
Internet Draft OID Compression April 2001

Internet Engineering Task Force Sandra McLeod
INTERNET-DRAFT SNMP Research
Expires October 2001 David Partain
 Matt White
 Ericsson
 April 2001

SNMP Object Identifier Compression
draft-ietf-eos-oidcompression-00.txt

Revision 1.9
 Document Date: 2001/04/23 21:31:04

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

S. McLeod, et al. Expires October 2001 [Page 1]

Internet Draft OID Compression April 2001

Abstract

 This memo defines a mechanism, called OID Compression, for removal of
 redundant information in the object identifiers (OIDs) carried in the
 name portion of variable bindings in SNMP messages.

1. Background

 OID Compression reduces the size of SNMP PDUs by reducing the amount
 of redundant information contained within the Object Identifiers
 (OIDS) in the name portion of multiple variable bindings in the same
 SNMP PDU. The hierarchical structure of OIDs makes it likely that
 the OIDs in a message will share some common base set of
 subidentifiers. This is particularly true for related objects from
 the same groups of MIB scalars or tables. Since SNMP messages often
 contain numerous related OIDs, most SNMP messages will contain some
 amount of redundant information in the name portion of multiple
 variable bindings in the variable binding list. The compression of
 these OIDs could result in substantial savings in the amount of
 encoding and space required to build SNMP PDUs.

 This memo addresses the compression of OIDs within the name portion
 of PDU varbinds only. The inclusion of Object Identifiers in the
 value portion of PDU varbinds is not nearly as common and would not
 likely result in substantial savings.

2. Previous work

 There have been a number of OID Compression techniques that have been
 discussed and presented in the SNMP community over many years,
 including those presented in the IRTF document "SNMP Payload
 Compression" by Juergen Schoenwaelder and in the "GetCols Operation"
 presentation by David Perkins. A number of OID Compression
 techniques that have been presented to date approach OID compression
 by encoding OIDs as a delta OID value between the current OID in a
 varbind name and a previous OID within the same SNMP PDU.

 Previous Delta OID Compression techniques vary substantially in
 concept and implementation. However, most Delta OID Compression
 algorithms identify "anchor" OIDs that are used for comparison
 against the current OID to calculate a smaller delta OID which will
 be encoded in the SNMP PDU. The definition of "anchor" OIDs in
 previous work can vary quite a bit and may be static or dynamic.

S. McLeod, et al. Expires October 2001 [Page 2]

Internet Draft OID Compression April 2001

 There can be one or many "anchor" OIDs per PDU. The "anchor" OIDs
 can be either explicitly or implicitly identified in the PDUs. The
 algorithms that have been used to generate the delta OIDs between
 these "anchor" OIDs and the OIDs in the varbind lists also vary
 substantially from one approach to another. As a result, the
 different delta OID compression techniques vary substantially in
 complexity and efficiency.

 With the many choices of Delta OID Compression techniques, the
 ultimate compression technique should provide a simple algorithm that
 is unambiguous in its implementation and provides good OID
 compression returns. The algorithm detailed in this memo provides a
 simple Delta OID Compression algorithm with good OID compression
 returns. While providing additional choices in how OIDs are
 compressed might provide somewhat more compression but at a
 complexity of implementation and processing that may not be worth the
 cost. The algorithm below attempts to strike a balance between
 efficiency of compression and minimization of processing complexity.

3. Terminology

 The following is a description and clarification of what is intended
 by the terms "compression" and "suppression" as applied to SNMP OIDs:

 * Compression

 OID compression is the reduction in the amount of information
 required to represent each OID in the name portion of an
 SNMP PDU varbind. The term compression implies a one-to-one
 mapping between the original OIDs in the name portions of
 a varbind list and the resulting set of compressed OIDs
 for the same varbind list. In the case of OID compression,
 OIDs are not omitted in the varbind lists, but rather are
 simply reduced in size with redundant information removed
 in the name portion of the varbind list.

 * Suppression

 The suppression of Object Identifiers indicates a reduction
 in the number of identifiers required to represent a series
 of OIDs in an SNMP PDU varbind list. The term suppression
 implies a many-to-one mapping between the original set of
 OIDs in a varbind list and the resulting set of encoded
 OIDs in an SNMP PDU.

