
Network Working Group DeKok, Alan
INTERNET-DRAFT FreeRADIUS
Updates: 5247, 5281, 7170 21 February 2021
Category: Standards Track
Expires: August 21, 2021

TLS-based EAP types and TLS 1.3
draft-ietf-emu-tls-eap-types-02.txt

Abstract

 EAP-TLS [RFC5216] is being updated for TLS 1.3 in [EAPTLS]. Many
 other EAP [RFC3748] and [RFC5247] types also depend on TLS, such as
 FAST [RFC4851], TTLS [RFC5281], TEAP [RFC7170], and possibly many
 vendor specific EAP methods. This document updates those methods in
 order to use the new key derivation methods available in TLS 1.3.
 Additional changes necessitated by TLS 1.3 are also discussed.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 29, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

DeKok, Alan Proposed Standard [Page 1]

https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc7170
https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc7170
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info/) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

DeKok, Alan Proposed Standard [Page 2]

http://trustee.ietf.org/license-info/

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

Table of Contents

1. Introduction ... 4
1.1. Requirements Language 4

2. Using TLS-based EAP methods with TLS 1.3 5
2.1. Key Derivation 5
2.2. TEAP .. 6
2.3. FAST .. 7
2.4. TTLS .. 8
2.5. PEAP .. 8

3. Application Data ... 8
4. Resumption ... 9
5. Security Considerations 10

5.1. Protected Success and Failure indicators 10
6. IANA Considerations 11
7. References ... 12

7.1. Normative References 12
7.2. Informative References 13

DeKok, Alan Proposed Standard [Page 3]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

1. Introduction

 EAP-TLS is being updated for TLS 1.3 in [EAPTLS]. Many other EAP
 types also depend on TLS, such as FAST [RFC4851], TTLS [RFC5281],
 TEAP [RFC7170], and possibly many vendor specific EAP methods. All
 of these methods use key derivation functions which rely on the
 information which is no longer available in TLS 1.3. As such, all of
 those methods are incompatible with TLS 1.3.

 We wish to enable the use of TLS 1.3 in the wider Internet community.
 As such, it is necessary to update the above EAP types. These
 changes involve defining new key derivation functions. We also
 discuss implementation issues in order to highlight differences
 between TLS 1.3 and earlier versions of TLS.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc4851
https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc7170
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

DeKok, Alan Proposed Standard [Page 4]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

2. Using TLS-based EAP methods with TLS 1.3

 In general, all of the requirements of [EAPTLS] apply to other EAP
 methods that wish to use TLS 1.3. Unless otherwise discusses herein,
 implementations of EAP methods that wish to use TLS 1.3 MUST follow
 the guidelines in [EAPTLS].

 There remain some differences between EAP-TLS and other TLS-based EAP
 methods which necessitates this document. The main difference is
 that [EAPTLS] uses the EAP-TLS type ID (0x0D) in a number of
 calculations, whereas other method types will use their own type ID
 instead of the EAP-TLS type ID. This topic is discussed further
 below in Section 2.

 An additional difference is that the [EAPTLS] Section 2.5 requires a
 Commitment Message to be sent once the EAP-TLS handshake has
 completed. Other TLS-based EAP methods also use the Commitment
 Message, but only during resumption. When the other TLS-based EAP
 methods send application data inside of the TLS tunnel, the
 Commitment Message is not used. This topic is explained in more
 detail below, in Section 3.

 Finally, the document includes clarifications on how various TLS-
 based parameters are calculated when using TLS 1.3. These parameters
 are different for each EAP method, so they are discussed separately.

2.1. Key Derivation

 The key derivation for TLS-based EAP methods depends on the value of
 the Type-Code as defined by [IANA]. The most important definition is
 of the Type-Code:

 Type-Code = EAP Method type

 The Type-Code is defined to be 1 octet for values smaller than 255.
 Where expanded EAP Type Codes are used, the Type-Code is defined to
 be the Expanded Type Code (including the Type, Vendor-Id (in network
 byte order) and Vendor-Type fields (in network byte order) defined in

[RFC3748] Section 5.7).

