| ecrit | B. Rosen | |-------------------------------------|----------------------| | Internet-Draft | NeuStar | | Intended status: Standards
Track | J. Polk | | Expires: May 22, 2008 | Cisco Systems | | | November 19,
2007 | Best Current Practice for Communications Services in support of Emergency Calling draft-ietf-ecrit-phonebcp-03 ### Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on May 22, 2008. ### **Abstract** The IETF and other standards organization have efforts targeted at standardizing various aspects of placing emergency calls on IP networks. This memo describes best current practice on how devices, networks and services should use such standards to make emergency calls. #### Table of Contents - Terminology - 2. Introduction TOC - 3. Overview of how emergency calls are placed - 4. Which devices and services should support emergency calls - 5. Identifying an emergency call - 6. Location and its role in an emergency call - <u>6.1.</u> Types of location information - 6.2. Location Determination - <u>6.2.1.</u> User-entered location information - 6.2.2. Access network "wire database" location information - 6.2.3. End-system measured location information - 6.2.4. Network-measured location information - 6.3. Who adds location, endpoint or proxy - 6.4. Location and references to location - 6.5. End system location configuration - 6.6. When location should be configured - 6.7. Conveying location in SIP - 6.8. Location updates - <u>6.9.</u> Multiple locations - 6.10. Location validation - 6.11. Default location - <u>6.12.</u> Other location considerations - <u>6.13.</u> LIS and LoST Discovery - 7. Uninitialized devices - 8. Routing the call to the PSAP - 9. Signaling of emergency calls - 9.1. Use of TLS - <u>9.2.</u> SIP signaling requirements for User Agents - 9.3. SIP signaling requirements for proxy servers - 10. Call backs - 11. Mid-call behavior - 12. Call termination - 13. Disabling of features - 14. Media - <u>15.</u> Testing - 16. Security Considerations - 17. Acknowledgements - 18. Normative References - Appendix A. BCP Requirements Sorted by Responsible Party - A.1. Requirements of End Devices - A.2. Requirements of Service Providers - A.3. Requirements of Access Networks - § Authors' Addresses - § Intellectual Property and Copyright Statements # 1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels," March 1997.). This document uses terms from [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol," June 2002.), [I-D.ietf-ecrit-requirements] (Schulzrinne, H. and R. Marshall, "Requirements for Emergency Context Resolution with Internet Technologies," March 2007.) and [I-D.ietf-ecrit-framework] (Rosen, B., Schulzrinne, H., Polk, J., and A. Newton, "Framework for Emergency Calling using Internet Multimedia," July 2009.). 2. Introduction TOC This document describes how access networks, SIP user agents, proxy servers and PSAPs support emergency calling, as outlined in [I-D.ietf-ecrit-framework] (Rosen, B., Schulzrinne, H., Polk, J., and A. Newton, "Framework for Emergency Calling using Internet Multimedia," July 2009.), which is designed to complement the present document in section headings, numbering and content. This BCP succinctly describes the requirements of end devices and applications (requirements prefaced by "ED-"), access networks (requirements prefaced by "AN-", service providers (requirements prefaced by "SP-") and PSAPs to achieve globally interoperable emergency calling on the Internet. This document also defines requirements for "Intermediate" devices which exist between end devices or applications and the access network. For example, a home router is an "Intermediate" device. Reporting location on an emergency call (see Section 6 (Location and its role in an emergency call) may depend on the ability of such intermediate devices to meet these requirements. ## 3. Overview of how emergency calls are placed TOC An emergency call can be distinguished (Section 5 (Identifying an emergency call)) from any other call by a unique Service URN[I-D.ietf-ecrit-service-urn] (Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency and Other Well-Known Services," August 2007.), which is placed in the call set-up signaling when a home or visited emergency dial string is detected. Because emergency services are local to specific geographic regions, a caller must obtain his location (Section 6 (Location and its role in an emergency call)) prior to making emergency calls. To get this location, either a form of measuring (e.g., GPS) (Section 6.2.3 (End-system measured location information)) device location in the endpoint is deployed, or the endpoint is configured (Section 6.5 (End system location configuration)) with its location from the access network's Location Information Server (LIS). The location is conveyed (Section 6.7 (Conveying location in SIP)) in the SIP signaling with the call. The call is routed (Section 8 (Routing the call to the PSAP)) based on location using the LoST protocol [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.), which maps a location to a set of PSAP URIs. Each URI resolves to a PSAP or an Emergency Services Routing Proxy (ESRP), which serves a group of PSAPs. The call arrives at the PSAP with the location included in the SIP INVITE request. ### 4. Which devices and services should support emergency calls TOC ED-1 A device or application SHOULD support emergency calling if a user could reasonably expect to be able to place a call for help with the device. SP-1 If a device or application expects to be able to place a call for help, the service provider that supports it MUST facilitate emergency calling. ED-2 Devices that create media sessions and exchange audio, video and/ or text, and have the capability to establish sessions to a wide variety of addresses, and communicate over private IP networks or the Internet, SHOULD support emergency calls. # 5. Identifying an emergency call TOC ED-3 Endpoints SHOULD recognize dial strings of emergency calls. If the service provider always knows the location of the device, then the service provider could recognize them. SP-2 Proxy servers SHOULD recognize emergency dial string if for some reason the endpoint does not recognize them. This cannot be relied upon by the device if the service provider cannot always determine the location of the device. ED-4/SP-3 Emergency calls MUST be marked with a Service URN in the Request-URI of the INVITE. ED-5/SP-4 Local dial strings MUST be recognized. ED-6/SP-5 Home dial strings MAY be recognized. ED-7/SP-6 Local emergency dial strings SHOULD be determined from LoST [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. <u>Tschofenig</u>, "LoST: A Location-to-Service Translation Protocol," May 2008.). ED-8 Endpoints which do not recognize emergency dial strings SHOULD send dial strings as per [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.). SP-7 Proxy Servers MUST recognize emergency dial strings represented by [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.) and SHOULD recognize emergency dial strings represented by a tel URI [RFC3966] (Schulzrinne, H., "The tel URI for Telephone Numbers," December 2004.). SP-8 Service providers MAY provide home dial strings by configuration [I-D.ietf-sipping-config-framework] (Channabasappa, S., "A Framework for Session Initiation Protocol User Agent Profile Delivery," February 2010.). ED-9 Endpoints SHOULD be able to have home dial strings provisioned by configuration. ED-10 Devices SHOULD NOT have one button emergency calling initiation. ED-11/SP-9 All emergency services specified in [I-D.ietf-ecrit-service-urn] (Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency and Other Well-Known Services," August 2007.) MUST be recognized. # 6. Location and its role in an emergency call TOC Handling location for emergency calling usually involves several steps to process and multiple elements are involved. In Internet emergency calling, where the endpoint is located is "determined" using a variety of measurement or wiretracing methods. Endpoints may be "configured" with their own location by the access network. In some circumstances, a proxy server may insert location into the signaling on behalf of the endpoint. The location is "mapped" to the URI to send the call to, and the location is "conveyed" to the PSAP (and other elements) in the signaling. Likewise, we employ Location Configuration
Protocols, the Location-to-Service Mapping Protocol, and Location Conveyance Protocols for these functions. The Location-to-Service Translation protocol [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.) is the Location Mapping Protocol defined by the IETF. ## 6.1. Types of location information TOC There are several forms of location. In IETF protocols, civic and geospatial (geo) forms are both supported. The civic forms include both postal and jurisdictional fields. A cell tower/sector can be represented as a point (geo or civic) or polygon. Other forms of location representation must be mapped into either a geo or civic for use in emergency calls. ED-12/INT-1/SP-10 Endpoints, Intermediate Devices and Service Providers MUST be prepared to handle location represented in either civic or geo form ED-13/INT-2/SP-11/AN-1 Elements MUST NOT convert (civic to geo or geo to civic) from the form of location the determination mechanism supplied. #### 6.2. Location Determination TOC ED-14/INT-3/AN-2 Any suitable location determination mechanism MAY be used. #### 6.2.1. User-entered location information TOC ED-15/INT-3/AN-3 Devices, intermediate Devices and/or access networks SHOULD support a manual method to "override" the location the access network determines. Where a civic form of location is provided, all fields in the PIDF-LO [RFC4119] (Peterson, J., "A Presence-based GEOPRIV Location Object Format," December 2005.) and [I-D.ietf-geopriv-revised-civic-lo] (Thomson, M. and J. Winterbottom, "Revised Civic Location Format for PIDF-LO," December 2007.) MUST be able to be specified. ### 6.2.2. Access network "wire database" location information TOC AN-4 Access networks supporting copper, fiber or other hard wired IP packet service SHOULD support location configuration. If the network does not support location configuration, it MUST require every device that connects to the network to support end system measured location. AN-5/INT-4 Access networks and intermediate devices providing wire database location information SHOULD provide interior location data (building, floor, room, cubicle) where possible. It is RECOMMENDED that interior location be provided when spaces exceed approximately 650 square meters. AN-6/INT-5 Access networks and intermediate devices (including enterprise networks) which support intermediate range wireless connections (typically 100m or less of range) and which do not support a more accurate location determination mechanism such as triangulation, MUST support location configuration where the location of the access point is reflected as the location of the clients of that access point. Where the access network provides location configuration, intermediate devices MUST either be transparent to it, or provide an interconnected client for the supported configuration mechanism and a server for a configuration protocol supported by end devices upstream of the