S. McLeod, et al. Expires October 2001 [Page 3]

Internet Draft OID Compression April 2001

4. OID compression versus OID suppression

 OID compression and suppression techniques differ in their approach
 to reducing redundant information and when used individually are most
 useful under different operational circumstances. There are
 circumstances, however, in which the use of both of these techniques
 in combination can be beneficial as well.

 OID Compression reduces the amount of redundant information in a
 series of OIDs without omitting any OIDs in the encoded SNMP PDU.
 This technique can potentially be used to compress any group of OIDs
 in the same SNMP PDU. This makes OID compression well-suited for
 operations such as MIB walks, bulk data retrieval, and large
 configuration operations where a large percentage of the OIDs in the
 varbind list have some common base set of subidentifiers.

 OID Suppression, on the other hand, reduces the amount of redundant
 information in a series of OIDs by reducing the number of identifiers
 that must be included in the SNMP PDU. OID suppression is
 particularly well-suited for table row operations (retrieval or
 configuration) where most of the OIDs share the same base table OID
 as well as instance information. In this case, the base table OID and
 instance information can be provided once for all of the objects in
 the same row.

 OID Suppression will be introduced in Appendix A (and will likely be
 moved to a separate document in future revisions). The focus of the
 rest of this memo will be exclusively on OID Compression.

5. Delta OID Compression Algorithm

 The Delta OID Compression algorithm discussed in this memo provides a
 simple technique for reducing the amount of redundant information in
 multiple varbind names within the same PDU. This algorithm calculates
 the delta OIDs by comparing each varbind name to the previous varbind
 name within a varbind list in a single SNMP PDU. The delta OID that
 is calculated between the current and previous OIDs identifies a
 simple OID tail replacement. The delta OID that is generated from
 this algorithm will contain first a value which identifies the
 position in the current OID at which this OID diverges from the
 previous OID and then following this would be the remaining
 subidentifiers from that position forward in the current OID.

 For encoding purposes, in order to remain consistent with the current

S. McLeod, et al. Expires October 2001 [Page 4]

Internet Draft OID Compression April 2001

 Object Identifier encoding rules, the first value in the delta OID
 which identifies the subidentifier position at which the current and
 previous OIDs diverge will need to be split into two subidentifiers
 and represented in the delta OID as the first and second
 subidentifiers of that OID. The formula for determining the first
 two subidentifiers in the delta OID is as follows:

 S1 = (Position at which the OIDs diverge) / 40
 S2 = (Position at which the OIDs diverge) % 40

 In the formula above, S1 and S2 are the subidentifier values to be
 determined for the delta OID. S1 will be assigned to the first
 subidentifier in the delta OID and is calculated as the result of the
 positional value divided by 40. S2 will be assigned to the second
 subidentifier in the delta OID and is calculated as the result of the
 positional value modulo 40.

 Because the length of an OID is limited to a maximum of 128, the
 positional value that indicates the position at which the current and
 previous OIDs diverge must be between 0 and 128. As a result, the
 first subidentifier could only possibly have the values of 0, 1, 2,
 or 3. The second subidentifier, which represents the modulo of 40
 could only possibly have a value in the range of 0 to 39. In the
 interest of maintaining compatibility with current SNMP
 implementations which may only expect values of 0, 1, or 2 (but not
 3) for the first subidentifier, it is suggested that this algorithm
 could be restricted for use only in compressing OIDs for which the
 position at which the current and previous OIDs diverge is 119 or
 less. The result of this restriction would be that the first
 subidentifier would always have a value of 0, 1, or 2.

 The OID Compression mechanism that is described above may only be
 used in new PDUs being defined in separate working group documents.
 That is, OID Compression MUST not be used in the GetRequest-PDU,
 GetNextRequest-PDU, GetBulkRequest-PDU, Response-PDU, SetRequest-PDU,
 InformRequest-PDU, SNMPv2-Trap-PDU, or Report-PDU.

