
Workgroup: Network Working Group

STD: 11

Obsoletes: 5322 (if approved)

Updates: 4021 (if approved)

Published: 24 February 2023

Intended Status: Standards Track

Expires: 28 August 2023

Authors: P. Resnick, Ed.

Episteme

Internet Message Format

Abstract

This document specifies the Internet Message Format (IMF), a syntax

for text messages that are sent between computer users, within the

framework of "electronic mail" messages. This specification is a

revision of Request For Comments (RFC) 5322, itself a revision of

Request For Comments (RFC) 2822, all of which supersede Request For

Comments (RFC) 822, "Standard for the Format of ARPA Internet Text

Messages", updating it to reflect current practice and incorporating

incremental changes that were specified in other RFCs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5322
https://www.rfc-editor.org/rfc/rfc4021
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

1.1. Scope

1.2. Notational Conventions

1.2.1. Requirements Notation

1.2.2. Syntactic Notation

1.2.3. Structure of This Document

2. Lexical Analysis of Messages

2.1. General Description

2.1.1. Line Length Limits

2.2. Header Fields

2.2.1. Unstructured Header Field Bodies

2.2.2. Structured Header Field Bodies

2.2.3. Long Header Fields

2.3. Body

3. Syntax

3.1. Introduction

3.2. Lexical Tokens

3.2.1. Quoted characters

3.2.2. Folding White Space and Comments

3.2.3. Atom

3.2.4. Quoted Strings

3.2.5. Miscellaneous Tokens

3.3. Date and Time Specification

3.4. Address Specification

3.4.1. Addr-Spec Specification

3.5. Overall Message Syntax

3.6. Field Definitions

3.6.1. The Origination Date Field

3.6.2. Originator Fields

3.6.3. Destination Address Fields

¶

¶

3.6.4. Identification Fields

3.6.5. Informational Fields

3.6.6. Resent Fields

3.6.7. Trace Fields

3.6.8. Optional Fields

4. Obsolete Syntax

4.1. Miscellaneous Obsolete Tokens

4.2. Obsolete Folding White Space

4.3. Obsolete Date and Time

4.4. Obsolete Addressing

4.5. Obsolete Header Fields

4.5.1. Obsolete Origination Date Field

4.5.2. Obsolete Originator Fields

4.5.3. Obsolete Destination Address Fields

4.5.4. Obsolete Identification Fields

4.5.5. Obsolete Informational Fields

4.5.6. Obsolete Resent Fields

4.5.7. Obsolete Trace Fields

4.5.8. Obsolete optional fields

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Example Messages

A.1. Addressing Examples

A.1.1. A Message from One Person to Another with Simple

Addressing

A.1.2. Different Types of Mailboxes

A.1.3. Group Addresses

A.2. Reply Messages

A.3. Resent Messages

A.4. Messages with Trace Fields

A.5. White Space, Comments, and Other Oddities

A.6. Obsoleted Forms

A.6.1. Obsolete Addressing

A.6.2. Obsolete Dates

A.6.3. Obsolete White Space and Comments

Appendix B. Differences from Earlier Specifications

Appendix C. Acknowledgements

Author's Address

1. Introduction

1.1. Scope

This document specifies the Internet Message Format (IMF), a syntax

for text messages that are sent between computer users, within the

framework of "electronic mail" messages. This specification is an

update to [RFC5322], itself a revision of [RFC2822], all of which

supersede [RFC0822], updating it to reflect current practice and

incorporating incremental changes that were specified in other RFCs

such as [RFC1123].

This document specifies a syntax only for text messages. In

particular, it makes no provision for the transmission of images,

audio, or other sorts of structured data in electronic mail

messages. There are several extensions published, such as the MIME

document series ([RFC2045], [RFC2046], [RFC2049]), which describe

mechanisms for the transmission of such data through electronic

mail, either by extending the syntax provided here or by structuring

such messages to conform to this syntax. Those mechanisms are

outside of the scope of this specification.

In the context of electronic mail, messages are viewed as having an

envelope and contents. The envelope contains whatever information is

needed to accomplish transmission and delivery. (See

[I-D.ietf-emailcore-rfc5321bis] for a discussion of the envelope.)

The contents comprise the object to be delivered to the recipient.

This specification applies only to the format and some of the

semantics of message contents. It contains no specification of the

information in the envelope.

However, some message systems may use information from the contents

to create the envelope. It is intended that this specification

facilitate the acquisition of such information by programs.

This specification is intended as a definition of what message

content format is to be passed between systems. Though some message

systems locally store messages in this format (which eliminates the

need for translation between formats) and others use formats that

differ from the one specified in this specification, local storage

is outside of the scope of this specification.

Note: This specification is not intended to dictate the internal

formats used by sites, the specific message system features that

they are expected to support, or any of the characteristics of user

interface programs that create or read messages. In addition, this

document does not specify an encoding of the characters for either

transport or storage; that is, it does not specify the number of

bits used or how those bits are specifically transferred over the

wire or stored on disk.

1.2. Notational Conventions

1.2.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

¶

¶

¶

¶

¶

¶

"OPTIONAL" in this document are to be interpreted as described in

[BCP14] RFC2119 RFC8174 when, and only when, they appear in all

capitals, as shown here.

1.2.2. Syntactic Notation

This specification uses the Augmented Backus-Naur Form (ABNF)

[STD68] notation for the formal definitions of the syntax of

messages. Characters will be specified either by a decimal value

(e.g., the value %d65 for uppercase A and %d97 for lowercase A) or

by a case-insensitive literal value enclosed in quotation marks

(e.g., "A" for either uppercase or lowercase A).

1.2.3. Structure of This Document

This document is divided into several sections.

This section, section 1, is a short introduction to the document.

Section 2 lays out the general description of a message and its

constituent parts. This is an overview to help the reader understand

some of the general principles used in the later portions of this

document. Any examples in this section MUST NOT be taken as

specification of the formal syntax of any part of a message.

Section 3 specifies formal ABNF rules for the structure of each part

of a message (the syntax) and describes the relationship between

those parts and their meaning in the context of a message (the

semantics). That is, it lays out the actual rules for the structure

of each part of a message (the syntax) as well as a description of

the parts and instructions for their interpretation (the semantics).

This includes analysis of the syntax and semantics of subparts of

messages that have specific structure. The syntax included in

section 3 represents messages as they MUST be created. There are

also notes in section 3 to indicate if any of the options specified

in the syntax SHOULD be used over any of the others.

Both sections 2 and 3 describe messages that are legal to generate

for purposes of this specification.

Section 4 of this document specifies an "obsolete" syntax. There are

references in section 3 to these obsolete syntactic elements. The

rules of the obsolete syntax are elements that have appeared in

earlier versions of this specification or have previously been

widely used in Internet messages. As such, these elements MUST be

interpreted by parsers of messages in order to be conformant to this

specification. However, since items in this syntax have been

determined to be non-interoperable or to cause significant problems

for recipients of messages, they MUST NOT be generated by creators

of conformant messages.

¶

¶

¶

¶

¶

¶

¶

¶

Note: The dictionary definition of "obsolete" is "no longer in use

or no longer useful". While this specification mandates that these

syntactic elements no longer be generated, it also mandates that

conformant parsers be able to support them. One reason for this

latter requirement is that there are long-established sites on the

Internet with mail archives that go back decades, archives with

messages containing these elements. Similarly, many people have

decades-old messages in their personal message stores, and for

various reasons it is occasionally useful to not only read such

messages but also resend or forward them to others. While these

archives may only be mined occasionally, and messages from these

personal stores rarely resent, they are nonetheless still in use,

making "obsolete" the incorrect term to describe these elements.

Later efforts to revise this specification contemplated changing the

term to "legacy" or something that would more accurately describe

the elements, but such a change was rejected due to fears that it

would result in unnecessary confusion, especially among long-time

users and implementers of the specification.

Section 5 details security considerations to take into account when

implementing this specification.

Appendix A lists examples of different sorts of messages. These

examples are not exhaustive of the types of messages that appear on

the Internet, but give a broad overview of certain syntactic forms.

Appendix B lists the differences between this specification and

earlier specifications for Internet messages.

Appendix C contains acknowledgements.

2. Lexical Analysis of Messages

2.1. General Description

At the most basic level, a message is a series of characters. A

message that is conformant with this specification is composed of

characters with values in the range of 1 through 127 and interpreted

as US-ASCII [ANSI.X3-4.1986] characters. For brevity, this document

sometimes refers to this range of characters as simply "US-ASCII

characters".

Note: This document specifies that messages are made up of

characters in the US-ASCII range of 1 through 127. There are other

documents, specifically the MIME document series ([RFC2045],

[RFC2046], [RFC2047], [RFC2049], [BCP13]) and the Internationalized

Email Headers specification ([RFC6532]), that extend this

specification to allow for values outside of that range. Discussion

of those mechanisms is not within the scope of this specification.

¶

¶

¶

¶

¶

¶

¶

¶

Messages are divided into lines of characters. A line is a series of

characters that is delimited with the two characters carriage-return

and line-feed; that is, the carriage return (CR) character (ASCII

value 13) followed immediately by the line feed (LF) character

(ASCII value 10). (The carriage return/line feed pair is usually

written in this document as "CRLF".)

A message consists of header fields (collectively called "the header

section of the message") followed, optionally, by a body. The header

section is a sequence of lines of characters with special syntax as

defined in this specification. The body is simply a sequence of

characters that follows the header section and is separated from the

header section by an empty line (i.e., a line with nothing preceding

the CRLF).

Note: Common parlance and earlier versions of this specification use

the term "header" to either refer to the entire header section or to

refer to an individual header field. To avoid ambiguity, this

document does not use the terms "header" or "headers" in isolation,

but instead always uses "header field" to refer to the individual

field and "header section" to refer to the entire collection.

2.1.1. Line Length Limits

There are two limits that this specification places on the number of

characters in a line. Each line of characters MUST be no more than

998 characters, and SHOULD be no more than 78 characters, excluding

the CRLF.

The 998 character limit is due to limitations in many

implementations that send, receive, or store IMF messages which

simply cannot handle more than 998 characters on a line. Receiving

implementations would do well to handle an arbitrarily large number

of characters in a line for robustness sake. However, there are so

many implementations that (in compliance with the transport

requirements of [I-D.ietf-emailcore-rfc5321bis]) do not accept

messages containing more than 1000 characters including the CR and

LF per line, it is important for implementations not to create such

messages.

The more conservative 78 character recommendation is to accommodate

the many implementations of user interfaces that display these

messages which may truncate, or disastrously wrap, the display of

more than 78 characters per line, in spite of the fact that such

implementations are non-conformant to the intent of this

specification (and that of [I-D.ietf-emailcore-rfc5321bis] if they

actually cause information to be lost). Again, even though this

limitation is put on messages, it is incumbent upon implementations

that display messages to handle an arbitrarily large number of

¶

¶

¶

¶

¶

characters in a line (certainly at least up to the 998 character

limit) for the sake of robustness.

