
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-emu-bootstrapped-tls-05

Published: 17 February 2024

Intended Status: Standards Track

Expires: 20 August 2024

Authors: O. Friel

Cisco

D. Harkins

Hewlett-Packard Enterprise

Bootstrapped TLS Authentication with Proof of Knowledge (TLS-POK)

Abstract

This document defines a mechanism that enables a bootstrapping

device to establish trust and mutually authenticate against a

network. Bootstrapping devices have a public private key pair, and

this mechanism enables a network server to prove to the device that

it knows the public key, and the device to prove to the server that

it knows the private key. The mechanism leverages existing DPP and

TLS standards and can be used in an EAP exchange.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 August 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Bootstrapping Overview

1.3. EAP Network Access

2. Bootstrap Key

2.1. Alignment with Wi-Fi Alliance Device Provisioning Profile

3. Bootstrapping in TLS 1.3

3.1. External PSK Derivation

3.2. TLS 1.3 Handshake Details

4. Using TLS Bootstrapping in EAP

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

On-boarding of devices with no, or limited, user interface can be

difficult. Typically, a credential is needed to access the network,

and network connectivity is needed to obtain a credential. This

poses a catch-22.

If a device has a public / private keypair, and trust in the

integrity of a device's public key can be obtained in an out-of-band

fashion, a device can be authenticated and provisioned with a usable

credential for network access. While this authentication can be

strong, the device's authentication of the network is somewhat

weaker. [duckling] presents a functional security model to address

this asymmetry.

Device on-boarding protocols such as the Device Provisioning Profile

[DPP], also referred to as Wi-Fi Easy Connect, address this use case

but they have drawbacks. [DPP] for instance does not support wired

network access, and does not specify how the device's DPP keypair

can be used in a TLS handshake. This document describes an on-

boarding protocol that can be used for wired network access, which

we refer to as TLS Proof of Knowledge or TLS-POK.

This document does not address the problem of Wi-Fi network

discovery, where a bootstrapping device detects multiple different

Wi-Fi networks and needs a more robust and scalable mechanism than

simple round-robin to determine the correct network to attach to.

¶

¶

¶

¶

DPP addresses this issue. Thus, the intention is that DPP is the

recommended mechanism for bootstrapping against Wi-Fi networks, and

TLS-POK is the recommended mechanism for bootstrapping against wired

networks.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terminology is used throughout this document.

802.1X: IEEE Port-Based Network Access Control

BSK: Bootstrap Key which is an elliptic curve public private key

pair from a cryptosystem suitable for doing ECDSA

DPP: Device Provisioning Protocol [DPP]

EAP: Extensible Authentication Protocol [RFC3748]

EC: Elliptic Curve

ECDSA: Elliptic Curve Digital Signature Algorithm

EPSK: External Pre-Shared Key

EST: Enrollment over Secure Transport [RFC7030]

PSK: Pre-Shared Key

TEAP: Tunnel Extensible Authentication Protocol [RFC7170]

1.2. Bootstrapping Overview

A bootstrapping device holds a public / private elliptic curve (EC)

key pair which we refer to as a Bootstrap Key (BSK). The private key

of the BSK is known only by the device. The public key of the BSK is

known by the device, is known by the owner or holder of the device,

and is provisioned on the network by the network operator. In order

to establish trust and mutually authenticate, the network proves to

the device that it knows the public part of the BSK, and the device

proves to the network that it knows the private part of the BSK.

Once this trust has been established during bootstrapping, the

network can provision the device with a credential that it uses for

subsequent network access. More details on the BSK are given in

Section 2.

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

1.3. EAP Network Access

Enterprise deployments typically require an [IEEE802.1X]/EAP-based

authentication to obtain network access. Protocols like Enrollment

over Secure Transport (EST) [RFC7030] can be used to enroll devices

into a Certification Authority to allow them to authenticate using

802.1X/EAP. This creates a Catch-22 where a certificate is needed

for network access and network access is needed to obtain

certificate.

