
EMU Working Group H. Zhou
Internet-Draft N. Cam-Winget
Intended status: Standards Track J. Salowey
Expires: August 11, 2013 Cisco Systems
 S. Hanna
 Juniper Networks
 February 7, 2013

Tunnel EAP Method (TEAP) Version 1
draft-ietf-emu-eap-tunnel-method-05.txt

Abstract

 This document defines the Tunnel Extensible Authentication Protocol
 (TEAP) version 1. TEAP is a tunnel based EAP method that enables
 secure communication between a peer and a server by using the
 Transport Layer Security (TLS) to establish a mutually authenticated
 tunnel. Within the tunnel, Type-Length-Value (TLV) objects are used
 to convey authentication related data between the EAP peer and the
 EAP server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 11, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Zhou, et al. Expires August 11, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TEAP February 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 6
1.1. Specification Requirements 6
1.2. Design Goals . 6
1.3. Terminology . 8

2. Protocol Overview . 9
2.1. Architectural Model 9
2.2. Protocol Layering Model 10

3. TEAP Protocol . 11
3.1. Version Negotiation 11
3.2. TEAP Authentication Phase 1: Tunnel Establishment 12
3.2.1. TLS Session Resume Using Server State 13
3.2.2. TLS Session Resume Using a PAC 14

 3.2.3. Transition between Abbreviated and Full TLS
 Handshake . 15

3.3. TEAP Authentication Phase 2: Tunneled Authentication . . 16
3.3.1. EAP Sequences . 16
3.3.2. Optional Password Authentication 17

 3.3.3. Protected Termination and Acknowledged Result
 Indication . 17

3.4. Determining Peer-Id and Server-Id 18
3.5. TEAP Session Identifier 19
3.6. Error Handling . 19
3.6.1. Outer Layer Errors 20
3.6.2. TLS Layer Errors 20
3.6.3. Phase 2 Errors 21

3.7. Fragmentation . 21
3.8. PAC Provisioning . 22
3.9. Certificate Provisioning Within the Tunnel 23
3.10. Server Unauthenticated Provisioning Mode 24

4. Message Formats . 24
4.1. TEAP Message Format 24
4.2. TEAP TLV Format and Support 27
4.2.1. General TLV Format 28
4.2.2. Authority-ID TLV 30
4.2.3. Identity-Type TLV 31
4.2.4. Result TLV . 32
4.2.5. NAK TLV . 33
4.2.6. Error TLV . 35
4.2.7. Channel-Binding TLV 36
4.2.8. Vendor-Specific TLV 37

Zhou, et al. Expires August 11, 2013 [Page 2]

Internet-Draft TEAP February 2013

4.2.9. Request-Action TLV 38
4.2.10. EAP-Payload TLV 40
4.2.11. Intermediate-Result TLV 42
4.2.12. PAC TLV Format 43
4.2.12.1. Formats for PAC Attributes 44
4.2.12.2. PAC-Key . 45
4.2.12.3. PAC-Opaque 45
4.2.12.4. PAC-Info . 46
4.2.12.5. PAC-Acknowledgement TLV 48
4.2.12.6. PAC-Type TLV 49

4.2.13. Crypto-Binding TLV 50
4.2.14. Basic-Password-Auth-Req TLV 53
4.2.15. Basic-Password-Auth-Resp TLV 54
4.2.16. PKCS#7 TLV . 55
4.2.17. PKCS#10 TLV . 57
4.2.18. Trusted-Server-Root TLV 57

4.3. TLV Rules . 59
4.3.1. Outer TLVs . 59
4.3.2. Inner TLVs . 60

5. Cryptographic Calculations 60
5.1. TEAP Authentication Phase 1: Key Derivations 61
5.2. Intermediate Compound Key Derivations 61
5.3. Computing the Compound MAC 63
5.4. EAP Master Session Key Generation 64

6. IANA Considerations . 64
7. Security Considerations 67
7.1. Mutual Authentication and Integrity Protection 68
7.2. Method Negotiation 68
7.3. Separation of Phase 1 and Phase 2 Servers 68

 7.4. Mitigation of Known Vulnerabilities and Protocol
 Deficiencies . 69

7.4.1. User Identity Protection and Verification 70
7.4.2. Dictionary Attack Resistance 71
7.4.3. Protection against Man-in-the-Middle Attacks 71
7.4.4. PAC Binding to User Identity 72

7.5. Protecting against Forged Clear Text EAP Packets 72
7.6. Server Certificate Validation 72
7.7. Tunnel PAC Considerations 73
7.8. Security Claims . 73

8. Acknowledgements . 75
9. References . 75
9.1. Normative References 75
9.2. Informative References 77

Appendix A. Evaluation Against Tunnel Based EAP Method
 Requirements . 80

A.1. Requirement 4.1.1 RFC Compliance 80
A.2. Requirement 4.2.1 TLS Requirements 80
A.3. Requirement 4.2.1.1.1 Cipher Suite Negotiation 80

Zhou, et al. Expires August 11, 2013 [Page 3]

Internet-Draft TEAP February 2013

 A.4. Requirement 4.2.1.1.2 Tunnel Data Protection Algorithms . 80
 A.5. Requirement 4.2.1.1.3 Tunnel Authentication and Key
 Establishment . 81

A.6. Requirement 4.2.1.2 Tunnel Replay Protection 81
A.7. Requirement 4.2.1.3 TLS Extensions 81
A.8. Requirement 4.2.1.4 Peer Identity Privacy 81
A.9. Requirement 4.2.1.5 Session Resumption 81
A.10. Requirement 4.2.2 Fragmentation 81

 A.11. Requirement 4.2.3 Protection of Data External to Tunnel . 81
A.12. Requirement 4.3.1 Extensible Attribute Types 82

 A.13. Requirement 4.3.2 Request/Challenge Response Operation . 82
 A.14. Requirement 4.3.3 Indicating Criticality of Attributes . 82

A.15. Requirement 4.3.4 Vendor Specific Support 82
A.16. Requirement 4.3.5 Result Indication 82

 A.17. Requirement 4.3.6 Internationalization of Display
 Strings . 82

A.18. Requirement 4.4 EAP Channel Binding Requirements 82
A.19. Requirement 4.5.1.1 Confidentiality and Integrity 82
A.20. Requirement 4.5.1.2 Authentication of Server 83

 A.21. Requirement 4.5.1.3 Server Certificate Revocation
 Checking . 83

A.22. Requirement 4.5.2 Internationalization 83
A.23. Requirement 4.5.3 Meta-data 83
A.24. Requirement 4.5.4 Password Change 83
A.25. Requirement 4.6.1 Method Negotiation 83
A.26. Requirement 4.6.2 Chained Methods 83

 A.27. Requirement 4.6.3 Cryptographic Binding with the TLS
 Tunnel . 83

A.28. Requirement 4.6.4 Peer Initiated 84
A.29. Requirement 4.6.5 Method Meta-data 84

Appendix B. Major Differences from EAP-FAST 84
Appendix C. Examples . 84
C.1. Successful Authentication 84
C.2. Failed Authentication 86

 C.3. Full TLS Handshake using Certificate-based Cipher Suite . 88
 C.4. Client authentication during Phase 1 with identity
 privacy . 89

C.5. Fragmentation and Reassembly 91
C.6. Sequence of EAP Methods 93
C.7. Failed Crypto-binding 95

 C.8. Sequence of EAP Method with Vendor-Specific TLV
 Exchange . 96
 C.9. Peer Requests Inner Method After Server Sends Result
 TLV . 98

C.10. Channel Binding . 100
Appendix D. Major Differences from Previous Revisions 101
D.1. Changes from -04 . 101
D.2. Changes from -03 . 102

Zhou, et al. Expires August 11, 2013 [Page 4]

Internet-Draft TEAP February 2013

D.3. Changes from -02 . 102
D.4. Changes from -01 . 103
D.5. Changes from -00 . 103

Zhou, et al. Expires August 11, 2013 [Page 5]

Internet-Draft TEAP February 2013

1. Introduction

 An Extensible Authentication Protocol (EAP) tunnel method is an EAP
 method that establishes a secure tunnel and executes other EAP
 methods under the protection of that secure tunnel. An EAP tunnel
 method can be used in any lower layer protocol that supports EAP
 authentication. There are several existing EAP tunnel methods that
 use Transport Layer Security (TLS) [RFC5246] to establish the secure
 tunnel. EAP methods supporting this include Protected EAP (PEAP)
 [PEAP], Tunneled Transport Layer Security EAP (TTLS) [RFC5281] and
 EAP Flexible Authentication via Secure Tunneling (EAP-FAST)
 [RFC4851]. However, they all are either vendor specific or
 informational and industry calls for a standard-track tunnel EAP
 method. [I-D.ietf-emu-eaptunnel-req] outlines the list of
 requirements for a standard tunnel based EAP method.

 Since the introduction of EAP-FAST [RFC4851] a few years ago, it has
 been widely adopted in variety of devices and platforms due to its
 strong security, flexibility and ease of deployment. It has been
 adopted by EMU working group as the basis for the standard tunnel
 based EAP method. This document describes Tunnel Extensible
 Authentication Protocol (TEAP) version 1, based on EAP-FAST [RFC4851]
 with some minor changes, to meet the requirements outlined in
 [I-D.ietf-emu-eaptunnel-req] for a standard tunnel based EAP method.

1.1. Specification Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

1.2. Design Goals

 Network access solutions requiring user friendly and easily
 deployable secure authentication mechanisms highlight the need for
 strong mutual authentication protocols that enable the use of weaker
 user credentials. This document defines an Extensible Authentication
 Protocol (EAP) which consists of establishing a Transport Layer
 Security (TLS) tunnel using TLS version 1.2 [RFC5246] or a successor
 version supported by both parties. Once the tunnel is established,
 the protocol further exchanges data in the form of Type-Length-Value
 (TLV) objects to perform further authentication. TEAP supports the
 TLS extension defined in [RFC5077] to support fast re-establishment
 of the secure tunnel without having to maintain per-session state on
 the server.

 TEAP's design motivations included:

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 6]

Internet-Draft TEAP February 2013

 o Mutual authentication: an EAP server must be able to verify the
 identity and authenticity of the peer, and the peer must be able
 to verify the authenticity of the EAP server.

 o Immunity to passive dictionary attacks: many authentication
 protocols require a password to be explicitly provided (either as
 cleartext or hashed) by the peer to the EAP server; at minimum,
 the communication of the weak credential (e.g., password) must be
 immune from eavesdropping.

 o Immunity to man-in-the-middle (MitM) attacks: in establishing a
 mutually authenticated protected tunnel, the protocol must prevent
 adversaries from successfully interjecting information into the
 conversation between the peer and the EAP server.

 o Flexibility to enable support for most password authentication
 interfaces: as many different password interfaces (e.g., Microsoft
 Challenge Handshake Authentication Protocol (MS-CHAP), Lightweight
 Directory Access Protocol (LDAP), One-Time Password (OTP), etc.)
 exist to authenticate a peer, the protocol must provide this
 support for legacy password authentication seamlessly.

 o Cryptographic algorithm agility: a cryptographic algorithm's
 strength is not perpetual, as weaknesses in an algorithm are
 discovered or increased processing power overtakes an algorithm
 over time. Hence, the protocol must not be tied to any single
 cryptographic algorithm. Instead, it MUST support run-time
 negotiation to select among an extensible set of cryptographic
 algorithms and also allow users to choose the algorithm that best
 meets their needs.

 o Sequence of chained EAP methods: Several circumstances are best
 addressed by using chained EAP methods. For example, it may be
 desirable to authenticate the user and also authenticate the
 device being used. The protocol must support chained EAP methods
 while including protection against attacks on method chaining.

 With these motivational goals defined, further secondary design
 criteria are imposed:

 o Flexibility to extend the communications inside the tunnel: with
 the growing complexity in network infrastructures, the need to
 gain authentication, authorization, and accounting is also
 evolving. For instance, there may be instances in which multiple
 existing authentication protocols are required to achieve mutual
 authentication. Similarly, different protected conversations may
 be required to achieve the proper authorization once a peer has
 successfully authenticated.

Zhou, et al. Expires August 11, 2013 [Page 7]

Internet-Draft TEAP February 2013

 o Minimize the authentication server's per user authentication state
 requirements: with large deployments, it is typical to have
 servers authenticating many peers. With many different
 authentication servers deployed, a peer's session state may need
 to be replicated to allow for high availability or mobility
 scenarios. To facilitate scalable authentication server
 deployments and more efficient per user state management, it is
 desirable for a peer to cache its session state that has been
 securely encapsulated by the authentication server infrastructure.

 o Efficiency: specifically when using wireless media, peers will be
 limited in computational and power resources. The protocol must
 enable the network access communication to be computationally
 lightweight.

 o Channel bindings: EAP channel bindings seek to authenticate
 previously unauthenticated information provided by the
 authenticator to the EAP peer, by allowing the peer and server to
 compare their perception of network properties in a secure
 channel. It is used to solve the lying NAS and the lying provider
 problems. The protocol should provide support for EAP channel
 bindings as defined in [I-D.ietf-emu-chbind].

1.3. Terminology

 Much of the terminology in this document comes from [RFC3748].
 Additional terms are defined below:

 Protected Access Credential (PAC)

 Credentials distributed to a peer for future optimized network
 authentication. The PAC consists of a minimum of two components:
 a shared secret and an opaque element. The shared secret
 component contains the pre-shared key between the peer and the
 authentication server. The opaque part is provided to the peer
 and is presented to the authentication server when the peer wishes
 to obtain access to network resources. The opaque element and
 shared secret are used with TLS stateless session resumption
 defined in RFC 5077 [RFC5077] to establish a protected TLS
 session. The secret key and opaque part may distributed using RFC

5077 messages or using TLVs within the TEAP tunnel. Finally, a
 PAC may optionally include other information that may be useful to
 the peer.

 Type-Length-Value (TLV)

 The TEAP protocol utilizes objects in Type Length Value (TLV)
 format. The TLV format is defined in Section 4.2.

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 8]

Internet-Draft TEAP February 2013

2. Protocol Overview

 TEAP authentication occurs in two phases. In the first phase, TEAP
 employs the TLS [RFC5246] handshake to provide an authenticated key
 exchange and to establish a protected tunnel. Once the tunnel is
 established, the second phase begins with the peer and server
 engaging in further conversations to establish the required
 authentication and authorization policies. TEAP makes use of Type-
 Length-Value objects (TLVs) to carry out the inner authentication,
 results and other information, such as channel binding information.

 TEAP makes use of the TLS enhancements in Ticket Extension [RFC5077]
 to enable an optimized TLS tunnel session resume while minimizing
 server state. The ticket is referred to as the Protected Access
 Credential opaque data (or PAC-Opaque). The PAC-Opaque may be
 distributed through the use of the NewSessionTicket message or
 through a mechanism that uses TLVs within phase 2 of TEAP. The
 secret key used to resume the session in TEAP is referred to as the
 Protected Access Credential key (or PAC-Key). When the
 NewSessionTicket message is being used to distribute the PAC-Opaque,
 the PAC-Key is the Master Secret for the session. If TEAP phase 2 is
 used to distribute the PAC-Opaque, then the PAC-Key is distributed
 along with the PAC-Opaque. TEAP implementations MUST support the RFC

5077 mechanism for distributing a PAC-Opaque and it is RECOMMENDED
 that implementations support the capability to distribute the ticket
 and secret key within the TEAP tunnel.

 The TEAP conversation is used to establish or resume an existing
 session to typically establish network connectivity between a peer
 and the network. Upon successful execution of TEAP, both EAP peer
 and EAP server derive strong session key material that can then be
 communicated to the network access server (NAS) for use in
 establishing a link layer security association.

2.1. Architectural Model

 The network architectural model for TEAP usage is shown below:

 +----------+ +----------+ +----------+ +----------+
 | | | | | | | Inner |
 | Peer |<---->| Authen- |<---->| TEAP |<---->| Method |
 | | | ticator | | server | | server |
 | | | | | | | |
 +----------+ +----------+ +----------+ +----------+

 TEAP Architectural Model

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 9]

Internet-Draft TEAP February 2013

 The entities depicted above are logical entities and may or may not
 correspond to separate network components. For example, the TEAP
 server and inner method server might be a single entity; or the
 authenticator and TEAP server might be a single entity; or the
 functions of the authenticator, TEAP server, and inner method server
 might be combined into a single physical device. For example,
 typical IEEE 802.11 deployments place the Authenticator in an access
 point (AP) while a Radius server may provide the TEAP and inner
 method server components. The above diagram illustrates the division
 of labor among entities in a general manner and shows how a
 distributed system might be constructed; however, actual systems
 might be realized more simply. The security considerations

Section 7.3 provides an additional discussion of the implications of
 separating the TEAP server from the inner method server.

2.2. Protocol Layering Model

 TEAP packets are encapsulated within EAP; EAP in turn requires a
 carrier protocol for transport. TEAP packets encapsulate TLS, which
 is then used to encapsulate user authentication information. Thus,
 TEAP messaging can be described using a layered model, where each
 layer encapsulates the layer above it. The following diagram
 clarifies the relationship between protocols:

 +---+
 | Inner EAP Method | Other TLV information |
 |---|
 | TLV Encapsulation (TLVs) |
 |---|
 | TLS | Optional Outer TLVs |
 |---|
 | TEAP |
 |---|
 | EAP |
 |---|
 | Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |
 +---+

 Protocol Layering Model

 The TLV layer is a payload with Type-Length-Value (TLV) Objects
 defined in Section 4.2. The TLV objects are used to carry arbitrary
 parameters between an EAP peer and an EAP server. All conversations
 in the TEAP protected tunnel must be encapsulated in a TLV layer.

 TEAP packets may include TLVs both inside and outside the TLS tunnel.