2.2. Header Fields

Header fields are lines beginning with a field name, followed by a

colon (":", ASCII value 58), followed by a field body, and

terminated by CRLF. A field name MUST be composed of printable US-

ASCII characters except for space (SP, ASCII value 32) (i.e.,

characters that have values between 33 and 126, inclusive) excluding

colon. A field body may be composed of printable US-ASCII

characters, including the space character, plus the horizontal tab

(HTAB, ASCII value 9) character. (Together, SP and HTAB are known as

the white space characters, WSP). A field body MUST NOT include CR

and LF except when used in "folding" and "unfolding", as described

in section 2.2.3. All field bodies MUST conform to the syntax

described in sections 3 and 4 of this specification.

2.2.1. Unstructured Header Field Bodies

Some field bodies in this specification are defined simply as

"unstructured" (which is specified in section 3.2.5 as any printable

US-ASCII characters, including the space character, plus the

horizontal tab character) with no further restrictions. These are

referred to as unstructured field bodies. Semantically, unstructured

field bodies are simply to be treated as a single line of characters

with no further processing (except for "folding" and "unfolding" as

described in section 2.2.3).

2.2.2. Structured Header Field Bodies

Some field bodies in this specification have a syntax that is more

restrictive than the unstructured field bodies described above.

These are referred to as "structured" field bodies. Structured field

bodies are sequences of specific lexical tokens as described in

sections 3 and 4 of this specification. Many of these tokens are

allowed (according to their syntax) to be introduced or end with

comments (as described in section 3.2.2) as well as the white space

characters, and those white space characters are subject to

"folding" and "unfolding" as described in section 2.2.3. Semantic

analysis of structured field bodies is given along with their

syntax.

2.2.3. Long Header Fields

Each header field is logically a single line of characters

comprising the field name, the colon, and the field body. For

convenience however, and to deal with the 998/78 character

limitations per line, the field body portion of a header field can

be split into a multiple-line representation; this is called

¶

¶

¶

¶

"folding". The general rule is that wherever this specification

allows for folding white space (not simply WSP characters), a CRLF

may be inserted before any WSP.

For example, the header field:

can be represented as:

Note: Though structured field bodies are defined in such a way that

folding can take place between many of the lexical tokens (and even

within some of the lexical tokens), folding SHOULD be limited to

placing the CRLF at higher-level syntactic breaks. For instance, if

a field body is defined as comma-separated values, it is recommended

that folding occur after the comma separating the structured items

in preference to other places where the field could be folded, even

if it is allowed elsewhere.

The process of moving from this folded multiple-line representation

of a header field to its single line representation is called

"unfolding". Unfolding is accomplished by simply removing any CRLF

that is immediately followed by WSP. Each header field should be

treated in its unfolded form for further syntactic and semantic

evaluation. An unfolded header field has no length restriction and

therefore may be indeterminately long.

2.3. Body

The body of a message is simply lines of US-ASCII characters. The

only two limitations on the body are as follows:

CR and LF MUST only occur together as CRLF; they MUST NOT appear

independently in the body.

Lines of characters in the body MUST be limited to 998

characters, and SHOULD be limited to 78 characters, excluding the

CRLF.

Note: As was stated earlier, there are other documents, specifically

the MIME documents ([RFC2045], [RFC2046], [RFC2049], [BCP13]), that

extend (and limit) this specification to allow for different sorts

of message bodies. Again, these mechanisms are beyond the scope of

this document.

¶

¶

Subject: This is a test¶

¶

Subject: This

 is a test

¶

¶

¶

¶

*

¶

*

¶

¶

3. Syntax

3.1. Introduction

The syntax as given in this section defines the legal syntax of

Internet messages. Messages that are conformant to this

specification MUST conform to the syntax in this section. If there

are options in this section where one option SHOULD be generated,

that is indicated either in the prose or in a comment next to the

syntax.

For the defined expressions, a short description of the syntax and

use is given, followed by the syntax in ABNF, followed by a semantic

analysis. The following primitive tokens that are used but otherwise

unspecified are taken from the "Core Rules" of [STD68], Appendix B.

1: CR, LF, CRLF, HTAB, SP, WSP, DQUOTE, DIGIT, ALPHA, and VCHAR.

In some of the definitions, there will be non-terminals whose names

start with "obs-". These "obs-" elements refer to tokens defined in

the obsolete syntax in section 4. In all cases, these productions

are to be ignored for the purposes of generating legal Internet

messages and MUST NOT be used as part of such a message. However,

when interpreting messages, these tokens MUST be honored as part of

the legal syntax. In this sense, section 3 defines a grammar for the

generation of messages, with "obs-" elements that are to be ignored,

while section 4 adds grammar for the interpretation of messages.

3.2. Lexical Tokens

The following rules are used to define an underlying lexical

analyzer, which feeds tokens to the higher-level parsers. This

section defines the tokens used in structured header field bodies.

Note: Readers of this specification need to pay special attention to

how these lexical tokens are used in both the lower-level and

higher-level syntax later in the document. Particularly, the white

space tokens and the comment tokens defined in section 3.2.2 get

used in the lower-level tokens defined here, and those lower-level

tokens are in turn used as parts of the higher-level tokens defined

later. Therefore, white space and comments may be allowed in the

higher-level tokens even though they may not explicitly appear in a

particular definition.

3.2.1. Quoted characters

Some characters are reserved for special interpretation, such as

delimiting lexical tokens. To permit use of these characters as

uninterpreted data, a quoting mechanism is provided.

¶

¶

¶

¶

¶

¶

quoted-pair = ("\" (VCHAR / WSP)) / obs-qp¶

Where any quoted-pair appears, it is to be interpreted as the

character alone. That is to say, the "\" character that appears as

part of a quoted-pair is semantically "invisible".

Note: The "\" character may appear in a message where it is not part

of a quoted-pair. A "\" character that does not appear in a quoted-

pair is not semantically invisible. The only places in this

specification where quoted-pair currently appears are ccontent,

qcontent, and in obs-dtext in section 4.

3.2.2. Folding White Space and Comments

White space characters, including white space used in folding

(described in section 2.2.3), may appear between many elements in

header field bodies. Also, strings of characters that are treated as

comments may be included in structured field bodies as characters

enclosed in parentheses. The following defines the folding white

space (FWS) and comment constructs.

Strings of characters enclosed in parentheses are considered

comments so long as they do not appear within a "quoted-string", as

defined in section 3.2.4. Comments may nest.

There are several places in this specification where comments and

FWS may be freely inserted. To accommodate that syntax, an

additional token for "CFWS" is defined for places where comments

and/or FWS can occur. However, where CFWS occurs in this

specification, it MUST NOT be inserted in such a way that any line

of a folded header field is made up entirely of WSP characters and

nothing else.

Throughout this specification, where FWS (the folding white space

token) appears, it indicates a place where folding, as discussed in

section 2.2.3, may take place. Wherever folding appears in a message

(that is, a header field body containing a CRLF followed by any

WSP), unfolding (removal of the CRLF) is performed before any

¶

¶

¶

¶

¶

FWS = ([*WSP CRLF] 1*WSP) / obs-FWS

 ; Folding white space

ctext = %d33-39 / ; VCHAR characters not including

 %d42-91 / ; "(", ")", or "\"

 %d93-126 /

 obs-ctext

ccontent = ctext / quoted-pair / comment

comment = "(" *([FWS] ccontent) [FWS] ")"

CFWS = (1*([FWS] comment) [FWS]) / FWS

¶

further semantic analysis is performed on that header field

according to this specification. That is to say, any CRLF that

appears in FWS is semantically "invisible".

A comment is normally used in a structured field body to provide

some human-readable informational text. Since a comment is allowed

to contain FWS, folding is permitted within the comment. Also note

that since quoted-pair is allowed in a comment, the parentheses and

backslash characters may appear in a comment, so long as they appear

as a quoted-pair. Semantically, the enclosing parentheses are not

part of the comment; the comment is what is contained between the

two parentheses. As stated earlier, the "\" in any quoted-pair and

the CRLF in any FWS that appears within the comment are semantically

"invisible" and therefore not part of the comment either.

Runs of FWS, comment, or CFWS that occur between lexical tokens in a

structured header field are semantically interpreted as a single

space character.

3.2.3. Atom

Several productions in structured header field bodies are simply

strings of certain basic characters. Such productions are called

atoms.

Some of the structured header field bodies also allow the period

character (".", ASCII value 46) within runs of atext. An additional

"dot-atom" token is defined for those purposes.

Note: The "specials" token does not appear anywhere else in this

specification. It is simply the VCHAR characters that do not appear

in atext. It is provided only because it is useful for implementers

who use tools that lexically analyze messages. Each of the

characters in specials can be used to indicate a tokenization point

in lexical analysis.

¶

¶

¶

¶

¶

¶

Both atom and dot-atom are interpreted as a single unit, comprising

the string of characters that make it up. Semantically, the optional

comments and FWS surrounding the rest of the characters are not part

of the atom; the atom is only the run of atext characters in an

atom, or the atext and "." characters in a dot-atom.

3.2.4. Quoted Strings

Strings of characters that include characters other than those

allowed in atoms can be represented in a quoted string format, where

the characters are surrounded by quote (DQUOTE, ASCII value 34)

characters.

atext = ALPHA / DIGIT / ; VCHAR characters not including

 "!" / "#" / ; specials. Used for atoms.

 "$" / "%" /

 "&" / "'" /

 "*" / "+" /

 "-" / "/" /

 "=" / "?" /

 "^" / "_" /

 "`" / "{" /

 "|" / "}" /

 "~"

atom = [CFWS] 1*atext [CFWS]

dot-atom-text = 1*atext *("." 1*atext)

dot-atom = [CFWS] dot-atom-text [CFWS]

specials = "(" / ")" / ; Special characters that do

 "<" / ">" / ; not appear in atext

 "[" / "]" /

 ":" / ";" /

 "@" / "\" /

 "," / "." /

 DQUOTE

¶

¶

¶

qtext = %d33 / ; VCHAR characters not including

 %d35-91 / ; "\" or the quote character

 %d93-126 /

 obs-qtext

qcontent = qtext / quoted-pair

quoted-string = [CFWS]

 DQUOTE *([FWS] qcontent) [FWS] DQUOTE

 [CFWS]

¶

A quoted-string is treated as a unit. That is, quoted-string is

identical to atom, semantically. Since a quoted-string is allowed to

contain FWS, folding is permitted. Also note that since quoted-pair

is allowed in a quoted-string, the quote and backslash characters

may appear in a quoted-string so long as they appear as a quoted-

pair.

Semantically, neither the optional CFWS outside of the quote

characters nor the quote characters themselves are part of the

quoted-string; the quoted-string is what is contained between the

two quote characters. As stated earlier, the "\" in any quoted-pair

and the CRLF in any FWS/CFWS that appears within the quoted-string

are semantically "invisible" and therefore not part of the quoted-

string either.

3.2.5. Miscellaneous Tokens

Three additional tokens are defined: word and phrase for

combinations of atoms and/or quoted-strings, and unstructured for

use in unstructured header fields and in some places within

structured header fields.

3.3. Date and Time Specification

Date and time values occur in several header fields. This section

specifies the syntax for a full date and time specification. Though

folding white space is permitted throughout the date-time

specification, it is RECOMMENDED that a single space be used in each

place that FWS appears (whether it is required or optional); some

older implementations will not interpret longer sequences of folding

white space correctly.