5.1. Examples of Compressed OIDs

 Example 1: Retrieval of the system group in a single message
 might result in following partial list of varbind names being

S. McLeod, et al. Expires October 2001 [Page 5]

Internet Draft OID Compression April 2001

 sent:

 1.3.6.1.2.1.1.1.0 -- sysDescr.0
 1.3.6.1.2.1.1.2.0 -- sysObjectID.0
 1.3.6.1.2.1.1.3.0 -- sysUpTime.0
 1.3.6.1.2.1.1.4.0 -- sysContact.0

 If this payload were compressed, the resulting list of
 compressed delta OIDs would be as follows:

 1.3.6.1.2.1.1.1.0 -- first OID in varbind list is not compressed
 0.8.2.0 -- tail of the next OID starting at the 8th subid
 0.8.3.0 -- tail of the next OID starting at the 8th subid
 0.8.4.0 -- tail of the next OID starting at the 8th subid

 Example 2: Retrieval of a selection of MIB-II objects might
 result in the following list of varbind names being sent:

 1.3.6.1.2.1.1.1.0 -- sysUpTime.0
 1.3.6.1.2.1.2.2.1.8.1 -- ifOperStatus.1
 1.3.6.1.2.1.2.2.1.8.2 -- ifOperStatus.2
 1.3.6.1.2.1.2.2.1.10.1 -- ifInOctets.1
 1.3.6.1.2.1.2.2.1.10.2 -- ifInOctets.2
 1.3.6.1.2.1.6.5.0 -- tcpActiveOpens.0
 1.3.6.1.2.1.6.7.0 -- tcpAttemptFails.0
 1.3.6.1.2.1.6.8.0 -- tcpEstabResets.0

 If this payload were compressed, the resulting list of
 compressed delta OIDs would be as follows:

 1.3.6.1.2.1.1.1.0 -- first OID in varbind list is not compressed
 0.7.2.2.1.8.1 -- tail of next OID starting at the 7th subid
 0.11.2 -- tail of next OID starting at the 11th subid
 0.10.10.1 -- tail of next OID starting at the 10th subid
 0.11.2 -- tail of next OID starting at the 11th subid
 0.7.6.5.0 -- tail of next OID starting at the 7th subid
 0.8.7.0 -- tail of next OID starting at the 8th subid
 0.8.8.0 -- tail of next OID starting at the 8th subid

S. McLeod, et al. Expires October 2001 [Page 6]

Internet Draft OID Compression April 2001

5.2. Applicability of the Algorithm

 In cases where the objects requested in the same PDU are from
 multiple MIB groups then there is likely to be a larger cost, meaning
 a larger delta OID, between the OIDs that cross into the different
 MIB groups. However, since this algorithm makes use of a dynamic
 rather than a static "anchor" (which is always the previous varbind
 name) then this allows you to take advantage of the fact that related
 objects in requests are commonly grouped together, which allows for
 greater compression savings.

 This Delta OID Compression approach was chosen primarily for its
 simplicity. This algorithm is well-suited for scalar objects as well
 as for tabular objects when performing table walks by column.
 However, this algorithm may be suboptimal in cases where a row of
 objects are being retrieved from a table, especially in cases in
 which the table is multiply indexed or indexed by OctetStrings. For
 instances of individual objects in the same row in a table, the table
 portion of the OIDs can be compressed but the instance information in
 these OIDs will not be compressed since two consecutive OIDs
 representing instances of different columns in a table will always
 diverge at the column subidentifier within the OIDs. As an example,
 consider the following two OIDs:

 1.3.6.1.2.1.4.1.22.1.2.1.192.147.142.35
 ^^^ -- ipNetToMediaPhysAddress.1.192.147.142.35
 1.3.6.1.2.1.4.1.22.1.4.1.192.147.142.35
 ^^^ -- ipNetToMediaPhysType.1.192.147.142.35

 In this case the instance information is obviously redundant but
 cannot be compressed because the first subidentifier at which these
 two OIDs will begin to diverge is the subidentifier with the column
 identification ('2' for ipNetToMediaPhysAddress and '4' for
 ipNetToMediaPhysType). Appendix A discusses the use of OID
 suppression to address this case. It is anticipated that OID
 suppression can be used independently or in combination with OID
 compression to optimize the reduction of redundant information in the
 name portion of variable bindings in SNMP PDUs.

6. Use of OID Compression in Notifications

 There are at least two reasons why it may not be useful to use OID
 compression when sending notifications (traps and informs). These
 reasons are:

S. McLeod, et al. Expires October 2001 [Page 7]

Internet Draft OID Compression April 2001

 1. Unlike a command generator, the notification originator
 has no way of knowing in advance whether the receiver is
 capable of parsing compressed OIDs.

 Obviously, one could extend the SnmpTargetAddrTable to
 include this capability, which is an option the working group
 may wish to consider.

 2. It is unclear that there is significant benefit in using
 OID compression in notifications given the fact that they
 generally carry a small number of varbinds.

