working Group, Brian Rosen

 (br@brianrosen.net).

 XML:

 BEGIN

 <?xml version="2.0"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type"

 content="text/html;charset=iso-8859-1"/>

 <title>LoST Namespace</title>

 </head>

 <body>

 <h1>Namespace for LoST</h1>

 <h2>urn:ietf:params:xml:ns:lost3</h2>

 <p>See

 RFC????.</p>

 </body>

 </html>

 END

¶

¶

[RFC4119]

[RFC5222]

[RFC2119]

[RFC8174]

10.2. Planned Change Extension XML Schema Registration

The XML Schema is found in Section 7.

11. Normative References

Peterson, J., "A Presence-based GEOPRIV Location Object

Format", RFC 4119, DOI 10.17487/RFC4119, December 2005,

<https://www.rfc-editor.org/info/rfc4119>.

Hardie, T., Newton, A., Schulzrinne, H., and H.

Tschofenig, "LoST: A Location-to-Service Translation

Protocol", RFC 5222, DOI 10.17487/RFC5222, August 2008,

<https://www.rfc-editor.org/info/rfc5222>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 URI: urn:ietf:params:xml:schema:lostPlannedChange1

 Registrant Contact: IETF ECRIT Working Group, Brian Rosen

 (br@brianrosen.net).

 XML:

 BEGIN

 <?xml version="2.0"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type"

 content="text/html;charset=iso-8859-1"/>

 <title>LoST Planned Change Namespace</title>

 </head>

 <body>

 <h1>Namespace for LoST </h1>

 <h2>urn:ietf:params:xml:ns:lostPlannedChange1</h2>

 <p>See

 RFC????.</p>

 </body>

 </html>

 END

¶

¶

https://www.rfc-editor.org/info/rfc4119
https://www.rfc-editor.org/info/rfc5222
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174

Author's Address

Brian Rosen

Email: br@brianrosen.net

mailto:br@brianrosen.net

	Validation of Locations Around a Planned Change
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions used in this document
	3. Planned Change Poll Interface
	4. <plannedChange> element
	5. "expires" in Response
	6. Replacement XML schema
	7. Extension XML Schema
	8. plannedChangePoll Interface Description
	9. Security Considerations
	10. IANA Considerations
	10.1. Replacement XML Schema Registration
	10.2. Planned Change Extension XML Schema Registration

	11. Normative References
	Author's Address