¶

¶

¶

word = atom / quoted-string

phrase = 1*word / obs-phrase

unstructured = (*([FWS] VCHAR) *WSP) / obs-unstruct

¶

¶

The day is the numeric day of the month. The year is any numeric

year 1900 or later.

The time-of-day specifies the number of hours, minutes, and

optionally seconds since midnight of the date indicated (at the

offset specified by the zone).

The date and time-of-day SHOULD express local time.

The zone specifies the offset from Coordinated Universal Time (UTC)

that the date and time-of-day represent. The "+" or "-" indicates

whether the time-of-day is ahead of (i.e., east of) or behind (i.e.,

west of) Universal Time. The first two digits indicate the number of

hours difference from Universal Time, and the last two digits

indicate the number of additional minutes difference from Universal

Time. (Hence, +hhmm means +(hh * 60 + mm) minutes, and -hhmm means -

(hh * 60 + mm) minutes). The form "+0000" SHOULD be used to indicate

a time zone at Universal Time. Though "-0000" also indicates

Universal Time, it is used to indicate that the time was generated

on a system that may be in a local time zone other than Universal

date-time = [day-of-week ","] date time [CFWS]

day-of-week = ([FWS] day-name) / obs-day-of-week

day-name = "Mon" / "Tue" / "Wed" / "Thu" /

 "Fri" / "Sat" / "Sun"

date = day month year

day = ([FWS] 1*2DIGIT FWS) / obs-day

month = "Jan" / "Feb" / "Mar" / "Apr" /

 "May" / "Jun" / "Jul" / "Aug" /

 "Sep" / "Oct" / "Nov" / "Dec"

year = (FWS 4*DIGIT FWS) / obs-year

time = time-of-day zone

time-of-day = hour ":" minute [":" second]

hour = 2DIGIT / obs-hour

minute = 2DIGIT / obs-minute

second = 2DIGIT / obs-second

zone = (FWS ("+" / "-") 4DIGIT) / obs-zone

¶

¶

¶

¶

Time and that the date-time contains no information about the local

time zone.

A date-time specification MUST be semantically valid. That is, the

day-of-week (if included) MUST be the day implied by the date, the

numeric day-of-month MUST be between 1 and the number of days

allowed for the specified month (in the specified year), the time-

of-day MUST be in the range 00:00:00 through 23:59:60 (the number of

seconds allowing for a leap second; see [RFC3339]), and the last two

digits of the zone MUST be within the range 00 through 59.

3.4. Address Specification

Addresses occur in several message header fields to indicate senders

and recipients of messages. An address may either be an individual

mailbox, or a group of mailboxes.

A mailbox receives mail. It is a conceptual entity that does not

necessarily pertain to file storage. For example, some sites may

choose to print mail on a printer and deliver the output to the

addressee's desk.

Normally, a mailbox is composed of two parts: (1) an optional

display name that indicates the name of the recipient (which can be

a person or a system) that could be displayed to the user of a mail

application, and (2) an addr-spec address enclosed in angle brackets

("<" and ">"). There is an alternate simple form of a mailbox where

the addr-spec address appears alone, without the recipient's name or

the angle brackets. The Internet addr-spec address is described in

section 3.4.1.

¶

¶

¶

address = mailbox / group

mailbox = name-addr / addr-spec

name-addr = [display-name] angle-addr

angle-addr = [CFWS] "<" addr-spec ">" [CFWS] /

 obs-angle-addr

group = display-name ":" [group-list] ";" [CFWS]

display-name = phrase

mailbox-list = (mailbox *("," mailbox)) / obs-mbox-list

address-list = (address *("," address)) / obs-addr-list

group-list = mailbox-list / CFWS / obs-group-list

¶

¶

¶

Note: Some legacy implementations used the simple form where the

addr-spec appears without the angle brackets, but included the name

of the recipient in parentheses as a comment following the addr-

spec. Since the meaning of the information in a comment is

unspecified, implementations SHOULD use the full name-addr form of

the mailbox, instead of the legacy form, to specify the display name

associated with a mailbox. Also, because some legacy implementations

interpret the comment, comments generally SHOULD NOT be used in

address fields to avoid confusing such implementations.

When it is desirable to treat several mailboxes as a single unit

(i.e., in a distribution list), the group construct can be used. The

group construct allows the sender to indicate a named group of

recipients. This is done by giving a display name for the group,

followed by a colon, followed by a comma-separated list of any

number of mailboxes (including zero and one), and ending with a

semicolon. Because the list of mailboxes can be empty, using the

group construct is also a simple way to communicate to recipients

that the message was sent to one or more named sets of recipients,

without actually providing the individual mailbox address for any of

those recipients.

3.4.1. Addr-Spec Specification

An addr-spec is a specific Internet identifier that contains a

locally interpreted string followed by the at-sign character ("@",

ASCII value 64) followed by an Internet domain. The locally

interpreted string is either a quoted-string or a dot-atom. If the

string can be represented as a dot-atom (that is, it contains no

characters other than atext characters or one or more of "."

surrounded by atext characters), then the dot-atom form SHOULD be

used and the quoted-string form SHOULD NOT be used. Comments and

folding white space SHOULD NOT be used around the "@" in the addr-

spec.

Note: A liberal syntax for the domain portion of addr-spec is given

here. However, the domain portion contains addressing information

specified by and used in other protocols (e.g., [STD13], [RFC1123],

[I-D.ietf-emailcore-rfc5321bis]). It is therefore incumbent upon

implementations to conform to the syntax of addresses for the

context in which they are used.

¶

¶

¶

¶

The domain portion identifies the point to which the mail is

delivered. In the dot-atom form, this is interpreted as an Internet

domain name (either a host name or a mail exchanger name) as

described in [STD13] and [RFC1123]. In the domain-literal form, the

domain is interpreted as the literal Internet address of the

particular host. In both cases, how addressing is used and how

messages are transported to a particular host is covered in separate

documents, such as [I-D.ietf-emailcore-rfc5321bis]. These mechanisms

are outside of the scope of this document.

The local-part portion is a domain-dependent string. In addresses,

it is simply interpreted on the particular host as a name of a

particular mailbox.

3.5. Overall Message Syntax

A message consists of header fields, optionally followed by a

message body. Lines in a message MUST be a maximum of 998 characters

excluding the CRLF, but it is RECOMMENDED that lines be limited to

78 characters excluding the CRLF. (See section 2.1.1 for

explanation.) In a message body, though all of the characters listed

in the text rule MAY be used, the use of US-ASCII control characters

(values 1 through 8, 11, 12, and 14 through 31) is discouraged since

their interpretation by receivers for display is not guaranteed.

The header fields carry most of the semantic information and are

defined in section 3.6. The body is simply a series of lines of text

that are uninterpreted for the purposes of this specification.

addr-spec = local-part "@" domain

local-part = dot-atom / quoted-string / obs-local-part

domain = dot-atom / domain-literal / obs-domain

domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]

dtext = %d33-90 / ; VCHAR characters not including

 %d94-126 / ; "[", "]", or "\"

 obs-dtext

¶

¶

¶

¶

message = (fields / obs-fields)

 [CRLF body]

body = (*(*998text CRLF) *998text) / obs-body

text = %d1-9 / ; Characters excluding CR

 %d11 / ; and LF

 %d12 /

 %d14-127

¶

¶

3.6. Field Definitions

The header fields of a message are defined here. All header fields

have the same general syntactic structure: a field name, followed by

a colon, followed by the field body. The specific syntax for each

header field is defined in the subsequent sections.

Note: In the ABNF syntax for each field in subsequent sections, each

field name is followed by the required colon. However, for brevity,

sometimes the colon is not referred to in the textual description of

the syntax. It is, nonetheless, required.

It is important to note that the header fields are not guaranteed to

be in a particular order. They may appear in any order, and they

have been known to be reordered occasionally when transported over

the Internet. However, for the purposes of this specification,

header fields SHOULD NOT be reordered when a message is transported

or transformed. More importantly, the trace header fields and resent

header fields MUST NOT be reordered, and SHOULD be kept in blocks

prepended to the message. See sections 3.6.6 and 3.6.7 for more

information.

The only required header fields are the origination date field and

the originator address field(s). All other header fields are

syntactically optional. More information is contained in the table

following this definition.

¶

¶

¶

¶

fields = *(trace

 *(resent-date /

 resent-from /

 resent-sender /

 resent-to /

 resent-cc /

 resent-bcc /

 resent-msg-id))

 *(orig-date /

 from /

 sender /

 reply-to /

 to /

 cc /

 bcc /

 message-id /

 in-reply-to /

 references /

 subject /

 comments /

 keywords /

 optional-field)

¶

The following table indicates limits on the number of times each

field may occur in the header section of a message as well as any

special limitations on the use of those fields. An asterisk ("*")

next to a value in the minimum or maximum column indicates that a

special restriction appears in the Notes column.

Field
Min

number
Max number Notes

trace 0 unlimited Block prepended - see 3.6.7

resent-date 0* unlimited*

One per block, required if other

resent fields are present - see

3.6.6

resent-from 0 unlimited* One per block - see 3.6.6

resent-

sender
0* unlimited*

One per block, MUST occur with

multi-address resent-from - see

3.6.6

resent-to 0 unlimited* One per block - see 3.6.6

resent-cc 0 unlimited* One per block - see 3.6.6

resent-bcc 0 unlimited* One per block - see 3.6.6

resent-msg-

id
0 unlimited* One per block - see 3.6.6

orig-date 1 1

from 1 1 See sender and 3.6.2

sender 0* 1
MUST occur with multi-address from

- see 3.6.2

reply-to 0 1

to 0 1

cc 0 1

bcc 0 1

message-id 0* 1 SHOULD be present - see 3.6.4

in-reply-to 0* 1
SHOULD occur in some replies - see

3.6.4

references 0* 1
SHOULD occur in some replies - see

3.6.4

subject 0 1

comments 0 unlimited

keywords 0 unlimited

optional-

field
0 unlimited

Table 1

The exact interpretation of each field is described in subsequent

sections.

3.6.1. The Origination Date Field

The origination date field consists of the field name "Date"

followed by a date-time specification.

¶

¶

¶

The origination date specifies the date and time at which the

creator of the message indicated that the message was complete and

ready to enter the mail delivery system. For instance, this might be

the time that a user pushes the "send" or "submit" button in an

application program. In any case, it is specifically not intended to

convey the time that the message is actually transported, but rather

the time at which the human or other creator of the message has put

the message into its final form, ready for transport. (For example,

a portable computer user who is not connected to a network might

queue a message for delivery. The origination date is intended to

contain the date and time that the user queued the message, not the

time when the user connected to the network to send the message.)

3.6.2. Originator Fields

The originator fields of a message consist of the from field, the

sender field (when applicable), and optionally the reply-to field.

The from field consists of the field name "From" and a comma-

separated list of one or more mailbox specifications. If the from

field contains more than one mailbox specification in the mailbox-

list, then the sender field, containing the field name "Sender" and

a single mailbox specification, MUST appear in the message. In

either case, an optional reply-to field MAY also be included, which

contains the field name "Reply-To" and a comma-separated list of one

or more addresses.