Devices whose BSK public key can been obtained in an out-of-band

fashion and provisioned on the network can perform an EAP-TLS-based

exchange, for instance Tunnel Extensible Authentication Protocol

(TEAP) [RFC7170], and authenticate the TLS exchange using the

bootstrapping mechanisms defined in Section 3. This network

connectivity can then be used to perform an enrollment protocol

(such as provided by [RFC7170]) to obtain a credential for

subsequent network connectivity and certificate lifecycle

maintenance.

2. Bootstrap Key

The mechanism for on-boarding of devices defined in this document

relies on an elliptic curve (EC) bootstrap key (BSK). This BSK MUST

be from a cryptosystem suitable for doing ECDSA. A bootstrapping

client device has an associated EC BSK. The BSK may be static and

baked into device firmware at manufacturing time, or may be dynamic

and generated at on-boarding time by the device. The BSK public key

MUST be encoded as the ASN.1 SEQUENCE SubjectPublicKeyInfo from

[RFC5280]. If the BSK public key can be shared in a trustworthy

manner with a TLS server, a form of "entity authentication" (the

step from which all subsequent authentication proceeds) can be

obtained.

The exact mechanism by which the server gains knowledge of the BSK

public key is out of scope of this specification, but possible

mechanisms include scanning a QR code to obtain a base64 encoding of

the ASN.1-formatted public key or uploading of a Bill of Materials

(BOM) which includes the public key. If the QR code is physically

attached to the client device, or the BOM is associated with the

device, the assumption is that the public key obtained in this

bootstrapping method belongs to the client. In this model, physical

possession of the device implies legitimate ownership.

The server may have knowledge of multiple BSK public keys

corresponding to multiple devices, and existing TLS mechanisms are

leveraged that enable the server to identity a specific bootstrap

public key corresponding to a specific device.

¶

¶

¶

¶

¶

Using the process defined herein, the client proves to the server

that it has possession of the private key of its BSK. Provided that

the mechanism in which the server obtained the BSK public key is

trustworthy, a commensurate amount of authenticity of the resulting

connection can be obtained. The server also proves that it knows the

client's BSK public key which, if the client does not gratuitously

expose its public key, can be used to obtain a modicum of

correctness, that the client is connecting to the correct network

(see [duckling]).

2.1. Alignment with Wi-Fi Alliance Device Provisioning Profile

The definition of the BSK public key aligns with that given in

[DPP]. This, for example, enables the QR code format as defined in

[DPP] to be reused for TLS-POK. Therefore, a device that supports

both wired LAN and Wi-Fi LAN connections can have a single QR code

printed on its label, or dynamically display a single QR code on a

display, and the bootstrap key can be used for DPP if the device

bootstraps against a Wi-Fi network, or TLS-POK if the device

bootstraps against a wired network. Similarly, a common bootstrap

public key format could be imported into a BOM into a server that

handles devices connecting over both wired and Wi-Fi networks.

Any bootstrapping method defined for, or used by, [DPP] is

compatible with TLS-POK.

3. Bootstrapping in TLS 1.3

Bootstrapping in TLS 1.3 leverages [RFC8773] Certificate-Based

Authentication with an External Pre-Shared Key. The External PSK

(EPSK) is derived from the BSK public key as described in

Section 3.1, and the EPSK is imported using [RFC9258] Importing

External Pre-Shared Keys (PSKs) for TLS 1.3. As the BSK public key

is an ASN.1 SEQUENCE SubjectPublicKeyInfo, the client presents a raw

public key certificate as specified in [RFC7250] Using Raw Public

Keys in TLS and DTLS.

The TLS PSK handshake gives the client proof that the server knows

the BSK public key. Certificate based authentication of the client

to the server using the BSK gives the server proof that the client

knows the BSK private key. This satisfies the proof of ownership

requirements outlined in Section 1.