Zhou, et al. Expires August 11, 2013 [Page 10]

Internet-Draft TEAP February 2013

 The term "Outer TLVs" is used to refer to optional TLVs outside the
 TLS tunnel, which are only allowed in the first two messages in the
 TEAP protocol. That is the first EAP server to peer message and
 first peer to EAP server message. If the message is fragmented, the
 whole set of messages is counted as one message. The term "Inner
 TLVs" is used to refer to TLVs sent within the TLS tunnel. In TEAP
 Phase 1, Outer TLVs are used to help establishing the TLS tunnel, but
 no Inner TLVs are used. In Phase 2 of the TEAP conversation, TLS
 records may encapsulate zero or more Inner TLVs, but no Outer TLVs.

 Methods for encapsulating EAP within carrier protocols are already
 defined. For example, IEEE 802.1X [IEEE.802-1X.2004] may be used to
 transport EAP between the peer and the authenticator; RADIUS
 [RFC3579] or Diameter [RFC4072] may be used to transport EAP between
 the authenticator and the EAP server.

3. TEAP Protocol

 TEAP authentication occurs in two phases. In the first phase, TEAP
 employs the TLS handshake to provide an authenticated key exchange
 and to establish a protected tunnel. Once the tunnel is established
 the second phase begins with the peer and server engaging in further
 conversations to establish the required authentication and
 authorization policies. The operation of the protocol, including
 Phase 1 and Phase 2, is the topic of this section. The format of
 TEAP messages is given in Section 4 and the cryptographic
 calculations are given in Section 5.

3.1. Version Negotiation

 TEAP packets contain a 3-bit version field, following the TLS Flags
 field, which enables future TEAP implementations to be backward
 compatible with previous versions of the protocol. This
 specification documents the TEAP version 1 protocol; implementations
 of this specification MUST use a version field set to 1.

 Version negotiation proceeds as follows:

 In the first EAP-Request sent with EAP type=TEAP, the EAP server
 must set the version field to the highest supported version
 number.

 If the EAP peer supports this version of the protocol, it MUST
 respond with an EAP-Response of EAP type=TEAP, and the version
 number proposed by the TEAP server.

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072

Zhou, et al. Expires August 11, 2013 [Page 11]

Internet-Draft TEAP February 2013

 If the TEAP peer does not support this version but supports the
 version that is lower than the version proposed by the TEAP
 server, it responds with an EAP-Response of EAP type=TEAP and the
 highest supported version number. If the TEAP peer only supports
 the version that is higher than the version proposed by the TEAP
 server, then use of TEAP will not be possible. In this case, the
 TEAP peer should send back an EAP-Nak with other proposed EAP
 method if available.

 If the TEAP server does not support the version number proposed by
 the TEAP peer, it MAY terminate the conversation with EAP-Failure
 or negotiate for another EAP type. Otherwise the TEAP
 conversation continues.

 The version negotiation procedure guarantees that the TEAP peer and
 server will agree to the latest version supported by both parties.
 If version negotiation fails, then use of TEAP will not be possible,
 and another mutually acceptable EAP method will need to be negotiated
 if authentication is to proceed.

 The TEAP version is not protected by TLS; and hence can be modified
 in transit. In order to detect a modification of the TEAP version,
 the peers MUST exchange the TEAP version number received during
 version negotiation using the Crypto-Binding TLV described in

Section 4.2.13. The receiver of the Crypto-Binding TLV MUST verify
 that the version received in the Crypto-Binding TLV matches the
 version sent by the receiver in the TEAP version negotiation.

3.2. TEAP Authentication Phase 1: Tunnel Establishment

 TEAP is based on the TLS handshake [RFC5246] to establish an
 authenticated and protected tunnel. The TLS version offered by the
 peer and server MUST be TLS version 1.2 [RFC5246] or later. This
 version of the TEAP implementation MUST support the following TLS
 ciphersuites:

 TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246]

 TLS_DHE_RSA_WITH_AES_128_CBC_SHA [RFC5246]

 Other ciphersuites MAY be supported. It is REQUIRED that anonymous
 ciphersuites such as TLS_DH_anon_WITH_AES_128_CBC_SHA [RFC5246] only
 be used in the case when the inner authentication method provides
 mutual authentication, key generation, and resistance to man-in-the-
 middle and dictionary attack. During the TEAP Phase 1 conversation,
 the TEAP endpoints MAY negotiate TLS compression. During TLS tunnel
 establishment, TLS extensions MAY be used. For instance, Certificate

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Zhou, et al. Expires August 11, 2013 [Page 12]

Internet-Draft TEAP February 2013

 Status Request extension [RFC6066] can be used to leverage a
 certificate-status protocol such as OCSP [RFC2560] to check the
 validity of server certificates. TLS renegotiation indications
 defined in RFC 5746 [RFC5746] MUST be supported.

 The EAP server initiates the TEAP conversation with an EAP request
 containing a TEAP/Start packet. This packet includes a set Start (S)
 bit, the TEAP version as specified in Section 3.1, and an authority
 identity TLV. The TLS payload in the initial packet is empty. The
 authority identity TLV (Authority-ID TLV) is used to provide the peer
 a hint of the server's identity that may be useful in helping the
 peer select the appropriate credential to use. Assuming that the
 peer supports TEAP, the conversation continues with the peer sending
 an EAP-Response packet with EAP type of TEAP with the Start (S) bit
 clear and the version as specified in Section 3.1. This message
 encapsulates one or more TLS records containing the TLS handshake
 messages. If the TEAP version negotiation is successful then the
 TEAP conversation continues until the EAP server and EAP peer are
 ready to enter Phase 2. When the full TLS handshake is performed,
 then the first payload of TEAP Phase 2 MAY be sent along with server-
 finished handshake message to reduce the number of round trips.

 TEAP implementations MUST support client authentication during tunnel
 establishment using the TLS ciphersuites specified in Section 3.2.
 The EAP peer does not need to authenticate as part of the TLS
 exchange, but can alternatively be authenticated through additional
 exchanges carried out in Phase 2.

 The TEAP tunnel protects peer identity information exchanged during
 phase 2 from disclosure outside the tunnel. Implementations that
 wish to provide identity privacy for the peer identity must carefully
 consider what information is disclosed outside the tunnel prior to
 phase 2. TEAP implementations SHOULD support the immediate
 renegotiation of a TLS session to initiate a new handshake message
 exchange under the protection of the current cipher suite. This
 allows support for protection of the peer's identity when using TLS
 client authentication. An example of the exchanges using TLS
 renegotiation to protect privacy is shown in Appendix C.

 The following sections describe resuming a TLS session based on
 server-side or client-side state.

3.2.1. TLS Session Resume Using Server State

 TEAP session resumption is achieved in the same manner TLS achieves
 session resume. To support session resumption, the server and peer
 must minimally cache the Session ID, master secret, and ciphersuite.
 The peer attempts to resume a session by including a valid Session ID

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5746

Zhou, et al. Expires August 11, 2013 [Page 13]

Internet-Draft TEAP February 2013

 from a previous handshake in its ClientHello message. If the server
 finds a match for the Session ID and is willing to establish a new
 connection using the specified session state, the server will respond
 with the same Session ID and proceed with the TEAP Phase 1 tunnel
 establishment based on a TLS abbreviated handshake. After a
 successful conclusion of the TEAP Phase 1 conversation, the
 conversation then continues on to Phase 2.

3.2.2. TLS Session Resume Using a PAC

 TEAP supports the resumption of sessions based on server state being
 stored on the client side using the TLS SessionTicket extension
 techniques described in [RFC5077]. This version of TEAP supports the
 provisioning of a ticket called a Protected Access Credential (PAC)
 through the use of the NewSessionTicket handshake described in
 [RFC5077], as well as provisioning of a PAC inside the protected
 tunnel. Implementations may provide additional ways to provision the
 PAC, such as manual configuration. Since the PAC mentioned here is
 used for establishing the TLS Tunnel, it is more specifically
 referred to as the Tunnel PAC. The Tunnel PAC is a security
 credential provided by the EAP server to a peer and comprised of:

 1. PAC-Key: this is the key used by the peer as the TLS master
 secret to establish the TEAP Phase 1 tunnel. The PAC-Key is a
 strong high-entropy at minimum 48-octet key and is typically the
 master secret from a previous TLS session. The PAC-Key is a
 secret and MUST be treated accordingly. In the case that a PAC-
 Key is provisioned to the client through another means it must
 have its confidentiality and integrity protected by a mechanism,
 such as the TEAP phase 2 tunnel. The PAC-Key must be stored
 securely by the peer.

 2. PAC-Opaque: this is a variable length field containing the ticket
 that is sent to the EAP server during the TEAP Phase 1 tunnel
 establishment based on RFC 5077. The PAC-Opaque can only be
 interpreted by the EAP server to recover the required information
 for the server to validate the peer's identity and
 authentication. The PAC-Opaque includes the PAC-Key and other
 TLS session parameters. It may contain the PAC's peer identity.
 The PAC-Opaque format and contents are specific to the PAC
 issuing server. The PAC-Opaque may be presented in the clear, so
 an attacker MUST NOT be able to gain useful information from the
 PAC-Opaque itself. The server issuing the PAC-Opaque must ensure
 it is protected with strong cryptographic keys and algorithms.
 The PAC-Opaque may be distributed using the NewSessionTicket
 message defined in RFC 5077 or it may be distributed through
 another mechanism such as the phase 2 TLVs defined in this

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 14]

Internet-Draft TEAP February 2013

 document.

 3. PAC-Info: this is an optional variable length field used to
 provide, at a minimum, the authority identity of the PAC issuer.
 Other useful but not mandatory information, such as the PAC-Key
 lifetime, may also be conveyed by the PAC issuing server to the
 peer during PAC provisioning or refreshment. PAC-Info is not
 included if the NewSessionTicket message is used to provision the
 PAC.

 The use of the PAC is based on the SessionTicket extension defined in
 [RFC5077]. The EAP server initiates the TEAP conversation as normal.
 Upon receiving the Authority-ID TLV from the server, the peer checks
 to see if it has an existing valid PAC-Key and PAC-Opaque for the
 server. If it does, then it obtains the PAC-Opaque and puts it in
 the SessionTicket extension in the ClientHello. It is RECOMMENDED in
 TEAP that the peer include an empty Session ID in a ClientHello
 containing a PAC-Opaque. This version of TEAP supports the
 NewSessionTicket Handshake message as described in [RFC5077] for
 distribution of a new PAC, as well as the provisioning of PAC inside
 the protected tunnel. If the PAC-Opaque included in the
 SessionTicket extension is valid and the EAP server permits the
 abbreviated TLS handshake, it will select the cipher suite from
 information within the PAC-Opaque and finish with the abbreviated TLS
 handshake. If the server receives a Session ID and a PAC-Opaque in
 the SessionTicket extension in a ClientHello, it should place the
 same Session ID in the ServerHello if it is resuming a session based
 on the PAC-Opaque. The conversation then proceeds as described in
 [RFC5077] until the handshake completes or a fatal error occurs.
 After the abbreviated handshake completes, the peer and the server
 are ready to commence Phase 2.

3.2.3. Transition between Abbreviated and Full TLS Handshake

 If session resumption based on server-side or client-side state
 fails, the server can gracefully fall back to a full TLS handshake.
 If the ServerHello received by the peer contains an empty Session ID
 or a Session ID that is different than in the ClientHello, the server
 may fall back to a full handshake. The peer can distinguish the
 server's intent of negotiating full or abbreviated TLS handshake by
 checking the next TLS handshake messages in the server response to
 the ClientHello. If ChangeCipherSpec follows the ServerHello in
 response to the ClientHello, then the server has accepted the session
 resumption and intends to negotiate the abbreviated handshake.
 Otherwise, the server intends to negotiate the full TLS handshake. A
 peer can request for a new PAC to be provisioned after the full TLS
 handshake and mutual authentication of the peer and the server. A

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 15]

Internet-Draft TEAP February 2013

 peer SHOULD NOT request for a new PAC to be provisioned after the
 abbreviated handshake, as requesting a new session ticket based on
 resumed session is not permitted. In order to facilitate the
 fallback to a full handshake the peer SHOULD include cipher suites
 that allow for a full handshake and possibly PAC provisioning so the
 server can select one of these in case session resumption fails. An
 example of the transition is shown in Appendix C.

3.3. TEAP Authentication Phase 2: Tunneled Authentication

 The second portion of the TEAP Authentication occurs immediately
 after successful completion of Phase 1. Phase 2 occurs even if both
 peer and authenticator are authenticated in the Phase 1 TLS
 negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
 fails. Phase 2 consists of a series of requests and responses
 encapsulated in TLV objects defined in Section 4.2. Phase 2 MUST
 always end with a Crypto-Binding TLV exchange described in

Section 4.2.13 and a protected termination exchange described in
Section 3.3.3. The TLV exchange may include the execution of zero or

 more EAP methods within the protected tunnel as described in
Section 3.3.1. A server MAY proceed directly to the protected

 termination exchange if it does not wish to request further
 authentication from the peer. However, the peer and server must not
 assume that either will skip inner EAP methods or other TLV
 exchanges. The peer may have roamed to a network that requires
 conformance with a different authentication policy, or the peer may
 request the server take additional action (e.g., channel binding)
 through the use of the Request-Action TLV as defined in

Section 4.2.9.

3.3.1. EAP Sequences

 EAP [RFC3748] prohibits use of multiple authentication methods within
 a single EAP conversation in order to limit vulnerabilities to man-
 in-the-middle attacks. TEAP addresses man-in-the-middle attacks
 through support for cryptographic protection of the inner EAP
 exchange and cryptographic binding of the inner authentication
 method(s) to the protected tunnel. EAP methods are executed serially
 in a sequence. This version of TEAP does not support initiating
 multiple EAP methods simultaneously in parallel. The methods need
 not be distinct. For example, EAP-TLS could be run twice as an inner
 method, first using machine credentials followed by a second instance
 using user credentials.

 EAP method messages are carried within EAP-Payload TLVs defined in
Section 4.2.10. If more than one method is going to be executed in

 the tunnel, then upon method completion, the server MUST send an
 Intermediate-Result TLV indicating the result. The peer MUST respond

https://datatracker.ietf.org/doc/html/rfc3748

Zhou, et al. Expires August 11, 2013 [Page 16]

Internet-Draft TEAP February 2013

 to the Intermediate-Result TLV indicating its result. If the result
 indicates success, the Intermediate-Result TLV MUST be accompanied by
 a Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in

Section 4.2.13 and Section 5.3. The Intermediate-Result TLVs can be
 included with other TLVs such as EAP-Payload TLVs starting a new EAP
 conversation or with the Result TLV used in the protected termination
 exchange.

 If both peer and server indicate success, then the method is
 considered complete. If either indicates failure, then the method is
 considered failed. The result of failure of an EAP method does not
 always imply a failure of the overall authentication. If one
 authentication method fails, the server may attempt to authenticate
 the peer with a different method.

3.3.2. Optional Password Authentication

 The use of EAP-FAST-GTC as defined in RFC 5421 [RFC5421] is not
 recommended with TEAPv1. Implementations should instead make use of
 the password authentication TLVs defined in this specification. The
 authentication server initiates password authentication by sending a
 Basic-Password-Auth-Req TLV defined in Section 4.2.14. If the peer
 wishes to participate in password authentication then it responds
 with a Basic-Password-Auth-Resp TLV as defined in Section 4.2.15 that
 contains the username and password. If it does not wish to perform
 password authentication then it responds with a NAK TLV indicating
 the rejection of the Basic-Password-Auth-Req TLV. Upon receiving the
 response, the server indicates the success or failure of the exchange
 using an Intermediate-Result TLV. Multiple roundtrips of password
 authentication requests and responses MAY be used to support some
 "housecleaning" functions such as password change, change pin, etc.
 before a user is authenticated.

3.3.3. Protected Termination and Acknowledged Result Indication

 A successful TEAP Phase 2 conversation MUST always end in a
 successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
 may initiate the Crypto-Binding TLV and Result TLV exchange without
 initiating any EAP conversation in TEAP Phase 2. After the final
 Result TLV exchange, the TLS tunnel is terminated and a clear text
 EAP-Success or EAP-Failure is sent by the server. Peers implementing
 TEAP MUST NOT accept a clear-text EAP success or failure packet prior
 to the peer and server reaching synchronized protected result
 indication.

 The Crypto-Binding TLV exchange is used to prove that both the peer
 and server participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,

https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc5421

Zhou, et al. Expires August 11, 2013 [Page 17]

Internet-Draft TEAP February 2013

 version negotiated, outer TLVs exchanged before the TLS tunnel
 establishment. The Crypto-Binding TLV MUST be exchanged and verified
 before the final Result TLV exchange, regardless whether there is an
 inner EAP method authentication or not. It MUST be included with the
 Intermediate-Result TLV to perform Cryptographic Binding after each
 successful EAP method in a sequence of EAP methods, before proceeding
 with another inner EAP method. The server may send the final Result
 TLV along with an Intermediate-Result TLV and a Crypto-Binding TLV to
 indicate its intention to end the conversation. If the peer requires
 nothing more from the server, it will respond with a Result TLV
 indicating success accompanied by a Crypto-Binding TLV and
 Intermediate-Result TLV if necessary. The server then tears down the
 tunnel and sends a clear text EAP-Success or EAP-Failure.

 If the peer receives a Result TLV indicating success from the server,
 but its authentication policies are not satisfied (for example it
 requires a particular authentication mechanism be run or it wants to
 request a PAC), it may request further action from the server using
 the Request-Action TLV. The Request-Action TLV is sent with a Status
 field indicating what EAP Success/Failure result the peer would
 expect if the requested action is not granted. The value of the
 Action field indicates what the peer would like to do next. The
 format and values for the Request-Action TLV are defined in

Section 4.2.9.

 Upon receiving the Request-Action TLV the server may process the
 request or ignore it, based on its policy. If the server ignores the
 request, it proceeds with termination of the tunnel and send the
 clear text EAP Success or Failure message based on the value of the
 peer's result TLV. If the server honors and processes the request,
 it continues with the requested action. The conversation completes
 with a Result TLV exchange. The Result TLV may be included with the
 TLV that completes the requested action.