7. Special Considerations

 The delta OID that is used to replace the OID must be no greater in
 length than the actual encoded OID that it represents in order for
 any benefit to be realized. In cases in which the encoded compressed
 OID would be greater than in length than the original encoded OID
 then the original OID encoding should be used.

8. Encoding of compressed OIDs

 We identify compressed OIDs with two new tags such as the following
 (tag numbers will be finalized later):

 uncompressedDeltaIdentifier ::=
 [APPLICATION 14]
 IMPLICIT OBJECT IDENTIFIER (SIZE (0..128)) -- Max OID length

 compressedDeltaIdentifier ::=
 [APPLICATION 15]
 IMPLICIT OBJECT IDENTIFIER (SIZE (0..128)) -- Max OID length

 The "uncompressedDeltaIdentifier" would be used for OIDs such as the
 first OID in a varbind list that are not compressed but are included
 in a PDU that could or should contain compressed OIDs if more than
 one varbind is provided in the varbind list.

 The "compressedDeltaIdentifier" would be used for OIDs that are
 actually compressed in a varbind list of more than one varbind.

 As a result of the new compression OID types we need to add a choice
 to the ObjectName syntax. This might be redefined to look similar to

S. McLeod, et al. Expires October 2001 [Page 8]

Internet Draft OID Compression April 2001

 the following:

 ObjectName ::=
 CHOICE {
 nonDeltaOID OBJECT IDENTIFIER
 uncompressedDeltaOID uncompressedDeltaIdentifier
 compressedDeltaOID compressedDeltaIdentifier
 }

 The new ObjectName provides a choice of an original OBJECT IDENTIFIER
 which should not be used in PDUs with compression applied or one of
 the two delta OID types which will either be compressed or
 uncompressed Delta OIDs Object Identifier.

 The "nonDeltaOID" and "compressedDeltaOID" tags would provide an
 unambigious way to distinguish between compressed and uncompressed
 OIDs. The purpose of the "uncompressedDeltaOID" is to allow command
 generators to indicate a willlingness to received compressed OIDs in
 response to their requests. Typically, the use of compressed OIDs in
 the request would indicate to the command responder that compressed
 OIDs in the response is desirable. However, if the command generator
 issues a GetBulk request with a single varbind included in the
 request, then this OID cannot be compressed, and the command
 generator cannot explicitly use compression in its request to
 indicate to the command resonder that it wishes to receive compressed
 OIDs in the response from the agent. However, if we define an
 additional uncompressedDeltaIdentifier type object name tag, then we
 can indicate that this specific OID is not compressed but compression
 in the response is specifically requested. All 3 ObjectName types
 would be valid for use with new PDUs. The "nonDeltaOID" object name
 type would only be used if compression was specifically not desired.

 Note that the two new APPLICATION types are not included in the
 ObjectSyntax choices since compressed OIDs are not valid for use in
 the value portion of a varbind.

9. When to use compressed versus uncompressed OIDs

 It is up to the command generator to determine whether the request
 should be made with compressed OIDs. If the command responder
 receives a request with one of the new PDU types then this implies
 that the request originator is capable of supporting OID compression.
 If the request received contains either compressed or uncompressed

S. McLeod, et al. Expires October 2001 [Page 9]

Internet Draft OID Compression April 2001

 delta OIDs, the response SHOULD contain compressed OIDs.

10. Encoding Examples

 For the following set of Varbind names:

 1.3.6.1.2.1.25.1.1.0 -- hrSystemUptime.0
 1.3.6.1.2.1.25.1.5.0 -- hrSystemNumUsers.0
 1.3.6.1.2.1.25.1.6.0 -- hrSystemProcesses.0
 1.3.6.1.2.1.25.1.7.0 -- hrSystemMaxProcesses.0
 1.3.6.1.2.1.25.3.2.1.2.1 -- hrDeviceType.1
 1.3.6.1.2.1.25.3.2.1.3.1 -- hrDeviceDescr.1
 1.3.6.1.2.1.25.3.2.1.5.1 -- hrDeviceStatus.1

 The following is the uncompressed version of a PDU containing these
 varbinds with values:

 30 UNIVERSAL [16] SEQUENCE OF constructor(VarBindList)
 81 98 length = 152
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 11 length = 17
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 01 01 00 = 1.3.6.1.2.1.25.1.1.0
 = hrSystemUptime.0
 43 APPLICATION [3] IMPLICIT INTEGER (ObjectSyntax)
 04 length = 4
 02 7c 19 74 = 41687412
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 0e length = 14
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 01 05 00 = 1.3.6.1.2.1.25.1.5.0
 = hrSystemNumUsers.0
 42 APPLICATION [2] IMPLICIT INTEGER (ObjectSyntax)
 01 length = 1
 14 = 20
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 0e length = 14
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 01 06 00 = 1.3.6.1.2.1.25.1.6.0
 = hrSystemProcesses.0

S. McLeod, et al. Expires October 2001 [Page 10]

Internet Draft OID Compression April 2001

 42 APPLICATION [2] IMPLICIT INTEGER (ObjectSyntax)
 01 length = 1
 7e = 126
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 0f length = 15
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 01 07 00 = 1.3.6.1.2.1.25.1.7.0
 = hrSystemMaxProcesses.0
 02 UNIVERSAL [2] INTEGER (ObjectSyntax)
 02 length = 2
 0d ea = 3562
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 18 length = 24
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 0b length = 11
 2b 06 01 02 01 19 03 02 01 02 01 = 1.3.6.1.2.1.25.3.2.1.2.1
 = hrDeviceType.1
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 03 01 03 = 1.3.6.1.2.1.25.3.1.3
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 26 length = 38
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 0b length = 11
 2b 06 01 02 01 19 03 02 01 03 01 = 1.3.6.1.2.1.25.3.2.1.3.1
 = hrDeviceDescr.1
 04 UNIVERSAL [4] OCTET STRING (ObjectSyntax)
 17 length = 23
 53 75 6e 20 73 70 61 72 63 20 73 75 6e 34 6d 20 31 35 30 20 4d 48 7a
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 10 length = 16
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 0b length = 11
 2b 06 01 02 01 19 03 02 01 05 01 = 1.3.6.1.2.1.25.3.2.1.5.1
 = hrDeviceStatus.1
 02 UNIVERSAL [2] INTEGER (ObjectSyntax)
 01 length = 1
 02 = 2

 The following is the compressed version of a PDU containing these
 varbinds with values.

 1.3.6.1.2.1.25.1.1.0 -- first OID in varbind list is not compressed

 0.9.5.0 -- tail of next OID starting at the 9th subid

S. McLeod, et al. Expires October 2001 [Page 11]

Internet Draft OID Compression April 2001

 0.9.6.0 -- tail of next OID starting at the 9th subid
 0.9.7.0 -- tail of next OID starting at the 9th subid
 0.8.3.2.1.2.1 -- tail of next OID starting at the 8th subid
 0.11.3.1 -- tail of next OID starting at the 11th subid
 0.11.5.1 -- tail of next OID starting at the 11th subid

 30 UNIVERSAL [16] SEQUENCE OF constructor(VarBindList)
 71 length = 113
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 11 length = 17
 4e APPLICATION [14] IMPLICIT OBJECT IDENTIFIER
 (nonCompressedDeltaOID)
 09 length = 9
 2b 06 01 02 01 19 01 01 00 = 1.3.6.1.2.1.25.1.1.0
 = uncompressed OID hrSystemUptime.0
 43 APPLICATION [3] IMPLICIT INTEGER (ObjectSyntax)
 04 length = 4
 02 7c 19 74 = 41687412
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 08 length = 8
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 03 length = 3
 09 05 00 = 0.9.5.0 -- compressed OID hrSystemNumUsers.0
 ==> 1.3.6.1.2.1.25.1.5.0
 42 APPLICATION [2] IMPLICIT INTEGER (ObjectSyntax)
 01 length = 1
 14 = 20
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 08 length = 8
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 03 length = 3
 09 06 00 = 0.9.6.0 -- compressed OID hrSystemProcesses.0
 ==> 1.3.6.1.2.1.25.1.6.0
 42 APPLICATION [2] IMPLICIT INTEGER (ObjectSyntax)
 01 length = 1
 7e = 126
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 09 length = 9
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 03 length = 3
 09 07 00 = 0.9.7.0 -- compressed OID hrSystemMaxProcesses.0
 ==> 1.3.6.1.2.1.25.1.7.0
 02 UNIVERSAL [2] INTEGER (ObjectSyntax)
 02 length = 2