 Type-Code = 0xFE || Vendor-Id || Vendor-Type

 Unless otherwise discussed below, the key derivation functions for
 all TLS-based EAP types are defined as follows:

 Key_Material = TLS-Exporter("EXPORTER_EAP_TLS_Key_Material",
 Type-Code, 128)
 IV = TLS-Exporter("EXPORTER_EAP_TLS_IV", Type-Code, 64)

https://datatracker.ietf.org/doc/html/rfc3748#section-5.7

DeKok, Alan Proposed Standard [Page 5]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 Method-Id = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",
 Type-Code, 64)
 Session-Id = Type-Code || Method-Id
 MSK = Key_Material(0, 63)
 EMSK = Key_Material(64, 127)
 Enc-RECV-Key = MSK(0, 31)
 Enc-SEND-Key = MSK(32, 63)
 RECV-IV = IV(0, 31)
 SEND-IV = IV(32, 63)

 We note that these definitions re-use the EAP-TLS exporter labels,
 and change the derivation only by adding a dependency on Type-Code.
 The reason for this change is simplicity. There does not appear to
 be compelling reasons to make the labels method-specific, when they
 can just include the Type-Code in the key derivation.

 These definitions apply in their entirety to TTLS [RFC5281] and PEAP
 as defined in [PEAP] and [MSPEAP]. Some definitions apply to FAST
 and TEAP, with exceptions as noted below.

 It is RECOMMENDED that vendor-defined TLS-based EAP methods use the
 above definitions for TLS 1.3. There is insufficient reason to use
 different definitions.

2.2. TEAP

 [RFC7170] Section 5.2 gives a definition for the Inner Method Session
 Key (IMSK), which depends on the TLS-PRF. We update that definition
 for TLS 1.3 as:

 IMSK = TLS-Exporter("TEAPbindkey@ietf.org", EMSK, 32)

 For MSK and EMSK, TEAP [RFC7170] uses an inner tunnel EMSK to
 calculate the outer EMSK. As such, those key derivations cannot use
 the above derivation.

 The other key derivations for TEAP are given here. All derivations
 not given here are the same as given above in the previous section.
 These derivations are also used for FAST, but using the FAST Type-
 Code.

 session_key_seed = TLS-Exporter("EXPORTER: session key seed",
 Type-Code, 40)

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = TLS-Exporter("EXPORTER: Inner Methods Compound
 Keys", S-IMCK[j-1] | IMSK[j], 60)

https://datatracker.ietf.org/doc/html/rfc5281
https://datatracker.ietf.org/doc/html/rfc7170

DeKok, Alan Proposed Standard [Page 6]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

 Where | denotes concatenation. MSK and EMSK are then derived from
 the above definitions, as:

 MSK = TLS-Exporter("EXPORTER: Session Key Generating Function",
 S-IMCK[j], 64)

 EMSK = TLS-Exporter("EXPORTER: Extended Session Key Generating
 Function", S-IMCK[j], 64)

 The TEAP Compound MAC defined in [RFC7170] Section 5.3 is updated to
 use the definition of CMK[j] given above, which then leads to the
 following definition

 CMK = CMK[j]

 Compound-MAC = MAC(CMK, BUFFER)

 where j is the number of the last successfully executed inner EAP
 method. For TLS 1.3, the hash function used is the same as the
 ciphersuite hash function negotiated for HKDF in the key schedule, as
 per section 7.1 of RFC 8446. The definition of BUFFER is unchanged
 from [RFC7170] Section 5.3

2.3. FAST

 For FAST, the session_key_seed is also used as the key_block, as
 defined in [RFC4851] Section 5.1.

 The definition of S-IMCK[n], MSK, and EMSK are the same as given
 above for TEAP. We reiterate that the EAP-FAST Type-Code must be
 used when deriving the session_key_seed, and not the TEAP Type-Code.

 Unlike [RFC4851] Section 5.2, the definition of IMCK[j] places the
 reference to S-IMCK after the textual label, and the concatenates the
 IMSK instead of MSK.

 EAP-FAST previously used a PAC, which is a type of pre-shared key
 (PSK). Such uses are deprecated in TLS 1.3. As such, PAC
 provisioning is no longer part of EAP-FAST when TLS 1.3 is used.