 Error handling for Phase 2 is discussed in Section 3.6.3.

3.4. Determining Peer-Id and Server-Id

 The Peer-Id and Server-Id [RFC5247] may be determined based on the
 types of credentials used during either the TEAP tunnel creation or
 authentication. In the case of multiple peer authentications, all
 authenticated peer identities and their corresponding identity types
 (Section 4.2.3) need to be exported. In the case of multiple server
 authentications, all authenticated server identities need to be
 exported.

 When X.509 certificates are used for peer authentication, the Peer-Id
 is determined by the subject or subjectAltName fields in the peer

https://datatracker.ietf.org/doc/html/rfc5247

Zhou, et al. Expires August 11, 2013 [Page 18]

Internet-Draft TEAP February 2013

 certificate. As noted in [RFC5280]:

 The subject field identifies the entity associated with the public
 key stored in the subject public key field. The subject name MAY
 be carried in the subject field and/or the subjectAltName
 extension.... If subject naming information is present only in
 the subjectAltName extension (e.g., a key bound only to an email
 address or URI), then the subject name MUST be an empty sequence
 and the subjectAltName extension MUST be critical.

 Where it is non-empty, the subject field MUST contain an X.500
 distinguished name (DN).

 If an inner EAP method is run, then the Peer-Id is obtained from the
 inner method.

 When the server uses an X.509 certificate to establish the TLS
 tunnel, the Server-Id is determined in a similar fashion as stated
 above for the Peer-Id; e.g., the subject or subjectAltName field in
 the server certificate defines the Server-Id.

3.5. TEAP Session Identifier

 The EAP session identifier [RFC5247] is constructed using the
 tls_unique from the TLS tunnel establishment as defined by [RFC5929].
 The Session-Id is defined as follows:

 Session-Id = teap_type || tls_unique

 where teap_type is the EAP method type assigned to TEAP.

 tls_unique = tls_unique for the phase 1 outer tunnel as defined by
 [RFC5929].

3.6. Error Handling

 TEAP uses the following error handling rules summarized below:

 1. Errors in the outer EAP packet layer are handled as defined in
Section 3.6.1.

 2. Errors in the TLS layer are communicated via TLS alert messages
 in all phases of TEAP.

 3. The Intermediate-Result TLVs carry success or failure indications
 of the individual EAP methods in TEAP Phase 2. Errors within the
 EAP conversation in Phase 2 are expected to be handled by
 individual EAP methods.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5929

Zhou, et al. Expires August 11, 2013 [Page 19]

Internet-Draft TEAP February 2013

 4. Violations of the Inner TLV rules are handled using Result TLVs
 together with Error TLVs.

 5. Tunnel compromised errors (errors caused by Crypto-Binding failed
 or missing) are handled using Result TLVs and Error TLVs.

3.6.1. Outer Layer Errors

 Errors on the TEAP outer packet layer are handled in the following
 ways:

 1. If Outer TLVs are invalid or contain unknown values, they will be
 ignored.

 2. If other fields (version, length, flags, etc.) are wrong, the
 entire TEAP packet will be ignored.

3.6.2. TLS Layer Errors

 If the TEAP server detects an error at any point in the TLS Handshake
 or the TLS layer, the server SHOULD send a TEAP request encapsulating
 a TLS record containing the appropriate TLS alert message rather than
 immediately terminating the conversation so as to allow the peer to
 inform the user of the cause of the failure and possibly allow for a
 restart of the conversation. The peer MUST send a TEAP response to
 an alert message. The EAP-Response packet sent by the peer may
 encapsulate a TLS ClientHello handshake message, in which case the
 TEAP server MAY allow the TEAP conversation to be restarted, or it
 MAY contain a TEAP response with a zero-length message, in which case
 the server MUST terminate the conversation with an EAP-Failure
 packet. It is up to the TEAP server whether to allow restarts, and
 if so, how many times the conversation can be restarted. Per TLS
 [RFC5226], TLS restart is only allowed for non-fatal alerts. A TEAP
 server implementing restart capability SHOULD impose a limit on the
 number of restarts, so as to protect against denial-of-service
 attacks. If the TEAP server does not allow restarts, it MUST
 terminate the conversation with an EAP-Failure packet.

 If the TEAP peer detects an error at any point in the TLS layer, the
 TEAP peer should send a TEAP response encapsulating a TLS record
 containing the appropriate TLS alert message. The server may restart
 the conversation by sending an TEAP request packet encapsulating the
 TLS HelloRequest handshake message. The peer may allow the TEAP
 conversation to be restarted or it may terminate the conversation by
 sending an TEAP response with an zero-length message.

https://datatracker.ietf.org/doc/html/rfc5226

Zhou, et al. Expires August 11, 2013 [Page 20]

Internet-Draft TEAP February 2013

3.6.3. Phase 2 Errors

 Any time the peer or the server finds a fatal error outside of the
 TLS layer during Phase 2 TLV processing, it MUST send a Result TLV of
 failure and an Error TLV with the appropriate error code. For errors
 involving the processing of the sequence of exchanges, such as a
 violation of TLV rules (e.g., multiple EAP-Payload TLVs), the error
 code is Unexpected_TLVs_Exchanged. For errors involving a tunnel
 compromise, the error-code is Tunnel_Compromise_Error. Upon sending
 a Result TLV with a fatal Error TLV the sender terminates the TLS
 tunnel. Note that a server will still wait for a message from the
 peer after it sends a failure, however the server does not need to
 process the contents of the response message.

 For inner method, retransmission is not needed and SHOULD NOT be
 attempted, as the outer TLS tunnel can be considered a reliable
 transport. If there is a non-fatal error handling the inner method,
 instead of silently dropping the inner method request or response and
 not responding, the receiving side should use an Error TLV with error
 code Inner_Method_Error to indicate error processing the current
 inner method. The side receiving the Error TLV MAY decide to start a
 new inner method instead or send back a Result TLV to terminate the
 TEAP authentication session.

 If a server receives a Result TLV of failure with a fatal Error TLV,
 it MUST send a clear text EAP-Failure. If a peer receives a Result
 TLV of failure, it MUST respond with a Result TLV indicating failure.
 If the server has sent a Result TLV of failure, it ignores the peer
 response, and it MUST send a clear text EAP-Failure.

3.7. Fragmentation

 A single TLS record may be up to 16384 octets in length, but a TLS
 message may span multiple TLS records, and a TLS certificate message
 may in principle be as long as 16 MB. This is larger than the
 maximum size for a message on most media types, therefore it is
 desirable to support fragmentation. Note that in order to protect
 against reassembly lockup and denial-of-service attacks, it may be
 desirable for an implementation to set a maximum size for one such
 group of TLS messages. Since a typical certificate chain is rarely
 longer than a few thousand octets, and no other field is likely to be
 anywhere near as long, a reasonable choice of maximum acceptable
 message length might be 64 KB. This is still a fairly large message
 packet size so an TEAP implementation MUST provide its own support
 for fragmentation and reassembly.

 Since EAP is a lock-step protocol, fragmentation support can be added
 in a simple manner. In EAP, fragments that are lost or damaged in

Zhou, et al. Expires August 11, 2013 [Page 21]

Internet-Draft TEAP February 2013

 transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a
 fragment offset field.

 TEAP fragmentation support is provided through the addition of flag
 bits within the EAP-Response and EAP-Request packets, as well as a
 TLS Message Length field of four octets. Flags include the Length
 included (L), More fragments (M), and TEAP Start (S) bits. The L
 flag is set to indicate the presence of the four-octet TLS Message
 Length field, and MUST be set for the first fragment of a fragmented
 TLS message or set of messages. It MUST NOT be present for any other
 message. The M flag is set on all but the last fragment. The S flag
 is set only within the TEAP start message sent from the EAP server to
 the peer. The TLS Message Length field is four octets, and provides
 the total length of the TLS message or set of messages that is being
 fragmented; this simplifies buffer allocation.

 When a TEAP peer receives an EAP-Request packet with the M bit set,
 it MUST respond with an EAP-Response with EAP-Type of TEAP and no
 data. This serves as a fragment ACK. The EAP server must wait until
 it receives the EAP-Response before sending another fragment. In
 order to prevent errors in processing of fragments, the EAP server
 MUST increment the Identifier field for each fragment contained
 within an EAP-Request, and the peer must include this Identifier
 value in the fragment ACK contained within the EAP-Response.
 Retransmitted fragments will contain the same Identifier value.

 Similarly, when the TEAP server receives an EAP-Response with the M
 bit set, it must respond with an EAP-Request with EAP-Type of TEAP
 and no data. This serves as a fragment ACK. The EAP peer MUST wait
 until it receives the EAP-Request before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

3.8. PAC Provisioning

 To request provisioning of a PAC, a peer sends a PAC TLV as defined
 in Section 4.2.12 containing a PAC Attribute as defined in

Section 4.2.12.1 of PAC Type set to the appropriate value. The
 request MAY be issued only after the peer has determined that it has
 successfully authenticated the EAP server and validated the Crypto-
 Binding TLV as defined in Section 4.2.13. The peer MUST send
 separate PAC TLVs for each type of PAC it wants to be provisioned.
 Multiple PAC TLVs can be sent in the same packet or different
 packets. The EAP server will send the PACs after its internal policy

Zhou, et al. Expires August 11, 2013 [Page 22]

Internet-Draft TEAP February 2013

 has been satisfied, or it MAY ignore the request or request
 additional authentications if its policy dictates. The server MAY
 cache the request and provision the PACs requested after all of its
 internal policies have been satisfied. If a peer receives a PAC with
 an unknown type, it MUST ignore it.

 A PAC-TLV containing PAC-Acknowledge attribute MUST be sent by the
 peer to acknowledge the receipt of the Tunnel PAC. A PAC-TLV
 containing PAC-Acknowledge attribute MUST NOT be used by the peer to
 acknowledge the receipt of other types of PACs. If the peer receives
 a PAC TLV with an unknown attribute, it SHOULD ignore the unknown
 attribute.

3.9. Certificate Provisioning Within the Tunnel

 Provisioning of a peer's certificate is supported in TEAP by
 performing the Simple PKI Request/Response from [RFC5272] using
 PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
 Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
 body of a PKCS#10 TLV (see Section 4.2.17). The TEAP Server issues a
 Simple PKI Response using a PKCS#7 [RFC2315] degenerate "certs-only"
 message encoded into the body of a PKCS#7 TLV (see Section 4.2.16),
 only after an authentication method has run and provided an identity
 proof on the client prior to a certificate is being issued.

 In order to provide linking identity and proof-of-possession by
 including information specific to the current authenticated TLS
 session within the signed certification request, the client
 generating the request SHOULD obtain the tls-unique value as defined
 in Channel Bindings for TLS [RFC5929] from the TLS subsystem, encode
 it using base64 encoding, and place the resulting string in the
 certification request challenge password field. The tls-unique value
 used MUST be from the first TLS handshake. TEAP client and server
 must use their tls-unique implementation specific synchronization
 methods to obtain this first tls-unique value. The server SHOULD
 verify the tls-unique information. This ensures that the
 authenticated TEAP client is in possession of the private key used to
 sign the certification request.

 The Simple PKI Request/Response generation and processing rules of
 [RFC5272] SHALL apply to TEAP, with the exception of error
 conditions. In the event of an error, the TEAP Server SHOULD respond
 with an Error TLV using the most descriptive error code possible; it
 MAY ignore the PKCS#10 request which generated the error.

https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5272

Zhou, et al. Expires August 11, 2013 [Page 23]

Internet-Draft TEAP February 2013

3.10. Server Unauthenticated Provisioning Mode

 In Server Unauthenticated Provisioning Mode, an unauthenticated
 tunnel is established in phase 1 and the peer and server negotiate an
 EAP method in phase 2 that supports mutual authentication and key
 derivation that is resistant to attacks such as Man-in-the-middle and
 dictionary attacks. This provisioning mode enables the bootstrapping
 of peers when the peer lacks a strong credential usable for mutual
 authentication with the server during phase 1. This includes both
 cases of where the cipher suite negotiated does not provide
 authentication or the cipher suite negotiated provides the
 authentication but the peer is unable to validate the identity of the
 server for some reason.

 Upon successful completion of the EAP method in phase 2, the peer and
 server exchange a Crypto-Binding TLV to bind the inner method with
 the outer tunnel and ensure that a man-in-the-middle attack has not
 been attempted.

 Support for the Server Unauthenticated Provisioning Mode is optional.
 The cipher suite TLS_DH_anon_WITH_AES_128_CBC_SHA is RECOMMENDED when
 using server unauthenticated mode, but other anonymous ciphersuites
 MAY be supported as long as the TLS pre-master secret is generated
 from contribution from both peers. Phase 2 EAP methods used in
 Server Unauthenticated Provisioning Mode MUST provide mutual
 authentication, key generation, and be resistant to dictionary
 attack. Example inner methods include EAP-pwd [RFC5931] and EAP-EKE
 [RFC6124].

4. Message Formats

 The following sections describe the message formats used in TEAP.
 The fields are transmitted from left to right in network byte order.

4.1. TEAP Message Format

 A summary of the TEAP Request/Response packet format is shown below.

https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc6124

Zhou, et al. Expires August 11, 2013 [Page 24]

Internet-Draft TEAP February 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | Ver | Message Length :
 +-+
 : Message Length | Outer TLV Length
 +-+
 : Outer TLV Length | TLS Data...
 +-+
 | Outer TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Code

 The code field is one octet in length defined as follows:

 1 Request

 2 Response

 Identifier

 The Identifier field is one octet and aids in matching
 responses with requests. The Identifier field MUST be changed
 on each Request packet. The Identifier field in the Response
 packet MUST match the Identifier field from the corresponding
 request.

 Length

 The Length field is two octets and indicates the length of the
 EAP packet including the Code, Identifier, Length, Type, Flags,
 Ver, Message Length, TLS Data, and Outer TLVs fields. Octets
 outside the range of the Length field should be treated as Data
 Link Layer padding and should be ignored on reception.

 Type

 TBD for TEAP

Zhou, et al. Expires August 11, 2013 [Page 25]

Internet-Draft TEAP February 2013

 Flags

 0 1 2 3 4
 +-+-+-+-+-+
 |L M S O R|
 +-+-+-+-+-+

 L Length included; set to indicate the presence of the four
 octet Message Length field. It MUST be present for the
 first fragment of a fragmented message. It MUST NOT be
 present for any other message

 M More fragments; set on all but the last fragment

 S TEAP start; set in a TEAP Start message sent from the server
 to the peer

 O Outer TLV length included; set to indicate the presence of
 the four-octet Outer TLV Length field. It MUST be present
 only in the initial request and response messages. If the
 initial message is fragmented, then it MUST be present only
 on the first fragment

 R Reserved (must be zero)

 Ver

 This field contains the version of the protocol. This document
 describes version 1 (001 in binary) of TEAP.

 Message Length

 The Message Length field is four octets, and is present only if
 the L bit is set. This field provides the total length of the
 message that may be fragmented over the data fields of multiple
 packets.

 Outer TLV Length

 The Outer TLV Length field is four octets, and is present only
 if the O bit is set. This field provides the total length of
 the Outer TLVs if present.

Zhou, et al. Expires August 11, 2013 [Page 26]

Internet-Draft TEAP February 2013

 TLS Data

 When the Data field is present, it consists of an encapsulated
 TLS packet in TLS record format. A TEAP packet with Flags and
 Version fields, but with zero length TLS data field, is used to
 indicate TEAP acknowledgement for either a fragmented message,
 a TLS Alert message or a TLS Finished message.

 Outer TLVs

 The Outer TLVs consist of the optional data used to help
 establishing the TLS tunnel in TLV format. They are only
 allowed in the first two messages in the TEAP protocol. That
 is the first EAP server to peer message and first peer to EAP
 server message. The start of the Outer TLVs can be derived
 from the EAP Length field and Outer TLV Length field.

4.2. TEAP TLV Format and Support

 The TLVs defined here are standard Type-Length-Value (TLV) objects.
 The TLV objects could be used to carry arbitrary parameters between
 EAP peer and EAP server within the protected TLS tunnel.

 The EAP peer may not necessarily implement all the TLVs supported by
 the EAP server. To allow for interoperability, TLVs are designed to
 allow an EAP server to discover if a TLV is supported by the EAP
 peer, using the NAK TLV. The mandatory bit in a TLV indicates
 whether support of the TLV is required. If the peer or server does
 not support a TLV marked mandatory, then it MUST send a NAK TLV in
 the response, and all the other TLVs in the message MUST be ignored.
 If an EAP peer or server finds an unsupported TLV that is marked as
 optional, it can ignore the unsupported TLV. It MUST NOT send an NAK
 TLV for a TLV that is not marked mandatory. If all TLVs in a message
 are marked optional and none are understood by the peer, then a NAK
 TLV or Result TLV could be sent to the other side in order to
 continue the conversation.

 Note that a peer or server may support a TLV with the mandatory bit
 set, but may not understand the contents. The appropriate response
 to a supported TLV with content that is not understood is defined by
 the individual TLV specification.