 0d ea = 3562

S. McLeod, et al. Expires October 2001 [Page 12]

Internet Draft OID Compression April 2001

 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 13 length = 19
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 06 length = 6
 08 03 02 01 02 01 = 0.8.3.2.1.2.1 -- compressed OID hrDeviceType.1
 ==> 1.3.6.1.2.1.25.3.2.1.2.1
 06 UNIVERSAL [6] OBJECT IDENTIFIER (ObjectName)
 09 length = 9
 2b 06 01 02 01 19 03 01 03 = 1.3.6.1.2.1.25.3.1.3
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 1e length = 30
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 03 length = 3
 0b 03 01 = 0.11.3.1 -- compressed OID hrDeviceDescr.1
 ==> 1.3.6.1.2.1.25.3.2.1.3.1
 04 UNIVERSAL [4] OCTET STRING (ObjectSyntax)
 17 length = 23
 53 75 6e 20 73 70 61 72 63 20 73 75 6e 34 6d 20 31 35 30 20 4d 48 7a
 30 UNIVERSAL [16] SEQUENCE OF constructor (VarBind)
 08 length = 8
 4f APPLICATION [15] IMPLICIT OBJECT IDENTIFIER
 03 length = 3
 0b 05 01 = 0.11.5.1 -- compressed OID hrDeviceStatus.1
 ==> 1.3.6.1.2.1.25.3.2.1.5.1
 02 UNIVERSAL [2] INTEGER (ObjectSyntax)
 01 length = 1
 02 = 2

 The total size of the uncompressed PDU was 155 bytes with 83 bytes
 required to encode the OIDs in the name portions of the variable
 bindings list.

 The total size of the compressed PDU was 115 bytes with only 44 bytes
 required to encode the OIDs in the name portions of the variable
 bindings list. By applying the lightweight Delta OID Compression
 algorithm as described in this document to the variable binding list
 above a 47% reduction in the amount of space required to encode the
 OIDs for the names in the variable binding list was achieved and the
 total PDU size was reduced by 26% overall.

11. When to Compress OIDs

 A command generator MAY send messages with compressed OIDs to a

S. McLeod, et al. Expires October 2001 [Page 13]

Internet Draft OID Compression April 2001

 command responder if the compressed OID message is expected to
 ellicit a response or the command responder has explicitly advertised
 the ability to support compressed OIDs. Responses to messages with
 compressed OIDs MUST use compressed OIDs if doing so will reduce the
 overall size of the response PDU.

 If a command generator does not receive a response to a message with
 compressed OIDs and was expecting one, the message MUST be resent
 without OID compression unless the command responder has advertised,
 and the command generator read, the ability to process compressed
 payload messages. In the case where a command generator has
 determined a priori that a specific command responder is capable of
 processing compressed OID messages, the compressed OID message MAY be
 resent according to the implementation's retry mechanism.

 Before generating messages that ellicit no response, a command
 generator MUST ascertain through advertised capabilities that the
 command responder is capable of processing compressed OIDs. Once the
 command generator has determined whether or not a particular command
 responder is capable of processing compressed OID messages, the
 command generator SHOULD cache the result and use this for future
 messages.

12. OID Compression with Proxy Forwarders

 To be written: We must give serious consideration to how OID
 compression will function in an environment using proxy forwarding
 applications.

13. Security Considerations

 To be written, assuming that what we are defining has some effect on
 security.

14. IANA Considerations

 To be written: Probably nothing, but put here so that we don't
 forget about it.

S. McLeod, et al. Expires October 2001 [Page 14]

Internet Draft OID Compression April 2001

15. Appendix A: OID Suppression

 NOTE: This appendix is in this document for the purpose of
 comparison of the two approaches. It is anticipated that future
 companion EOS documents will includes some or all of these
 concepts, at which time this appendix will be removed.

 OID Suppression reduces the amount of redundant information in a
 series of variable bindings by reducing the number of identifiers
 required to represent a series of OIDs in an SNMP PDU variable
 binding list. OID Suppression is particularly useful in the case of
 operations on columnar objects in which the OIDs share the same base
 table OID prefix and the same instance information.

 Significant suppression of OIDs can be achieved through the
 definition of aggregate row objects which would allow multiple
 columns from the same conceptual row in a table to be bound together
 and represented as a single atomic unit with only a single OID
 required to represent the entire row.