The originator fields indicate the mailbox(es) of the source of the

message. The "From:" field specifies the author(s) of the message,

that is, the mailbox(es) of the person(s) or system(s) responsible

for the writing of the message. The "Sender:" field specifies the

mailbox of the agent responsible for the actual transmission of the

message. For example, if a secretary were to send a message for

another person, the mailbox of the secretary would appear in the

"Sender:" field and the mailbox of the actual author would appear in

the "From:" field. If the originator of the message can be indicated

by a single mailbox and the author and transmitter are identical,

the "Sender:" field SHOULD NOT be used. Otherwise, both fields

SHOULD appear.

Note: The transmitter information is always present. The absence of

the "Sender:" field is sometimes mistakenly taken to mean that the

agent responsible for transmission of the message has not been

orig-date = "Date:" date-time CRLF¶

¶

¶

from = "From:" mailbox-list CRLF

sender = "Sender:" mailbox CRLF

reply-to = "Reply-To:" address-list CRLF

¶

¶

specified. This absence merely means that the transmitter is

identical to the author and is therefore not redundantly placed into

the "Sender:" field.

The originator fields also provide the information required when

replying to a message. When the "Reply-To:" field is present, it

indicates the address(es) to which the author of the message

suggests that replies be sent. In the absence of the "Reply-To:"

field, replies SHOULD by default be sent to the mailbox(es)

specified in the "From:" field unless otherwise specified by the

person composing the reply.

In all cases, the "From:" field SHOULD NOT contain any mailbox that

does not belong to the author(s) of the message. See also section

3.6.3 for more information on forming the destination addresses for

a reply.

3.6.3. Destination Address Fields

The destination fields of a message consist of three possible

fields, each of the same form: the field name, which is either "To",

"Cc", or "Bcc", followed by a comma-separated list of one or more

addresses (either mailbox or group syntax).

The destination fields specify the recipients of the message. Each

destination field may have one or more addresses, and the addresses

indicate the intended recipients of the message. The only difference

between the three fields is how each is used.

The "To:" field contains the address(es) of the primary recipient(s)

of the message.

The "Cc:" field (where the "Cc" means "Carbon Copy" in the sense of

making a copy on a typewriter using carbon paper) contains the

addresses of others who are to receive the message, though the

content of the message may not be directed at them.

The "Bcc:" field (where the "Bcc" means "Blind Carbon Copy")

contains addresses of recipients of the message whose addresses are

not to be revealed to other recipients of the message. There are

three ways in which the "Bcc:" field is used. In the first case,

when a message containing a "Bcc:" field is prepared to be sent, the

"Bcc:" line is removed even though all of the recipients (including

those specified in the "Bcc:" field) are sent a copy of the message.

¶

¶

¶

¶

to = "To:" address-list CRLF

cc = "Cc:" address-list CRLF

bcc = "Bcc:" [address-list / CFWS] CRLF

¶

¶

¶

¶

In the second case, recipients specified in the "To:" and "Cc:"

lines each are sent a copy of the message with the "Bcc:" line

removed as above, but the recipients on the "Bcc:" line get a

separate copy of the message containing a "Bcc:" line. (When there

are multiple recipient addresses in the "Bcc:" field, some

implementations actually send a separate copy of the message to each

recipient with a "Bcc:" containing only the address of that

particular recipient.) Finally, since a "Bcc:" field may contain no

addresses, a "Bcc:" field can be used without any addresses

indicating to the recipients that blind copies were sent to someone.

Which method to use with "Bcc:" fields is implementation dependent,

but refer to the "Security Considerations" section of this document

for a discussion of each.

When a message is a reply to another message, the mailboxes of the

authors of the original message (the mailboxes in the "From:" field)

or mailboxes specified in the "Reply-To:" field (if it exists) MAY

appear in the "To:" field of the reply since these would normally be

the primary recipients of the reply. If a reply is sent to a message

that has destination fields, it is often desirable to send a copy of

the reply to all of the recipients of the message, in addition to

the author. When such a reply is formed, addresses in the "To:" and

"Cc:" fields of the original message MAY appear in the "Cc:" field

of the reply, since these are normally secondary recipients of the

reply. If a "Bcc:" field is present in the original message,

addresses in that field MAY appear in the "Bcc:" field of the reply,

but they SHOULD NOT appear in the "To:" or "Cc:" fields.

Note: Some mail applications have automatic reply commands that

include the destination addresses of the original message in the

destination addresses of the reply. How those reply commands behave

is implementation dependent and is beyond the scope of this

document. In particular, whether or not to include the original

destination addresses when the original message had a "Reply-To:"

field is not addressed here.

3.6.4. Identification Fields

Though listed as optional in the table (Table 1) in section 3.6,

every message SHOULD have a "Message-ID:" field. Furthermore, reply

messages SHOULD have "In-Reply-To:" and "References:" fields as

appropriate and as described below.

The "Message-ID:" field contains a single unique message identifier.

The "References:" and "In-Reply-To:" fields each contain one or more

unique message identifiers, optionally separated by CFWS.

The message identifier (msg-id) syntax is a limited version of the

addr-spec construct enclosed in the angle bracket characters, "<"

¶

¶

¶

¶

¶

and ">". Unlike addr-spec, this syntax only permits the dot-atom-

text form on the left-hand side of the "@" and does not have

internal CFWS anywhere in the message identifier.

Note: As with addr-spec, a liberal syntax is given for the right-

hand side of the "@" in a msg-id. However, later in this section,

the use of a domain for the right-hand side of the "@" is

RECOMMENDED. Again, the syntax of domain constructs is specified by

and used in other protocols (e.g., [STD13], [RFC1123],

[I-D.ietf-emailcore-rfc5321bis]). It is therefore incumbent upon

implementations to conform to the syntax of addresses for the

context in which they are used.

The "Message-ID:" field provides a unique message identifier that

refers to a particular version of a particular message. The

uniqueness of the message identifier is guaranteed by the host that

generates it (see below). This message identifier is intended to be

machine readable and not necessarily meaningful to humans. A message

identifier pertains to exactly one version of a particular message;

subsequent revisions to the message each receive new message

identifiers.

Note: There are many instances when messages are "changed", but

those changes do not constitute a new instantiation of that message,

and therefore the message would not get a new message identifier.

For example, when messages are introduced into the transport system,

they are often prepended with additional header fields such as trace

fields (described in section 3.6.7) and resent fields (described in

section 3.6.6). The addition of such header fields does not change

the identity of the message and therefore the original "Message-ID:"

field is retained. In all cases, it is the meaning that the sender

of the message wishes to convey (i.e., whether this is the same

message or a different message) that determines whether or not the

¶

¶

message-id = "Message-ID:" msg-id CRLF

in-reply-to = "In-Reply-To:" 1*msg-id CRLF

references = "References:" 1*msg-id CRLF

msg-id = [CFWS] "<" msg-id-internal ">" [CFWS]

msg-id-internal = id-left "@" id-right

id-left = dot-atom-text / obs-id-left

id-right = dot-atom-text / no-fold-literal / obs-id-right

no-fold-literal = "[" *dtext "]"

¶

¶

"Message-ID:" field changes, not any particular syntactic difference

that appears (or does not appear) in the message.

The "In-Reply-To:" and "References:" fields are used when creating a

reply to a message. They hold the message identifier of the original

message and the message identifiers of other messages (for example,

in the case of a reply to a message that was itself a reply). The

"In-Reply-To:" field may be used to identify the message (or

messages) to which the new message is a reply, while the

"References:" field may be used to identify a "thread" of

conversation.

When creating a reply to a message, the "In-Reply-To:" and

"References:" fields of the resultant message are constructed as

follows:

The "In-Reply-To:" field will contain the contents of the "Message-

ID:" field of the message to which this one is a reply (the "parent

message"). If there is more than one parent message, then the "In-

Reply-To:" field will contain the contents of all of the parents'

"Message-ID:" fields. If there is no "Message-ID:" field in any of

the parent messages, then the new message will have no "In-Reply-

To:" field.

The "References:" field will contain the contents of the parent's

"References:" field (if any) followed by the contents of the

parent's "Message-ID:" field (if any). If the parent message does

not contain a "References:" field but does have an "In-Reply-To:"

field containing a single message identifier, then the "References:"

field will contain the contents of the parent's "In-Reply-To:" field

followed by the contents of the parent's "Message-ID:" field (if

any). If the parent has none of the "References:", "In-Reply-To:",

or "Message-ID:" fields, then the new message will have no

"References:" field.

Note: Some implementations parse the "References:" field to display

the "thread of the discussion". These implementations assume that

each new message is a reply to a single parent and hence that they

can walk backwards through the "References:" field to find the

parent of each message listed there. Therefore, trying to form a

"References:" field for a reply that has multiple parents is

discouraged; how to do so is not defined in this document.

The message identifier (msg-id) itself MUST be a globally unique

identifier for a message. The generator of the message identifier

MUST guarantee that the msg-id is unique. There are several

algorithms that can be used to accomplish this. Since the msg-id has

a similar syntax to addr-spec (identical except that quoted strings,

comments, and folding white space are not allowed), a good method is

¶

¶

¶

¶

¶

¶

to put the domain name (or a domain literal IP address) of the host

on which the message identifier was created on the right-hand side

of the "@" (since domain names and IP addresses are normally

unique), and put a combination of the current absolute date and time

along with some other currently unique (perhaps sequential)

identifier available on the system (for example, a process id

number) on the left-hand side. Though other algorithms will work, it

is RECOMMENDED that the right-hand side contain some domain

identifier (either of the host itself or otherwise) such that the

generator of the message identifier can guarantee the uniqueness of

the left-hand side within the scope of that domain.

Semantically, the angle bracket characters are not part of the msg-

id; the msg-id is what is contained between the two angle bracket

characters.

3.6.5. Informational Fields

The informational fields are all optional. The "Subject:" and

"Comments:" fields are unstructured fields as defined in section

2.2.1, and therefore may contain text or folding white space. The

"Keywords:" field contains a comma-separated list of one or more

words or quoted-strings.

These three fields are intended to have only human-readable content

with information about the message. The "Subject:" field is the most

common and contains a short string identifying the topic of the

message. When used in a reply, the field body MAY start with the

string "Re: " (an abbreviation of the Latin "in re", meaning "in the

matter of") followed by the contents of the "Subject:" field body of

the original message. If this is done, only one instance of the

literal string "Re: " ought to be used since use of other strings or

more than one instance can lead to undesirable consequences. The

"Comments:" field contains any additional comments on the text of

the body of the message. The "Keywords:" field contains a comma-

separated list of important words and phrases that might be useful

for the recipient.

3.6.6. Resent Fields

Resent fields SHOULD be added to any message that is reintroduced by

a user into the transport system. A separate set of resent fields

SHOULD be added each time this is done. All of the resent fields

corresponding to a particular resending of the message SHOULD be

¶

¶

¶

subject = "Subject:" unstructured CRLF

comments = "Comments:" unstructured CRLF

keywords = "Keywords:" phrase *("," phrase) CRLF

¶

¶

grouped together. Each new set of resent fields is prepended to the

message; that is, the most recent set of resent fields appears

earlier in the message. No other fields in the message are changed

when resent fields are added.

Each of the resent fields corresponds to a particular field

elsewhere in the syntax. For instance, the "Resent-Date:" field

corresponds to the "Date:" field and the "Resent-To:" field

corresponds to the "To:" field. In each case, the syntax for the

field body is identical to the syntax given previously for the

corresponding field.