 EAP implementations compliant with this specification MUST support
 TLV exchanges, as well as the processing of mandatory/optional
 settings on the TLV. Implementations conforming to this
 specification MUST support the following TLVs:

Zhou, et al. Expires August 11, 2013 [Page 27]

Internet-Draft TEAP February 2013

 Authority-ID TLV

 Identity-Type TLV

 Result TLV

 NAK TLV

 Error TLV

 Request-Action TLV

 EAP-Payload TLV

 Intermediate-Result TLV

 Crypto-Binding TLV

 Basic-Password-Auth-Req TLV

 Basic-Password-Auth-Resp TLV

4.2.1. General TLV Format

 TLVs are defined as described below. The fields are transmitted from
 left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value...
 +-+

 M

 0 Optional TLV

 1 Mandatory TLV

Zhou, et al. Expires August 11, 2013 [Page 28]

Internet-Draft TEAP February 2013

 R

 Reserved, set to zero (0)

 TLV Type

 A 14-bit field, denoting the TLV type. Allocated Types
 include:

 0 Unassigned

 1 Authority-ID TLV (Section 4.2.2)

 2 Identity-Type TLV (Section 4.2.3)

 3 Result TLV (Section 4.2.4)

 4 NAK TLV (Section 4.2.5)

 5 Error TLV (Section 4.2.6)

 6 Channel-Binding TLV (Section 4.2.7)

 7 Vendor-Specific TLV (Section 4.2.8)

 8 Request-Action TLV (Section 4.2.9)

 9 EAP-Payload TLV (Section 4.2.10)

 10 Intermediate-Result TLV (Section 4.2.11)

 11 PAC TLV (Section 4.2.12)

 12 Crypto-Binding TLV (Section 4.2.13)

 13 Basic-Password-Auth-Req TLV (Section 4.2.14)

 14 Basic-Password-Auth-Resp TLV (Section 4.2.15)

 15 PKCS#7 TLV (Section 4.2.16)

 16 PKCS#10 TLV (Section 4.2.17)

Zhou, et al. Expires August 11, 2013 [Page 29]

Internet-Draft TEAP February 2013

 17 Server-Trusted-Root TLV (Section 4.2.18)

 Length

 The length of the Value field in octets.

 Value

 The value of the TLV.

4.2.2. Authority-ID TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | ID...
 +-+

 M

 Mandatory, set to (0)

 R

 Reserved, set to zero (0)

 TLV Type

 The TLV Type field is two octets. It is set to 1 for Authority
 ID

 Length

 The Length filed is two octets, which contains the length of
 the ID field in octets.

Zhou, et al. Expires August 11, 2013 [Page 30]

Internet-Draft TEAP February 2013

 ID

 Hint of the identity of the server, to help the peer to match
 the credentials available for the server. It should be unique
 across the deployment.

4.2.3. Identity-Type TLV

 The Identity-Type TLV allows an EAP server to send a hint to help the
 EAP peer select the right type of identity; for example; user or
 machine. TEAPv1 implementations MUST support this TLV. Only one
 Identity-Type TLV SHOULD be present in the TEAP request or response
 packet. The Identity-Type TLV request MUST come with an EAP-Payload
 TLV or Basic-Password-Auth-Req TLV. If the EAP peer does have an
 identity corresponding to the identity type requested, then the peer
 SHOULD respond with an Identity-Type TLV with the requested type. If
 the Identity-Type field does not contain one of the known values or
 if the EAP peer does not have an identity corresponding to the
 identity type requested, then the peer SHOULD respond with an
 Identity-Type TLV with the one of available identity types. If the
 server receives an identity type in the response that does not match
 the requested type, then the peer does not possess the requested
 credential type and the server SHOULD proceed with authentication for
 the credential type proposed by the peer or proceed with requesting
 another credential type, or simply apply the network policy based on
 the configured policy, e.g., sending Result TLV with Failure.

 The Identity-Type TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Identity-Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

Zhou, et al. Expires August 11, 2013 [Page 31]

Internet-Draft TEAP February 2013

 TLV Type

 2 for Identity-Type TLV

 Length

 2

 Identity-Type

 The Identity-Type field is two octets. Values include:

 1 User

 2 Machine

4.2.4. Result TLV

 The Result TLV provides support for acknowledged success and failure
 messages for protected termination within TEAP. If the Status field
 does not contain one of the known values, then the peer or EAP server
 MUST treat this as a fatal error of Unexpected_TLVs_Exchanged. The
 behavior of the Result TLV is further discussed in Section 3.3.3 and

Section 3.6.3. A Result TLV indicating failure MUST NOT be
 accompanied by the following TLVs: NAK, EAP-Payload TLV, or Crypto-
 Binding TLV. The Result TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 Mandatory, set to one (1)

Zhou, et al. Expires August 11, 2013 [Page 32]

Internet-Draft TEAP February 2013

 R

 Reserved, set to zero (0)

 TLV Type

 3 for Result TLV

 Length

 2

 Status

 The Status field is two octets. Values include:

 1 Success

 2 Failure

4.2.5. NAK TLV

 The NAK TLV allows a peer to detect TLVs that are not supported by
 the other peer. A TEAP packet can contain 0 or more NAK TLVs. A NAK
 TLV should not be accompanied by other TLVs. A NAK TLV MUST NOT be
 sent in response to a message containing a Result TLV, instead a
 Result TLV of failure should be sent indicating failure and an Error
 TLV of Unexpected_TLVs_Exchanged. The NAK TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | NAK-Type | TLVs...
 +-+

Zhou, et al. Expires August 11, 2013 [Page 33]

Internet-Draft TEAP February 2013

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 4 for NAK TLV

 Length

 >=6

 Vendor-Id

 The Vendor-Id field is four octets, and contains the Vendor-Id
 of the TLV that was not supported. The high-order octet is 0
 and the low-order three octets are the Structure of Management
 Information (SMI) Network Management Private Enterprise Code of
 the Vendor in network byte order. The Vendor-Id field MUST be
 zero for TLVs that are not Vendor-Specific TLVs.

 NAK-Type

 The NAK-Type field is two octets. The field contains the Type
 of the TLV that was not supported. A TLV of this Type MUST
 have been included in the previous packet.

 TLVs

 This field contains a list of zero or more TLVs, each of which
 MUST NOT have the mandatory bit set. These optional TLVs are
 for future extensibility to communicate why the offending TLV
 was determined to be unsupported.

Zhou, et al. Expires August 11, 2013 [Page 34]

Internet-Draft TEAP February 2013

4.2.6. Error TLV

 The Error TLV allows an EAP peer or server to indicate errors to the
 other party. A TEAP packet can contain 0 or more Error TLVs. The
 Error-Code field describes the type of error. Error Codes 1-999
 represent successful outcomes (informative messages), 1000-1999
 represent warnings, and codes 2000-2999 represent fatal errors. A
 fatal Error TLV MUST be accompanied by a Result TLV indicating
 failure and the conversation must be terminated as described in

Section 3.6.3. The Error TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Error-Code |
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 5 for Error TLV

 Length

 4

 Error-Code

 The Error-Code field is four octets. Currently defined values
 for Error-Code include:

Zhou, et al. Expires August 11, 2013 [Page 35]

Internet-Draft TEAP February 2013

 1001 Inner_Method_Error

 2001 Tunnel_Compromise_Error

 2002 Unexpected_TLVs_Exchanged

 2003 Unsupported_Algorithm_In_CertificateSigning_Request

 2004 Unsupported_Extension_In_CertificateSigning_Request

 2005 Bad_Identity_In_CertificateSigning_Request

 2006 Bad_CertificateSigning_Request

 2007 Internal_CA_Error

 2008 General_PKI_Error

4.2.7. Channel-Binding TLV

 The Channel-Binding TLV provides a mechanism for carrying channel
 binding data from the peer to the EAP server and a channel binding
 response from the EAP server to the peer as described in
 [I-D.ietf-emu-chbind]. TEAPv1 implementations MAY support this TLV,
 which cannot be responded to with a NAK TLV. If the Channel-Binding
 data field does not contain one of the known values or if the EAP
 server does not support this TLV, then the server MUST ignore the
 value. The Channel-Binding TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Data ...
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

Zhou, et al. Expires August 11, 2013 [Page 36]

Internet-Draft TEAP February 2013

 TLV Type

 6 for Channel-Binding TLV

 Length

 variable

 Data

 The data field contains channel binding data defined in
 [I-D.ietf-emu-chbind].

4.2.8. Vendor-Specific TLV

 The Vendor-Specific TLV is available to allow vendors to support
 their own extended attributes not suitable for general usage. A
 Vendor-Specific TLV attribute can contain one or more TLVs, referred
 to as Vendor TLVs. The TLV-type of a Vendor-TLV is defined by the
 vendor. All the Vendor TLVs inside a single Vendor-Specific TLV
 belong to the same vendor. There can be multiple Vendor-Specific
 TLVs from different vendors in the same message. Error handling in
 the Vendor TLV could use vendor's own specific error handling
 mechanism or use the standard TEAP error codes defined.

 Vendor TLVs may be optional or mandatory. Vendor TLVs sent with
 Result TLVs MUST be marked as optional. If the Vendor-Specific TLV
 is marked as mandatory, then it is expected that the receiving side
 needs to recognize the vendor ID, parse all Vendor TLVs within and
 deal with error handling within the Vendor-Specific TLV as defined by
 the vendor.

 The Vendor-Specific TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | Vendor TLVs....
 +-+

Zhou, et al. Expires August 11, 2013 [Page 37]

Internet-Draft TEAP February 2013

 M

 0 or 1

 R

 Reserved, set to zero (0)

 TLV Type

 7 for Vendor Specific TLV

 Length

 4 + cumulative length of all included Vendor TLVs

 Vendor-Id

 The Vendor-Id field is four octets, and contains the Vendor-Id
 of the TLV. The high-order octet is 0 and the low-order 3
 octets are the SMI Network Management Private Enterprise Code
 of the Vendor in network byte order.

 Vendor TLVs

 This field is of indefinite length. It contains vendor-
 specific TLVs, in a format defined by the vendor.

4.2.9. Request-Action TLV

 The Request-Action TLV MAY be sent by both the peer and the server in
 response to a successful or failure Result TLV. It allows the peer
 or server to request the other side to negotiate additional EAP
 methods or process TLVs specified in the response packet. The
 receiving side MUST process this TLV. The processing for the TLV is
 as follows:

 The receiving entity MAY choose to process any of the TLVs that
 are included in the message.

Zhou, et al. Expires August 11, 2013 [Page 38]

Internet-Draft TEAP February 2013

 If the receiving entity chooses NOT to process any TLV in the
 list, then it sends back a Result TLV with the same code in the
 Status field of the Request-Action TLV.

 If multiple Request-Action TLVs are in the request, the session
 can continue if any of the TLVs in any Request-Action TLV is
 processed.

 If multiple Request-Action TLVs are in the request and none of
 them is processed, then the most fatal status should be used in
 the Result TLV returned. If a status code in the Request-Action
 TLV is not understood by the receiving entity, then it should be
 treated as a fatal error.

 After processing the TLVs or EAP method in the request, another
 round of Result TLV exchange would occur to synchronize the final
 status on both sides.

 The peer or the server MAY send multiple Request-Action TLVs to the
 other side. Two Request-Action TLVs MUST NOT occur in the same TEAP
 packet if they have the same Status value. The order of processing
 multiple Request-Action TLVs is implementation dependent. If the
 receiving side process the optional (non-fatal) items first, it is
 possible that the fatal items will disappear at a later time. If the
 receiving side processes the fatal items first, the communication
 time will be shorter.

 The peer or the server MAY return a new set of Request-Action TLVs
 after one or more of the requested items has been processed and the
 other side has signaled it wants to end the EAP conversation.

 The Request-Action TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | Action | TLVs....
 +--+-+-+-+-+-+-+-+-+-+-+-+-

 M

 Mandatory set to one (1)

Zhou, et al. Expires August 11, 2013 [Page 39]

Internet-Draft TEAP February 2013

 R

 Reserved, set to zero (0)

 TLV Type

 8 for Request-Action TLV

 Length

 2 + cumulative length of all included TLVs

 Status

 The Status field is one octet. This indicates the result if
 the server does not process the action requested by the peer.
 Values include:

 1 Success

 2 Failure

 Action

 The Action field is one octet. Values include:

 1 Process-TLV

 2 Negotiate-EAP

 TLVs

 This field is of indefinite length. It contains TLVs that the
 peer wants the server to process.

4.2.10. EAP-Payload TLV

 To allow piggybacking an EAP request or response with other TLVs, the
 EAP-Payload TLV is defined, which includes an encapsulated EAP packet
 and a list of optional TLVs. The optional TLVs are provided for
 future extensibility to provide hints about the current EAP

Zhou, et al. Expires August 11, 2013 [Page 40]

Internet-Draft TEAP February 2013

 authentication. Only one EAP-Payload TLV is allowed in a message.
 The EAP-Payload TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | EAP packet...
 +-+
 | TLVs...
 +-+

 M

 Mandatory, set to (1)

 R

 Reserved, set to zero (0)

 TLV Type

 9 for EAP-Payload TLV

 Length

 length of embedded EAP packet + cumulative length of additional
 TLVs

 EAP packet

 This field contains a complete EAP packet, including the EAP
 header (Code, Identifier, Length, Type) fields. The length of
 this field is determined by the Length field of the
 encapsulated EAP packet.

 TLVs

 This (optional) field contains a list of TLVs associated with
 the EAP packet field. The TLVs MUST NOT have the mandatory bit

Zhou, et al. Expires August 11, 2013 [Page 41]

Internet-Draft TEAP February 2013

 set. The total length of this field is equal to the Length
 field of the EAP-Payload TLV, minus the Length field in the EAP
 header of the EAP packet field.

4.2.11. Intermediate-Result TLV

 The Intermediate-Result TLV provides support for acknowledged
 intermediate Success and Failure messages between multiple inner EAP
 methods within EAP. An Intermediate-Result TLV indicating success
 MUST be accompanied by a Crypto-Binding TLV. The optional TLVs
 associated with this TLV are provided for future extensibility to
 provide hints about the current result. The Intermediate-Result TLV
 is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | TLVs...
 +-+

 M

 Mandatory, set to (1)

 R

 Reserved, set to zero (0)

 TLV Type

 10 for Intermediate-Result TLV

 Length

 2 + cumulative length of the embedded associated TLVs

 Status

 The Status field is two octets. Values include:

Zhou, et al. Expires August 11, 2013 [Page 42]

Internet-Draft TEAP February 2013

 1 Success

 2 Failure

 TLVs

 This field is of indeterminate length, and contains zero or
 more of the TLVs associated with the Intermediate Result TLV.
 The TLVs in this field MUST NOT have the mandatory bit set.

4.2.12. PAC TLV Format

 The PAC TLV provides support for provisioning the Protected Access
 Credential (PAC) defined within [RFC4851]. The PAC TLV carries the
 PAC and related information within PAC attribute fields.
 Additionally, the PAC TLV MAY be used by the peer to request
 provisioning of a PAC of the type specified in the PAC Type PAC
 attribute. The PAC TLV MUST only be used in a protected tunnel
 providing encryption and integrity protection. A general PAC TLV
 format is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PAC Attributes...
 +-+

 M

 0 - Non-mandatory TLV
 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 11 - PAC TLV

https://datatracker.ietf.org/doc/html/rfc4851

Zhou, et al. Expires August 11, 2013 [Page 43]

Internet-Draft TEAP February 2013

 Length

 Two octets containing the length of the PAC attributes
 field in octets.

 PAC Attributes

 A list of PAC attributes in the TLV format.

4.2.12.1. Formats for PAC Attributes

 Each PAC attribute in a PAC TLV is formatted as a TLV defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value...
 +-+

 Type

 The Type field is two octets, denoting the attribute type.
 Allocated Types include:

 1 - PAC-Key
 2 - PAC-Opaque
 3 - PAC-Lifetime
 4 - A-ID
 5 - I-ID
 6 - Reserved
 7 - A-ID-Info
 8 - PAC-Acknowledgement
 9 - PAC-Info
 10 - PAC-Type

 Length

 Two octets containing the length of the Value field in
 octets.

Zhou, et al. Expires August 11, 2013 [Page 44]

Internet-Draft TEAP February 2013

 Value

 The value of the PAC attribute.

4.2.12.2. PAC-Key

 The PAC-Key is a secret key distributed in a PAC attribute of type
 PAC-Key. The PAC-Key attribute is included within the PAC TLV
 whenever the server wishes to issue or renew a PAC that is bound to a
 key such as a Tunnel PAC. The key is a randomly generated octet
 string, which is 48 octets in length. The generator of this key is
 the issuer of the credential, which is identified by the Authority
 Identifier (A-ID).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 ~ Key ~
 | |
 +-+

 Type

 1 - PAC-Key

 Length

 2-octet length indicating the length of the key

 Key

 The value of the PAC-Key.

4.2.12.3. PAC-Opaque

 The PAC-Opaque attribute is included within the PAC TLV whenever the
 server wishes to issue or renew a PAC.

 The PAC-Opaque is opaque to the peer and thus the peer MUST NOT
 attempt to interpret it. A peer that has been issued a PAC-Opaque by
 a server stores that data and presents it back to the server
 according to its PAC Type. The Tunnel PAC is used in the ClientHello
 SessionTicket extension field defined in [RFC5077]. If a peer has

https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 45]

Internet-Draft TEAP February 2013

 opaque data issued to it by multiple servers, then it stores the data
 issued by each server separately according to the A-ID. This
 requirement allows the peer to maintain and use each opaque datum as
 an independent PAC pairing, with a PAC-Key mapping to a PAC-Opaque
 identified by the A-ID. As there is a one-to-one correspondence
 between the PAC-Key and PAC-Opaque, the peer determines the PAC-Key
 and corresponding PAC-Opaque based on the A-ID provided in the TEAP/
 Start message and the A-ID provided in the PAC-Info when it was
 provisioned with a PAC-Opaque.

 The PAC-Opaque attribute format is summarized as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value ...
 +-+

 Type

 2 - PAC-Opaque

 Length

 The Length filed is two octets, which contains the length of
 the Value field in octets.

 Value

 The Value field contains the actual data for the PAC-Opaque.
 It is specific to the server implementation.

4.2.12.4. PAC-Info

 The PAC-Info is comprised of a set of PAC attributes as defined in
Section 4.2.12.1. The PAC-Info attribute MUST contain the A-ID,

 A-ID-Info, and PAC-Type attributes. Other attributes MAY be included
 in the PAC-Info to provide more information to the peer. The PAC-
 Info attribute MUST NOT contain the PAC-Key, PAC-Acknowledgement,
 PAC-Info, or PAC-Opaque attributes. The PAC-Info attribute is
 included within the PAC TLV whenever the server wishes to issue or
 renew a PAC.