intermediate device ### 6.2.3. End-system measured location information TOC ED-16/INT-6 Devices MAY support end-system measured location. Uncertainty of less than 100 m with 95% confidence SHOULD be available for dispatch. ED-17/INT-7/AN-7 Devices that support endpoint measuring of location MUST have at least a coarse location capability (typically <1km accuracy when not location hiding) at all times for routing of calls. This mechanism MAY be a service provided by the access network. ### 6.2.4. Network-measured location information TOC AN-8 Access networks MAY provide network-measured location determination. Wireless access network which do not support network measured location MUST require that all devices connected to the network have end-system measured location. Uncertainty of less than 100 m with 95% confidence SHOULD be available for dispatch. AN-9 Access networks that provide network measured location MUST have at least a coarse location (typically <1km when not location hiding) capability at all times for routing of calls. AN-10 Access networks with range of <10 meters MUST provide a location to mobile devices connected to it. The location provided SHOULD be that of the access point location unless a more accurate mechanism is provided. ## 6.3. Who adds location, endpoint or proxy TOC ED-18/INT-8 Endpoints SHOULD do configure their own location. SP-12 Proxies MAY provide location on behalf of devices if: *The proxy has a relationship with all access networks the device could connect to, and the relationship allows it to obtain location. *The proxy has an identifier, such as an IP address, that can be used by the access network to determine the location of the endpoint, even in the presence of NAT and VPN tunnels that may obscure the identifier between the access network and the service provider. ED-19/INT-9/SP-13 Where proxies provide location on behalf of endpoints, the the service provider MUST ensure that either the end device is provided with the local dial strings for its current location (where the end device recognizes dial strings), or the service provider proxy MUST detect the appropriate local dial strings at the time of the call. ### 6.4. Location and references to location TOC ED-20/INT-10 Devices SHOULD be able to accept and forward location by value or by reference. An end device that receives location by reference (and does not also get the corresponding value) MUST be able to perform a dereference operation to obtain a value. ### 6.5. End system location configuration TOC ED-21/INT-11 Devices MUST support all of: DHCP location options [RFC4676] (Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information," October 2006.) and [RFC3825] (Polk, J., Schnizlein, J., and M. Linsner, "Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information," July 2004.), HELD [I-D.ietf-geopriv-http-location-delivery] (Barnes, M., Winterbottom, J., Thomson, M., and B. Stark, "HTTP Enabled Location Delivery (HELD)," August 2009.) and LLDP-MED [LLDP-MED] (TIA, "ANSI/ TIA-1057 Link Layer Discovery Protocol - Media Endpoint Discovery," .). AN-11/INT-12 The access network MUST support at least one of: DHCP location options, HELD or LLDP-MED. AN-12/INT-13 Where a router is employed between a LAN and WAN in a small (less than approximately 650 square meters) area, the router MUST be transparent to the location provided by the WAN to the LAN. This may mean the router must obtain location as a client from the WAN, and supply an LCP server to the LAN with the location it obtains. Where the area is larger, the LAN MUST have a location configuration mechanism meeting this BCP. ED-22/INT-14 Endpoints SHOULD try all LCPs supported by the device in any order or in parallel. The first one that succeeds in supplying location can be used. AN-13/INT-15 Access networks that support more than one LCP MUST reply with the same location information (within the limits of the data format for the specific LCP) for all LCPs it supports. ED-??/INT-??/SP-?? When HELD is the LCP, the request MUST specify a value of "emergencyRouting" for the "responseTime" parameter and use the resulting location for routing. If a value for dispatch location will be sent, another request with the "responseTime" parameter set to "emergencyDispatch" must be completed, with the result sent for dispatch purposes. ED-?? Where the operating system supporting application programs which need location for emergency calls does not allow access to Layer 2 and Layer 3 functions necessary for a client application to use DHCP location options and/or LLDP-MED, the operating system MUST provide a published API conforming to ED-12 through ED-18 and ED-21 through ED-27. It is RECOMMENDED that all operating systems provide such an API. ## 6.6. When location should be configured TOC ED-23/INT-16 Endpoints SHOULD obtain location immediately after obtaining local network configuration information. When HELD is the LCP the client MUST support a random back-off period (between 30 seconds and 300 seconds) for re-trying the HELD query, when no response is received. ED-??/INT-?? If the device is configured to use DHCP for bootstrapping, it MUST include both options for location acquisition (civic and geodetic), the option for LIS discovery, and the option for LoST discovery as defined in [RFC4676] (Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information," October 2006.), [RFC3825] (Polk, J., Schnizlein, J., and M. Linsner, "Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information," July 2004.), [I-D.thomson-geopriv-lis-discovery] (Thomson, M. and J. Winterbottom, "Discovering the Local Location Information Server (LIS)," September 2007.) and [I-D.ietf-ecrit-dhc-lost-discovery] (Schulzrinne, H., Polk, J., and H. Tschofenig, "A Dynamic Host Configuration Protocol (DHCP) based Location-to-Service Translation Protocol (LoST) Discovery Procedure," May 2008.). ED-??/INT-?? If the device sends a DHCP INFORM message, it MUST include both options for location acquisition (civic and geodetic), the option for LIS discovery, and the option for LoST discovery as defined in [RFC4676] (Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information," October 2006.), [RFC3825] (Polk, J., Schnizlein, J., and M. Linsner, "Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information," July 2004.), [I-D.thomson-geopriv-lis-discovery] (Thomson, M. and J. Winterbottom, "Discovering the Local Location Information Server (LIS)," September 2007.) and [I-D.ietf-ecrit-dhc-lost-discovery] (Schulzrinne, H., Polk, J., and H. Tschofenig, "A Dynamic Host Configuration Protocol (DHCP) based Location-to-Service Translation Protocol (LoST)
Discovery Procedure," May 2008.). ED-24/INT-16 To minimize the effects of VPNs that do not allow split tunneling VPNs, location configuration SHOULD be attempted before such tunnels are established. ED-25/INT-17 Software which uses LCPs SHOULD locate and use the actual hardware network interface rather than a VPN tunnel interface to direct LCP requests to the LIS in the actual access network. AN-14 Network administrators MUST take care in assigning IP addresses such that VPN address assignments can be distinguished from local devices (by subnet choice, for example), and LISs SHOULD NOT attempt to provide location to addresses that arrive via VPN connections unless it can accurately determine the location for such addresses. AN-15 Placement of NAT devices SHOULD consider the effect of the NAT on the LCP. ED-26/INT-18 For devices which are not expected to roam, refreshing location on the order of once per day is RECOMMENDED. ED-27/INT-19 For devices which roam, refresh of location information SHOULD be more frequent, with the frequency related to the mobility of the device and the ability of the access network to support the refresh operation. If the device can detect that it has moved, for example when it changes access points, the device SHOULD refresh its location. ED-28/INT-20/AN-16 It is RECOMMENDED that location determination not take longer than 250 ms to obtain routing location and systems SHOULD be designed such that the typical response is under 100 ms. However, as much as 3 seconds to obtain routing location MAY be tolerated if location accuracy can be substantially improved over what can be obtained in 250 ms. ### 6.7. Conveying location in SIP TOC ED-29/SP-14 Location sent between SIP elements MUST be conveyed using [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.). ED-30/AN-17 Where the absolute location or the accuracy of location of the endpoint may change between the time the call is received at the PSAP and the time dispatch is completed, location update mechanisms MUST be provided. ED-31/AN-18 Mobile devices MUST be provided with a mechanism to get repeated location updates to track the motion of the device during the complete processing of the call. ED-32/AN-19 The LIS SHOULD provide a location reference which permits a subscription with appropriate filtering. ED-33/AN-20 For calls sent with location-by-reference, with a SIP or SIPS scheme, the server resolving the reference MUST support a SUBSCRIBE [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.) to the presence event [RFC3856] (Rosenberg, J., "A Presence Event Package for the Session Initiation Protocol (SIP)," August 2004.). For other location-by-reference schemes, the PSAP will have to repeatedly dereference the URI to determine if the device moved. ED-34 If location was sent by value, and the endpoint gets updated location, it MUST send the updated location to the PSAP via a SIP re-INVITE or UPDATE request. Such updates SHOULD be limited to no more than one update every 10 seconds. # 6.9. Multiple locations TOC ED-35 If a UA has more than one location available to it, it MUST choose one location to route the call towards the PSAP. SP-15 If a proxy inserts location on behalf of an endpoint, and it has multiple locations available for the endpoint it MUST choose one location to use to route the call towards the PSAP. SP-16 If a proxy is attempting to insert location but the UA conveyed a location to it, the proxy MUST use the UA's location for routing and MUST convey that location towards the PSAP. It MAY also include what it believes the location to be in a separate Geolocation header. SP-17 All location objects received by a proxy MUST be delivered to the PSAP. ED-36/SP-18 Location objects MUST contain information about the method by which the location was determined, such as GPS, manually entered, or based on access network topology included in a PIDF- LO "method" element. In addition, the source of the location information MUST be included in a PIDF-LO "provided-by" element. ED-37/SP-19 The "used-for-routing" parameter MUST be set to the location that was used to query LoST. #### 6.10. Location validation TOC AN-21 A LIS should perform location validation of civic locations via LoST before entering a location in its database. ED-38 Endpoints SHOULD validate civic locations when they receive them from their LCP. Validation SHOULD be performed in conjunction with the LoST route query to minimize load on the LoST server. ### 6.11. Default location TOC AN-22 When the access network cannot determine the actual location of the caller, it MUST supply a default location. The default SHOULD be chosen to be as close to the probable location of the device as the network can determine. See [I-D.ietf-ecrit-framework] (Rosen, B., Schulzrinne, H., Polk, J., and A. Newton, "Framework for Emergency Calling using Internet Multimedia," July 2009.) SP-20 Proxies handling emergency calls MUST insert a default location if the call does not contain a location and the proxy does not have a method for obtaining a better location. AN-23/SP-21 Default locations MUST be marked with method=Default and an appropriate provided-by in the PIDF-LO. ## 6.12. Other location considerations TOC ED-39 If the LCP does not return location in the form of a PIDF-LO [RFC4119] (Peterson, J., "A Presence-based GEOPRIV Location Object Format," December 2005.), the endpoint MUST map the location information it receives from the configuration protocol to a PIDF-LO. ED-40/AN-24 To prevent against spoofing of the DHCP server, elements implementing DHCP for location configuration SHOULD use [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.). ED-41 S/MIME MUST NOT be used to encrypt the SIP Geolocation header or bodies. ED-42/SP-22 TLS MUST be used to protect location (but see <u>Section 9.1</u> (<u>Use of TLS</u>)). IPSEC [RFC2401] (<u>Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol," November 1998.)