3.1. External PSK Derivation

An [RFC9258] EPSK is made up of the tuple of (Base Key, External

Identity, Hash). The Base Key is the DER-encoded ASN.1

subjectPublicKeyInfo representation of the BSK public key. The

External Identity is derived from the BSK public key using [RFC5869]

with the hash algorithm from the ciphersuite as follows:

¶

¶

¶

¶

¶

¶

The [RFC9258] ImportedIdentity structure is defined as:

and is created using the following values:

The ImportedIdentity context value MUST be "tls13-bsk". This informs

the server that the mechanisms specified in this document for

deriving the EPSK and executing the TLS handshake MUST be used. The

EPSK and ImportedIdentity are used in the TLS handshake as specified

in [RFC9258].

A performance versus storage tradeoff a server can choose is to

precompute the identity of every bootstrapped key with every hash

algorithm that it uses in TLS and use that to quickly lookup the

bootstrap key and generate the PSK. Servers that choose not to

employ this optimization will have to do a runtime check with every

bootstrap key it holds against the identity the client provides.

3.2. TLS 1.3 Handshake Details

The client includes the "tls_cert_with_extern_psk" extension in the

ClientHello, per [RFC8773]. The client identifies the BSK public key

by inserting the serialized content of ImportedIdentity into the

PskIdentity.identity in the PSK extension, per [RFC9258]. The

client MUST also include the [RFC7250] "client_certificate_type"

extension in the ClientHello and MUST specify type of RawPublicKey.

Upon receipt of the ClientHello, the server looks up the client's

EPSK key in its database using the mechanisms documented in

epskid = HKDF-Expand(HKDF-Extract(<>, Base Key),

 "tls13-bspsk-identity", L)

where:

 - epskid is the EPSK External Identity

 - <> is a NULL salt

 - Base Key is the DER-encoded ASN.1 subjectPublicKeyInfo

 representation of the BSK public key

 - L is the length of the digest of the underlying hash

 algorithm

¶

¶

struct {

 opaque external_identity<1...2^16-1>;

 opaque context<0..2^16-1>;

 uint16 target_protocol;

 uint16 target_kdf;

} ImportedIdentity;

¶

¶

external_identity = epskid

context = "tls13-bsk"

target_protocol = TLS1.3(0x0304)

target_kdf = HKDF_SHA256(0x0001)

¶

¶

¶

¶

[RFC9258]. If no match is found, the server MUST terminate the TLS

handshake with an alert. If the server found the matching BSK public

key, it includes the "tls_cert_with_extern_psk" extension in the

ServerHello message, and the corresponding EPSK identity in the

"pre_shared_key" extension. When these extensions have been

successfully negotiated, the TLS 1.3 key schedule MUST include both

the EPSK in the Early Secret derivation and an (EC)DHE shared secret

value in the Handshake Secret derivation.

After successful negotiation of these extensions, the full TLS 1.3

handshake is performed with the additional caveat that the server

MUST send a CertificateRequest message and client MUST authenticate

with a raw public key (its BSK) per [RFC7250]. The BSK is always an

elliptic curve key pair, therefore the type of the client's

Certificate MUST be ECDSA and MUST contain the client's BSK public

key as a DER-encoded ASN.1 subjectPublicKeyInfo SEQUENCE.

Note that the client MUST NOT share its BSK public key with the

server until after the client has completed processing of the

ServerHello and verified the TLS key schedule. The PSK proof has

completed at this stage, and the server has proven to the client

that is knows the BSK public key, and it is therefore safe for the

client to send the BSK public key to the server in the Certificate

message. If the PSK verification step fails when processing the

ServerHello, the client terminates the TLS handshake and the BSK

public key MUST NOT be shared with the server.

When the server processes the client's Certificate it MUST ensure

that it is identical to the BSK public key that it used to generate

the EPSK and ImportedIdentity for this handshake.

When clients use the [duckling] form of authentication, they MAY

forgo the checking of the server's certificate in the

CertificateVerify and rely on the integrity of the bootstrapping

method employed to distribute its key in order to validate trust in

the authenticated TLS connection.