Zhou, et al. Expires August 11, 2013 [Page 46]

Internet-Draft TEAP February 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Attributes...
 +-+

 Type

 9 - PAC-Info

 Length

 2-octet Length field containing the length of the attributes
 field in octets.

 Attributes

 The attributes field contains a list of PAC attributes. Each
 mandatory and optional field type is defined as follows:

 3 - PAC-LIFETIME

 This is a 4-octet quantity representing the expiration time
 of the credential expressed as the number of seconds,
 excluding leap seconds, after midnight UTC, January 1, 1970.
 This attribute MAY be provided to the peer as part of the
 PAC-Info.

 4 - A-ID

 The A-ID is the identity of the authority that issued the
 PAC. The A-ID is intended to be unique across all issuing
 servers to avoid namespace collisions. The A-ID is used by
 the peer to determine which PAC to employ. The A-ID is
 treated as an opaque octet string. This attribute MUST be
 included in the PAC-Info attribute. The A-ID MUST match the
 Authority-ID the server used to establish the tunnel. One
 method for generating the A-ID is to use a high-quality
 random number generator to generate a random number. An
 alternate method would be to take the hash of the public key
 or public key certificate belonging a server represented by
 the A-ID.

Zhou, et al. Expires August 11, 2013 [Page 47]

Internet-Draft TEAP February 2013

 5 - I-ID

 Initiator identifier (I-ID) is the peer identity associated
 with the credential. This identity is derived from the
 inner authentication or from the client-side authentication
 during tunnel establishment if inner authentication is not
 used. The server employs the I-ID in the TEAP phase 2
 conversation to validate that the same peer identity used to
 execute TEAP phase 1 is also used in at minimum one inner
 authentication in TEAP phase 2. If the server is enforcing
 the I-ID validation on the inner authentication, then the
 I-ID MUST be included in the PAC-Info, to enable the peer to
 also enforce a unique PAC for each unique user. If the I-ID
 is missing from the PAC-Info, it is assumed that the Tunnel
 PAC can be used for multiple users and the peer will not
 enforce the unique-Tunnel-PAC-per-user policy.

 7 - A-ID-Info

 Authority Identifier Information is intended to provide a
 user-friendly name for the A-ID. It may contain the
 enterprise name and server name in a human-readable format.
 This TLV serves as an aid to the peer to better inform the
 end-user about the A-ID. The name is encoded in UTF-8
 [RFC3629] format. This attribute MUST be included in the
 PAC-Info.

 10 - PAC-type

 The PAC-Type is intended to provide the type of PAC. This
 attribute SHOULD be included in the PAC-Info. If the PAC-
 Type is not present, then it defaults to a Tunnel PAC (Type
 1).

4.2.12.5. PAC-Acknowledgement TLV

 The PAC-Acknowledgement is used to acknowledge the receipt of the
 Tunnel PAC by the peer. The peer includes the PAC-Acknowledgement
 TLV in a PAC-TLV sent to the server to indicate the result of the
 processing and storing of a newly provisioned Tunnel PAC. This TLV
 is only used when Tunnel PAC is provisioned.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Result |

https://datatracker.ietf.org/doc/html/rfc3629

Zhou, et al. Expires August 11, 2013 [Page 48]

Internet-Draft TEAP February 2013

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 8 - PAC-Acknowledgement

 Length

 The length of this field is two octets containing a value of 2.

 Result

 The resulting value MUST be one of the following:

 1 - Success
 2 - Failure

4.2.12.6. PAC-Type TLV

 The PAC-Type TLV is a TLV intended to specify the PAC type. It is
 included in a PAC-TLV sent by the peer to request PAC provisioning
 from the server. Its format is described below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | PAC Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 10 - PAC-Type

 Length

 2-octet Length field with a value of 2

Zhou, et al. Expires August 11, 2013 [Page 49]

Internet-Draft TEAP February 2013

 PAC Type

 This 2-octet field defines the type of PAC being requested or
 provisioned. The following values are defined:

 1 - Tunnel PAC

4.2.13. Crypto-Binding TLV

 The Crypto-Binding TLV is used to prove that both the peer and server
 participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,
 version negotiated, outer TLVs exchanged before the TLS tunnel
 establishment.

 The Crypto-Binding TLV MUST be exchanged and verified before the
 final Result TLV exchange, regardless whether there is an inner EAP
 method authentication or not. It MUST be included with the
 Intermediate-Result TLV to perform Cryptographic Binding after each
 successful EAP method in a sequence of EAP methods, before proceeding
 with another inner EAP method.

 The Crypto-Binding TLV is valid only if the following checks pass:

 o The Crypto-Binding TLV version is supported

 o The MAC verifies correctly

 o The received version in the Crypto-Binding TLV matches the version
 sent by the receiver during the EAP version negotiation

 o The subtype is set to the correct value

 If any of the above checks fails, then the TLV is invalid. An
 invalid Crypto-Binding TLV is a fatal error and is handled as
 described in Section 3.6.3

 The Crypto-Binding TLV is defined as follows:

Zhou, et al. Expires August 11, 2013 [Page 50]

Internet-Draft TEAP February 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Version | Received Ver.| Flags|Sub-Type|
 +-+
 | |
 ~ Nonce ~
 | |
 +-+
 | |
 ~ EMSK Compound MAC ~
 | |
 +-+
 | |
 ~ MSK Compound MAC ~
 | |
 +-+

 M

 Mandatory, set to (1)

 R

 Reserved, set to zero (0)

 TLV Type

 12 for Crypto-Binding TLV

 Length

 56

 Reserved

 Reserved, set to zero (0)

Zhou, et al. Expires August 11, 2013 [Page 51]

Internet-Draft TEAP February 2013

 Version

 The Version field is a single octet, which is set to the
 version of Crypto-Binding TLV the EAP method is using. For an
 implementation compliant with this version of TEAP, the version
 number MUST be set to 1.

 Received Version

 The Received Version field is a single octet and MUST be set to
 the EAP version number received during version negotiation.
 Note that this field only provides protection against downgrade
 attacks, where a version of EAP requiring support for this TLV
 is required on both sides.

 Flags

 The Flags field is four bits. Defined values include

 1 EMSK Compound MAC is present

 2 MSK Compound MAC is present

 3 Both EMSK and MSK Compound MAC are present

 Sub-Type

 The Sub-Type field is four bits. Defined values include

 0 Binding Request

 1 Binding Response

 Nonce

 The Nonce field is 32 octets. It contains a 256-bit nonce that
 is temporally unique, used for compound MAC key derivation at
 each end. The nonce in a request MUST have its least
 significant bit set to 0 and the nonce in a response MUST have
 the same value as the request nonce except the least
 significant bit MUST be set to 1.

Zhou, et al. Expires August 11, 2013 [Page 52]

Internet-Draft TEAP February 2013

 EMSK Compound MAC

 The EMSK Compound MAC field is 20 octets. This can be the
 Server MAC (B1_MAC) or the Client MAC (B2_MAC). The
 computation of the MAC is described in Section 5.3.

 MSK Compound MAC

 The MSK Compound MAC field is 20 octets. This can be the
 Server MAC (B1_MAC) or the Client MAC (B2_MAC). The
 computation of the MAC is described in Section 5.3.

4.2.14. Basic-Password-Auth-Req TLV

 The Basic-Password-Auth-Req TLV is used by the authentication server
 to request a username and password from the peer. It contains an
 optional user prompt message for the request. The peer is expected
 to obtain the username and password and send them in a Basic-
 Password-Auth-Resp TLV.

 The Basic-Password-Auth-Req TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Prompt
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

 TLV Type

 13 for Basic-Password-Auth-Req TLV

Zhou, et al. Expires August 11, 2013 [Page 53]

Internet-Draft TEAP February 2013

 Length

 variable

 Prompt

 optional user prompt message in UTF-8 format

4.2.15. Basic-Password-Auth-Resp TLV

 The Basic-Password-Auth-Resp TLV is used by the peer to respond to a
 Basic-Password-Auth-Req TLV with a username and password. The TLV
 contains a username and password. The username and password are in
 UTF-8 format.

 The Basic-Password-Auth-Resp TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Userlen | Username
 +-+
 ... Username ...
 +-+
 | Passlen | Password
 +-+
 ... Password ...
 +-+

 M

 0 (Optional)

 R

 Reserved, set to zero (0)

Zhou, et al. Expires August 11, 2013 [Page 54]

Internet-Draft TEAP February 2013

 TLV Type

 14 for Basic-Password-Auth-Resp TLV

 Length

 variable

 Userlen

 Length of Username field in octets

 Username

 Username in UTF-8 format

 Passlen

 Length of Password field in octets

 Password

 Password in UTF-8 format

4.2.16. PKCS#7 TLV

 The PKCS#7 TLV is used by the EAP server to deliver (a)
 certificate(s) to the peer. The format consists of a certificate or
 certificate chain in a degenerate certificates-only PKCS#7 SignedData
 Content as defined in [RFC5652]. When used in response to a Trusted-
 Server-Root TLV request from the peer, the EAP server MUST send the
 PKCS#7 TLV inside a Trusted-Server-Root TLV. When used in response
 to a PKCS#10 certificate enrollment request from the peer, the EAP
 server MUST send the PKCS#7 TLV without a Trusted-Server-Root TLV.
 The PKCS#7 TLV is always marked as optional, which cannot be
 responded to with a NAK TLV. TEAP implementations that support the
 Trusted-Server-Root TLV or the PKCS#10 TLV MUST support this TLV.
 Peers MUST NOT assume that the certificates in a PKCS#7 TLV are in
 any order. TEAP Servers SHOULD include all intermediate certificates
 needed to form complete certificate paths to one or more trust
 anchors, and not just return the newly issued certificate(s). TEAP
 Servers MAY return CRLs in the CRL bag. TEAP Servers MAY return

https://datatracker.ietf.org/doc/html/rfc5652

Zhou, et al. Expires August 11, 2013 [Page 55]

Internet-Draft TEAP February 2013

 self-signed certificates. Peers that handle self-signed certificates
 or trust anchors MUST NOT implicitly trust these certificates merely
 due to their presence in the certificate bag. Note: Peer's are
 advised to take great care in deciding whether to use a received
 certificate as a trust anchor. The authenticated nature of the
 tunnel in which a PKCS#7 bag is received can provide a level of
 authenticity to the certificates contained therein. Peers are
 advised to take into account the implied authority of the EAP server
 and to constrain the trust it can achieve through the trust anchor
 received in a PKCS#7 TLV.

 The PKCS#7 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS #7 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 15 - PKCS#7 TLV

 Length

 The length of the PKCS #7 Data field.

 PKCS #7 Data

 This field contains the X.509 certificate or certificate chain
 in a Certificates-Only PKCS#7 SignedData message.

Zhou, et al. Expires August 11, 2013 [Page 56]

Internet-Draft TEAP February 2013

4.2.17. PKCS#10 TLV

 The PKCS#10 TLV is used by the peer to initiate the "simple PKI"
 Request/Response from [RFC5272]. The format of the request is as
 specified in Section 6.4 of [RFC4945]. The PKCS#10 TLV is always
 marked as optional, which cannot be responded to with a NAK TLV.

 The PKCS#10 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS #10 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 16 - PKCS#10 TLV

 Length

 The length of the PKCS #10 Data field.

 PKCS #10 Data

 This field contains the PKCS#10 certificate request.

4.2.18. Trusted-Server-Root TLV

 Trusted-Server-Root TLV facilitates the request and delivery of a
 trusted server root certificate. The Trusted-Server-Root TLV can be
 exchanged in regular TEAP authentication mode or provisioning mode.
 The Trusted-Server-Root TLV is always marked as optional, and cannot
 be responded to with a Negative Acknowledgement (NAK) TLV. The
 Trusted-Server-Root TLV MUST only be sent as an inner TLV (inside the
 protection of the tunnel).

https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc4945#section-6.4

Zhou, et al. Expires August 11, 2013 [Page 57]

Internet-Draft TEAP February 2013

 After the peer has determined that it has successfully authenticated
 the EAP server and validated the Crypto-Binding TLV, it MAY send one
 or more Trusted-Server-Root TLVs (marked as optional) to request the
 trusted server root certificates from the EAP server. The EAP server
 MAY send one or more root certificates with a Public Key
 Cryptographic System #7 (PKCS#7) TLV inside Server-Trusted-Root TLV.
 The EAP server MAY also choose not to honor the request.

 The Trusted-Server-Root TLV allows the peer to send a request to the
 EAP server for a list of trusted roots. The server may respond with
 one or more root certificates in PKCS#7 [RFC2315] format.

 If the EAP server sets the credential format to PKCS#7-Server-
 Certificate-Root, then the Trusted-Server-Root TLV should contain the
 root of the certificate chain of the certificate issued to the EAP
 server packaged in a PKCS#7 TLV. If the Server certificate is a
 self-signed certificate, then the root is the self-signed
 certificate.

 If the Trusted-Server-Root TLV credential format contains a value
 unknown to the peer, then the EAP peer should ignore the TLV.

 The Trusted-Server-Root TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Credential-Format | Cred TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Non-mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 17 - Trusted-Server-Root TLV [RFC4851]

https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc4851

Zhou, et al. Expires August 11, 2013 [Page 58]

Internet-Draft TEAP February 2013

 Length

 >=2 octets

 Credential-Format

 The Credential-Format field is two octets. Values include:

 1 - PKCS#7-Server-Certificate-Root

 Cred TLVs

 This field is of indefinite length. It contains TLVs
 associated with the credential format. The peer may leave
 this field empty when using this TLV to request server
 trust roots.

4.3. TLV Rules

 To save round trips, multiple TLVs can be sent in the single TEAP
 packet. However, multiple EAP Payload TLVs, or multiple multiple
 Basic Password Authentication TLVs, or an EAP Payload TLV with a
 Basic Password Authentication TLV within one single TEAP packet, is
 not supported in this version and MUST NOT be sent. If the peer or
 EAP server receives multiple EAP Payload TLVs, then it MUST terminate
 the connection with the Result TLV. The order of TLVs in TEAP does
 not matter, except one should always process the Identity-Type TLV
 before processing the EAP TLV or Basic Password Authentication TLV as
 the Identity-Type TLV is a hint to the type of identity that is to be
 authenticated.

 The following table defines the meaning of the table entries in the
 sections below:

 0 This TLV MUST NOT be present in the message.

 0+ Zero or more instances of this TLV MAY be present in the message.

 0-1 Zero or one instance of this TLV MAY be present in the message.

 1 Exactly one instance of this TLV MUST be present in the message.

4.3.1. Outer TLVs

 The following table provides a guide to which TLVs may be included in
 the TEAP packet outside the TLS channel, which kind of packets, and
 in what quantity:

Zhou, et al. Expires August 11, 2013 [Page 59]

Internet-Draft TEAP February 2013

 Request Response Success Failure TLVs
 0-1 0 0 0 Authority-ID
 0-1 0-1 0 0 Identity-Type
 0+ 0+ 0 0 Vendor-Specific

 Outer-TLVs MUST be marked as optional. Vendor-TLVs inside Vendor-
 Specific TLV MUST be marked as optional when included in Outer TLVs.
 Outer-TLVs MUST NOT be included in messages after the first two TEAP
 messages sent by peer and EAP-server respectively. That is the first
 EAP server to peer message and first peer to EAP server message. If
 the message is fragmented, the whole set of messages is counted as
 one message. If Outer-TLVs are included in messages after the first
 two TEAP messages, they MUST be ignored.

4.3.2. Inner TLVs

 The following table provides a guide to which inner TLVs may be
 encapsulated in TLS in TEAP Phase 2, in which kind of packets, and in
 what quantity. The messages are as follows: Request is a TEAP
 Request, Response is a TEAP Response, Success is a message containing
 a successful Result TLV, and Failure is a message containing a failed
 Result TLV.

 Request Response Success Failure TLVs
 0-1 0-1 0 0 Identity-Type
 0-1 0-1 1 1 Result
 0+ 0+ 0 0 NAK
 0+ 0+ 0+ 0+ Error
 0-1 0-1 0 0 Channel-Binding
 0+ 0+ 0+ 0+ Vendor-Specific [NOTE1]
 0+ 0+ 0+ 0+ Request-Action
 0-1 0-1 0 0 EAP-Payload
 0-1 0-1 0-1 0-1 Intermediate-Result
 0+ 0+ 0+ 0 PAC-TLV
 0-1 0-1 0-1 0-1 Crypto-Binding
 0-1 0 0 0 Basic-Password-Auth-Req
 0 0-1 0 0 Basic-Password-Auth-Resp
 0-1 0 0-1 0 PKCS#7
 0 0-1 0 0 PKCS#10
 0-1 0-1 0-1 0 Server-Trusted-Root

 [NOTE1] Vendor TLVs (included in Vendor-Specific TLVs) sent with a
 Result TLV MUST be marked as optional.

5. Cryptographic Calculations

Zhou, et al. Expires August 11, 2013 [Page 60]

Internet-Draft TEAP February 2013

5.1. TEAP Authentication Phase 1: Key Derivations

 With TEAPv1, the TLS master secret is generated as specified in TLS.
 If a PAC is used then the master secret is obtained as described in
 [RFC5077].

 TEAPv1 makes use of the TLS Keying Material Exporters defined in
 [RFC5705] to derive the session_key_seed. The Label used in the
 derivation is "EXPORTER: teap session key seed". The length of the
 session key seed material is 40 octets. No context data is used in
 the export process.

 The session_key_seed is used by the TEAP Authentication Phase 2
 conversation to both cryptographically bind the inner method(s) to
 the tunnel as well as generate the resulting TEAP session keys. The
 other quantities are used as they are defined in [RFC5246].

5.2. Intermediate Compound Key Derivations

 The session_key_seed derived as part of TEAP Phase 2 is used in TEAP
 Phase 2 to generate an Intermediate Compound Key (IMCK) used to
 verify the integrity of the TLS tunnel after each successful inner
 authentication and in the generation of Master Session Key (MSK) and
 Extended Master Session Key (EMSK) defined in [RFC3748]. Note that
 the IMCK must be recalculated after each successful inner EAP method.