</u> is an acceptable alternative. ## 6.13. LIS and LoST Discovery ED-xx Endpoints MUST support one or more mechanisms that allow them to determine their public IP address. Examples include ICE [I-D.ietf-mmusic-ice] (Rosenberg, J., "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols," October 2007.) and HTTP get. ED-xx Endpoints MUST support LIS discovery as described in [I-D.thomson-geopriv-lis-discovery] (Thomson, M. and J. Winterbottom, "Discovering the Local Location Information Server (LIS)," September 2007.), and the LoST discovery as described in [I-D.ietf-ecrit-dhc-lost-discovery] (Schulzrinne, H., Polk, J., and H. Tschofenig, "A Dynamic Host Configuration Protocol (DHCP) based Location-to-Service Translation Protocol (LoST) Discovery Procedure," May 2008.). ED-xx The device MUST have a configurable default LoST server parameter. If the device is provided by or managed by service provider, it is expected that the service provider will configure this option. ### 7. Uninitialized devices TOC ED-43 Uninitialized devices SHOULD NOT lead a user to believe an emergency call could be placed on it unless local regulations require it. ED-44/AN-25/SP-23 Uninitialized devices SHOULD NOT be capable of placing an emergency call unless local regulations require it. ED-45/AN-26/SP-24 Uninitialized devices that can place emergency calls MUST supply location the same as a fully capable device would. ED-46/SP-25 Unitialized devices MUST supply a call back URI. See Section 7 (Uninitialized devices). ED-47/SP-26 Unitialized devices MUST include identifiers in the signaling that can be used by the service provider to identify the device and to allow filtering of calls from the device by the PSAP/ESRP. ## 8. Routing the call to the PSAP TOC ED-48 Endpoints who obtain their own location SHOULD perform LoST mapping to the PSAP URI. ED-49 Mapping SHOULD be performed at boot time and whenever location changes beyond the service boundary obtained from a prior LoST mapping operation or the time-to-live value of that response has expired. The value MUST be cached for possible later use. ED-50 The endpoint MUST attempt to update its location at the time of an emergency call. If it cannot obtain a new location quickly (see Section 6 (Location and its role in an emergency call)), it MUST use the cached value. ED-51 The endpoint SHOULD attempt to update the LoST mapping at the time of an emergency call. If it cannot obtain a new mapping quickly, it MUST use the cached value. SP-27 All proxies in the outbound path SHOULD recognize emergency calls with a Request URI of the service URN in the "sos" tree. An endpoint places a service URN in the Request URI to indicate that the endpoint understood the call was an emergency call. A proxy that processes such a call looks for the presence of a SIP Route header field with a URI of a PSAP. Absence of such a Route header indicates the UAC was unable to invoke LoST and the proxy MUST perform the LoST mapping and insert a Route header field with the URI obtained. SP-28 To deal with old user agents that predate this specification and with UAs that do not have access to their own location data, a proxy that recognizes a call as an emergency call that is not marked as such (see Section 5 (Identifying an emergency call)) MUST also perform this mapping, with the best location it has available for the endpoint. The resulting PSAP URI would be placed in a Route header with the service URN in the Request URI. SP-29 Proxy servers performing mapping SHOULD use location obtained from the access network for the mapping. If no location is available, a default location (see <u>Section 6.11 (Default location)</u>) MUST be supplied. SP-30 A proxy server which attempts mapping and fails to get a
mapping MUST provide a default mapping. A suitable default mapping would be the mapping obtained previously for the default location appropriate for the caller. ED-52/SP-31 [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol," June 2002.) and [RFC3263] (Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol (SIP): Locating SIP Servers," June 2002.) procedures MUST be used to route an emergency call towards the PSAP's URI. ED-53 Initial INVITES MUST provide an Offer [RFC3264] (Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)," June 2002.). ## 9. Signaling of emergency calls TOC ED-54 Best Current Practice for SIP user agents [RFC4504] (Sinnreich, H., Lass, S., and C. Stredicke, "SIP Telephony Device Requirements and Configuration," May 2006.) including handling of audio, video and real-time text [RFC4103] (Hellstrom, G. and P. Jones, "RTP Payload for Text <u>Conversation," June 2005.</u>) MUST be applied. This memo can be considered as an addition to [RFC4504] (Sinnreich, H., Lass, S., and C. Stredicke, "SIP Telephony Device Requirements and Configuration," May 2006.) for endpoints. 9.1. Use of TLS TOC ED-55/SP-32 TLS MUST be specified when attempting to signal an emergency call with SIP per [I-D.ietf-sip-sips] (Audet, F., "The use of the SIPS URI Scheme in the Session Initiation Protocol (SIP)," November 2008.). IPSEC [RFC2401] (Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol," November 1998.) is an acceptable alternative. ED-56/SP-33 If TLS session establishment fails, the call MUST be retried without TLS. ED-57/SP-34 [I-D.ietf-sip-outbound] (Jennings, C., "Managing Client Initiated Connections in the Session Initiation Protocol (SIP)," June 2009.) is RECOMMENDED to maintain persistent TLS connections between elements. ED-58/AN-27 TLS MUST be specified when attempting to retrieve location (configuration or dereferencing) with HELD. The use of [RFC4507] (Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session Resumption without Server-Side State," May 2006.) is RECOMMENDED to minimise the time to establish TLS sessions. ED-59/AN33 If TLS session establishment fails, the location retrieveal MUST be retried without TLS. ### 9.2. SIP signaling requirements for User Agents TOC ED-60 The initial SIP signaling method is an INVITE request: - 1. The Request URI SHOULD be the service URN in the "sos" tree, If the device cannot interpert local dial strings, the Request-URI SHOULD be a dial string URI [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.) with the dialed digits. - 2. The To header SHOULD be a service URN in the "sos" tree. If the device cannot do interpret local dial strings, the To: SHOULD be a dial string URI with the dialed digits. - 3. The From header MUST be present and SHOULD be the AoR of the caller. - 4. A Via header MUST be present and SHOULD include the URI of the device. - 5. A Route header SHOULD be present with a PSAP URI obtained from LoST (see <u>Section 8 (Routing the call to the PSAP)</u>) and the loose route parameter. If the device does not interpet dial plans, no Route header will be present. - 6. A Contact header MUST be present which MUST be globally routable, for example a GRUU [I-D.ietf-sip-gruu] (Rosenberg, J., "Obtaining and Using Globally Routable User Agent (UA) URIS (GRUU) in the Session Initiation Protocol (SIP)," October 2007.), to permit an immediate call-back to the specific device which placed the emergency call. - 7. Other headers MAY be included as per normal SIP behavior. - 8. A Supported header MUST be included with the 'geolocation' option tag [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.), unless the device does not understand the concept of SIP location. - 9. If a device understands the SIP location conveyance [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.) extension and has its location available, it MUST include location either by-value or by-reference. - 10. If a device understands the SIP Location Conveyance extension and has its location unavailable or unknown to that device, it MUST include a Supported header with a "geolocation" option tag, and MUST NOT include a Geolocation header, and not include a PIDF-LO message body. - 11. If a device understands the SIP Location Conveyance extension and supports LoST [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.), the Geolocation "used-for-routing" header parameter MUST be added to the corresponding URI in the Geolocation header. - 12. A normal SDP offer SHOULD be included in the INVITE. If voice is supported the offer MUST include the G.711 codec, see Section 14 (Media). - 13. If the device includes location-by-value, the UA MUST support multipart message bodies, since SDP will likely be also in the INVITE. - 14. A UAC SHOULD include a "inserted-by=endpoint" header parameter on all Geolocation headers. This informs downstream elements which device entered the location at this URI (either cid-URL or location-by-reference URI). - 15. SIP Caller Preferences [RFC3841] (Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller Preferences for the Session Initiation Protocol (SIP)," August 2004.) MAY be used to signal how the PSAP should handle the call. For example, a language preference expressed in an Accept-Language header may be used as a hint to cause the PSAP to route the call to a call taker who speaks the requested language. SIP Caller Preferences may also be used to indicate a need to invoke a relay service for communication with people with disabilities in the call. ## 9.3. SIP signaling requirements for proxy servers TOC SP-35 SIP Proxy servers processing emergency calls: - 1. If the proxy does interprets dial plans on behalf of user agents, the proxy MUST look for the local emergency dial string at the location of the end device and MAY look for the home dial string. If it finds it, the proxy MUST: - *Insert a Geolocation header as above. Location-by-reference MUST be used because proxies must not insert bodies. - *Include the Geolocation "inserted-by=server" and "used-for-routing" parameters. - *Map the location to a PSAP URI using LoST. - *Add a Route header with the PSAP URI. - *Replace the Request-URI (which was the dial string) with the service URN appropriate for the emergency dial string. - *Route the call using normal SIP routing mechanisms. - 2. If the proxy recognizes the service URN in the Request URI, and does not find a Route header with a PSAP URI, it MUST run LoST routing. If a location was provided (which should be the case), the proxy uses that location to query LoST. The proxy may have to dereference a location by reference to get a value. If a location is not present, and the proxy can query a LIS which has the location of the UA it MUST do so. If no location is present, and the proxy does not have access to a LIS which could provide location, the proxy MUST supply a default location (See Section 6.11 (Default location)). The location (in the signaling, obtained from a LIS, or default) MUST be used in a query to LoST with the service URN received with the call. The resulting URI MUST be placed in a Route header added to the call. - 3. The "inserted-by=" parameter in any Geolocation: header received on the call MUST NOT be modified or deleted in transit. - 4. The proxy SHOULD NOT modify any parameters in Geolocation headers received in the call. It MAY add a Geolocation header. Such an additional location SHOULD NOT be used for routing; the location provided by the UA should be used. - 5. Either a P-Asserted-Identity [RFC3325] (Jennings, C., Peterson, J., and M. Watson, "Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within Trusted Networks," November 2002.) or an Identity header [RFC4474] (Peterson, J. and C. Jennings, "Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP)," August 2006.), or both, MUST be included to identify the sender. 