15.1. Aggregate Row Objects

 Within a single row in a table, the OIDs of each of the columns in
 the row contain a substantial amount of redundant information since
 each of these OIDs contain the same table prefix and instance
 information. The only variation among the OIDs for a group of
 objects in the same row of a table is the single subidentifier in the
 OID which represents the unique column identifier for that object.

 The ability to represent a row as a single aggregate object in an
 SNMP PDU would provide a more efficient representation of the row as
 this aggregate row object could be represented with a single OID
 combined with a sequence of values for the objects in this row. The
 aggregate row object's OID would specify the table OID prefix and the
 instance information for that row. The value of this row object would
 actually be a sequence of individual values for a group of columns in
 this row.

15.2. Row Operations Using Aggregate Row Objects

 An additional benefit to defining an aggregate row object beyond the
 benefit of OID suppression is the ability to perform more efficient
 atomic row operations. Instances of objects in the same conceptual

S. McLeod, et al. Expires October 2001 [Page 15]

Internet Draft OID Compression April 2001

 row in a table are often treated by manager and agent applications as
 a single atomic unit for operational purposes. Until now, though,
 the ability to perform row-based operations has been limited to the
 scope of MIB implementation rather than protocol implementation.
 There is currently no means of representing a conceptual row in a
 table as a single atomic unit in an SNMP operation. The ability to
 represent a conceptual row as a single aggregate row object would
 allow conceptual table rows to be represented in SNMP operations in
 the same manner as they are often treated logically by manager and
 agent applications and would allow row-based operations to be
 performed in a more efficient manner.

15.3. Defining Aggregate Row Objects

 In order to identify aggregate row objects uniquely and
 unambiguously, it is necessary to define a new naming convention for
 aggregate row objects that distinguishes these objects from the
 existing conceptual row OIDs. The current convention for naming a
 conceptual row, as defined in RFC1902, is to append a subidentifier
 of '1' to the table name. For example, the conceptual row 'ifEntry'
 is defined by the name 'ifTable.1'.

 It is proposed that aggregate row objects be defined by appending the
 subidentifier '2' to the table name. Using this naming convention,
 'ifTable.2' would be the OID to reference aggregate row objects for
 the conceptual ifTable. In order to reference a specific instance of
 an aggregate row object, the instance information for that row would
 be appended to the aggregate row object's OID. Under this naming
 convention, the instance of the aggregate row object that represents
 row

 In general, the definition of a variable binding for an aggregate row
 object would have the following format for a table with N columns:

 <table>.2.<instance> = (val1, val2, ..., valN)

 The value of the aggregate object would actually be a sequence of
 values for the columns in this row of the table.

15.4. Implicit versus Explicit column identification

 Aggregate row objects can be defined with either implicit or explicit

https://datatracker.ietf.org/doc/html/rfc1902

S. McLeod, et al. Expires October 2001 [Page 16]

Internet Draft OID Compression April 2001

 column identification in the value sequence. Implicit column
 identification relies on positional context in order to map a
 sequence of values to their corresponding column in a table. Explicit
 column identification requires an explicit column identifier to be
 specified for each value in the aggregate object. It is foreseeable
 that both of these approaches will be useful under different
 circumstances.

 Implicit column identification would require that a value be
 specified for each object in the row. The first value in the
 sequence would correspond to the first column in the table. The
 second value in the sequence would correspond to the second column,
 and so on. This approach requires less encoding for each value as it
 would not require that a column identifier be explicitly specified
 for each corresponding value. However, in the case where instances of
 some of the columns were missing, NULL placeholders would be required
 in order to maintain a one-to-one mapping between the sequence of
 values and the table columns.

 Explicit column identification would require that a column identifier
 be explicitly specified for each columnar value in the aggregate row
 objects value sequence. This approach would require additional
 encoding for the column identifiers but could be beneficial in the
 case of tables with a large number of missing columns and could also
 be useful for performing operations on a subset of the columns in a
 table.

15.5. Encoding Aggregate Row Objects

 The ASN.1 variable binding notation requires some changes to
 accommodate aggregate objects. It is expected that the new aggregate
 row object will only be valid for use in a new set of SNMP PDUs that
 are to be defined to address the need for simpler, more efficient row
 operations in a separate document. The following is a proposal for
 modifying the variable binding notation for these new, yet-to-be-
 defined PDUS to allow the varbinds in these PDUs to include both
 aggregate and non-aggregate objects. In the following proposal, there
 are no changes to the VarBindList or ObjectSyntax definitions.