The handshake is shown in Figure 1.

¶

¶

¶

¶

¶

¶

4. Using TLS Bootstrapping in EAP

Upon "link up", an Authenticator on an 802.1X-protected port will

issue an EAP Identity request to the newly connected peer. For

unprovisioned devices that desire to take advantage of TLS-POK,

there is no initial realm in which to construct an NAI (see

[RFC7542]). This document uses the NAI mechanisms defined in

[I-D.dekok-emu-eap-arpa] and defines the username field "tls-pok-

dpp" that is prepended to the EAP realm "eap.arpa" yielding an

initial identity of "tls-pok-dpp@eap.arpa". This identifier SHOULD

be included in the EAP Identity response in order to indicate to the

Authenticator that an EAP method that supports TLS-POK SHOULD be

started.

 Client Server

 -------- --------

 ClientHello

 + cert_with_extern_psk

 + client_cert_type=RawPublicKey

 + key_share

 + pre_shared_key -------->

 ServerHello

 + cert_with_extern_psk

 + client_cert_type=RawPublicKey

 + key_share

 + pre_shared_key

 {EncryptedExtensions}

 {CertificateRequest}

 {Certificate}

 {CertificateVerify}

 <-------- {Finished}

 {Certificate}

 {CertificateVerify}

 {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

 Figure 1: TLS 1.3 TLS-POK Handshake¶

¶

Both client and server have derived the EPSK and associated

[RFC9258] ImportedIdentity from the BSK public key as described in

Section 3.1. When the client starts the TLS exchange in the EAP

transaction, it includes the ImportedIdentity structure in the

pre_shared_key extension in the ClientHello. When the server

received the ClientHello, it extracts the ImportedIdentity and looks

up the EPSK and BSK public key. As previously mentioned in

Section 2, the exact mechanism by which the server has gained

knowledge of or been provisioned with the BSK public key is outside

the scope of this document.

The server continues with the TLS handshake and uses the EPSK to

prove that it knows the BSK public key. When the client replies with

its Certificate, CertificateVerify and Finished messages, the server

MUST ensure that the public key in the Certificate message matches

the BSK public key.

Once the TLS handshake completes, the client and server have

established mutual trust. The server can then proceed to provision a

credential onto the client using, for example, the mechanisms

outlined in [RFC7170].

The client can then use this provisioned credential for subsequent

network authentication. The BSK is only used during bootstrap, and

it not used for any subsequent network access.

 Authenticating Peer Authenticator

 ------------------- -------------

 <- EAP-Request/

 Identity

 EAP-Response/

 Identity

 (tls-pok-dpp@eap.arpa) ->

 <- EAP-Request/

 EAP-Type=TEAP

 (TLS Start)

 EAP-Response/

 EAP-Type=TEAP

 (TLS client_hello with

 tls_cert_with_extern_psk

 and pre_shared_key) ->

 .

 .

 .

¶

¶

¶

¶

¶

[I-D.dekok-emu-eap-arpa]

[RFC2119]

5. IANA Considerations

None.

6. Security Considerations

Bootstrap and trust establishment by the TLS server is based on

proof of knowledge of the client's bootstrap public key, a non-

public datum. The TLS server obtains proof that the client knows its

bootstrap public key and, in addition, also possesses its

corresponding private key.

Trust on the part of the client is based on successful completion of

the TLS 1.3 handshake using the EPSK derived from the BSK. This

proves to the client that the server knows its BSK public key. In

addition, the client assumes that knowledge of its BSK public key is

not widely disseminated and therefore any server that proves

knowledge of its BSK public key is the appropriate server from which

to receive provisioning, for instance via [RFC7170]. [duckling]

describes a security model for this type of "imprinting".

An attack on the bootstrapping method which substitutes the public

key of a corrupted device for the public key of an honest device can

result in the TLS sever on-boarding and trusting the corrupted

device.