10. Call backs SP-36 Unitialized devices, like any device MUST have a globally routable URI in a Contact: header. SP-37 Unitialized devices SHOULD have a persistent URI in a P-Asserted-Identity: header if there is some way to assign such an identifier to the device. ## 11. Mid-call behavior TOC ED-61/SP-38 During the course of an emergency call, devices and proxies MUST support REFER transactions and the Referred-by: header [RFC3515] (Sparks, R., "The Session Initiation Protocol (SIP) Refer Method," April 2003.). ED-62/SP-39 User agents and proxies MUST support Session Timer [RFC4028] (Donovan, S. and J. Rosenberg, "Session Timers in the Session <u>Initiation Protocol (SIP)," April 2005.</u>) to guard against session corruption. ### 12. Call termination TOC ED-63 UACs with an active emergency call (i.e. SIP Dialog) MUST NOT generate a BYE request (or equivalent for other non-SIP signaling). The PSAP must be the only entity that can terminate a call. If the user "hangs up" an emergency call, the device should alert the user, and when answered, reconnect the caller to the PSAP. ED-64 There can be a case where the session signaling path is lost, and the user agent does not receive the BYE. If the call is hung up, and the session timer expires the call MAY be declared lost. If in the interval, an incoming call is received from the domain of the PSAP, the device SHOULD drop the old call and alert for the (new) incoming call. Dropping of the old call SHOULD only occur if the user is attempting to hang up; the domain of an incoming call
can only be determined from the From header, which is not reliable, and could be spoofed. Dropping an active call by a new call with a spoofed From: would be a DoS attack. ### 13. Disabling of features TOC ED-65/SP-40 User Agents and proxys MUST disable outgoing call features such as - *Call Waiting - *Call Transfer - *Three Way Call - *Flash hold - *Outbound Call Blocking when an emergency call is established. Also see ED-72 in <u>Section 14</u> (Media). ED-66/SP-41 The emergency dialstrings SHOULD NOT be permitted in Call Forward numbers or speed dial lists. ED-67/SP-42 The User Agent and Proxies SHOULD disable the following incoming call features on call backs from the PSAP: *Call Waiting *Call Forward (all kinds) ED-68 Call backs SHOULD be determined by retaining the domain of the PSAP which answers an outgoing emergency call and instantiating a timer which starts when the call is terminated. If a call is received from the same domain and within the timer period, sent to the Contact: or AoR used in the emergency call, it should be assumed to be a call back. The suggested timer period is 5 minutes. 14. Media TOC ED-69 Endpoints MUST send and receive media streams on RTP [RFC3550] (Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications," July 2003.). ED-70 Normal SIP offer/answer [RFC3264] (Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)," June 2002.) negotiations MUST be used to agree on the media streams to be used. ED-71 Endpoints supporting voice MUST support G.711 A law (and mu Law if they could be used in North America) encoded voice as described in [RFC3551] (Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control," July 2003.). It is desirable to include wideband codecs such as AMR-WB in the offer. ED-72 Silence suppression (Voice Activity Detection methods) MUST NOT be used on emergency calls. PSAP call takers sometimes get information on what is happening in the background to determine how to process the call. ED-73 Endpoints supporting IM MUST support either [RFC3428] (Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, "Session Initiation Protocol (SIP) Extension for Instant Messaging," December 2002.) or [RFC3920] (Saint-Andre, P., Ed., "Extensible Messaging and Presence Protocol (XMPP): Core," October 2004.). ED-74 Endpoints supporting real-time text MUST use [RFC4103] (Hellstrom, G. and P. Jones, "RTP Payload for Text Conversation," June 2005.). The expectations for emergency service support for the real-time text medium, described in [I-D.ietf-sipping-toip] (Wijk, A. and G. Gybels, "Framework for real-time text over IP using the Session Initiation Protocol (SIP)," April 2008.), Section 7.1 SHOULD be fulfilled. ED-75 Endpoints supporting video MUST support H.264 per [RFC3984] (Wenger, S., Hannuksela, M., Stockhammer, T., Westerlund, M., and D. Singer, "RTP Payload Format for H.264 Video," February 2005.). 15. Testing TOC ED-76 INVITE requests to a service URN with a urn parameter of "test" indicates a request for an automated test. For example, "urn:service.sos.fire;test". As in standard SIP, a 200 (OK) response indicates that the address was recognized and a 404 (Not found) that it was not. A 486 (Busy Here) MUST be returned if the test service is busy, and a 488 (Not Acceptable Here) MUST be returned if the PSAP does not support the test mechanism. ED-77 In its response to the test, the PSAP MAY include a text body (text/plain) indicating the identity of the PSAP, the requested service, and the location reported with the call. For the latter, the PSAP SHOULD return location-by-value even if the original location delivered with the test was by-reference. If the location-by-reference was supplied, and the dereference requires credentials, the PSAP SHOULD use credentials supplied by the LIS for test purposes. This alerts the LIS that the dereference is not for an actual emergency call and location hiding techniques, if they are being used, may be employed for this dereference. The response MAY include the connected identity of the PSAP per [I-D.ietf-sip-connected-identity] (Elwell, J., "Connected Identity in the Session Initiation Protocol (SIP), "February 2007.). ED-78 A PSAP accepting a test call SHOULD accept a media loopback test [I-D.ietf-mmusic-media-loopback] (Sivachelvan, C., Venna, N., Jones, P., Stratton, N., Roychowdhury, A., and K. Hedayat, "An Extension to the Session Description Protocol (SDP) for Media Loopback," April 2010.) and SHOULD support the "rtp-pkt-loopback" and "rtp-startloopback" options. The user agent would specify a loopback attribute of "loopback-source", the PSAP being the mirror. User Agents should expect the PSAP to loop back no more than 3 packets of each media type accepted (which limits the duration of the test), after which the PSAP would normally send BYE. ED-79 User agents SHOULD perform a full call test, including media loopback, after a disconnect and subsequent change in IP address not due to a reboot. After an initial test, a full test SHOULD be repeated approximately every 30 days with a random interval. ED-80 User agents MUST NOT place a test call immediately after booting. If the IP address changes after booting, the UA should wait a random amount of time (in perhaps a 30 minute period, sufficient for any avalanche restart to complete) and then test. ED-81 PSAPs MAY refuse repeated requests for test from the same device in a short period of time. Any refusal is signaled with a 486 or 488 response. ## **16.** Security Considerations Security considerations for emergency calling have been documented in [I-D.ietf-ecrit-security-threats] (Taylor, T., "Security Threats and Requirements for Emergency Call Marking and Mapping," August 2007.), and [I-D.barnes-geopriv-lo-sec] (Barnes, R., Lepinski, M., Cooper, A., Morris, J., Tschofenig, H., and H. Schulzrinne, "An Architecture for Location and Location Privacy in Internet Applications," March 2009.). ## 17. Acknowledgements TOC Work group members participating in the creation and review of this document include include Hannes Tschofenig, Ted Hardie, Marc Linsner, Roger Marshall, Stu Goldman, Shida Schubert, James Winterbottom, Barbara Stark, Richard Barnes and Peter Blatherwick. ### 18. Normative References TOC | | 100 | |--|--| | [I-D.barnes-
geopriv-lo-sec] | Barnes, R., Lepinski, M., Cooper, A., Morris, J., Tschofenig, H., and H. Schulzrinne, "An Architecture for Location and Location Privacy in Internet Applications," draft-barnes-geopriv-losec-05 (work in progress), March 2009 (TXT). | | <pre>[I-D.ietf-ecrit- dhc-lost- discovery]</pre> | Schulzrinne, H., Polk, J., and H. Tschofenig, "A Dynamic Host Configuration Protocol (DHCP) based Location-to-Service Translation Protocol (LoST) Discovery Procedure," draft-ietf-ecrit-dhc-lost-discovery-03 (work in progress), May 2008 (TXT). | | [I-D.ietf-ecrit-
framework] | Rosen, B., Schulzrinne, H., Polk, J., and A. Newton, "Framework for Emergency Calling using Internet Multimedia," draft-ietf-ecrit- framework-10 (work in progress), July 2009 (TXT). | | [I-D.ietf-ecrit-lost] | Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," draft-ietf-ecrit-lost-10 (work in progress), May 2008 (TXT). | | [I-D.ietf-ecrit-
requirements] | Schulzrinne, H. and R. Marshall, "Requirements for Emergency Context Resolution with Internet Technologies," draft-ietf-ecrit-requirements-13 (work in progress), March 2007 (TXT). | | [I-D.ietf-ecrit-
security-
threats] | Taylor, T., "Security Threats and Requirements for Emergency Call Marking and Mapping," draft-ietf-ecrit-security-threats-05 (work in progress), August 2007 (TXT). | | [I-D.ietf-ecrit-
service-urn] | Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency and Other Well-Known Services," draft-ietf-ecrit-service-urn-07 (work in progress), August 2007 (TXT). | |--|---| | [I-D.ietf-
geopriv-http-
location-
delivery] | Barnes, M., Winterbottom, J., Thomson, M., and B. Stark, "HTTP Enabled Location Delivery (HELD)," draft-ietf-geopriv-http-location-delivery-16 (work in progress), August 2009 (TXT). | | <pre>[I-D.ietf- geopriv-pdif-lo- profile]</pre> | Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV PIDF-LO Usage Clarification, Considerations and Recommendations," draft-ietf- geopriv-pdif-lo-profile-14 (work in progress), November 2008 (TXT). | | <pre>[I-D.ietf- geopriv-revised- civic-lo]</pre> | Thomson, M. and J. Winterbottom, "Revised Civic Location Format for PIDF-LO," draft-ietf-geopriv-revised-civic-lo-07 (work in progress), December 2007 (TXT). | | [I-D.ietf-