 The T-PRF given in [RFC4851] Section 5.5 is not used for TLS 1.3.

https://datatracker.ietf.org/doc/html/rfc7170#section-5.3
https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
https://datatracker.ietf.org/doc/html/rfc7170#section-5.3
https://datatracker.ietf.org/doc/html/rfc4851#section-5.1
https://datatracker.ietf.org/doc/html/rfc4851#section-5.2
https://datatracker.ietf.org/doc/html/rfc4851#section-5.5

DeKok, Alan Proposed Standard [Page 7]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

2.4. TTLS

 [RFC5281] Section 11.1 defines an implicit challenge when the inner
 methods of CHAP [RFC1994], MS-CHAP [RFC2433], or MS-CHAPv2 [RFC2759]
 are used. The derivation for TLS 1.3 is instead given as

 EAP-TTLS_challenge = TLS-Exporter("ttls challenge",, n)

 There no "context_value" ([RFC8446] Section 7.5) passed to the TLS-
 Exporter function. The value "n" given here is the length of the
 challenge required, which varies according to the challenge.

 Note that unlike TLS 1.2 and earlier, the calculation of TLS-Exporter
 depends on the length passed to it. Implementations therefore MUST
 pass the correct length, instead of passing a large length and
 truncating the output. Any truncated output will be different from
 the output calculated using the correct length.

2.5. PEAP

 When PEAP uses crypto binding, it uses a different key calculation
 defined in [PEAP-MPPE] which consumes inner method keying material.
 The pseudo-random function (PRF) used here is not taken from the TLS
 exporter, but is instead calculated via a different method which is
 given in [PEAP-PRF]. That derivation remains unchanged in this
 specification.

 However, the key calculation uses a PEAP Tunnel Key [PEAP-TK] which
 is defined as:

 ... the TK is the first 60 octets of the Key_Material, as
 specified in [RFC5216]: TLS-PRF-128 (master secret, "client EAP
 encryption", client.random || server.random).

 We note that this text does not define Key_Material. Instead, it
 defines TK as the first octets of Key_Material, and gives a
 definition of Key_Material which is appropriate for TLS versions
 before TLS 1.3.

 For TLS 1.3, the TK should instead be derived from the Key_Material
 defined above in Section 2.1.

3. Application Data

 Unlike previous TLS versions, TLS 1.3 can continue negotiation after
 the TLS session has been initialized. Some implementations use the
 TLS "Finished" state as a signal that application data is now
 available, and an "inner tunnel" session can now be negotiated. As

https://datatracker.ietf.org/doc/html/rfc1994
https://datatracker.ietf.org/doc/html/rfc2433
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc8446#section-7.5
https://datatracker.ietf.org/doc/html/rfc5216

DeKok, Alan Proposed Standard [Page 8]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 noted in [RFC8446], TLS 1.3 may include one or more
 "NewSessionTicket" messages after the "Finished" state. This change
 can cause many implementations to fail.

 In order to correct this failure, if the underlying TLS connection is
 still performing negotiations, then implementations MUST NOT send, or
 expect to receive application data in the TLS session.
 Implementations MUST delay processing of application data until such
 time as the TLS negotiation has finished. If the TLS negotiation is
 successful, then the application data can be examined. If the TLS
 negotiation is unsuccessful, then the application data is untrusted,
 and therefore MUST be discarded without being examined.

 [EAPTLS] Section 2.5 requires a Commitment message which indicates
 that TLS negotiation has finished. Methods which use "inner tunnel"
 methods MUST instead begin their "inner tunnel" negotiation by
 sending type-specific application data.

4. Resumption

 [EAPTLS] Section 2.1.3 defines the process for resumption. This
 process is the same for all TLS-based EAP types. The only practical
 difference is that the type code is different.

 All TLS-based EAP methods support resumption. All EAP servers and
 peers MUST support resumption. We note that EAP servers and peers
 can still choose to not resume any particular session. For example,
 EAP servers may forbid resumption for administrative, or other policy
 reasons.

 It is RECOMMENDED that EAP servers and peers enable resumption, and
 use it where possible. The use of resumption decreases the number of
 round trips used for authentication. This decrease leads to faster
 authentications, and less load on the EAP server.