When resent fields are used, the "Resent-From:" and "Resent-Date:"

fields MUST be present. The "Resent-Message-ID:" field SHOULD be

present. "Resent-Sender:" SHOULD NOT be used if "Resent-Sender:"

would be identical to "Resent-From:".

Resent fields are used to identify a message as having been

reintroduced into the transport system by a user. The purpose of

using resent fields is to have the message appear to the final

recipient as if it were sent directly by the original sender, with

all of the original fields remaining the same. Each set of resent

fields correspond to a particular resending event. That is, if a

message is resent multiple times, each set of resent fields gives

identifying information for each individual time. Resent fields are

strictly informational. They MUST NOT be used in the normal

processing of replies or other such automatic actions on messages.

Note: Reintroducing a message into the transport system and using

resent fields is a different operation from "forwarding".

"Forwarding" has two meanings: One sense of forwarding is that a

mail reading program can be told by a user to forward a copy of a

message to another person, making the forwarded message the body of

the new message. A forwarded message in this sense does not appear

to have come from the original sender, but is an entirely new

message from the forwarder of the message. Forwarding may also mean

¶

¶

¶

resent-date = "Resent-Date:" date-time CRLF

resent-from = "Resent-From:" mailbox-list CRLF

resent-sender = "Resent-Sender:" mailbox CRLF

resent-to = "Resent-To:" address-list CRLF

resent-cc = "Resent-Cc:" address-list CRLF

resent-bcc = "Resent-Bcc:" [address-list / CFWS] CRLF

resent-msg-id = "Resent-Message-ID:" msg-id CRLF

¶

¶

that a mail transport program gets a message and forwards it on to a

different destination for final delivery. Resent header fields are

not intended for use with either type of forwarding.

The resent originator fields indicate the mailbox of the person(s)

or system(s) that resent the message. As with the regular originator

fields, there are two forms: a simple "Resent-From:" form, which

contains the mailbox of the individual doing the resending, and the

more complex form, when one individual (identified in the "Resent-

Sender:" field) resends a message on behalf of one or more others

(identified in the "Resent-From:" field).

Note: When replying to a resent message, replies behave just as they

would with any other message, using the original "From:", "Reply-

To:", "Message-ID:", and other fields. The resent fields are only

informational and MUST NOT be used in the normal processing of

replies.

The "Resent-Date:" indicates the date and time at which the resent

message is dispatched by the resender of the message. Like the

"Date:" field, it is not the date and time that the message was

actually transported.

The "Resent-To:", "Resent-Cc:", and "Resent-Bcc:" fields function

identically to the "To:", "Cc:", and "Bcc:" fields, respectively,

except that they indicate the recipients of the resent message, not

the recipients of the original message.

The "Resent-Message-ID:" field provides a unique identifier for the

resent message.

3.6.7. Trace Fields

The trace fields are a group of header fields consisting of a

"Return-Path:" field, and/or one or more "Received:" fields or other

fields (indicated by "trace-optional" below) that are defined by

other specifications as belonging within the trace fields grouping.

The "Return-Path:" header field contains a pair of angle brackets

that enclose an optional addr-spec. The "Received:" field contains a

(possibly empty) list of tokens followed by a semicolon and a date-

time specification. Each token must be a word, angle-addr, addr-

spec, or a domain. The trace-optional fields follow the syntax of

section 3.6.8. Further restrictions are applied to the syntax of the

trace fields by specifications that provide for their use, such as

[I-D.ietf-emailcore-rfc5321bis].

¶

¶

¶

¶

¶

¶

¶

The trace fields document actions taken as a message moves through

the transport system. A full discussion of the Internet mail use of

the "Return-Path:" and "Received:" trace fields is contained in

[I-D.ietf-emailcore-rfc5321bis]; other specifications such as

[I-D.ietf-emailcore-as] describe the use of other fields that are to

be interpreted as trace fields. In particular, the operational

behavior associated with any of the fields in the section of the

message (how, when, and whether they are added to or even removed

from messages as they are moved through the transport system) are

not described here. For the purposes of this specification, the

trace fields are strictly informational, and any formal

interpretation of them is outside of the scope of this document.

3.6.8. Optional Fields

Fields may appear in messages that are otherwise unspecified in this

document. They MUST conform to the syntax of an optional-field. This

is a field name, made up of the VCHAR characters except colon,

followed by a colon, followed by any text that conforms to the

unstructured syntax.

The field names of any optional field MUST NOT be identical to any

field name specified elsewhere in this document.

For the purposes of this specification, any optional field is

uninterpreted.

trace = [return]

 *(received / trace-optional)

return = "Return-Path:" path CRLF

path = angle-addr / ([CFWS] "<" [CFWS] ">" [CFWS])

received = "Received:"

 [1*received-token / CFWS] ";" date-time CRLF

received-token = word / angle-addr / addr-spec / domain

trace-optional = optional-field

¶

¶

¶

¶

optional-field = field-name ":" unstructured CRLF

field-name = 1*ftext ; Limit to 77 characters to

 ; stay within 78 char-per-

 ; line recommendation

ftext = %d33-57 / ; VCHAR characters not including

 %d59-126 ; ":".

¶

¶

4. Obsolete Syntax

Earlier versions of this specification allowed for different

(usually more liberal) syntax than is allowed in this version. Also,

there have been syntactic elements used in messages on the Internet

whose interpretations have never been documented. Though these

syntactic forms MUST NOT be generated according to the grammar in

section 3, they MUST be accepted and parsed by a conformant

receiver. This section documents many of these syntactic elements.

(See the note in Section 1.2.3 for an explanation of the term

"obsolete".) Taking the grammar in section 3 and adding the

definitions presented in this section will result in the grammar to

use for the interpretation of messages.

Note: This section identifies syntactic forms that any

implementation MUST reasonably interpret. However, there are

certainly Internet messages that do not conform to even the

additional syntax given in this section. The fact that a particular

form does not appear in any section of this document is not

justification for computer programs to crash or for malformed data

to be irretrievably lost by any implementation. It is up to the

implementation to deal with messages robustly.

One important difference between the obsolete (interpreting) and the

current (generating) syntax is that in structured header field

bodies (i.e., between the colon and the CRLF of any structured

header field), white space characters, including folding white

space, and comments could be freely inserted between any syntactic

tokens. This allowed many complex forms that have proven difficult

for some implementations to parse.

Another key difference between the obsolete and the current syntax

is that the rule in section 3.2.2 regarding lines composed entirely

of white space in comments and folding white space does not apply.

See the discussion of folding white space in section 4.2 below.

Finally, certain characters that were formerly allowed in messages

appear in this section. The NUL character (ASCII value 0) was once

allowed, but is no longer for compatibility reasons. Similarly, US-

ASCII control characters other than CR, LF, SP, and HTAB (ASCII

values 1 through 8, 11, 12, 14 through 31, and 127) were allowed to

appear in header field bodies. CR and LF were allowed to appear in

messages other than as CRLF; this use is also shown here.

Other differences in syntax and semantics are noted in the following

sections.

¶

¶

¶

¶

¶

¶

4.1. Miscellaneous Obsolete Tokens

These syntactic elements are used elsewhere in the obsolete syntax

or in the main syntax. Bare CR, bare LF, and NUL are added to obs-

qp, obs-body, and obs-unstruct. US-ASCII control characters are

added to obs-qp, obs-unstruct, obs-ctext, and obs-qtext. The period

character is added to obs-phrase. The obs-phrase-list provides for a

(potentially empty) comma-separated list of phrases that may include

"null" elements. That is, there could be two or more commas in such

a list with nothing in between them, or commas at the beginning or

end of the list.

Note: The "period" (or "full stop") character (".") in obs-phrase is

not a form that was allowed in earlier versions of this or any other

specification. Period (nor any other character from specials) was

not allowed in phrase because it introduced a parsing difficulty

distinguishing between phrases and portions of an addr-spec (see

section 4.4). It appears here because the period character is

currently used in many messages in the display-name portion of

addresses, especially for initials in names, and therefore must be

interpreted properly.

Bare CR and bare LF appear in messages with two different meanings.

In many cases, bare CR or bare LF are used improperly instead of

CRLF to indicate line separators. In other cases, bare CR and bare

LF are used simply as US-ASCII control characters with their

traditional ASCII meanings.

¶

¶

obs-NO-WS-CTL = %d1-8 / ; US-ASCII control

 %d11 / ; characters that do not

 %d12 / ; include the carriage

 %d14-31 / ; return, line feed, and

 %d127 ; white space characters

obs-ctext = obs-NO-WS-CTL

obs-qtext = obs-NO-WS-CTL

obs-utext = %d0 / obs-NO-WS-CTL / VCHAR

obs-qp = "\" (%d0 / obs-NO-WS-CTL / LF / CR)

obs-body = *(%d0 / LF / CR / text)

obs-unstruct = *((*CR 1*(obs-utext / FWS)) / 1*LF) *CR

obs-phrase = word *(word / "." / CFWS)

obs-phrase-list = [phrase / CFWS] *("," [phrase / CFWS])

¶

¶

4.2. Obsolete Folding White Space

In the obsolete syntax, any amount of folding white space MAY be

inserted where the obs-FWS rule is allowed. This creates the

possibility of having two consecutive "folds" in a line, and

therefore the possibility that a line which makes up a folded header

field could be composed entirely of white space.

4.3. Obsolete Date and Time

The syntax for the obsolete date format allows a 2 digit year in the

date field and allows for a list of alphabetic time zone specifiers

that were used in earlier versions of this specification. It also

permits comments and folding white space between many of the tokens.

Where a two or three digit year occurs in a date, the year is to be

interpreted as follows: If a two digit year is encountered whose

value is between 00 and 49, the year is interpreted by adding 2000,

ending up with a value between 2000 and 2049. If a two digit year is

encountered with a value between 50 and 99, or any three digit year

is encountered, the year is interpreted by adding 1900.

¶

obs-FWS = 1*([CRLF] WSP)¶

¶

obs-day-of-week = [CFWS] day-name [CFWS]

obs-day = [CFWS] 1*2DIGIT [CFWS]

obs-year = [CFWS] 2*DIGIT [CFWS]

obs-hour = [CFWS] 2DIGIT [CFWS]

obs-minute = [CFWS] 2DIGIT [CFWS]

obs-second = [CFWS] 2DIGIT [CFWS]

obs-zone = [CFWS] (

 "UT" / "GMT" / ; Universal Time

 ; North American UT

 ; offsets

 "EST" / "EDT" / ; Eastern: - 5/ - 4

 "CST" / "CDT" / ; Central: - 6/ - 5

 "MST" / "MDT" / ; Mountain: - 7/ - 6

 "PST" / "PDT" / ; Pacific: - 8/ - 7

 ;

 %d65-73 / ; Military zones - "A"

 %d75-90 / ; through "I" and "K"

 %d97-105 / ; through "Z", both

 %d107-122 ; upper and lower case

) [CFWS]

¶

¶

In the obsolete time zone, "UT" and "GMT" are indications of

"Universal Time" and "Greenwich Mean Time", respectively, and are

both semantically identical to "+0000".