mmusic-ice] | Rosenberg, J., "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/ Answer Protocols," draft-ietf-mmusic-ice-19 (work in progress), October 2007 (TXT). | | [I-D.ietf-
mmusic-media-
loopback] | Sivachelvan, C., Venna, N., Jones, P., Stratton, N., Roychowdhury, A., and K. Hedayat, "An Extension to the Session Description Protocol (SDP) for Media Loopback," draft-ietf-mmusic-media-loopback-13 (work in progress), April 2010 (TXT). | |
<pre>[I-D.ietf-sip-
connected-
identity]</pre> | Elwell, J., "Connected Identity in the Session Initiation Protocol (SIP)," draft-ietf-sip-connected-identity-05 (work in progress), February 2007 (TXT). | | [I-D.ietf-sip-gruu] | Rosenberg, J., "Obtaining and Using Globally Routable User Agent (UA) URIS (GRUU) in the Session Initiation Protocol (SIP)," draft-ietf- sip-gruu-15 (work in progress), October 2007 (TXT). | | [I-D.ietf-sip-location-conveyance] | Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," draft-ietf-sip-location-conveyance-13 (work in progress), March 2009 (TXT). | | [I-D.ietf-sip-
outbound] | Jennings, C., "Managing Client Initiated Connections in the Session Initiation Protocol (SIP)," draft-ietf-sip-outbound-20 (work in progress), June 2009 (TXT). | | [I-D.ietf-sip-sips] | Audet, F., "The use of the SIPS URI Scheme in the Session Initiation Protocol (SIP)," draft-ietf- | | | sip-sips-09 (work in progress), November 2008 (TXT). | |-----------------|---| | [I-D.ietf- | Channabasappa, S., "A Framework for Session | | sipping-config- | Initiation Protocol User Agent Profile Delivery," | | | | | framework] | draft-ietf-sipping-config-framework-17 (work in progress), February 2010 (TXT). | | [I-D.ietf- | Wijk, A. and G. Gybels, "Framework for real-time | | sipping-toip] | text over IP using the Session Initiation | | | <pre>Protocol (SIP)," draft-ietf-sipping-toip-09 (work</pre> | | | in progress), April 2008 (<u>TXT</u>). | | [I-D.thomson- | Thomson, M. and J. Winterbottom, " <u>Discovering the</u> | | geopriv-lis- | Local Location Information Server (LIS)," draft- | | discovery] | thomson-geopriv-lis-discovery-03 (work in | | | progress), September 2007 (<u>TXT</u>). | | [LLDP] | IEEE, "IEEE802.1ab Station and Media Access | | | Control," Dec 2004. | | [LLDP-MED] | TIA, "ANSI/TIA-1057 Link Layer Discovery Protocol | | | - Media Endpoint Discovery." | | [RFC2119] | Bradner, S., "Key words for use in RFCs to | | | <pre>Indicate Requirement Levels," BCP 14, RFC 2119,</pre> | | | March 1997 (TXT, HTML, XML). | | [RFC2131] | Droms, R., "Dynamic Host Configuration Protocol," | | | RFC 2131, March 1997 (TXT, HTML, XML). | | [RFC2396] | Berners-Lee, T., Fielding, R., and L. Masinter, | | | "Uniform Resource Identifiers (URI): Generic | | | Syntax," RFC 2396, August 1998 (TXT, HTML, XML). | | [RFC2401] | Kent, S. and R. Atkinson, "Security Architecture | | | for the Internet Protocol," RFC 2401, | | | November 1998 (TXT, HTML, XML). | | [RFC3046] | Patrick, M., "DHCP Relay Agent Information | | [200] | <u>Option</u> ," RFC 3046, January 2001 (<u>TXT</u>). | | [RFC3118] | Droms, R. and W. Arbaugh, "Authentication for | | [m correl | DHCP Messages," RFC 3118, June 2001 (TXT). | | [RFC3261] | Rosenberg, J., Schulzrinne, H., Camarillo, G., | | | Johnston, A., Peterson, J., Sparks, R., Handley, | | | M., and E. Schooler, "SIP: Session Initiation | | | <pre>Protocol," RFC 3261, June 2002 (TXT).</pre> | | [RFC3263] | Rosenberg, J. and H. Schulzrinne, "Session | | | <pre>Initiation Protocol (SIP): Locating SIP Servers,"</pre> | | | RFC 3263, June 2002 (<u>TXT</u>). | | [RFC3264] | Rosenberg, J. and H. Schulzrinne, "An Offer/ | | | Answer Model with Session Description Protocol | | | (SDP)," RFC 3264, June 2002 (TXT). | | [RFC3325] | Jennings, C., Peterson, J., and M. Watson, | | | "Private Extensions to the Session Initiation | | | Protocol (SIP) for Asserted Identity within | | | <u>Trusted Networks</u> ," RFC 3325, November 2002 (<u>TXT</u>). | | [RFC3428] | | | | Campbell, B., Rosenberg, J., Schulzrinne, H., | |-----------|--| | | Huitema, C., and D. Gurle, "Session Initiation | | | Protocol (SIP) Extension for Instant Messaging," | | | RFC 3428, December 2002 (<u>TXT</u>). | | [RFC3515] | Sparks, R., "The Session Initiation Protocol | | | (SIP) Refer Method," RFC 3515, April 2003 (TXT). | | [RFC3550] | Schulzrinne, H., Casner, S., Frederick, R., and | | | V. Jacobson, "RTP: A Transport Protocol for Real- | | | Time Applications," STD 64, RFC 3550, July 2003 | | | (TXT, PS, PDF). | | [RFC3551] | Schulzrinne, H. and S. Casner, "RTP Profile for | | | Audio and Video Conferences with Minimal | | | <u>Control</u> ," STD 65, RFC 3551, July 2003 (<u>TXT</u> , <u>PS</u> , | | | PDF). | | [RFC3825] | Polk, J., Schnizlein, J., and M. Linsner, | | | "Dynamic Host Configuration Protocol Option for | | | Coordinate-based Location Configuration | | | <pre>Information," RFC 3825, July 2004 (TXT).</pre> | | [RFC3841] | Rosenberg, J., Schulzrinne, H., and P. Kyzivat, | | | "Caller Preferences for the Session Initiation | | | Protocol (SIP)," RFC 3841, August 2004 (TXT). | | [RFC3856] | Rosenberg, J., "A Presence Event Package for the | | | Session Initiation Protocol (SIP)," RFC 3856, | | | August 2004 (TXT). | | [RFC3920] | Saint-Andre, P., Ed., "Extensible Messaging and | | | Presence Protocol (XMPP): Core," RFC 3920, | | | October 2004 (<u>TXT</u> , <u>HTML</u> , <u>XML</u>). | | [RFC3966] | Schulzrinne, H., "The tel URI for Telephone | | | Numbers," RFC 3966, December 2004 (TXT). | | [RFC3984] | Wenger, S., Hannuksela, M., Stockhammer, T., | | | Westerlund, M., and D. Singer, "RTP Payload | | | Format for H.264 Video," RFC 3984, February 2005 | | | (TXT). | | [RFC4028] | Donovan, S. and J. Rosenberg, "Session Timers in | | | the Session Initiation Protocol (SIP)," RFC 4028, | | | April 2005 (TXT). | | [RFC4103] | Hellstrom, G. and P. Jones, "RTP Payload for Text | | | Conversation," RFC 4103, June 2005 (TXT). | | [RFC4119] | Peterson, J., "A Presence-based GEOPRIV Location | | | Object Format," RFC 4119, December 2005 (TXT). | | [RFC4190] | Carlberg, K., Brown, I., and C. Beard, "Framework | | | for Supporting Emergency Telecommunications | | | Service (ETS) in IP Telephony," RFC 4190, | | | November 2005 (TXT). | | [RFC4474] | Peterson, J. and C. Jennings, " <u>Enhancements for</u> | | | Authenticated Identity Management in the Session | | | <u>Initiation Protocol (SIP)</u> ," RFC 4474, August 2006 | | | (<u>TXT</u>). | | | · | | [RFC4504] | Sinnreich, H., Lass, S., and C. Stredicke, "SIP Telephony Device Requirements and Configuration," RFC 4504, May 2006 (TXT). | |-----------|---| | [RFC4507] | Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, " <u>Transport Layer Security (TLS)</u> <u>Session Resumption without Server-Side State</u> ," RFC 4507, May 2006 (<u>TXT</u>). | | [RFC4676] | Schulzrinne, H., " <u>Dynamic Host Configuration</u> <u>Protocol (DHCPv4 and DHCPv6) Option for Civic</u> <u>Addresses Configuration Information</u> ," RFC 4676, October 2006 (<u>TXT</u>). | | [RFC4967] | Rosen, B., " <u>Dial String Parameter for the Session</u> <u>Initiation Protocol Uniform Resource Identifier</u> ," RFC 4967, July 2007 (<u>TXT</u>). | # Appendix A. BCP Requirements Sorted by Responsible Party TOC # A.1. Requirements of End Devices TOC ED-1 if a user could reasonably expect to be able to place a call for help with the device, then the device or application SHOULD support emergency calling. ED-2 Devices that create media sessions and exchange audio, video and/ or text, and have the capability to establish sessions to a wide variety of addresses, and communicate over private IP networks or the Internet, SHOULD support emergency calls ED-3 Endpoints SHOULD do dial string recognition of emergency dial strings ED-4 Emergency calls MUST be marked with a Service URN in the Request-URI of the INVITE. ED-5 Local dial strings MUST be recognized. ED-6 Home dial strings MAY be recognized. ED-7 Local emergency dial strings SHOULD be determined from LoST LoST [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.). ED-8 Endpoints which do not recognize emergency dial strings SHOULD send dial strings as per [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.). ED-9 Endpoints SHOULD be able to have home dial strings provisioned by configuration. ED-10 Devices SHOULD NOT have one button emergency calling initiation. ``` ED-11 All emergency services specified in [I-D.ietf-ecrit-service-urn] (Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency and Other Well-Known Services, " August 2007.) MUST be recognized. Devices/ Service Providers MUST be capable of recognizing all of the associated dial strings. ED-12 Endpoints and Service Providers MUST be prepared to handle location represented in either civic or geo form. ED-13 Elements MUST NOT convert (civic to geo or geo to civic) from the form of location the determination mechanism supplied. ED-14 Any suitable location determination mechanism MAY be used. ED-15 Devices and/or access networks SHOULD support a manual method to "override" the location the access network determines. Where a civic form of location is provided, all fields in the PIDF- LO [RFC4119] (Peterson, J., "A Presence-based GEOPRIV Location Object Format," December 2005.) and [I-D.ietf-geopriv-revised-civic-lo] (Thomson, M. and J. Winterbottom, "Revised Civic Location Format for PIDF-LO," December 2007.) MUST be able to be specified. ED-16 devices MAY support end-system measured location. Uncertainty of less than 100 m with 95% confidence SHOULD be available for dispatch. ED-17 Devices that support endpoint measuring of location MUST have at least a coarse location (<1km) capability at all times for routing of calls. This mechanism MAY be a service provided by the access network. ED-18 Endpoints SHOULD do location configuration themselves. ED-19 Where