 VarBind ::=
 SEQUENCE {
 name
 ObjectName,
 CHOICE {

S. McLeod, et al. Expires October 2001 [Page 17]

Internet Draft OID Compression April 2001

 value
 ObjectSyntaxNonAggregate,
 value
 ObjectSyntaxAggregate
 }
 }

 ObjectSyntaxNonAggregate ::=
 CHOICE {
 ObjectSyntax, -- as in [RFC2578]
 ObjectSyntaxExtension, -- new scalar types
 ObjectSyntaxNullType -- NULL and exceptions
 }

 ObjectSyntaxExtension ::=
 CHOICE {
 -- Nothing for now
 -- Eventually there will be new 64 bit types, these
 -- are being defined elsewhere
 }

 -- ObjectSyntaxNullType separated for cleanliness. There is
 -- no protocol requirement for this.

 ObjectSyntaxNullType ::=
 CHOICE {
 unSpecified -- in retrieval requests
 NULL, -- exceptions in responses
 noSuchObject[0]
 IMPLICIT NULL,
 noSuchInstance[1]
 IMPLICIT NULL,
 endOfMibView[2]
 IMPLICIT NULL
 nonInstantiatedRowObject[3] -- plugs holes in rows
 IMPLICIT NULL
 }

 ObjectSyntaxAggregate ::=
 CHOICE {
 ImplicitAggregate,
 ExplicitAggregate
 }

 ImplicitAggregate ::=

https://datatracker.ietf.org/doc/html/rfc2578

S. McLeod, et al. Expires October 2001 [Page 18]

Internet Draft OID Compression April 2001

 [Application 12] IMPLICIT SEQUENCE OF
 ObjectSyntaxNonAggregate

 ExplicitAggregate ::=
 [Application 13] IMPLICIT SEQUENCE OF
 EAFragment

 EAFragment ::=
 SEQUENCE {
 EAFragmentNamePart
 INTEGER (0..4294967295),
 EAFragmentValuePart
 ObjectSyntaxNonAggregate
 }

 Note that, if no aggregate types are used and no
 nonInstantiatedRowObject is used, that this notation produces results
 equivalent to that of [RFC1905]. That is to say, if no row
 operations are used, then the encoding on the wire is unchanged by
 this notation.

16. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC2119, March 1997.

17. Acknowledgements

 The authors wish to thank Jeff Case for helpful comments as well as,
 in particular, David Perkins and Juergen Schoenwaelder and the NMRG
 of the IRTF for their previous work in this area.

18. Authors' Addresses

 Sandra McLeod
 SNMP Research International
 3001 Kimberlin Heights Road
 Knoxville, TN 37920
 USA
 EMail: mcleod@snmp.com

 David Partain

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

S. McLeod, et al. Expires October 2001 [Page 19]

Internet Draft OID Compression April 2001

 Ericsson Radio Systems AB
 P.O. Box 1248
 SE-581 12 Linkoping
 Sweden
 EMail: David.Partain@ericsson.com

 Matt White
 Ericsson IP Infrastructure
 7301 Calhoun Place
 Rockville, MD 20855
 EMail: Matt.White@ericsson.com

Table of Contents

1 Background .. 2
2 Previous work ... 2
3 Terminology ... 3
4 OID compression versus OID suppression 4
5 Delta OID Compression Algorithm 4
5.1 Examples of Compressed OIDs 5
5.2 Applicability of the Algorithm 7
6 Use of OID Compression in Notifications 7
7 Special Considerations .. 8
8 Encoding of compressed OIDs 8
9 When to use compressed versus uncompressed OIDs 9
10 Encoding Examples .. 10
11 When to Compress OIDs .. 13
12 OID Compression with Proxy Forwarders 14
13 Security Considerations .. 14
14 IANA Considerations .. 14
15 Appendix A: OID Suppression 15
15.1 Aggregate Row Objects .. 15
15.2 Row Operations Using Aggregate Row Objects 15
15.3 Defining Aggregate Row Objects 16
15.4 Implicit versus Explicit column identification 16
15.5 Encoding Aggregate Row Objects 17
16 References ... 19
17 Acknowledgements ... 19
18 Authors' Addresses ... 19

S. McLeod, et al. Expires October 2001 [Page 20]