 EAP servers peers MUST NOT resume sessions across different EAP
 types, and EAP servers MUST reject resumptions in which the EAP Type
 code is different from the original authentication.

 As the packet flows for resumption are essentially identical across
 all TLS-based EAP types, it is technically possible to authenticate
 using EAP-TLS (EAP Type code 13), and then perform resumption using
 another EAP type, just as EAP-TTLS (EAP Type code 21). However,
 there is no practical benefit to doing so. It is also not clear what
 this behavior would mean, or what (if any) security issues there may
 be with it. As a result, this behavior is forbidden.

https://datatracker.ietf.org/doc/html/rfc8446

DeKok, Alan Proposed Standard [Page 9]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

5. Security Considerations

 [EAPTLS] Section 5 is included here by reference.

 Updating the above EAP methods to use TLS 1.3 is of high importance
 for the Internet Community. Using the most recent security protocols
 can significantly improve security and privace of a network.

 In some cases, client certificates are not used for TLS-based EAP
 methods. In those cases, the user is authenticated only after
 successful completion of the inner tunnel authentication. However,
 the TLS protocol may send one or more NewSessionTicket after
 receiving the TLS Finished message from the client, and therefore
 before the user is authenticated.

 This separation of data allows for a "time of use, time of check"
 security issue. Malicious clients can begin a session and receive
 the NewSessionTicket. Then prior to authentication, the malicious
 client can abort the authentication session. The malicious client
 can then use the obtained NewSessionTicket to "resume" the previous
 session.

 As a result, EAP servers MUST NOT permit sessions to be resumed until
 after authentication has successfully completed. This requirement
 may be met in a number of ways. For example, by not caching the
 session ticket until after authentication has completed, or by
 marking up the cached session ticket with a flag stating whether or
 not authentication has completed.

 For PEAP, some derivation use HMAC-SHA1 [PEAP-MPPE]. There are no
 known security issues with HMAC-SHA1. In the interests of
 interoperability and minimal changes, we do not change that
 definition here.

5.1. Protected Success and Failure indicators

 [EAPTLS] provides for protected success and failure indicators as
 discussed in Section 4.1.1 of [RFC4137]. These indicators are
 provided for both full authentication, and for resumption.

 Other TLS-based EAP methods provide these indicators only for
 resumption.

 For full authenticaton, the other TLS-based EAP methods do not
 provide for protected success and failure indicators as part of the
 outer TLS exchange. That is, the Commitment Message is not used, and
 there is no TLS-layer alert sent when the inner authentication fails.
 Instead, there is simple either an EAP-Success or EAP-Failure sent.

https://datatracker.ietf.org/doc/html/rfc4137#section-4.1.1

DeKok, Alan Proposed Standard [Page 10]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 This behavior is the same as for previous TLS versions, and therefore
 introduces no new security issues.

 We note that most TLS-based EAP methods provide for success and
 failure indicators as part of the authentication exchange performed
 inside of the TLS tunnel. These indicators are therefore protected,
 as they cannot be modified or forged.

 When the inner authentication protocol indicates that authentication
 has failed, then implementations MUST fail authentication for the
 entire session. There MAY be additional protocol exchanges in order
 to exchange more detailed failure indicates, but the final result
 MUST be a failed authentication.

 Similarly, when the inner authentication protocol indicates that
 authentication has succeeed, then implementations SHOULD cause
 authentication to succeed for the entire session. There MAY be
 additional protocol exchanges in order which could cause other
 failures, so success is not required here.

 In both of these cases, the EAP server MUST send an EAP-Failure or
 EAP-Success message, as indicated by Section 2 item 4 of [RFC3748].
 Even though both parties have already determined the final
 authentication status, the full EAP state machine must still be
 followed.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the TLS-
 based EAP methods for TLS 1.3 protocol in accordance with [RFC8126].

 This memo requires IANA to add the following labels to the TLS
 Exporter Label Registry defined by [RFC5705]. These labels are used
 in derivation of Key_Material, IV and Method-Id as defined above in

Section 2.

 The labels above need to be added to the "TLS Exporter Labels"
 registry.