proxies provide location on behalf of endpoints, the the service provider MUST ensure that either the end device is provided with the local dial strings for its current location (where the end device recognizes dial strings), or that the service provider can detect the appropriate local dial strings at the time of the call. ED-20 Devices SHOULD be able to accept and forward location by value or by reference. An end device that receives location by reference (and does not also get the corresponding value) MUST be able to perform a dereference operation to obtain a value. ED-21 endpoints MUST support all of: DHCP Location options [RFC4676] (Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information," October 2006.) and [RFC3825] (Polk, J., Schnizlein, J., and M. Linsner, "Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information, " July 2004.), HELD[I-D.ietf-geopriv-http-location-delivery] (Barnes, M., Winterbottom, J., Thomson, M., and B. Stark, "HTTP Enabled Location Delivery (HELD), " August 2009.) and LLDP-MED[LLDP-MED] (TIA, "ANSI/ TIA-1057 Link Layer Discovery Protocol - Media Endpoint Discovery," .). ED-22 Endpoints SHOULD try all LCPs supported by the device in any order or in parallel. The first one that succeeds in supplying location can be used. ED-23 Endpoints SHOULD obtain location immediately after obtaining local network configuration information. ``` ED-24 To minimize the effects of non-bypassable VPNs, location configuration SHOULD be attempted before such tunnels are established. ED-25 Software which uses LCPs SHOULD locate and use the actual hardware network interface rather than a VPN tunnel interface to direct LCP requests to the LIS in the actual access network. ED-26 For devices which are not expected to roam, refreshing on the order of once per day is RECOMMENDED ED-27 For devices which roam, refresh of location SHOULD be more frequent, with the frequency related to the mobility of the device and the ability of the access network to support the refresh operation. There can be instances in which a device is aware of when it moves, for example when it changes access points. When this type of event occurs, the device SHOULD refresh its location. ED-28 It is RECOMMENDED that location determination not take longer than 250 ms to obtain routing location and systems SHOULD be designed such that the typical response is under 100ms. However, as much as 3 seconds to obtain routing location MAY be tolerated if location accuracy can be substantially improved over what can be obtained in 250 ms. ED-29 Location sent between SIP elements MUST be conveyed using [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.). ED-30 Where the absolute location or the accuracy of location of the endpoint may change between the time the call is received at the PSAP and the time dispatch is completed, location update mechanisms MUST be provided. ED-31 mobile devices MUST be provided with a mechanism to get repeated location updates to track the motion of the device during the complete processing of the call. ED-32 The LIS SHOULD provide a location reference which permits a subscription with appropriate filtering. ED-33 For calls sent with location-by-reference, with a SIP or SIPS scheme, the server resolving the reference MUST support a SUBSCRIBE [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.) to the presence event [RFC3856] (Rosenberg, J., "A Presence Event Package for the Session Initiation Protocol (SIP)," August 2004.). For other location-by-reference schemes, a repeated location dereference by the PSAP MUST be supported. ED-34 If location was sent by value, and the endpoint gets updated location, it MUST send the updated location to the PSAP via reINVITE or UPDATE. Such updates SHOULD be limited to no more than one update every 10 seconds. ED-35 If a UA has more than one location available to it, it MUST choose one location to use to route the call towards the PSAP. ED-36/ Location objects MUST contain information about the method by which the location was determined, such as GPS, manually entered, or based on access network topology included in a PIDF- LO ?method? element. In addition, the source of the location information MUST be included in a PIDF-LO "provided-by" element. ED-37 The "used-for-routing" parameter MUST be set to the location that was used to query LoST. ED-38 Endpoints SHOULD validate civic locations when they receive them from their LCP. Validation SHOULD be performed in conjunction with the LoST route query to minimize load on the LoST server. ED-39 If the LCP does not return location in the form of a PIDF-LO [RFC4119] (Peterson, J., "A Presence-based GEOPRIV Location Object Format," December 2005.), the endpoint MUST map the location information it receives from the configuration protocol to a PIDF-LO. ED-40 To prevent against spoofing of the DHCP server, elements implementing DHCP for location configuration SHOULD use [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.). ED-41 S/MIME MUST NOT be used to protect the Geolocation header or bodies. ED-42 TLS MUST be used to protect location (but see <u>Section 9.1 (Use of TLS)</u>). ED-43 Uninitialized devices SHOULD NOT lead a user to believe an emergency call could be placed on it unless local regulations require it. ED-44 Uninitialized devices SHOULD NOT be capable of placing an emergency call unless local regulations require it. ED-45 Uninitialized devices that can place emergency calls MUST supply location the same as a fully capable device would. ED-46 Unitialized Devices MUST supply a call back URI. See <u>Section 7</u> (Uninitialized devices) ED-47 Unitialized Devices MUST include identifiers in the signaling that can be used by the service provider to identify the device and to allow filtering of calls from the device by the PSAP/ESRP. ED-48 Endpoints who obtain their own location SHOULD perform LoST mapping to the PSAP URI whenever they get an initial or updated location. ED-49 Mapping SHOULD be performed at boot time and whenever location changes beyond the service boundary obtained from a prior LoST mapping operation or the time-to-live value of that response has expired. The value MUST be cached for possible use. ED-50 The endpoint MUST attempt to update its location at the time of an emergency call. If it cannot obtain a new location quickly (See Section 6 (Location and its role in an emergency call)), it MUST use the cached value. ED-51 The endpoint SHOULD attempt to update the LoST mapping at the time of an emergency call. If it cannot obtain a new mapping quickly, it MUST use the cached value. ED-52 [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol," June 2002.) and [RFC3263] (Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol (SIP): Locating SIP Servers," June 2002.) procedures MUST be used to route an emergency call towards the PSAP's URI. ED-53 Initial INVITES MUST provide an Offer [RFC3264] (Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)," June 2002.) ED-54 Best Current Practice for SIP user agents [RFC4504] (Sinnreich, H., Lass, S., and C. Stredicke, "SIP Telephony Device Requirements and Configuration," May 2006.) including handling of audio, video and real-time text [RFC4103] (Hellstrom, G. and P. Jones, "RTP Payload for Text Conversation," June 2005.) SHOULD be applied. This memo can be considered as an addition to [RFC4504] (Sinnreich, H., Lass, S., and C. Stredicke, "SIP Telephony Device Requirements and Configuration," May 2006.) for endpoints. ED-55 TLS MUST be specified when attempting to signal an emergency call with SIP per [I-D.ietf-sip-sips] (Audet, F., "The use of the SIPS URI Scheme in the Session Initiation Protocol (SIP)," November 2008.). IPSEC [RFC2401] (Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol," November 1998.) is an acceptable alternative. ED-56 If TLS session establishment fails, the call MUST be retried with sip: ED-57 [I-D.ietf-sip-outbound] (Jennings, C., "Managing Client Initiated Connections in the Session Initiation Protocol (SIP)," June 2009.) is RECOMMENDED to maintain persistent TLS connections between elements ED-58 https: MUST be specified when attempting to retrieve location (configuration or dereferencing) with HELD. The use of [RFC4507] (Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session Resumption without Server-Side State," May 2006.) is RECOMMENDED to minimise the time to establish TLS sessions. ED-59 If TLS session establishment fails, the location retrieveal MUST be retried with http: ED-60 The initial SIP signaling Method is an INVITE: - 1. The Request URI SHOULD be the service URN in the "sos" tree, If the device cannot do local dialstring interpretation, the Request-URI SHOULD be a dialstring URI [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.) with the dialed digits. - 2. The To: header MUST be present and SHOULD be a service URN in the "sos" tree. If the device cannot do local dialstring interpretation, the To: SHOULD be a dialstring URI with the dialed digits. - 3. The From: header MUST be present and SHOULD be the AoR of the caller. - 4. A Via: header MUST be present and SHOULD include the URI of the device. - 5. A Route: header SHOULD be present with a PSAP URI obtained from LoST (see <u>Section 8 (Routing the call to the PSAP)</u>) and the loose route parameter. A sips URI [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol," June 2002.) SHOULD be specified, unless the operation must be retried due to a failure to establish a TLS connection. If the device does not do dial plan interpretation, no Route: header will be present. - 6. A Contact header MUST be present which MUST be globally routable, for example a GRUU [I-D.ietf-sip-gruu] (Rosenberg, J., "Obtaining and Using Globally Routable User Agent (UA) URIS (GRUU) in the Session Initiation Protocol (SIP)," October 2007.), to permit an immediate call-back to the specific device which placed the emergency call. - 7. Other headers MAY be included as per normal sip behavior. - 8. A Supported: header MUST be included with the 'geolocation' option tag [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.), unless the device does not understand the concept of SIP Location. - 9. If a device understands the SIP Location Conveyance [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.) extension and has its location available, it MUST include location either by- value or by-reference. - 10. If a device understands the SIP Location Conveyance extension and has its location unavailable or unknown to that device, it MUST include a Supported header with a "geolocation" option tag, and MUST NOT include a Geolocation header, and not include a PIDF-LO message body. - 11. If a device understands the SIP Location Conveyance extension and supports LoST [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.) then whichever location is used for routing the message towards the PSAP or ESRP, even if there is only one, the Geolocation "used-for-routing" header parameter SHOULD be added to the corresponding URI in the Geolocation header. - 12. A normal SDP offer SHOULD be included in the INVITE. If voice is supported the offer MUST include the G.711 codec, see Section 14 (Media). - 13. If the device includes location-by-value, the UA MUST support multipart message bodies, since SDP will likely be also in the INVITE. - 14. A UAC SHOULD include a "inserted-by=endpoint" header parameter on all Geolocation headers . This informs downstream elements which device entered the location at this URI (either cid-URL or location-by-reference URI). - 15. SIP Caller Preferences [RFC3841] (Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller Preferences for the Session Initiation Protocol (SIP)," August 2004.) MAY be used to signal how the PSAP should handle the call. ED-61 During the course of an emergency call, devices and proxies MUST support REFER transactions and the Referred-by: header [RFC3515] (Sparks, R., "The Session Initiation Protocol (SIP) Refer Method," April 2003.). ED-62 User agents and proxies MUST Support Session Timer [RFC4028] (Donovan, S. and J. Rosenberg, "Session Timers in the Session Initiation Protocol (SIP)," April 2005.) to guard against session corruption. ED-63 UACs with an active emergency call (i.e. SIP Dialog) MUST NOT generate a BYE request (or equivalent for other non-SIP signaling). The PSAP must be the only entity that can terminate a call. If the user "hangs up" an emergency call, the device should alert, and when