 The first step in these calculations is the generation of the base
 compound key, IMCK[n] from the session_key_seed and any session keys
 derived from the successful execution of nth inner EAP methods. The
 inner EAP method(s) may provide Inner Method Session Keys (IMSK),
 IMSK1..IMSKn, corresponding to inner method 1 through n.

 If an inner method supports export of an Extended Master Session Key
 (EMSK), then the IMSK SHOULD be derived from the EMSK as defined in
 [RFC5295]. The usage label used is "TEAPbindkey@ietf.org" and the
 length is 64 octets. Optional data parameter is not used in the
 derivation.

 IMSK = First 32 octets of KDF(EMSK, "TEAPbindkey@ietf.org" | "\0"
 | 64)

 where the KDF is defined in [RFC5295].

 If an inner method does not support export of an Extended Master
 Session Key (EMSK), then IMSK is the MSK of the inner method. The
 MSK is truncated at 32 octets if it is longer than 32 octets or
 padded to a length of 32 octets with zeros if it is less than 32
 octets.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5295
https://datatracker.ietf.org/doc/html/rfc5295

Zhou, et al. Expires August 11, 2013 [Page 61]

Internet-Draft TEAP February 2013

 However, it's possible that the peer and server sides might not have
 the same capability to export EMSK. In order to maintain maximum
 flexibility while prevent downgrading attack, the following mechanism
 is in place:

 On the sender of the Crypto-Binding TLV side:

 If the EMSK is not available, then computes the Compound MAC using
 MSK of the inner method.

 If the EMSK is available, and the sender's policy accepts MSK
 based MAC, then it computes two Compound MAC values. The first is
 computed with the EMSK. The second one is computed using the MSK.
 Both MACs are then sent to the other side.

 If the EMSK is available, but the sender's policy does not allow
 downgrade to MSK generated MAC, then it SHOULD only send EMSK
 based MAC.

 On the receiver of the Crypto-Binding TLV side:

 If the EMSK is not available and a MSK based Compound MAC was
 sent, validates the Compound MAC and sends back a MSK based
 Compound MAC response.

 If the EMSK is not available and no MSK based Compound MAC was
 sent, then handles like an invalid Crypto-Binding TLV with fatal
 error.

 If the EMSK is available and an EMSK based Compound MAC was sent,
 validates it and creates a response Compound MAC using the EMSK.

 If the EMSK is available, but no EMSK based Compound MAC was sent,
 and its policy accepts MSK based MAC, then validates it using the
 MSK and if successful, generates and returns a MSK based Compound
 MAC.

 If the EMSK is available, but no EMSK Compound MAC was sent, and
 its policy does not accept MSK based MAC, then it handles like an
 invalid Crypto-Binding TLV with fatal error.

 If the ith inner method does not generate an EMSK or MSK, thendoesn
 IMSKi is set to zero (e.g., MSKi = 32 octets of 0x00s). If an inner
 method fails, then it is not included in this calculation. The
 derivations of S-IMCK is as follows:

Zhou, et al. Expires August 11, 2013 [Page 62]

Internet-Draft TEAP February 2013

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = TLS-PRF(S-IMCK[j-1], "Inner Methods Compound Keys",
 IMSK[j], 60)
 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

 where TLS-PRF is the PRF negotiated as part of TLS handshake
 [RFC5246].

5.3. Computing the Compound MAC

 For authentication methods that generate keying material, further
 protection against man-in-the-middle attacks is provided through
 cryptographically binding keying material established by both TEAP
 Phase 1 and TEAP Phase 2 conversations. After each successful inner
 EAP authentication, EAP EMSK and/or MSKs are cryptographically
 combined with key material from TEAP Phase 1 to generate a compound
 session key, CMK. The CMK is used to calculate the Compound MAC as
 part of the Crypto-Binding TLV described in Section 4.2.13, which
 helps provide assurance that the same entities are involved in all
 communications in TEAP. During the calculation of the Compound-MAC
 the MAC field is filled with zeros.

 The Compound MAC computation is as follows:

 CMK = CMK[j]
 Compound-MAC = MAC(CMK, BUFFER)

 where j is the number of the last successfully executed inner EAP
 method, MAC is the MAC function negotiated in TLS 1.2 [RFC5246], and
 BUFFER is created after concatenating these fields in the following
 order:

 1 The entire Crypto-Binding TLV attribute with both the EMSK and MSK
 Compound MAC fields zeroed out.

 2 The EAP Type sent by the other party in the first TEAP message.

 3 All the Outer-TLVs from the first TEAP message sent by EAP server
 to peer. If a single TEAP message is fragmented into multiple
 TEAP packets; then the Outer-TLVs in all the fragments of that
 message MUST be included.

 4 All the Outer-TLVs from the first TEAP message sent by the peer to
 the EAP server. If a single TEAP message is fragmented into
 multiple TEAP packets, then the Outer-TLVs in all the fragments of
 that message MUST be included.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Zhou, et al. Expires August 11, 2013 [Page 63]

Internet-Draft TEAP February 2013

5.4. EAP Master Session Key Generation

 TEAP Authentication assures the master session key (MSK) and Extended
 Master Session Key (EMSK) output from the EAP method are the result
 of all authentication conversations by generating an Intermediate
 Compound Key (IMCK). The IMCK is mutually derived by the peer and
 the server as described in Section 5.2 by combining the MSKs from
 inner EAP methods with key material from TEAP Phase 1. The resulting
 MSK and EMSK are generated as part of the IMCKn key hierarchy as
 follows:

 MSK = TLS-PRF(S-IMCK[j], "Session Key Generating Function", 64)
 EMSK = TLS-PRF(S-IMCK[j],
 "Extended Session Key Generating Function", 64)

 where j is the number of the last successfully executed inner EAP
 method.

 The EMSK is typically only known to the TEAP peer and server and is
 not provided to a third party. The derivation of additional keys and
 transportation of these keys to a third party is outside the scope of
 this document.

 If no EAP methods have been negotiated inside the tunnel or no EAP
 methods have been successfully completed inside the tunnel, the MSK
 and EMSK will be generated directly from the session_key_seed meaning
 S-IMCK = session_key_seed.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the TEAP
 protocol, in accordance with BCP 26, [RFC5226].

 The EAP Method Type number for TEAP needs to be assigned.

 The document defines a registry for TEAP TLV types, which may be
 assigned by Specification Required as defined in [RFC5226].

Section 4.2 defines the TLV types that initially populate the
 registry. A summary of the TEAP TLV types is given below:

 0 Unassigned

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Zhou, et al. Expires August 11, 2013 [Page 64]

Internet-Draft TEAP February 2013

 1 Authority-ID TLV

 2 Identity-Type TLV

 3 Result TLV

 4 NAK TLV

 5 Error TLV

 6 Channel-Binding TLV

 7 Vendor-Specific TLV

 8 Request-Action TLV

 9 EAP-Payload TLV

 10 Intermediate-Result TLV

 11 PAC TLV

 12 Crypto-Binding TLV

 13 Basic-Password-Auth-Req TLV

 14 Basic-Password-Auth-Resp TLV

 15 PKCS#7 TLV

 16 PKCS#10 TLV

 17 Trusted-Server-Root TLV

 The Identity-Type defined in Section 4.2.3 contains an Identity Type
 code which is assigned on a Specification Required basis as defined
 in [RFC5226]. The initial types defined are:

 1 User

 2 Machine

 The Result TLV defined in Section 4.2.4, Request-Action TLV defined
 in Section 4.2.9, and Intermediate-Result TLV defined in

Section 4.2.11 contain a Status code which is assigned on a
 Specification Required basis as defined in [RFC5226]. The initial
 types defined are:

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Zhou, et al. Expires August 11, 2013 [Page 65]

Internet-Draft TEAP February 2013

 1 Success

 2 Failure

 The Error-TLV defined in Section 4.2.6 requires an error-code. TEAP
 Error-TLV error-codes are assigned based on Specification Required as
 defined in [RFC5226]. The initial list of error codes is as follows:

 1001 Inner_Method_Error

 2001 Tunnel_Compromise_Error

 2002 Unexpected_TLVs_Exchanged

 2003 Unsupported_Algorithm_In_CertificateSigning_Request

 2004 Unsupported_Extension_In_CertificateSigning_Request

 2005 Bad_Identity_In_CertificateSigning_Request

 2006 Bad_CertificateSigning_Request

 2007 Internal_CA_Error

 2008 General_PKI_Error

 The Request-Action TLV defined in Section 4.2.9 contains an action
 code which is assigned on a Specification Required basis as defined
 in [RFC5226]. The initial actions defined are:

 1 Process-TLV

 2 Negotiate-EAP

 The PAC Attribute defined in Section 4.2.12.1 contains a Type code
 which is assigned on a Specification Required basis as defined in
 [RFC5226]. The initial types defined are:

 1 PAC-key

 2 PAC-Opaque

 3 PAC-Lifetime

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Zhou, et al. Expires August 11, 2013 [Page 66]

Internet-Draft TEAP February 2013

 4 A-ID

 5 I-ID

 6 Reserved

 7 A-ID-Info

 8 PAC-Acknowledgement

 9 PAC-Info

 10 PAC-Type

 The PAC-Type defined in Section 4.2.12.6 contains a Type code which
 is assigned on a Specification Required basis as defined in
 [RFC5226]. The initial types defined are:

 1 Tunnel PAC

 The Trusted-Server-Root TLV defined in Section 4.2.18 contains a
 Credential-Format code which is assigned on a Specification Required
 basis as defined in [RFC5226]. The initial types defined are:

 1 PKCS#7-Server-Certificate-Root

 The various values under Vendor-Specific TLV are assigned by Private
 Use and do not need to be assigned by IANA.

 TEAP registers the label "EXPORTER: teap session key seed" in the TLS
 Exporter Label Registry [RFC5705]. This label is used in derivation
 as defined in Section 5.1.

 TEAP registers a TEAP binding usage label from the "USRK Key Labels"
 name space defined in [RFC5295] with a value "TEAPbindkey@ietf.org".

7. Security Considerations

 TEAP is designed with a focus on wireless media, where the medium
 itself is inherent to eavesdropping. Whereas in wired media, an
 attacker would have to gain physical access to the wired medium;
 wireless media enables anyone to capture information as it is
 transmitted over the air, enabling passive attacks. Thus, physical
 security can not be assumed and security vulnerabilities are far
 greater. The threat model used for the security evaluation of TEAP
 is defined in the EAP [RFC3748].

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5295
https://datatracker.ietf.org/doc/html/rfc3748

Zhou, et al. Expires August 11, 2013 [Page 67]

Internet-Draft TEAP February 2013

7.1. Mutual Authentication and Integrity Protection

 TEAP as a whole, provides message and integrity protection by
 establishing a secure tunnel for protecting the authentication
 method(s). The confidentiality and integrity protection is defined
 by TLS and provides the same security strengths afforded by TLS
 employing a strong entropy shared master secret. The integrity of
 the key generating authentication methods executed within the TEAP
 tunnel is verified through the calculation of the Crypto-Binding TLV.
 This ensures that the tunnel endpoints are the same as the inner
 method endpoints.

 The Result TLV is protected and conveys the true Success or Failure
 of TEAP, and should be used as the indicator of its success or
 failure respectively. However, as EAP must terminate with a clear
 text EAP Success or Failure, a peer will also receive a clear text
 EAP Success or Failure. The received clear text EAP Success or
 Failure must match that received in the Result TLV; the peer SHOULD
 silently discard those clear text EAP success or failure messages
 that do not coincide with the status sent in the protected Result
 TLV.

7.2. Method Negotiation

 As is true for any negotiated EAP protocol, NAK packets used to
 suggest an alternate authentication method are sent unprotected and
 as such, are subject to spoofing. During unprotected EAP method
 negotiation, NAK packets may be interjected as active attacks to
 negotiate down to a weaker form of authentication, such as EAP-MD5
 (which only provides one-way authentication and does not derive a
 key). Both the peer and server should have a method selection policy
 that prevents them from negotiating down to weaker methods. Inner
 method negotiation resists attacks because it is protected by the
 mutually authenticated TLS tunnel established. Selection of TEAP as
 an authentication method does not limit the potential inner
 authentication methods, so TEAP should be selected when available.

 An attacker cannot readily determine the inner EAP method used,
 except perhaps by traffic analysis. It is also important that peer
 implementations limit the use of credentials with an unauthenticated
 or unauthorized server.

7.3. Separation of Phase 1 and Phase 2 Servers

 Separation of the TEAP Phase 1 from the Phase 2 conversation is NOT
 RECOMMENDED. Allowing the Phase 1 conversation to be terminated at a
 different server than the Phase 2 conversation can introduce
 vulnerabilities if there is not a proper trust relationship and

Zhou, et al. Expires August 11, 2013 [Page 68]

Internet-Draft TEAP February 2013

 protection for the protocol between the two servers. Some
 vulnerabilities include:

 o Loss of identity protection

 o Offline dictionary attacks

 o Lack of policy enforcement

 o Man-in-the-middle attacks (as described in
 [I-D.hartman-emu-mutual-crypto-bind])

 There may be cases where a trust relationship exists between the
 Phase 1 and Phase 2 servers, such as on a campus or between two
 offices within the same company, where there is no danger in
 revealing the inner identity and credentials of the peer to entities
 between the two servers. In these cases, using a proxy solution
 without end-to-end protection of TEAP MAY be used. The TEAP
 encrypting/decrypting gateway SHOULD, at a minimum, provide support
 for IPsec or similar protection in order to provide confidentiality
 for the portion of the conversation between the gateway and the EAP
 server. In addition, separation of the inner and outer method
 servers allows for crypto-binding based on the inner method MSK to be
 thwarted as described in [I-D.hartman-emu-mutual-crypto-bind].
 Implentor and deployment SHOULD adopt various mitigation strategies
 described in [I-D.hartman-emu-mutual-crypto-bind]. If the inner
 method is deriving EMSK, then this threat is mitigated as TEAP
 utilizes the mutual crypto-binding based on EMSK as described in
 [I-D.hartman-emu-mutual-crypto-bind].

7.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies

 TEAP addresses the known deficiencies and weaknesses in the EAP
 method. By employing a shared secret between the peer and server to
 establish a secured tunnel, TEAP enables:

 o Per packet confidentiality and integrity protection

 o User identity protection

 o Better support for notification messages

 o Protected EAP inner method negotiation

 o Sequencing of EAP methods

 o Strong mutually derived master session keys

Zhou, et al. Expires August 11, 2013 [Page 69]

Internet-Draft TEAP February 2013

 o Acknowledged success/failure indication

 o Faster re-authentications through session resumption

 o Mitigation of dictionary attacks

 o Mitigation of man-in-the-middle attacks

 o Mitigation of some denial-of-service attacks

 It should be noted that TEAP, as in many other authentication
 protocols, a denial-of-service attack can be mounted by adversaries
 sending erroneous traffic to disrupt the protocol. This is a problem
 in many authentication or key agreement protocols and is therefore
 noted for TEAP as well.

 TEAP was designed with a focus on protected authentication methods
 that typically rely on weak credentials, such as password-based
 secrets. To that extent, the TEAP Authentication mitigates several
 vulnerabilities, such as dictionary attacks, by protecting the weak
 credential-based authentication method. The protection is based on
 strong cryptographic algorithms in TLS to provide message
 confidentiality and integrity. The keys derived for the protection
 relies on strong random challenges provided by both peer and server
 as well as an established key with strong entropy. Implementations
 should follow the recommendation in [RFC4086] when generating random
 numbers.

7.4.1. User Identity Protection and Verification

 The initial identity request response exchange is sent in cleartext
 outside the protection of TEAP. Typically the Network Access
 Identifier (NAI) [RFC4282] in the identity response is useful only
 for the realm information that is used to route the authentication
 requests to the right EAP server. This means that the identity
 response may contain an anonymous identity and just contain realm
 information. In other cases, the identity exchange may be eliminated
 altogether if there are other means for establishing the destination
 realm of the request. In no case should an intermediary place any
 trust in the identity information in the identity response since it
 is unauthenticated and may not have any relevance to the
 authenticated identity. TEAP implementations should not attempt to
 compare any identity disclosed in the initial cleartext EAP Identity
 response packet with those Identities authenticated in Phase 2.

 Identity request-response exchanges sent after the TEAP tunnel is
 established are protected from modification and eavesdropping by
 attackers.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4282

Zhou, et al. Expires August 11, 2013 [Page 70]

Internet-Draft TEAP February 2013

 Note that since TLS client certificates are sent in the clear, if
 identity protection is required, then it is possible for the TLS
 authentication to be re-negotiated after the first server
 authentication. To accomplish this, the server will typically not
 request a certificate in the server_hello, then after the
 server_finished message is sent, and before TEAP Phase 2, the server
 MAY send a TLS hello_request. This allows the client to perform
 client authentication by sending a client_hello if it wants to, or
 send a no_renegotiation alert to the server indicating that it wants
 to continue with TEAP Phase 2 instead. Assuming that the client
 permits renegotiation by sending a client_hello, then the server will
 respond with server_hello, a certificate and certificate_request
 messages. The client replies with certificate, client_key_exchange
 and certificate_verify messages. Since this re-negotiation occurs
 within the encrypted TLS channel, it does not reveal client
 certificate details. It is possible to perform certificate
 authentication using an EAP method (for example: EAP-TLS) within the
 TLS session in TEAP Phase 2 instead of using TLS handshake
 renegotiation.

7.4.2. Dictionary Attack Resistance

 TEAP was designed with a focus on protected authentication methods
 that typically rely on weak credentials, such as password-based
 secrets. TEAP mitigates dictionary attacks by allowing the
 establishment of a mutually authenticated encrypted TLS tunnel
 providing confidentiality and integrity to protect the weak
 credential based authentication method.