The remaining three character zones are the US time zones. The first

letter, "E", "C", "M", or "P" stands for "Eastern", "Central",

"Mountain", and "Pacific". The second letter is either "S" for

"Standard" time, or "D" for "Daylight" (daylight saving or summer)

time. Their interpretations are as follows:

EDT is semantically equivalent to -0400

EST is semantically equivalent to -0500

CDT is semantically equivalent to -0500

CST is semantically equivalent to -0600

MDT is semantically equivalent to -0600

MST is semantically equivalent to -0700

PDT is semantically equivalent to -0700

PST is semantically equivalent to -0800

The 1 character military time zones were defined in a non-standard

way in [RFC0822] and are therefore unpredictable in their meaning.

The original definitions of the military zones "A" through "I" are

equivalent to "+0100" through "+0900", respectively; "K", "L", and

"M" are equivalent to "+1000", "+1100", and "+1200", respectively;

"N" through "Y" are equivalent to "-0100" through "-1200".

respectively; and "Z" is equivalent to "+0000". However, because of

the error in [RFC0822], they SHOULD all be considered equivalent to

"-0000" unless there is out-of-band information confirming their

meaning.

Other multi-character (usually between 3 and 5) alphabetic time

zones have been used in Internet messages. Any such time zone whose

meaning is not known SHOULD be considered equivalent to "-0000"

unless there is out-of-band information confirming their meaning.

4.4. Obsolete Addressing

There are four primary differences in addressing. First, mailbox

addresses were allowed to have a route portion before the addr-spec

when enclosed in "<" and ">". The route is simply a comma-separated

list of domain names, each preceded by "@", and the list terminated

by a colon. Second, CFWS were allowed between the period-separated

elements of local-part and domain (i.e., dot-atom was not used). In

addition, local-part is allowed to contain quoted-string in addition

to just atom. Third, mailbox-list and address-list were allowed to

have "null" members. That is, there could be two or more commas in

such a list with nothing in between them, or commas at the beginning

or end of the list. Finally, US-ASCII control characters and quoted-

pairs were allowed in domain literals and are added here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

When interpreting addresses, the route portion SHOULD be ignored.

4.5. Obsolete Header Fields

Syntactically, the primary difference in the obsolete field syntax

is that it allows multiple occurrences of any of the fields and they

may occur in any order. Also, any amount of white space is allowed

before the ":" at the end of the field name.

obs-angle-addr = [CFWS] "<" obs-route addr-spec ">" [CFWS]

obs-route = obs-domain-list ":"

obs-domain-list = *(CFWS / ",") "@" domain

 *("," [CFWS] ["@" domain])

obs-mbox-list = *([CFWS] ",") mailbox *("," [mailbox / CFWS])

obs-addr-list = *([CFWS] ",") address *("," [address / CFWS])

obs-group-list = 1*([CFWS] ",") [CFWS]

obs-local-part = word *("." word)

obs-domain = atom *("." atom)

obs-dtext = obs-NO-WS-CTL / quoted-pair

¶

¶

¶

Except for destination address fields (described in section 4.5.3),

the interpretation of multiple occurrences of fields is unspecified.

Also, the interpretation of trace fields and resent fields that do

not occur in blocks prepended to the message is unspecified as well.

Unless otherwise noted in the following sections, interpretation of

other fields is identical to the interpretation of their non-

obsolete counterparts in section 3.

4.5.1. Obsolete Origination Date Field

4.5.2. Obsolete Originator Fields

obs-fields = *(obs-return /

 obs-received /

 obs-orig-date /

 obs-from /

 obs-sender /

 obs-reply-to /

 obs-to /

 obs-cc /

 obs-bcc /

 obs-message-id /

 obs-in-reply-to /

 obs-references /

 obs-subject /

 obs-comments /

 obs-keywords /

 obs-resent-date /

 obs-resent-from /

 obs-resent-send /

 obs-resent-rply /

 obs-resent-to /

 obs-resent-cc /

 obs-resent-bcc /

 obs-resent-mid /

 obs-optional)

¶

¶

obs-orig-date = "Date" *WSP ":" date-time CRLF¶

obs-from = "From" *WSP ":" mailbox-list CRLF

obs-sender = "Sender" *WSP ":" mailbox CRLF

obs-reply-to = "Reply-To" *WSP ":" address-list CRLF

¶

4.5.3. Obsolete Destination Address Fields

When multiple occurrences of destination address fields occur in a

message, they SHOULD be treated as if the address list in the first

occurrence of the field is combined with the address lists of the

subsequent occurrences by adding a comma and concatenating.

4.5.4. Obsolete Identification Fields

The obsolete "In-Reply-To:" and "References:" fields differ from the

current syntax in that they allow phrase (words or quoted strings)

to appear. The obsolete forms of the left and right sides of msg-id

allow interspersed CFWS, making them syntactically identical to

local-part and domain, respectively.

For purposes of interpretation, the phrases in the "In-Reply-To:"

and "References:" fields are ignored.

Semantically, none of the optional CFWS in the local-part and the

domain is part of the obs-id-left and obs-id-right, respectively.

4.5.5. Obsolete Informational Fields

obs-to = "To" *WSP ":" address-list CRLF

obs-cc = "Cc" *WSP ":" address-list CRLF

obs-bcc = "Bcc" *WSP ":"

 (address-list / (*([CFWS] ",") [CFWS])) CRLF

¶

¶

¶

obs-message-id = "Message-ID" *WSP ":" msg-id CRLF

obs-in-reply-to = "In-Reply-To" *WSP ":" *(phrase / msg-id) CRLF

obs-references = "References" *WSP ":" *(phrase / msg-id) CRLF

obs-id-left = local-part

obs-id-right = domain

¶

¶

¶

obs-subject = "Subject" *WSP ":" unstructured CRLF

obs-comments = "Comments" *WSP ":" unstructured CRLF

obs-keywords = "Keywords" *WSP ":" obs-phrase-list CRLF

¶

4.5.6. Obsolete Resent Fields

The obsolete syntax adds a "Resent-Reply-To:" field, which consists

of the field name, the optional comments and folding white space,

the colon, and a comma separated list of addresses.

As with other resent fields, the "Resent-Reply-To:" field is to be

treated as informational only.

4.5.7. Obsolete Trace Fields

The obs-return and obs-received are again given here as template

definitions, just as return and received are in section 3. Their

full syntax is given in [I-D.ietf-emailcore-rfc5321bis].

4.5.8. Obsolete optional fields

5. Security Considerations

Care needs to be taken when displaying messages on a terminal or

terminal emulator. Powerful terminals may act on escape sequences

and other combinations of US-ASCII control characters with a variety

of consequences. They can remap the keyboard or permit other

modifications to the terminal that could lead to denial of service

or even damaged data. They can trigger (sometimes programmable)

answerback messages that can allow a message to cause commands to be

¶

obs-resent-from = "Resent-From" *WSP ":" mailbox-list CRLF

obs-resent-send = "Resent-Sender" *WSP ":" mailbox CRLF

obs-resent-date = "Resent-Date" *WSP ":" date-time CRLF

obs-resent-to = "Resent-To" *WSP ":" address-list CRLF

obs-resent-cc = "Resent-Cc" *WSP ":" address-list CRLF

obs-resent-bcc = "Resent-Bcc" *WSP ":"

 (address-list / (*([CFWS] ",") [CFWS])) CRLF

obs-resent-mid = "Resent-Message-ID" *WSP ":" msg-id CRLF

obs-resent-rply = "Resent-Reply-To" *WSP ":" address-list CRLF

¶

¶

¶

obs-return = "Return-Path" *WSP ":" path CRLF

obs-received = "Received" *WSP ":"

 [1*received-token / CFWS] [";" date-time CRLF]

¶

obs-optional = field-name *WSP ":" unstructured CRLF¶

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

issued on the recipient's behalf. They can also affect the operation

of terminal attached devices such as printers. Message viewers may

wish to strip potentially dangerous terminal escape sequences from

the message prior to display. However, other escape sequences appear

in messages for useful purposes (cf. [ISO.2022.1994], [RFC2045],

[RFC2046], [RFC2047], [RFC2049], [BCP13]) and therefore should not

be stripped indiscriminately.

Transmission of non-text objects in messages raises additional

security issues. These issues are discussed in [RFC2045], [RFC2046],

[RFC2047], [RFC2049], [BCP13].

Many implementations use the "Bcc:" (blind carbon copy) field,

described in section 3.6.3, to facilitate sending messages to

recipients without revealing the addresses of one or more of the

addressees to the other recipients. Mishandling this use of "Bcc:"

may disclose confidential information that could eventually lead to

security problems through knowledge of even the existence of a

particular mail address. For example, if using the first method

described in section 3.6.3, where the "Bcc:" line is removed from

the message, blind recipients have no explicit indication that they

have been sent a blind copy, except insofar as their address does

not appear in the header section of a message. Because of this, one

of the blind addressees could potentially send a reply to all of the

shown recipients and accidentally reveal that the message went to

the blind recipient. When the second method from section 3.6.3 is

used, the blind recipient's address appears in the "Bcc:" field of a

separate copy of the message. If the "Bcc:" field contains all of

the blind addressees, all of the "Bcc:" recipients will be seen by

each "Bcc:" recipient. Even if a separate message is sent to each

"Bcc:" recipient with only the individual's address, implementations

still need to be careful to process replies to the message as per

section 3.6.3 so as not to accidentally reveal the blind recipient

to other recipients.

6. IANA Considerations

This document updates the registrations that first appeared in

[RFC4021] and were subsequently updated by [RFC5322]. IANA is

requested to update the Permanent Message Header Field Repository

with the following header fields, in accordance with the procedures

set out in [RFC3864].

Date

Mail

standard

IETF

This document (section 3.6.1)

From

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Mail

standard

IETF

This document (section 3.6.2)

Sender

Mail

standard

IETF

This document (section 3.6.2)

Reply-To

Mail

standard

IETF

This document (section 3.6.2)

To

Mail

standard

IETF

This document (section 3.6.3)

Cc

Mail

standard

IETF

This document (section 3.6.3)

Bcc

Mail

standard

IETF

This document (section 3.6.3)

Message-ID

Mail

standard

IETF

This document (section 3.6.4)

In-Reply-To

Mail

standard

IETF

This document (section 3.6.4)

References

Mail

standard

IETF

This document (section 3.6.4)

Subject

Mail

standard

IETF

This document (section 3.6.5)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Comments

Mail

standard

IETF

This document (section 3.6.5)

Keywords

Mail

standard

IETF

This document (section 3.6.5)

Resent-Date

Mail

standard

IETF

This document (section 3.6.6)

Resent-From

Mail

standard

IETF

This document (section 3.6.6)

Resent-Sender

Mail

standard

IETF

This document (section 3.6.6)

Resent-To

Mail

standard

IETF

This document (section 3.6.6)

Resent-Cc

Mail

standard

IETF

This document (section 3.6.6)

Resent-Bcc

Mail

standard

IETF

This document (section 3.6.6)

Resent-Reply-To

Mail

obsolete

IETF

This document (section 4.5.6)

Resent-Message-ID

Mail

standard

IETF

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

[ANSI.X3-4.1986]

[BCP14]

[RFC1123]

[STD13]

[STD68]

[BCP13]

This document (section 3.6.6)

Return-Path

Mail

standard

IETF

This document (section 3.6.7)

Received

Mail

standard

IETF

This document (section 3.6.7)

[I-D.ietf-emailcore-rfc5321bis]

7. References

7.1. Normative References

American National Standards Institute, "Coded

Character Set - 7-bit American Standard Code for

Information Interchange", ANSI X3.4, 1986.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, May 2017.