 * EXPORTER: session key seed * EXPORTER: Inner Methods Compound Keys
 * EXPORTER: Session Key Generating Function * EXPORTER: Extended
 Session Key Generating Function * TEAPbindkey@ietf.org

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc5705

DeKok, Alan Proposed Standard [Page 11]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

7. References

7.1. Normative References

[RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March, 1997, <http://www.rfc-

editor.org/info/rfc2119>.

[RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748,
 June 2004.

[RFC5216]
 Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS Authentication
 Protocol", RFC 5216, March 2008

[RFC5247]
 Aboba, B., Simon, D., and P. Eronen, "Extensible Authentication
 Protocol (EAP) Key Management Framework", RFC 5247, August 2008,

[RFC5705]
 Rescorla, E., "Keying Material Exporters for Transport Layer
 Security (TLS)", RFC 5705, March 2010

[RFC7170]
 Zhou, H., et al., "Tunnel Extensible Authentication Protocol (TEAP)
 Version 1", RFC 7170, May 2014.

[RFC8126]
 Cotton, M., et al, "Guidelines for Writing an IANA Considerations
 Section in RFCs", RC 8126, June 2017.

[RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
 Words", RFC 8174, May 2017, <http://www.rfc-

editor.org/info/rfc8174>.

[RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol Version
 1.3", RFC 8446, August 2018.

[EAPTLS]
 Mattsson, J., and Sethi, M., "Using EAP-TLS with TLS 1.3", draft-

ietf-emu-eap-tls13-14, February, 2021.

https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc7170
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tls13-14
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tls13-14

DeKok, Alan Proposed Standard [Page 12]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

[IANA]
https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-
numbers-4

7.2. Informative References

[MSPEAP]
https://msdn.microsoft.com/en-us/library/cc238354.aspx

[PEAP]
 Palekar, A. et al, "Protected EAP Protocol (PEAP)", draft-

josefsson-pppext-eap-tls-eap-06.txt, March 2003.

[PEAP-MPPE]
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
PEAP/e75b0385-915a-4fc3-a549-fd3d06b995b0

[PEAP-PRF]
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df

[PEAP-TK]
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
PEAP/41288c09-3d7d-482f-a57f-e83691d4d246

[RFC1994]
 Simpson, W., "PPP Challenge Handshake Authentication Protocol
 (CHAP)", RFC 1994, August 1996.

[RFC2433]
 Zorn, G. and Cobb, S., "Microsoft PPP CHAP Extensions", RFC 2433,
 October 1998.

[RFC2759]
 Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759,
 January 2000.

[RFC4137]
 Vollbrecht, J., et al, "State Machines for Extensible
 Authentication Protocol (EAP) Peer and Authenticator ", RFC 4137,
 August 2005.

[RFC4851]
 Cam-Winget, N., et al, "The Flexible Authentication via Secure
 Tunneling Extensible Authentication Protocol Method (EAP-FAST)",

RFC 4851, May 2007.

https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-4
https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-4
https://msdn.microsoft.com/en-us/library/cc238354.aspx
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-06.txt
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-06.txt
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/e75b0385-915a-4fc3-a549-fd3d06b995b0
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/e75b0385-915a-4fc3-a549-fd3d06b995b0
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/41288c09-3d7d-482f-a57f-e83691d4d246
https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-PEAP/41288c09-3d7d-482f-a57f-e83691d4d246
https://datatracker.ietf.org/doc/html/rfc1994
https://datatracker.ietf.org/doc/html/rfc2433
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc4137
https://datatracker.ietf.org/doc/html/rfc4851

DeKok, Alan Proposed Standard [Page 13]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

[RFC5281]
 Funk, P., and Blake-Wilson, S., "Extensible Authentication Protocol
 Tunneled Transport Layer Security Authenticated Protocol Version 0
 (EAP-TTLSv0)", RFC 5281, August 2008.

Acknowledgments

 Thanks to Jorge Vergara for a detailed review of the requirements for
 various EAP types, and for assistance with interoperability testing.

 Authors' Addresses

 Alan DeKok
 The FreeRADIUS Server Project

 Email: aland@freeradius.org

https://datatracker.ietf.org/doc/html/rfc5281

DeKok, Alan Proposed Standard [Page 14]