7.4.3. Protection against Man-in-the-Middle Attacks

 Allowing methods to be executed both with and without the protection
 of a secure tunnel opens up a possibility of a man-in-the-middle
 attack. To avoid man-in-the-middle attacks it is recommended to
 always deploy authentication methods with protection of TEAP. TEAP
 provides protection from man-in-the-middle attacks even if a
 deployment chooses to execute inner EAP methods both with and without
 TEAP protection, TEAP prevents this attack in two ways:

 1. By using the PAC-Key to mutually authenticate the peer and server
 during TEAP Authentication Phase 1 establishment of a secure
 tunnel.

 2. By using the keys generated by the inner authentication method
 (if the inner methods are key generating) in the crypto-binding
 exchange and in the generation of the key material exported by
 the EAP method described in Section 5.

Zhou, et al. Expires August 11, 2013 [Page 71]

Internet-Draft TEAP February 2013

7.4.4. PAC Binding to User Identity

 A PAC may be bound to a user identity. A compliant implementation of
 TEAP MUST validate that an identity obtained in the PAC-Opaque field
 matches at minimum one of the identities provided in the TEAP Phase 2
 authentication method. This validation provides another binding to
 ensure that the intended peer (based on identity) has successfully
 completed the TEAP Phase 1 and proved identity in the Phase 2
 conversations.

7.5. Protecting against Forged Clear Text EAP Packets

 EAP Success and EAP Failure packets are, in general, sent in clear
 text and may be forged by an attacker without detection. Forged EAP
 Failure packets can be used to attempt to convince an EAP peer to
 disconnect. Forged EAP Success packets may be used to attempt to
 convince a peer that authentication has succeeded, even though the
 authenticator has not authenticated itself to the peer.

 By providing message confidentiality and integrity, TEAP provides
 protection against these attacks. Once the peer and AS initiate the
 TEAP Authentication Phase 2, compliant TEAP implementations must
 silently discard all clear text EAP messages, unless both the TEAP
 peer and server have indicated success or failure using a protected
 mechanism. Protected mechanisms include TLS alert mechanism and the
 protected termination mechanism described in Section 3.3.3.

 The success/failure decisions within the TEAP tunnel indicate the
 final decision of the TEAP authentication conversation. After a
 success/failure result has been indicated by a protected mechanism,
 the TEAP peer can process unprotected EAP Success and EAP Failure
 messages; however the peer MUST ignore any unprotected EAP success or
 failure messages where the result does not match the result of the
 protected mechanism.

 To abide by [RFC3748], the server must send a clear text EAP Success
 or EAP Failure packet to terminate the EAP conversation. However,
 since EAP Success and EAP Failure packets are not retransmitted, the
 final packet may be lost. While a TEAP protected EAP Success or EAP
 Failure packet should not be a final packet in a TEAP conversation,
 it may occur based on the conditions stated above, so an EAP peer
 should not rely upon the unprotected EAP success and failure
 messages.

7.6. Server Certificate Validation

 As part of the TLS negotiation, the server presents a certificate to
 the peer. The peer MUST verify the validity of the EAP server

https://datatracker.ietf.org/doc/html/rfc3748

Zhou, et al. Expires August 11, 2013 [Page 72]

Internet-Draft TEAP February 2013

 certificate, and SHOULD also examine the EAP server name presented in
 the certificate, in order to determine whether the EAP server can be
 trusted. When performing server certificate validation
 implementations MUST provide support rules in [RFC5280] for
 validating certificates against a known trust anchor. In addition,
 implementations SHOULD support matching the realm portion of the
 client's NAI against a SubjectAltName of type dNSName within the
 server certificate. Please note that in the case where the EAP
 authentication is remoted, the EAP server will not reside on the same
 machine as the authenticator, and therefore the name in the EAP
 server's certificate cannot be expected to match that of the intended
 destination. In this case, a more appropriate test might be whether
 the EAP server's certificate is signed by a CA controlling the
 intended domain and whether the authenticator can be authorized by a
 server in that domain.

7.7. Tunnel PAC Considerations

 Since the Tunnel PAC is stored by the peer, special care should be
 given to the overall security of the peer. The Tunnel PAC must be
 securely stored by the peer to prevent theft or forgery of any of the
 Tunnel PAC components. In particular, the peer must securely store
 the PAC-Key and protect it from disclosure or modification.
 Disclosure of the PAC-Key enables an attacker to establish the TEAP
 tunnel; however, disclosure of the PAC-Key does not reveal the peer
 or server identity or compromise any other peer's PAC credentials.
 Modification of the PAC-Key or PAC-Opaque components of the Tunnel
 PAC may also lead to denial of service as the tunnel establishment
 will fail. The PAC-Opaque component is the effective TLS ticket
 extension used to establish the tunnel using the techniques of
 [RFC5077]. Thus, the security considerations defined by [RFC5077]
 also apply to the PAC- Opaque. The PAC-Info may contain information
 about the Tunnel PAC such as the identity of the PAC issuer and the
 Tunnel PAC lifetime for use in the management of the Tunnel PAC. The
 PAC-Info should be securely stored by the peer to protect it from
 disclosure and modification.

7.8. Security Claims

 This section provides the needed security claim requirement for EAP
 [RFC3748].

 Auth. mechanism: Certificate based, shared secret based and
 various tunneled authentication mechanisms.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc3748

Zhou, et al. Expires August 11, 2013 [Page 73]

Internet-Draft TEAP February 2013

 Ciphersuite negotiation: Yes

 Mutual authentication: Yes

 Integrity protection: Yes, Any method executed within the TEAP
 tunnel is integrity protected. The
 cleartext EAP headers outside the tunnel are
 not integrity protected.

 Replay protection: Yes

 Confidentiality: Yes

 Key derivation: Yes

 Key strength: See Note 1 below.

 Dictionary attack prot.: Yes

 Fast reconnect: Yes

 Cryptographic binding: Yes

 Session independence: Yes

 Fragmentation: Yes

 Key Hierarchy: Yes

 Channel binding: Yes

 Notes

 1. BCP 86 [RFC3766] offers advice on appropriate key sizes. The
 National Institute for Standards and Technology (NIST) also
 offers advice on appropriate key sizes in [NIST-SP-800-57].

[RFC3766] Section 5 advises use of the following required RSA or
 DH module and DSA subgroup size in bits, for a given level of
 attack resistance in bits. Based on the table below, a 2048-bit
 RSA key is required to provide 128-bit equivalent key strength:

https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc3766#section-5

Zhou, et al. Expires August 11, 2013 [Page 74]

Internet-Draft TEAP February 2013

 Attack Resistance RSA or DH Modulus DSA subgroup
 (bits) size (bits) size (bits)
 ----------------- ----------------- ------------
 70 947 129
 80 1228 148
 90 1553 167
 100 1926 186
 150 4575 284
 200 8719 383
 250 14596 482

8. Acknowledgements

 The TEAP v1 design and protocol specification is based on EAP-FAST
 [RFC4851], which included the ideas and hard efforts of Nancy Cam-
 Winget, David McGrew, Joe Salowey, Hao Zhou, Pad Jakkahalli, Mark
 Krischer, Doug Smith, and Glen Zorn of Cisco Systems, Inc.

 The TLV processing was inspired from work on the Protected Extensible
 Authentication Protocol version 2 (PEAPv2) with Ashwin Palekar, Dan
 Smith, Sean Turner and Simon Josefsson.

 Helpful review comments were provided by Russ Housley, Jari Arkko,
 Ilan Frenkel, Jeremy Steiglitz, Dan Harkins, Sam Hartman, and Jim
 Schaad.

9. References

9.1. Normative References

 [I-D.ietf-emu-chbind] Hartman, S., Clancy, T., and K.
 Hoeper, "Channel Binding
 Support for EAP Methods",

draft-ietf-emu-chbind-15 (work
 in progress), May 2012.

 [RFC2119] Bradner, S., "Key words for use
 in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC3748] Aboba, B., Blunk, L.,
 Vollbrecht, J., Carlson, J.,
 and H. Levkowetz, "Extensible
 Authentication Protocol (EAP)",

RFC 3748, June 2004.

 [RFC4851] Cam-Winget, N., McGrew, D.,

https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/draft-ietf-emu-chbind-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748

Zhou, et al. Expires August 11, 2013 [Page 75]

Internet-Draft TEAP February 2013

 Salowey, J., and H. Zhou, "The
 Flexible Authentication via
 Secure Tunneling Extensible
 Authentication Protocol Method
 (EAP-FAST)", RFC 4851,
 May 2007.

 [RFC5077] Salowey, J., Zhou, H., Eronen,
 P., and H. Tschofenig,
 "Transport Layer Security (TLS)
 Session Resumption without
 Server-Side State", RFC 5077,
 January 2008.

 [RFC5226] Narten, T. and H. Alvestrand,
 "Guidelines for Writing an IANA
 Considerations Section in
 RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla,
 "The Transport Layer Security
 (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

 [RFC5295] Salowey, J., Dondeti, L.,
 Narayanan, V., and M. Nakhjiri,
 "Specification for the
 Derivation of Root Keys from an
 Extended Master Session Key
 (EMSK)", RFC 5295, August 2008.

 [RFC5705] Rescorla, E., "Keying Material
 Exporters for Transport Layer
 Security (TLS)", RFC 5705,
 March 2010.

 [RFC5746] Rescorla, E., Ray, M.,
 Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS)
 Renegotiation Indication
 Extension", RFC 5746,
 February 2010.

 [RFC5929] Altman, J., Williams, N., and
 L. Zhu, "Channel Bindings for
 TLS", RFC 5929, July 2010.

https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5295
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5929

Zhou, et al. Expires August 11, 2013 [Page 76]

Internet-Draft TEAP February 2013

9.2. Informative References

 [I-D.hartman-emu-mutual-crypto-bind] Hartman, S., Wasserman, M., and
 D. Zhang, "EAP Mutual
 Cryptographic Binding", draft-

hartman-emu-mutual-crypto-bind-
 00 (work in progress),
 March 2012.

 [I-D.ietf-emu-eaptunnel-req] Zhou, H., Salowey, J., Hoeper,
 K., and S. Hanna, "Requirements
 for a Tunnel Based EAP Method",

draft-ietf-emu-eaptunnel-req-09
 (work in progress),
 December 2010.

 [IEEE.802-1X.2004] "Local and Metropolitan Area
 Networks: Port-Based Network
 Access Control", IEEE Standard
 802.1X, December 2004.

 [NIST-SP-800-57] National Institute of Standards
 and Technology,
 ""Recommendation for Key
 Management"", NIST Special
 Publication 800-57, May 2006.

 [PEAP] Microsoft Corporation, ""[MS-
 PEAP]: Protected Extensible
 Authentication Protocol (PEAP)
 Specification"", August 2009.

 [RFC2315] Kaliski, B., "PKCS #7:
 Cryptographic Message Syntax
 Version 1.5", RFC 2315,
 March 1998.

 [RFC2560] Myers, M., Ankney, R., Malpani,
 A., Galperin, S., and C. Adams,
 "X.509 Internet Public Key
 Infrastructure Online
 Certificate Status Protocol -
 OCSP", RFC 2560, June 1999.

 [RFC2986] Nystrom, M. and B. Kaliski,
 "PKCS #10: Certification
 Request Syntax Specification
 Version 1.7", RFC 2986,

https://datatracker.ietf.org/doc/html/draft-hartman-emu-mutual-crypto-bind
https://datatracker.ietf.org/doc/html/draft-hartman-emu-mutual-crypto-bind
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eaptunnel-req-09
https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2986

Zhou, et al. Expires August 11, 2013 [Page 77]

Internet-Draft TEAP February 2013

 November 2000.

 [RFC3579] Aboba, B. and P. Calhoun,
 "RADIUS (Remote Authentication
 Dial In User Service) Support
 For Extensible Authentication
 Protocol (EAP)", RFC 3579,
 September 2003.

 [RFC3629] Yergeau, F., "UTF-8, a
 transformation format of ISO
 10646", STD 63, RFC 3629,
 November 2003.

 [RFC3766] Orman, H. and P. Hoffman,
 "Determining Strengths For
 Public Keys Used For Exchanging
 Symmetric Keys", BCP 86,

RFC 3766, April 2004.

 [RFC4072] Eronen, P., Hiller, T., and G.
 Zorn, "Diameter Extensible
 Authentication Protocol (EAP)
 Application", RFC 4072,
 August 2005.

 [RFC4086] Eastlake, D., Schiller, J., and
 S. Crocker, "Randomness
 Requirements for Security",

BCP 106, RFC 4086, June 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko,
 J., and P. Eronen, "The Network
 Access Identifier", RFC 4282,
 December 2005.

 [RFC4945] Korver, B., "The Internet IP
 Security PKI Profile of IKEv1/
 ISAKMP, IKEv2, and PKIX",

RFC 4945, August 2007.

 [RFC5247] Aboba, B., Simon, D., and P.
 Eronen, "Extensible
 Authentication Protocol (EAP)
 Key Management Framework",

RFC 5247, August 2008.

 [RFC5272] Schaad, J. and M. Myers,

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/rfc4945
https://datatracker.ietf.org/doc/html/rfc5247

Zhou, et al. Expires August 11, 2013 [Page 78]

Internet-Draft TEAP February 2013

 "Certificate Management over
 CMS (CMC)", RFC 5272,
 June 2008.

 [RFC5280] Cooper, D., Santesson, S.,
 Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk,
 "Internet X.509 Public Key
 Infrastructure Certificate and
 Certificate Revocation List
 (CRL) Profile", RFC 5280,
 May 2008.

 [RFC5281] Funk, P. and S. Blake-Wilson,
 "Extensible Authentication
 Protocol Tunneled Transport
 Layer Security Authenticated
 Protocol Version 0 (EAP-
 TTLSv0)", RFC 5281,
 August 2008.

 [RFC5421] Cam-Winget, N. and H. Zhou,
 "Basic Password Exchange within
 the Flexible Authentication via
 Secure Tunneling Extensible
 Authentication Protocol (EAP-
 FAST)", RFC 5421, March 2009.

 [RFC5652] Housley, R., "Cryptographic
 Message Syntax (CMS)", STD 70,

RFC 5652, September 2009.

 [RFC5931] Harkins, D. and G. Zorn,
 "Extensible Authentication
 Protocol (EAP) Authentication
 Using Only a Password",

RFC 5931, August 2010.

 [RFC6066] Eastlake, D., "Transport Layer
 Security (TLS) Extensions:
 Extension Definitions",

RFC 6066, January 2011.

 [RFC6124] Sheffer, Y., Zorn, G.,
 Tschofenig, H., and S. Fluhrer,
 "An EAP Authentication Method
 Based on the Encrypted Key
 Exchange (EKE) Protocol",

https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc6066

Zhou, et al. Expires August 11, 2013 [Page 79]

Internet-Draft TEAP February 2013

RFC 6124, February 2011.

Appendix A. Evaluation Against Tunnel Based EAP Method Requirements

 This section evaluates all tunnel based EAP method requirements
 described in [I-D.ietf-emu-eaptunnel-req] against TEAP version 1.

A.1. Requirement 4.1.1 RFC Compliance

 TEAP v1 meets this requirement by being compliant to RFC 3748, RFC
4017, RFC 5247, and RFC 4962. It is also compliant with the

 "cryptographic algorithm agility" requirement by leveraging TLS 1.2
 for all cryptographic algorithm negotiation.

A.2. Requirement 4.2.1 TLS Requirements

 Requirement 4.2.1 states:

 The tunnel based method MUST support TLS version 1.2 [RFC5246] and
 may support earlier versions greater than SSL 2.0 to enable the
 possibility of backwards compatibility.

 TEAP v1 meets this requirement by mandating TLS version 1.2 support
 as defined in Section 3.2.

A.3. Requirement 4.2.1.1.1 Cipher Suite Negotiation

 Requirement 4.2.1.1.1 states:

 Hence, the tunnel method MUST provide integrity protected cipher
 suite negotiation with secure integrity algorithms and integrity
 keys.

 TEAP v1 meets this requirement by using TLS to provide protected
 cipher suite negotiation.

A.4. Requirement 4.2.1.1.2 Tunnel Data Protection Algorithms

 Requirement 4.2.1.1.2 states:

 The tunnel method MUST provide at least one mandatory to implement
 cipher suite that provides the equivalent security of 128-bit AES for
 encryption and message authentication.

 TEAP v1 meets this requirement by mandating
 TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory to implement cipher suite
 as defined in Section 3.2.

https://datatracker.ietf.org/doc/html/rfc6124
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc5246

Zhou, et al. Expires August 11, 2013 [Page 80]

Internet-Draft TEAP February 2013

A.5. Requirement 4.2.1.1.3 Tunnel Authentication and Key Establishment

 TEAP v1 meets this requirement by mandating
 TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory to implement cipher suite
 which provides certificate-based authentication of the server and is
 approved by NIST. The mandatory to implement cipher suites only
 include cipher suites that use strong cryptographic algorithms. They
 do not include cipher suites providing mutually anonymous
 authentication or static Diffie-Hellman cipher suites as defined in

Section 3.2.

A.6. Requirement 4.2.1.2 Tunnel Replay Protection

 TEAP v1 meets this requirement by using TLS to provide sufficient
 replay protection.

A.7. Requirement 4.2.1.3 TLS Extensions

 TEAP v1 meets this requirement by allowing TLS extensions, such as
 TLS Certificate Status Request extension [RFC6066] and SessionTicket
 extension [RFC5077] to be used during TLS tunnel establishment.

A.8. Requirement 4.2.1.4 Peer Identity Privacy

 TEAP v1 meets this requirement by establishment of the TLS tunnel and
 protection of inner method specific identities. In addition, the
 peer certificate can be sent confidentially (i.e. encrypted).

A.9. Requirement 4.2.1.5 Session Resumption

 TEAP v1 meets this requirement by mandating support of TLS session
 resumption as defined in Section 3.2.1 and TLS Session Resume Using a
 PAC as defined in Section 3.2.2 .

A.10. Requirement 4.2.2 Fragmentation

 TEAP v1 meets this requirement by leveraging fragmentation support
 provided by TLS as defined in Section 3.7.