Braden, R., Ed., "Requirements for Internet Hosts -

Application and Support", STD 3, RFC 1123, DOI 10.17487/

RFC1123, October 1989, <https://www.rfc-editor.org/info/

rfc1123>.

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, November 1987.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, November 1987.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, January

2008.

7.2. Informative References

Freed, N. and J. Klensin, "Multipurpose Internet Mail

Extensions (MIME) Part Four: Registration Procedures",

BCP 13, RFC 4289, December 2005.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123

[ISO.2022.1994]

[RFC0822]

[RFC2045]

[RFC2046]

[RFC2047]

[RFC2049]

[RFC2822]

[RFC3339]

[RFC3864]

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, January 2013.

International Organization for Standardization,

"Information technology - Character code structure and

extension techniques", ISO Standard 2022, 1994.

Crocker, D., "STANDARD FOR THE FORMAT OF ARPA INTERNET

TEXT MESSAGES", STD 11, RFC 822, DOI 10.17487/RFC0822,

August 1982, <https://www.rfc-editor.org/info/rfc822>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/info/rfc2045>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Moore, K., "MIME (Multipurpose Internet Mail Extensions)

Part Three: Message Header Extensions for Non-ASCII

Text", RFC 2047, DOI 10.17487/RFC2047, November 1996,

<https://www.rfc-editor.org/info/rfc2047>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Five: Conformance Criteria and

Examples", RFC 2049, DOI 10.17487/RFC2049, November 1996,

<https://www.rfc-editor.org/info/rfc2049>.

Resnick, P., Ed., "Internet Message Format", RFC 2822,

DOI 10.17487/RFC2822, April 2001, <https://www.rfc-

editor.org/info/rfc2822>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

https://www.rfc-editor.org/info/rfc822
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2047
https://www.rfc-editor.org/info/rfc2049
https://www.rfc-editor.org/info/rfc2822
https://www.rfc-editor.org/info/rfc2822
https://www.rfc-editor.org/info/rfc3339

[RFC4021]

[RFC5322]

[RFC6532]

[I-D.ietf-emailcore-rfc5321bis]

[I-D.ietf-emailcore-as]

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Klyne, G. and J. Palme, "Registration of Mail and MIME

Header Fields", RFC 4021, DOI 10.17487/RFC4021, March

2005, <https://www.rfc-editor.org/info/rfc4021>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Yang, A., Steele, S., and N. Freed, "Internationalized

Email Headers", RFC 6532, DOI 10.17487/RFC6532, February

2012, <https://www.rfc-editor.org/info/rfc6532>.

Klensin, J. C., "Simple Mail Transfer Protocol", Work in

Progress, Internet-Draft, draft-ietf-emailcore-

rfc5321bis-18, 7 February 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-emailcore-

rfc5321bis-18>.

Klensin, J. C., Murchison, K., and E. Sam,

"Applicability Statement for IETF Core Email Protocols",

Work in Progress, Internet-Draft, draft-ietf-emailcore-

as-07, 7 November 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-emailcore-as-07>.

Appendix A. Example Messages

This section presents a selection of messages. These are intended to

assist in the implementation of this specification, but should not

be taken as normative; that is to say, although the examples in this

section were carefully reviewed, if there happens to be a conflict

between these examples and the syntax described in sections 3 and 4

of this document, the syntax in those sections is to be taken as

correct.

In the text version of this document, messages in this section are

delimited between lines of "----". The "----" lines are not part of

the message itself.

A.1. Addressing Examples

The following are examples of messages that might be sent between

two individuals.

¶

¶

¶

https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc4021
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc6532
https://datatracker.ietf.org/doc/html/draft-ietf-emailcore-rfc5321bis-18
https://datatracker.ietf.org/doc/html/draft-ietf-emailcore-rfc5321bis-18
https://datatracker.ietf.org/doc/html/draft-ietf-emailcore-rfc5321bis-18
https://datatracker.ietf.org/doc/html/draft-ietf-emailcore-as-07
https://datatracker.ietf.org/doc/html/draft-ietf-emailcore-as-07

A.1.1. A Message from One Person to Another with Simple Addressing

This could be called a canonical message. It has a single author,

John Doe, a single recipient, Mary Smith, a subject, the date, a

message identifier, and a textual message in the body.

If John's secretary Michael actually sent the message, even though

John was the author and replies to this message should go back to

him, the sender field would be used:

A.1.2. Different Types of Mailboxes

This message includes multiple addresses in the destination fields

and also uses several different forms of addresses.

Note that the display names for Joe Q. Public and Giant; "Big" Box

needed to be enclosed in double-quotes because the former contains

the period and the latter contains both semicolon and double-quote

characters (the double-quote characters appearing as quoted-pair

constructs). Conversely, the display name for Who? could appear

without them because the question mark is legal in an atom. Notice

also that jdoe@example.org and boss@nil.test have no display names

¶

From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

¶

From: John Doe <jdoe@machine.example>

Sender: Michael Jones <mjones@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

¶

From: "Joe Q. Public" <john.q.public@example.com>

To: Mary Smith <mary@x.test>, jdoe@example.org, Who? <one@y.test>

Cc: <boss@nil.test>, "Giant; \"Big\" Box" <sysservices@example.net>

Date: Tue, 1 Jul 2003 10:52:37 +0200

Message-ID: <5678.21-Nov-1997@example.com>

Hi everyone.

¶

associated with them at all, and jdoe@example.org uses the simpler

address form without the angle brackets.

A.1.3. Group Addresses

In this message, the "To:" field has a single group recipient named

"A Group", which contains 3 addresses, and a "Cc:" field with an

empty group recipient named Undisclosed recipients.

A.2. Reply Messages

The following is a series of three messages that make up a

conversation thread between John and Mary. John first sends a

message to Mary, Mary then replies to John's message, and then John

replies to Mary's reply message.

Note especially the "Message-ID:", "References:", and "In-Reply-To:"

fields in each message.

When sending replies, the Subject field is often retained, though

prepended with "Re: " as described in section 3.6.5.

¶

From: Pete <pete@silly.example>

To: A Group:Ed Jones <c@a.test>,joe@where.test,John <jdoe@one.test>;

Cc: Undisclosed recipients:;

Date: Thu, 13 Feb 1969 23:32:54 -0330

Message-ID: <testabcd.1234@silly.example>

Testing.

¶

¶

¶

¶

From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

¶

From: Mary Smith <mary@example.net>

To: John Doe <jdoe@machine.example>

Reply-To: "Mary Smith: Personal Account" <smith@home.example>

Subject: Re: Saying Hello

Date: Fri, 21 Nov 1997 10:01:10 -0600

Message-ID: <3456@example.net>

In-Reply-To: <1234@local.machine.example>

References: <1234@local.machine.example>

This is a reply to your hello.

¶

Note the "Reply-To:" field in the above message. When John replies

to Mary's message above, the reply should go to the address in the

"Reply-To:" field instead of the address in the "From:" field.

A.3. Resent Messages

Start with the message that has been used as an example several

times:

Say that Mary, upon receiving this message, wishes to send a copy of

the message to Jane such that (a) the message would appear to have

come straight from John; (b) if Jane replies to the message, the

reply should go back to John; and (c) all of the original

information, like the date the message was originally sent to Mary,

the message identifier, and the original addressee, is preserved. In

this case, resent fields are prepended to the message:

¶

To: "Mary Smith: Personal Account" <smith@home.example>

From: John Doe <jdoe@machine.example>

Subject: Re: Saying Hello

Date: Fri, 21 Nov 1997 11:00:00 -0600

Message-ID: <abcd.1234@local.machine.test>

In-Reply-To: <3456@example.net>

References: <1234@local.machine.example> <3456@example.net>

This is a reply to your reply.

¶

¶

From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

¶

Resent-From: Mary Smith <mary@example.net>

Resent-To: Jane Brown <j-brown@other.example>

Resent-Date: Mon, 24 Nov 1997 14:22:01 -0800

Resent-Message-ID: <78910@example.net>

From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

If Jane, in turn, wished to resend this message to another person,

she would prepend her own set of resent header fields to the above

and send that. (Note that for brevity, trace fields are not shown.)

A.4. Messages with Trace Fields

As messages are sent through the transport system as described in

[I-D.ietf-emailcore-rfc5321bis], trace fields are prepended to the

message. The following is an example of what those trace fields

might look like. Note that there is some folding white space in the

first one since these lines can be long.

A.5. White Space, Comments, and Other Oddities

White space, including folding white space, and comments can be

inserted between many of the tokens of fields. Taking the example

from A.1.3, white space and comments can be inserted into all of the

fields.

¶

¶

Received: from x.y.test

 by example.net

 via TCP

 with ESMTP

 id ABC12345

 for <mary@example.net>; 21 Nov 1997 10:05:43 -0600

Received: from node.example by x.y.test; 21 Nov 1997 10:01:22 -0600

From: John Doe <jdoe@node.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 -0600

Message-ID: <1234@local.node.example>

This is a message just to say hello.

So, "Hello".

¶

¶

From: Pete(A nice \) chap) <pete@silly.test(his host is silly)>

To:A Group(Some people)

 :Chris Jones <c@public.example(.host of Chris)>,

 joe@example.org,

 John <jdoe@one.test> (my dear friend); (the end of the group)

Cc:(Empty list)(start)Hidden recipients :(nobody(that I know)) ;

Date: Thu,

 13

 Feb

 1969

 23:32

 -0330 (Newfoundland Time)

Message-ID: <testabcd.1234@silly.test>

Testing.

¶

The above example is aesthetically displeasing, but perfectly legal.

Note particularly (1) the comments in the "From:" field (including

one that has a ")" character appearing as part of a quoted-pair);

(2) the white space absent after the ":" in the "To:" field as well

as the comment and folding white space after the group name, the

special character (".") in the comment in Chris Jones's address, and

the folding white space before and after "joe@example.org,"; (3) the

multiple and nested comments in the "Cc:" field as well as the

comment immediately following the ":" after "Cc"; (4) the folding

white space (but no comments except at the end) and the missing

seconds in the time of the date field; and (5) the white space

before (but not within) the identifier in the "Message-ID:" field.

A.6. Obsoleted Forms

The following are examples of obsolete (that is, the "MUST NOT

generate") syntactic elements described in section 4 of this

document.

A.6.1. Obsolete Addressing

Note in the example below the lack of quotes around Joe Q. Public,

the route that appears in the address for Mary Smith, the two commas

that appear in the "To:" field, and the spaces that appear around

the "." in the jdoe address.

A.6.2. Obsolete Dates

The following message uses an obsolete date format, including a non-

numeric time zone and a two digit year. Note that although the day-

of-week is missing, that is not specific to the obsolete syntax; it

is optional in the current syntax as well.

¶

¶

¶

From: Joe Q. Public <john.q.public@example.com>

To: Mary Smith <@node.test:mary@example.net>, , jdoe@test . example

Date: Tue, 1 Jul 2003 10:52:37 +0200

Message-ID: <5678.21-Nov-1997@example.com>

Hi everyone.