answered, reconnect the caller to the PSAP. ED-64 There can be a case where the session signaling path is lost, and the user agent does not receive the BYE. If the call is hung up, and the session timer expires the call MAY be declared lost. If in the interval, an incoming call is received from the domain of the PSAP, the device SHOULD drop the old call and alert for the (new) incoming call. Dropping of the old call SHOULD only occur if the user is attempting to hang up; the domain of an incoming call can only be determined from the From header, which is not reliable, and could be spoofed. Dropping an active call by a new call with a spoofed From: would be a DoS attack. ED-65 User Agents and proxys MUST disable outgoing call features such as: ``` *Call Waiting ``` ^{*}Call Transfer ^{*}Three Way Call ^{*}Flash hold ^{*}Outbound Call Blocking when an emergency call is established. Also see ED-72 in <u>Section 14</u> (Media). ED-66 The emergency dialstrings SHOULD NOT be permitted in Call Forward numbers or speed dial lists. ED-67 The User Agent and Proxies SHOULD disable the following incoming call features on call backs from the PSAP: *Call Waiting *Do Not Disturb *Call Forward (all kinds) ED-68 Call backs SHOULD be determined by retaining the domain of the PSAP which answers an outgoing emergency call and instantiating a timer which starts when the call is terminated. If a call is received from the same domain and within the timer period, sent to the Contact: or AoR used in the emergency call, it should be assumed to be a call back. The suggested timer period is 5 minutes. ED-69 Endpoints MUST send and receive media streams on RTP [RFC3550] (Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications," July 2003.). ED-70 Normal SIP offer/answer [RFC3264] (Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)," June 2002.) negotiations MUST be used to agree on the media streams to be used. ED-71 Endpoints supporting voice MUST support G.711 A law (and mu Law in North America) encoded voice as described in [RFC3551] (Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control," July 2003.). It is desirable to support wideband codecs in the offer. ED-72 Silence suppression (Voice Activity Detection methods) MUST NOT be used on emergency calls. PSAP call takers sometimes get information on what is happening in the background to determine how to process the call. ED-73 Endpoints supporting IM MUST support either [RFC3428] (Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, "Session Initiation Protocol (SIP) Extension for Instant Messaging," December 2002.) or [RFC3920] (Saint-Andre, P., Ed., "Extensible Messaging and Presence Protocol (XMPP): Core," October 2004.). ED-74 Endpoints supporting real-time text MUST use [RFC4103] (Hellstrom, G. and P. Jones, "RTP Payload for Text Conversation," June 2005.). The expectations for emergency service support for the real-time text medium, described in [I-D.ietf-sipping-toip] (Wijk, A. and G. Gybels, "Framework for real-time text over IP using the Session Initiation Protocol (SIP)," April 2008.), section 7.1 SHOULD be fulfilled. ED-75 Endpoints supporting video MUST support H.264 per [RFC3984] (Wenger, S., Hannuksela, M., Stockhammer, T., Westerlund, M., and D. Singer, "RTP Payload Format for H.264 Video," February 2005.). ED-76 INVITE requests to a service urn with a urn parameter of "test" indicates a request for an automated test. For example, "urn:service.sos.fire;test". As in standard SIP, a 200 (OK) response indicates that the address was recognized and a 404 (Not found) that it was not. A 486 (Busy Here) MUST be returned if the test service is busy, and a 488 (Not Acceptable Here) MUST be returned if the PSAP does not support the test mechanism. ED-77 In its response to the test, the PSAP MAY include a text body (text/plain) indicating the identity of the PSAP, the requested service, and the location reported with the call. For the latter, the PSAP SHOULD return location-by-value even if the original location delivered with the test was by-reference. If the location-by-reference was supplied, and the dereference requires credentials, the PSAP SHOULD use credentials supplied by the LIS for test purposes. This alerts the LIS that the dereference is not for an actual emergency call and location hiding techniques, if they are being used, may be employed for this dereference. The response MAY include the connected identity of the PSAP per [I-D.ietf-sip-connected-identity] (Elwell, J., "Connected Identity in the Session Initiation Protocol (SIP), " February 2007.). ED-78 A PSAP accepting a test call SHOULD accept a media loopback test [I-D.ietf-mmusic-media-loopback] (Sivachelvan, C., Venna, N., Jones, P., Stratton, N., Roychowdhury, A., and K. Hedayat, "An Extension to the Session Description Protocol (SDP) for Media Loopback," April 2010.) and SHOULD support the "rtp-pkt-loopback" and "rtp-startloopback" options. The user agent would specify a loopback attribute of "loopback-source", the PSAP being the mirror. User Agents should expect the PSAP to loop back no more than 3 packets of each media type accepted (which limits the duration of the test), after which the PSAP would normally send BYE. ED-79 User agents SHOULD perform a full call test, including media loopback, after a disconnect and subsequent change in IP address not due to a reboot. After an initial IP address assignment test, a full test SHOULD be repeated approximately every 30 days with a random interval. ED-80 User agents MUST NOT place a test call immediately after booting. If the IP address changes after booting, the UA should wait a random amount of time (in perhaps a 30 minute period, sufficient for any avalanche restart to complete) and then test. ED-81 PSAPs MAY refuse repeated requests for test from the same device in a short period of time. Any refusal is signaled with a 486 or 488 response. ## A.2. Requirements of Service Providers - SP-1 If a device or application expects to be able to place a call for help, the service that supports it SHOULD facilitate emergency calling. - SP-2 Proxy servers SHOULD do dial string recognition of emergency dial strings if for some reason the endpoint does not recognize them. - SP-3 Emergency calls MUST be marked with a Service URN in the Request-URI of the INVITE. - SP-4 Local dial strings MUST be recognized. - SP-5 Home dial strings MAY be recognized. - SP-6 Local emergency dial
strings SHOULD be determined from LoST LoST [I-D.ietf-ecrit-lost] (Hardie, T., Newton, A., Schulzrinne, H., and H. Tschofenig, "LoST: A Location-to-Service Translation Protocol," May 2008.). - SP-7 Proxy Servers MUST recognize emergency dial strings represented by [RFC4967] (Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier," July 2007.) and SHOULD recognize dial strings represented by a tel URI [RFC3966] (Schulzrinne, H., "The tel URI for Telephone Numbers," December 2004.). - SP-8 Service providers MAY provide home dial strings by configuration [I-D.ietf-sipping-config-framework] (Channabasappa, S., "A Framework for Session Initiation Protocol User Agent Profile Delivery," February 2010.). - SP-9 All emergency services specified in [I-D.ietf-ecrit-service-urn] (Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency and Other Well-Known Services," August 2007.) MUST be recognized. Devices/ Service Providers MUST be capable of recognizing all of the associated dial strings. - SP-10 Endpoints and Service Providers MUST be prepared to handle location represented in either civic or geo form. - SP-11 Elements MUST NOT convert (civic to geo or geo to civic) from the form of location the determination mechanism supplied. - SP-12 Proxies MAY provide location on behalf of devices it supports if: - *It has a relationship with all access networks the device could connect to, and the relationship allows it to obtain location. - *It has an identifier that can be used by the access network to determine the location of the endpoint, particularly in the presence of NAT and VPN tunnels that may exist between the access network and the service provider. - SP-13 Where proxies provide location on behalf of endpoints, the the service provider MUST ensure that either the end device is provided with the local dial strings for its current location (where the end device recognizes dial strings), or that the service provider can detect the appropriate local dial strings at the time of the call. SP-14 Location sent between SIP elements MUST be conveyed using [I-D.ietf-sip-location-conveyance] (Polk, J. and B. Rosen, "Location Conveyance for the Session Initiation Protocol," March 2009.). SP-15 If a proxy inserts location on behalf of an endpoint, and it has multiple locations available for the endpoint it MUST choose one location to use to route the call towards the PSAP. SP-16 If a proxy is attempting to assert location but the UA conveyed a location to it, the proxy must use the UA?s location for routing and MUST convey that location towards the PSAP. It MAY also include what it believes the location to be. SP-17 All location objects received by a proxy MUST be delivered to the PSAP. SP-18 Location objects MUST contain information about the method by which the location was determined, such as GPS, manually entered, or based on access network topology included in a PIDF- LO ?method? element. In addition, the source of the location information MUST be included in a PIDF-LO "provided-by" element. SP-19 The "used-for-routing" parameter MUST be set to the location that was used to query LoST. SP-20 Proxies handling emergency calls MUST insert a default location if the call does not contain a location. SP-21 Default locations MUST be marked with method=Default and an appropriate provided-by in the PIDF-LO. SP-22 TLS MUST be used to protect location (but see <u>Section 9.1 (Use of TLS)</u>). IPSEC [RFC2401] (Kent, S. and R. Atkinson, "Security <u>Architecture for the Internet Protocol," November 1998.