A.11. Requirement 4.2.3 Protection of Data External to Tunnel

 TEAP v1 meets this requirement by including TEAP version number
 received in the computation of crypto-binding TLV as defined in

Section 4.2.13.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 81]

Internet-Draft TEAP February 2013

A.12. Requirement 4.3.1 Extensible Attribute Types

 TEAP v1 meets this requirement by using an extensible TLV data layer
 inside the tunnel as defined in Section 4.2.

A.13. Requirement 4.3.2 Request/Challenge Response Operation

 TEAP v1 meets this requirement by allowing multiple TLVs to be sent
 in a single EAP request or response packet, while maintaining the
 half-duplex operation typical of EAP.

A.14. Requirement 4.3.3 Indicating Criticality of Attributes

 TEAP v1 meets this requirement by having a mandatory bit in TLV to
 indicate whether it is mandatory to support or not as defined in

Section 4.2.

A.15. Requirement 4.3.4 Vendor Specific Support

 TEAP v1 meets this requirement by having a Vendor-Specific TLV to
 allow vendors to define their own attributes as defined in

Section 4.2.8.

A.16. Requirement 4.3.5 Result Indication

 TEAP v1 meets this requirement by having a Result TLV to exchange the
 final result of the EAP authentication so both the peer and server
 have a synchronized state as defined in Section 4.2.4.

A.17. Requirement 4.3.6 Internationalization of Display Strings

 TEAP v1 meets this requirement by supporting UTF-8 format in Basic-
 Password-Auth-Req TLV as defined in Section 4.2.14 and Basic-
 Password-Auth-Resp TLV as defined in Section 4.2.15.

A.18. Requirement 4.4 EAP Channel Binding Requirements

 TEAP v1 meets this requirement by having a Channel-Binding TLV to
 exchange the EAP channel binding data as defined in Section 4.2.7.

A.19. Requirement 4.5.1.1 Confidentiality and Integrity

 TEAP v1 meets this requirement by running the password authentication
 inside a protected TLS tunnel.

Zhou, et al. Expires August 11, 2013 [Page 82]

Internet-Draft TEAP February 2013

A.20. Requirement 4.5.1.2 Authentication of Server

 TEAP v1 meets this requirement by mandating authentication of the
 server before establishment of the protected TLS and then running
 inner password authentication as defined in Section 3.2.

A.21. Requirement 4.5.1.3 Server Certificate Revocation Checking

 TEAP v1 meets this requirement by supporting TLS Certificate Status
 Request extension [RFC6066] during tunnel establishment.

A.22. Requirement 4.5.2 Internationalization

 TEAP v1 meets this requirement by supporting UTF-8 format in Basic-
 Password-Auth-Req TLV as defined in Section 4.2.14 and Basic-
 Password-Auth-Resp TLV as defined in Section 4.2.15.

A.23. Requirement 4.5.3 Meta-data

 TEAP v1 meets this requirement by supporting Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

A.24. Requirement 4.5.4 Password Change

 TEAP v1 meets this requirement by supporting multiple Basic-Password-
 Auth-Req TLV and Basic-Password-Auth-Resp TLV exchanges within a
 single EAP authentication, which allows "housekeeping"" functions
 such as password change.

A.25. Requirement 4.6.1 Method Negotiation

 TEAP v1 meets this requirement by supporting inner EAP method
 negotiation within the protected TLS tunnel.

A.26. Requirement 4.6.2 Chained Methods

 TEAP v1 meets this requirement by supporting inner EAP method
 chaining within protected TLS tunnel as defined in Section 3.3.1.

A.27. Requirement 4.6.3 Cryptographic Binding with the TLS Tunnel

 TEAP v1 meets this requirement by supporting cryptographic binding of
 the inner EAP method keys with the keys derived from the TLS tunnel
 as defined in Section 4.2.13.

https://datatracker.ietf.org/doc/html/rfc6066

Zhou, et al. Expires August 11, 2013 [Page 83]

Internet-Draft TEAP February 2013

A.28. Requirement 4.6.4 Peer Initiated

 TEAP v1 meets this requirement by supporting Request-Action TLV as
 defined in Section 4.2.9 to allow peer to initiate another inner EAP
 method.

A.29. Requirement 4.6.5 Method Meta-data

 TEAP v1 meets this requirement by supporting Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

Appendix B. Major Differences from EAP-FAST

 This document is a new standard tunnel EAP method based on revision
 of the EAP-FAST version 1 [RFC4851] which contains improved
 flexibility, particularly for negotiation of cryptographic
 algorithms. The major changes are:

 1. The EAP method name have been changed from EAP-FAST to TEAP,
 hence it would require a new EAP method type to be assigned.

 2. This version of TEAP MUST support TLS 1.2 [RFC5246].

 3. The key derivation now makes use of TLS keying material exporters
 [RFC5705] and the PRF and hash function negotiated in TLS. This
 is to simplify implementation and better support cryptographic
 algorithm agility.

 4. TEAP is in full conformance with TLS Ticket extension [RFC5077]
 as described in Section 3.2.2.

 5. Support of passing optional outer TLVs in the first two message
 exchanges, in addition to the Authority-ID TLV data in EAP-FAST.

 6. Basic password authentication on the TLV level has been added in
 addition to the existing inner EAP method.

 7. Additional TLV types have been defined to support EAP channel
 binding and meta-data. They are Identity-Type TLV and Channel-
 Binding TLVs, defined in Section 4.2.

Appendix C. Examples

C.1. Successful Authentication

 The following exchanges show a successful TEAP authentication with
 basic password authentication and optional PAC refreshment, the

https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 84]

Internet-Draft TEAP February 2013

 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 user name and password) ->

 optional additional exchanges (new pin mode,
 password change etc.) ...

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),
 (Optional PAC TLV)

Zhou, et al. Expires August 11, 2013 [Page 85]

Internet-Draft TEAP February 2013

 Crypto-Binding TLV(Response),
 Result TLV (Success),
 (PAC TLV Acknowledgment) ->

 TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

C.2. Failed Authentication

 The following exchanges show a failed TEAP authentication due to
 wrong user credentials, the conversation will appear as follows:

Zhou, et al. Expires August 11, 2013 [Page 86]

Internet-Draft TEAP February 2013

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity

 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 user name and password) ->

 <- Result TLV (Failure)

 Result TLV (Failure) ->

 TLS channel torn down
 (messages sent in clear text)

 <- EAP-Failure

Zhou, et al. Expires August 11, 2013 [Page 87]

Internet-Draft TEAP February 2013

C.3. Full TLS Handshake using Certificate-based Cipher Suite

 In the case where an abbreviated TLS handshake is tried and failed
 and falls back to certificate based full TLS handshake occurs within
 TEAP Phase 1, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello
 [PAC-Opaque extension])->

 // Peer sends PAC-Opaque of Tunnel PAC along with a list of
 ciphersuites supported. If the server rejects the PAC-
 Opaque, if falls through to the full TLS handshake

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[EAP-Request/
 Identity])

Zhou, et al. Expires August 11, 2013 [Page 88]

Internet-Draft TEAP February 2013

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 EAP-Payload-TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success) ->

 // TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

C.4. Client authentication during Phase 1 with identity privacy

 In the case where a certificate based TLS handshake occurs within
 TEAP Phase 1, and client certificate authentication and identity
 privacy is desired, therefore TLS renegotiation is being used to
 transmit the peer credentials in the protected TLS tunnel, the
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the

Zhou, et al. Expires August 11, 2013 [Page 89]

Internet-Draft TEAP February 2013

 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_key_exchange,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[EAP-Request/
 Identity])

 // TLS channel established
 (EAP Payload messages sent within the TLS channel)

 // peer sends TLS client_hello to request TLS renegotiation

 TLS client_hello ->

 <- TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->

 <- TLS change_cipher_spec,
 TLS finished,

Zhou, et al. Expires August 11, 2013 [Page 90]

Internet-Draft TEAP February 2013

 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Crypto-Binding TLV (Response),
 Result-TLV (Success)) ->

 //TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

C.5. Fragmentation and Reassembly

 In the case where TEAP fragmentation is required, the conversation
 will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 (Fragment 1: L, M bits set)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 2: M bit set)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 <- EAP-Request/

Zhou, et al. Expires August 11, 2013 [Page 91]

Internet-Draft TEAP February 2013

 EAP-Type=TEAP, V=1
 (Fragment 3)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 EAP-Response/
 EAP-Type=TEAP, V=1
 (Fragment 2)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 [EAP-Payload-TLV[
 EAP-Request/Identity]])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 EAP-Payload-TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),

Zhou, et al. Expires August 11, 2013 [Page 92]

Internet-Draft TEAP February 2013

 Result-TLV (Success) ->

 // TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

C.6. Sequence of EAP Methods

 When TEAP is negotiated, with a sequence of EAP method X followed by
 method Y, the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Identity-Type TLV,
 EAP-Payload-TLV[
 EAP-Request/Identity])

Zhou, et al. Expires August 11, 2013 [Page 93]

Internet-Draft TEAP February 2013

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 Identity_Type TLV
 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 // Optional additional X Method exchanges...

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Identity-Type TLV,
 EAP Payload TLV [EAP-Type=Y],

 // Next EAP conversation started after successful completion
 of previous method X. The Intermediate-Result and Crypto-
 Binding TLVs are sent in next packet to minimize round-
 trips. In this example, identity request is not sent
 before negotiating EAP-Type=Y.

 // Compound MAC calculated using Keys generated from
 EAP methods X and the TLS tunnel.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 EAP-Payload-TLV [EAP-Type=Y] ->

 // Optional additional Y Method exchanges...

 <- EAP Payload TLV [
 EAP-Type=Y]

 EAP Payload TLV

Zhou, et al. Expires August 11, 2013 [Page 94]

Internet-Draft TEAP February 2013

 [EAP-Type=Y] ->

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success) ->

 // Compound MAC calculated using Keys generated from EAP
 methods X and Y and the TLS tunnel. Compound Keys
 generated using Keys generated from EAP methods X and Y;
 and the TLS tunnel.

 // TLS channel torn down (messages sent in clear text)

 <- EAP-Success

C.7. Failed Crypto-binding

 The following exchanges show a failed crypto-binding validation. The
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello without
 PAC-Opaque extension)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS Server Key Exchange
 TLS Server Hello Done)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS Client Key Exchange
 TLS change_cipher_spec,
 TLS finished)

Zhou, et al. Expires August 11, 2013 [Page 95]

Internet-Draft TEAP February 2013

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec
 TLS finished)
 EAP-Payload-TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 EAP-Payload TLV/
 EAP Identity Response ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Challenge)

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Response) ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Success Request)

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Success Response) ->

 <- Intermediate-Result-TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result-TLV (Success),
 Result TLV (Failure)
 Error TLV with
 (Error Code = 2001) ->

 // TLS channel torn down
 (messages sent in clear text)

 <- EAP-Failure

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange

 When TEAP is negotiated, with a sequence of EAP method followed by
 Vendor-Specific TLV exchange, the conversation will occur as follows:

 Authenticating Peer Authenticator

Zhou, et al. Expires August 11, 2013 [Page 96]

Internet-Draft TEAP February 2013

 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload-TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

Zhou, et al. Expires August 11, 2013 [Page 97]

Internet-Draft TEAP February 2013

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Vendor-Specific TLV,

 // Vendor Specific TLV exchange started after successful
 completion of previous method X. The Intermediate-Result
 and Crypto-Binding TLVs are sent with Vendor Specific TLV
 in next packet to minimize round-trips.

 // Compound MAC calculated using Keys generated from
 EAP methods X and the TLS tunnel.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Vendor-Specific TLV ->

 // Optional additional Vendor-Specific TLV exchanges...

 <- Vendor-Specific TLV

 Vendor Specific TLV ->
 <- Result TLV (Success)

 Result-TLV (Success) ->

 // TLS channel torn down (messages sent in clear text)

 <- EAP-Success

C.9. Peer Requests Inner Method After Server Sends Result TLV

 In the case where the peer is authenticated during Phase 1 and server
 sends back result TLV, but the peers wants to request another inner
 method, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route

Zhou, et al. Expires August 11, 2013 [Page 98]

Internet-Draft TEAP February 2013

 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success))

 // TLS channel established
 (TLV Payload messages sent within the TLS channel)

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Negotiate-EAP)->

 <- EAP-Payload-TLV
 [EAP-Request/Identity]

 EAP-Payload-TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

Zhou, et al. Expires August 11, 2013 [Page 99]

Internet-Draft TEAP February 2013

 <- EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result-TLV (Success)) ->

 //TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

C.10. Channel Binding

 The following exchanges show a successful TEAP authentication with
 basic password authentication and channel binding using Request-
 Action TLV, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 PAC-Opaque in SessionTicket extension)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/

Zhou, et al. Expires August 11, 2013 [Page 100]

Internet-Draft TEAP February 2013

 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 user name and password) ->

 optional additional exchanges (new pin mode,
 password change etc.) ...

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Process-TLV,
 TLV=Channel-Binding TLV)->

 <- Channel-Binding TLV (Response),
 Result TLV (Success),

 Result-TLV (Success) ->

 TLS channel torn down
 (messages sent in clear text)

 <- EAP-Success

Appendix D. Major Differences from Previous Revisions

D.1. Changes from -04

 1 Section 3.2, clarified that requesting new PAC in abbreviated
 handshake is not permitted.

 2 Section 3.6.2, clarified that TLS restart is not allowed for fatal
 Alerts.

 3 Section 3.6.3, added text to handle processing inner method error.

Zhou, et al. Expires August 11, 2013 [Page 101]

Internet-Draft TEAP February 2013

 4 Section 4.1, clarified Flags bit usage.

 5 Section 4.2.3, clarified Identity-Type TLV usage.

 6 Section 4.2.8, clarified mandatory bit in Vendor-Specific TLV.

 7 Section 4.2.13, added Compound MAC presence indicator in Crypto-
 Binding TLV.

D.2. Changes from -03

 1 Section 4.1, added optional Outer TLV Length field and flag in
 TEAP packet format.

 2 Section 4.3, added TLV processing rules and rules for outer TLVs.

 3 Section 5.2, changed IMCK generation from MSK based to either EMSK
 or MSK with corresponding rules.

 4 Section 4.2.13, introduced two Compound MAC fields for Crypto-
 Binding TLV.

 5 Section 3.4, clarified that all authenticated Peer-Ids, Server-Ids
 and their identity types need to be exported.

 6 Section 5.1, changed TLS Keying Material Exporter label to
 "EXPORTER: teap session key seed".

 7 Section 4.2.9, clarified Request-Action TLV processing.

D.3. Changes from -02

 1 Section 3.3.3, clarified protected termination and use of crypto-
 binding TLV.

 2 Section 3.5, changed Session ID to use tls-unique and added
 reference to RFC5247.

 3 Section 3.9, added the use of tls-unique to the certificate
 enrollment request.

 4 Section 4.2.9, modified Request-Action TLV to include Status code
 and optional TLVs.

 5 Section 3.4, clarified that all authenticated Peer-Ids need to be
 exported.

https://datatracker.ietf.org/doc/html/rfc5247

Zhou, et al. Expires August 11, 2013 [Page 102]

Internet-Draft TEAP February 2013

 6 Section 5.1, changed TLS Keying Material Exporter label to "teap
 session key seed".

 7 Section 5.2, changed Intermediate Compound Key Derivation from MSK
 to EMSK generated by inner method.

 8 Section 6, added missing IANA considerations.

 9 Section 7.3, added more security considerations for separation of
 Phase 1 and Phase 2 servers.

 10 Appendix C, updated examples with Request-Action TLV, channel
 binding, and sending certificate after TLS renegotiation.

D.4. Changes from -01

 1 In Version Negotiation section, clarified what the peer needs to
 do if the supported version is higher than what the server
 proposed.

 2 Section 3.2, clarified the requirement for using anonymous cipher
 suites.

 3 Clarified that Crypto-binding TLV is always exchanged and
 validated, even without inner methods.

 4 Section 3.4, clarified that all authenticated Peer-Ids need to be
 exported.

 5 Clarified that channel-binding TLV can be used to transmit data
 bidirectionally.

 6 Updated obsolete RFC references

 7 Renumbered TLVs to eliminate gaps

 8 Updated examples with basic password authentication TLVs.

 9 Added Certificate Provisioning Within the Tunnel.

 10 Added Server Unauthenticated Provisioning Mode.

D.5. Changes from -00

Zhou, et al. Expires August 11, 2013 [Page 103]

Internet-Draft TEAP February 2013

 1 Changed protocol name to TEAP: Tunnel EAP Method

 2 Changed version of protocol to version 1

 3 Revised introduction

 4 Moved differences section to appendix

 5 Revised design goals section

6 Revised PAC definition

 7 Revised protocol description to be in line with RFC 5077 PAC
 distribution

 8 Revised EAP Sequences Section

9 Added section on PAC provisioning within tunnel

 10 Added outer TLVs to the message format

 11 Renumbered TLVs

 12 Included PAC TLVs

 13 Added Authority ID TLV

 14 Added PKCS#7 and server trust root TLV definitions

 15 Added PKCS#10 TLV

 16 PKCS#10 TLV

 17 Added EAP-Type and outer TLVs to crypto binding compound MAC

Authors' Addresses

 Hao Zhou
 Cisco Systems
 4125 Highlander Parkway
 Richfield, OH 44286
 US

 EMail: hzhou@cisco.com

https://datatracker.ietf.org/doc/html/rfc5077

Zhou, et al. Expires August 11, 2013 [Page 104]

Internet-Draft TEAP February 2013

 Nancy Cam-Winget
 Cisco Systems
 3625 Cisco Way
 San Jose, CA 95134
 US

 EMail: ncamwing@cisco.com

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, WA 98121
 US

 EMail: jsalowey@cisco.com

 Stephen Hanna
 Juniper Networks
 79 Parsons Street
 Brighton, MA 02135
 US

 EMail: shanna@juniper.net

Zhou, et al. Expires August 11, 2013 [Page 105]