¶

¶

From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: 21 Nov 97 09:55:06 GMT

Message-ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

¶

A.6.3. Obsolete White Space and Comments

White space and comments can appear between many more elements than

in the current syntax. Also, folding lines that are made up entirely

of white space are legal.

Note especially the second line of the "To:" field. It starts with

two space characters. (Note that "__" represent blank spaces.)

Therefore, it is considered part of the folding, as described in

section 4.2. Also, the comments and white space throughout

addresses, dates, and message identifiers are all part of the

obsolete syntax.

Appendix B. Differences from Earlier Specifications

This appendix contains a list of changes that have been made in the

Internet Message Format from earlier specifications, specifically

[RFC0822], [RFC1123], [RFC2822], and [RFC5322]. Items marked with an

asterisk (*) below are items which appear in section 4 of this

document and therefore can no longer be generated.

The following are the changes made from [RFC0822] and [RFC1123] to

[RFC2822]:

Period allowed in obsolete form of phrase.

ABNF moved out of document, now in [STD68].

Four or more digits allowed for year.

Header field ordering (and lack thereof) made explicit.

Encrypted header field removed.

Specifically allow and give meaning to "-0000" time zone.

Folding white space is not allowed between every token.

Requirement for destinations removed.

Forwarding and resending redefined.

Extension header fields no longer specifically called out.

ASCII 0 (null) removed.*

Folding continuation lines cannot contain only white space.*

Free insertion of comments not allowed in date.*

Non-numeric time zones not allowed.*

Two digit years not allowed.*

¶

From : John Doe <jdoe@machine(comment). example>

To : Mary Smith

__

 <mary@example.net>

Subject : Saying Hello

Date : Fri, 21 Nov 1997 09(comment): 55 : 06 -0600

Message-ID : <1234 @ local(blah) .machine .example>

This is a message just to say hello.

So, "Hello".

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

7. ¶

8. ¶

9. ¶

10. ¶

11. ¶

12. ¶

13. ¶

14. ¶

15. ¶

Three digit years interpreted, but not allowed for generation.*

Routes in addresses not allowed.*

CFWS within local-parts and domains not allowed.*

Empty members of address lists not allowed.*

Folding white space between field name and colon not allowed.*

Comments between field name and colon not allowed.

Tightened syntax of in-reply-to and references.*

CFWS within msg-id not allowed.*

Tightened semantics of resent fields as informational only.

Resent-Reply-To not allowed.*

No multiple occurrences of fields (except resent and

received).*

Free CR and LF not allowed.*

Line length limits specified.

Bcc more clearly specified.

The following are changes from [RFC2822] to [RFC5322]:

Assorted typographical/grammatical errors fixed and

clarifications made.

Changed "standard" to "document" or "specification" throughout.

Made distinction between "header field" and "header section".

Removed NO-WS-CTL from ctext, qtext, dtext, and unstructured.*

Moved discussion of specials to the "Atom" section. Moved text

to "Overall message syntax" section.

Simplified CFWS syntax.

Fixed unstructured syntax (erratum 373).

Changed date and time syntax to deal with white space in

obsolete date syntax.

Removed quoted-pair from domain literals and message

identifiers.*

Clarified that other specifications limit domain syntax.

Simplified "Bcc:" and "Resent-Bcc:" syntax.

Allowed optional-field to appear within trace information.

Removed no-fold-quote from msg-id. Clarified syntax

limitations.

Generalized "Received:" syntax to fix bugs and move definition

out of this document.

Simplified obs-qp. Fixed and simplified obs-utext (which now

only appears in the obsolete syntax). Removed obs-text and obs-

char, adding obs-body.

Fixed obsolete date syntax to allow for more (or less) comments

and white space.

Fixed all obsolete list syntax (obs-domain-list, obs-mbox-list,

obs-addr-list, obs-phrase-list, and the newly added obs-group-

list).

Fixed obs-reply-to syntax.

Fixed obs-bcc and obs-resent-bcc to allow empty lists.

Removed obs-path.

16. ¶

17. ¶

18. ¶

19. ¶

20. ¶

21. ¶

22. ¶

23. ¶

24. ¶

25. ¶

26.

¶

27. ¶

28. ¶

29. ¶

¶

1.

¶

2. ¶

3. ¶

4. ¶

5.

¶

6. ¶

7. ¶

8.

¶

9.

¶

10. ¶

11. ¶

12. ¶

13.

¶

14.

¶

15.

¶

16.

¶

17.

¶

18. ¶

19. ¶

20. ¶

https://www.rfc-editor.org/errata/eid373

The following are changes from [RFC5322].

Clarified addr-spec description (erratum 1766).

Fixed obs-unstruct to be more limited (erratum 1905).*

Simplified obs-body (erratum 1906).*

Fixed obs-FWS to allow for a leading CRLF (erratum 1908).*

Fixed comments within addresses in A.5 (errata 2515 and 2579).

Fixed time zone description (erratum 2726).

Removed inappropriate uses of "sent" in 3.6.3, 3.6.6, and 5

(erratum 3048).

Allow for CFWS in otherwise empty list of "Received:" field

tokens (erratum 3979).

Clarified that "printable" includes space, and replaced

"printable" with "VCHAR" in ABNF comments to clarify that it

doesn't include the space character (erratum 4692).

Clarify midnight in time-of-day (erratum 5905).

Allow for date-time in obs-received (erratum 5867).*

Separated out "msg-id-internal" in "msg-id".

Updated references to STD 13, STD 68, BCP 13, and BCP 14, and

reference for leap seconds to RFC 3339.

Fixed typo in daylight saving time in description of obs-zone.*

Added comment to field-name ABNF to remind that length can't be

greater than 77 (erratum 5918).

Clarified description in 4.5.6 as "trace information"".

Explained the use of the term "obsolete" in Section 1.2.3.

Updated syntactic and semantic descriptions of trace in 3.6.7

that there can be other fields that are treated as trace, and

allow return-path without any received. Moved optional-field

syntax into this section and out of the top portion of 3.6 to

accommodate this.

Added optional CFWS around obs-zone (erratum 6639)/

This last part to be removed before publication.

There are also 2 errata that were "Held For Document Update" that

have not been addressed:

Erratum 2950: As per ticket #39, there is no need to change the

resent fields from "*" to "1*" in 3.6 as it doesn't really

affect the syntax.

Erratum 3135: As per ticket #35, discussion of empty quoted-

string will appear in https://datatracker.ietf.org/doc/draft-

ietf-emailcore-as/

Appendix C. Acknowledgements

Many people contributed to this document. They included participants

in and chairs of the Detailed Revision and Update of Messaging

Standards (DRUMS), Yet Another Mail (YAM), and Revision of Core

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

7.

¶

8.

¶

9.

¶

10. ¶

11. ¶

12. ¶

13.

¶

14. ¶

15.

¶

16. ¶

17. ¶

18.

¶

19. ¶

¶

¶

1.

¶

2.

¶

https://www.rfc-editor.org/errata/eid1766
https://www.rfc-editor.org/errata/eid1905
https://www.rfc-editor.org/errata/eid1906
https://www.rfc-editor.org/errata/eid1908
https://www.rfc-editor.org/errata/eid2515
https://www.rfc-editor.org/errata/eid2579
https://www.rfc-editor.org/errata/eid2726
https://www.rfc-editor.org/errata/eid3048
https://www.rfc-editor.org/errata/eid3979
https://www.rfc-editor.org/errata/eid4692
https://www.rfc-editor.org/errata/eid5905
https://www.rfc-editor.org/errata/eid5867
https://www.rfc-editor.org/errata/eid5918
https://www.rfc-editor.org/errata/eid6639
https://www.rfc-editor.org/errata/eid2950
https://trac.ietf.org/trac/emailcore/ticket/39
https://www.rfc-editor.org/errata/eid3135
https://trac.ietf.org/trac/emailcore/ticket/35
https://datatracker.ietf.org/doc/draft-ietf-emailcore-as/
https://datatracker.ietf.org/doc/draft-ietf-emailcore-as/

Email Specifications (EMAILCORE) Working Groups of the Internet

Engineering Task Force (IETF), the Area Directors of the IETF,

reporters of errata on earlier versions of this document, and people

who simply sent their comments in via email. The editor is deeply

indebted to them all and thanks them sincerely. (While the editor

wishes to thank them all by name as was done in the past, the list

has gotten so long to make including it here untenable. But the

thanks is no less heartfelt.)

Author's Address

Peter W. Resnick (editor)

Episteme Technology Consulting LLC

503 West Indiana Avenue

Urbana, IL 61801-4941

United States of America

Phone: +1 217 337 1905

Email: resnick@episteme.net

URI: https://www.episteme.net/

¶

tel:+1%20217%20337%201905
mailto:resnick@episteme.net
https://www.episteme.net/

	Internet Message Format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Notational Conventions
	1.2.1. Requirements Notation
	1.2.2. Syntactic Notation
	1.2.3. Structure of This Document

	2. Lexical Analysis of Messages
	2.1. General Description
	2.1.1. Line Length Limits

	2.2. Header Fields
	2.2.1. Unstructured Header Field Bodies
	2.2.2. Structured Header Field Bodies
	2.2.3. Long Header Fields

	2.3. Body

	3. Syntax
	3.1. Introduction
	3.2. Lexical Tokens
	3.2.1. Quoted characters
	3.2.2. Folding White Space and Comments
	3.2.3. Atom
	3.2.4. Quoted Strings
	3.2.5. Miscellaneous Tokens

	3.3. Date and Time Specification
	3.4. Address Specification
	3.4.1. Addr-Spec Specification

	3.5. Overall Message Syntax
	3.6. Field Definitions
	3.6.1. The Origination Date Field
	3.6.2. Originator Fields
	3.6.3. Destination Address Fields
	3.6.4. Identification Fields
	3.6.5. Informational Fields
	3.6.6. Resent Fields
	3.6.7. Trace Fields
	3.6.8. Optional Fields

	4. Obsolete Syntax
	4.1. Miscellaneous Obsolete Tokens
	4.2. Obsolete Folding White Space
	4.3. Obsolete Date and Time
	4.4. Obsolete Addressing
	4.5. Obsolete Header Fields
	4.5.1. Obsolete Origination Date Field
	4.5.2. Obsolete Originator Fields
	4.5.3. Obsolete Destination Address Fields
	4.5.4. Obsolete Identification Fields
	4.5.5. Obsolete Informational Fields
	4.5.6. Obsolete Resent Fields
	4.5.7. Obsolete Trace Fields
	4.5.8. Obsolete optional fields

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Example Messages
	A.1. Addressing Examples
	A.1.1. A Message from One Person to Another with Simple Addressing
	A.1.2. Different Types of Mailboxes
	A.1.3. Group Addresses

	A.2. Reply Messages
	A.3. Resent Messages
	A.4. Messages with Trace Fields
	A.5. White Space, Comments, and Other Oddities
	A.6. Obsoleted Forms
	A.6.1. Obsolete Addressing
	A.6.2. Obsolete Dates
	A.6.3. Obsolete White Space and Comments

	Appendix B. Differences from Earlier Specifications
	Appendix C. Acknowledgements
	Author's Address