</u>) is an acceptable alternative. SP-23 Uninitialized devices SHOULD NOT be capable of placing an emergency call unless local regulations require it. SP-24 Uninitialized devices that can place emergency calls MUST supply location the same as a fully capable device would. SP-25 Unitialized Devices MUST supply a call back URI. See <u>Section 7</u> (<u>Uninitialized devices</u>) SP-26 Unitialized Devices MUST include identifiers in the signaling that can be used by the service provider to identify the device and to allow filtering of calls from the device by the PSAP/ESRP. SP-27 All proxies in the outbound path SHOULD recognize emergency calls with a Request URI of the service URN in the "sos" tree. An endpoint places a service URN in the Request URI to indicate that the endpoint understood the call was an emergency call. A proxy that processes such a call looks for the presence of a Route header with a URI of a PSAP. Absence of such a Route header indicates the UAC was unable to invoke LoST and the proxy MUST perform the LoST mapping and insert a Route header with the URI obtained. SP-28 To deal with old user agents that predate this specification and with UAs that do not have access to their own location data, proxies that recognize a call as an emergency call that is not marked as such (see <u>Section 5 (Identifying an emergency call)</u>) MUST also perform this mapping, with the best location it has available for the endpoint. The resulting PSAP URI would be placed in a Route header with the service URN in the Request URI. SP-29 Proxy servers performing mapping SHOULD use location obtained from the access network for the mapping. If no location is available, a default location (see <u>Section 6.11 (Default location</u>) MUST be supplied. SP-30 A proxy server which attempts mapping and fails to get a mapping MUST provide a default mapping. A suitable default mapping would be the mapping obtained previously for the default location appropriate for the caller. SP-31 [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol," June 2002.) and [RFC3263] (Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol (SIP): Locating SIP Servers," June 2002.) procedures MUST be used to route an emergency call towards the PSAP's URI. SP-32 TLS MUST be specified when attempting to signal an emergency call with SIP per [I-D.ietf-sip-sips] (Audet, F., "The use of the SIPS URI Scheme in the Session Initiation Protocol (SIP)," November 2008.). IPSEC [RFC2401] (Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol," November 1998.) is an acceptable alternative. SP-33 If TLS session establishment fails, the call MUST be retried with sip: SP-34 [I-D.ietf-sip-outbound] (Jennings, C., "Managing Client Initiated Connections in the Session Initiation Protocol (SIP)," June 2009.) is RECOMMENDED to maintain persistent TLS connections between elements SP-35 SIP Proxy servers processing emergency calls: - 1. If the proxy does dial plan interpretation on behalf of user agents, the proxy MUST look for the local emergency dial string at the location of the end device and MAY look for the home dial string. If it finds it the proxy MUST: - *Insert a Geolocation header as per 10-12 above. Location-byreference MUST be used because proxies may not insert bodies. - *Include the Geolocation "inserted-by=server" AND "used-for-routing" parameters. - *Map the location to a PSAP uri using LoST. - *Add a Route header with the PSAP URI. - *Replace the Request-URI (which was the dialstring) with the service URN appropriate for the emergency dialstring. - *Route the call using normal SIP routing mechanisms. - 2. If the proxy recognizes the service URN in the Request URI, and does not find a Route header with a PSAP URI, it MUST run LoST routing. If a location was provided (which should be the case), the proxy uses that location to query LoST. The proxy may have to dereference a location by reference to get a value. If a location is not present, and the proxy can query a LIS which has the location of the UA it MUST do so. If no location is present, and the proxy does not have access to a LIS which could provide location, the proxy MUST supply a default location (See Section 6.11 (Default location)). The location (in the signaling, obtained from a LIS, or default) MUST be used in a query to LoST with the service URN received with the call. The resulting URI MUST be placed in a Route header added to the call. - 3. The "inserted-by=" parameter in any Geolocation header received on the call MUST NOT be modified or deleted in transit. - 4. The proxy SHOULD NOT modify any parameters in Geolocation headers received in the call. It MAY add a Geolocation header. Such an additional location SHOULD NOT be used for routing; the location provided by the UA should be used. - 5. Either a P-Asserted-Identity [RFC3325] (Jennings, C., Peterson, J., and M. Watson, "Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within Trusted Networks," November 2002.) or an Identity header [RFC4474] (Peterson, J. and C. Jennings, "Enhancements for Authenticated Identity Management in the Session Initiation Protocol (SIP)," August 2006.), or both, MUST be included to identify the sender. SP-36 Unitialized devices MUST have a globally routable URI in a Contact header SP-37 Unitialized devices SHOULD have a persistent URI in a P-Asserted-Identity header SP-38 During the course of an emergency call, devices and proxies MUST support REFER transactions and the Referred-by header [RFC3515] (Sparks, R., "The Session Initiation Protocol (SIP) Refer Method," April 2003.). SP-39 User agents and proxies MUST Support Session Timer [RFC4028] (Donovan, S. and J. Rosenberg, "Session Timers in the Session Initiation Protocol (SIP)," April 2005.) to guard against session corruption. SP-40 User Agents and proxys MUST disable outgoing call features such as: - *Call Transfer - *Three Way Call - *Flash hold - *Outbound Call Blocking when an emergency call is established. Also see ED-72 in <u>. (Media)</u> SP-41 The emergency dialstrings SHOULD NOT be permitted in Call Forward numbers or speed dial lists. SP-42 The User Agent and Proxies SHOULD disable the following incoming call features on call backs from the PSAP: *Call
Waiting *Do Not Disturb *Call Forward (all kinds) ## A.3. Requirements of Access Networks TOC AN-1 Elements MUST NOT convert (civic to geo or geo to civic) from the form of location the determination mechanism supplied. AN-2 Any suitable location determination mechanism MAY be used. AN-3 Devices and/or access networks SHOULD support a manual method to "override" the location the access network determines. Where a civic form of location is provided, all fields in the PIDF- LO [RFC4119] (Peterson, J., "A Presence-based GEOPRIV Location Object Format," December 2005.) and [I-D.ietf-geopriv-revised-civic-lo] (Thomson, M. and J. Winterbottom, "Revised Civic Location Format for PIDF-LO," December 2007.) MUST be able to be specified. AN-4 Access networks supporting copper, fiber or other hard wired IP packet service SHOULD support location configuration. If the network does not support location configuration, it MUST require every device that connects to the network to support end system measured location. AN-5 Access networks providing wire database location information SHOULD provide interior location data where possible. It is RECOMMENDED that interior location be provided when spaces exceed approximately 650 m2 AN-6 Access networks (including enterprise networks) which support intermediate range wireless connections (typically 100m or less of range) and which do not support a more accurate location determination mechanism such as triangulation, MUST support location configuration which reports the location of the access point as the location of the clients of that access point. AN-7 Devices that support endpoint measuring of location MUST have at least a coarse location (<1km) capability at all times for routing of calls. This mechanism MAY be a service provided by the access network. AN-8 Access networks MAY provide network measured location determination. Wireless access network which do not support network measured location MUST require all devices connected to the network have end-system measured location. Uncertainty of less than 100 m with 95% confidence SHOULD be available for dispatch. AN-9 Access networks that provide network measured location MUST have at least a coarse location (<1km) capability at all times for routing of calls. AN-10 Access networks with range of <10M MUST provide a location to mobile devices connected to it. The location provided SHOULD be that of the beacon location unless a more accurate mechanism is provided. AN-11 The access network MUST support at least one of DHCP location options, HELD or LLDP-MED. AN-12 Where a router is employed between a LAN and WAN in a small (less than approximately 650m2) area, the LAN MUST reflect the location provided by the WAN to the LAN. Where the area is larger, the LAN MUST have a location configuration mechanism meeting this BCP. AN-13 Access networks that support more than one LCP MUST reply with the same location information (within the limits of the data format for the specific LCP) for all LCPs it supports. AN-14 Network administrators MUST take care in assigning IP addresses such that VPN address assignments can be distinguished from local devices (by subnet choice, for example), and LISs SHOULD NOT attempt to provide location to addresses that arrive via VPN connections unless it can accurately determine the location for such addresses. AN-15 Placement of NAT devices SHOULD consider the effect of the NAT on the LCP. AN-16 It is RECOMMENDED that location determination not take longer than 250 ms to obtain routing location and systems SHOULD be designed such that the typical response is under 100ms. However, as much as 3 seconds to obtain routing location MAY be tolerated if location accuracy can be substantially improved over what can be obtained in 250 ms. AN-17 Where the absolute location or the accuracy of location of the endpoint may change between the time the call is received at the PSAP and the time dispatch is completed, location update mechanisms MUST be provided. AN-18 mobile devices MUST be provided with a mechanism to get repeated location updates to track the motion of the device during the complete processing of the call. AN-19 The LIS SHOULD provide a location reference which permits a subscription with appropriate filtering. AN-20 For calls sent with location-by-reference, with a SIP or SIPS scheme, the server resolving the reference MUST support a SUBSCRIBE [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.) to the presence event [RFC3856] (Rosenberg, J., <u>"A Presence Event Package for the Session Initiation Protocol (SIP),"</u> <u>August 2004.</u>). For other location-by-reference schemes, a repeated location dereference by the PSAP MUST be supported. AN-21 Location validation of civic locations via LoST SHOULD be performed by the LIS before entering a location in its database. AN-22 When the access network cannot determine the actual location of the caller, it MUST supply a default location. The default SHOULD be chosen to be as close to the probable location of the device as the network can determine. AN-23 Default locations MUST be marked with method=Default and an appropriate provided-by in the PIDF-LO. AN-24 To prevent against spoofing of the DHCP server, elements implementing DHCP for location configuration SHOULD use [RFC3118] (Droms, R. and W. Arbaugh, "Authentication for DHCP Messages," June 2001.). AN-25 Uninitialized devices SHOULD NOT be capable of placing an emergency call unless local regulations require it. AN-26 Uninitialized devices that can place emergency calls MUST supply location the same as a fully capable device would. AN-27 https: MUST be specified when attempting to retrieve location (configuration or dereferencing) with HELD. The use of [RFC4507] (Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session Resumption without Server-Side State," May 2006.) is RECOMMENDED to minimise the time to establish TLS sessions. Brian Rosen Colleyville, TX 76034 US Phone: +1-817-271-3552 Email: jmpolk@cisco.com ## **Authors' Addresses** | | NeuStar | |--------|--------------------------| | | 470 Conrad Dr. | | | Mars, PA 16046 | | | US | | Phone: | +1 724 382 1051 | | Email: | <u>br@brianrosen.net</u> | | | | | | James Polk | | | Cisco Systems | | | 3913 Treemont Circle | | | | TOC Copyright © The IETF Trust (2007). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ### **Intellectual Property** The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-org.