If an adversary has knowledge of the bootstrap public key, the

adversary may be able to make the client bootstrap against the

adversary's network. For example, if an adversary intercepts and

scans QR labels on clients, and the adversary can force the client

to connect to its server, then the adversary can complete the TLS-

POK handshake with the client and the client will connect to the

adversary's server. Since physical possession implies ownership,

there is nothing to prevent a stolen device from being on-boarded.

7. References

7.1. Normative References

DeKok, A., "The eap.arpa domain and EAP

provisioning", Work in Progress, Internet-Draft, draft-

dekok-emu-eap-arpa-00, 30 August 2023, <https://

datatracker.ietf.org/doc/html/draft-dekok-emu-eap-

arpa-00>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-dekok-emu-eap-arpa-00
https://datatracker.ietf.org/doc/html/draft-dekok-emu-eap-arpa-00
https://datatracker.ietf.org/doc/html/draft-dekok-emu-eap-arpa-00
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC5280]

[RFC7250]

[RFC8174]

[RFC8773]

[RFC9258]

[DPP]

[duckling]

[IEEE802.1X]

[RFC3748]

[RFC5869]

[RFC7030]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/rfc/rfc5280>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/rfc/rfc7250>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Housley, R., "TLS 1.3 Extension for Certificate-Based

Authentication with an External Pre-Shared Key", RFC

8773, DOI 10.17487/RFC8773, March 2020, <https://www.rfc-

editor.org/rfc/rfc8773>.

Benjamin, D. and C. A. Wood, "Importing External Pre-

Shared Keys (PSKs) for TLS 1.3", RFC 9258, DOI 10.17487/

RFC9258, July 2022, <https://www.rfc-editor.org/rfc/

rfc9258>.

7.2. Informative References

Wi-Fi Alliance, "Device Provisioning Profile", 2020.

Stajano, F. and E. Rescorla, "The Ressurecting Duckling:

Security Issues for Ad-Hoc Wireless Networks", 1999.

IEEE, "Port-Based Network Access Control", 2010.

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.

Levkowetz, Ed., "Extensible Authentication Protocol

(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,

<https://www.rfc-editor.org/rfc/rfc3748>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

rfc/rfc5869>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/rfc/rfc7030>.

https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc7250
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8773
https://www.rfc-editor.org/rfc/rfc8773
https://www.rfc-editor.org/rfc/rfc9258
https://www.rfc-editor.org/rfc/rfc9258
https://www.rfc-editor.org/rfc/rfc3748
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc7030
https://www.rfc-editor.org/rfc/rfc7030

[RFC7170]

[RFC7542]

Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,

"Tunnel Extensible Authentication Protocol (TEAP) Version

1", RFC 7170, DOI 10.17487/RFC7170, May 2014, <https://

www.rfc-editor.org/rfc/rfc7170>.

DeKok, A., "The Network Access Identifier", RFC 7542, DOI

10.17487/RFC7542, May 2015, <https://www.rfc-editor.org/

rfc/rfc7542>.

Authors' Addresses

Owen Friel

Cisco

Email: ofriel@cisco.com

Dan Harkins

Hewlett-Packard Enterprise

Email: daniel.harkins@hpe.com

https://www.rfc-editor.org/rfc/rfc7170
https://www.rfc-editor.org/rfc/rfc7170
https://www.rfc-editor.org/rfc/rfc7542
https://www.rfc-editor.org/rfc/rfc7542
mailto:ofriel@cisco.com
mailto:daniel.harkins@hpe.com

	Bootstrapped TLS Authentication with Proof of Knowledge (TLS-POK)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Bootstrapping Overview
	1.3. EAP Network Access

	2. Bootstrap Key
	2.1. Alignment with Wi-Fi Alliance Device Provisioning Profile

	3. Bootstrapping in TLS 1.3
	3.1. External PSK Derivation
	3.2. TLS 1.3 Handshake Details

	4. Using TLS Bootstrapping in EAP
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

