
EOS Working Group W. Hardaker
INTERNET-DRAFT Network Associates Laboratories
draft-ietf-eos-oops-00.txt February 2003

Object Oriented Protocol Operations for
the Simple Network Management Protocol

draft-ietf-eos-oops-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document defines new Protocol Data Units (PDUs) for use within
 the Simple Network Management Protocol (SNMP). The goals of the new
 PDUs are to reduce packet sizes and to reduce processing overhead
 required at the Command Responder side of the protocol.

Table of Contents

1. Introduction ... 2
1.1. Background and Motivations 3
1.1.1. GET-NEXT complexity 3
1.1.2. OID compression .. 3
1.1.3. Row operations ... 4
1.1.4. Complex object relationships 4

Wes Hardaker [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-eos-oops-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft Object Oriented Operations for SNMP Feb. 2003

1.1.5. Retrieval of more data than is desired 4
1.1.6. Row hole traversal and object grouping 4
1.1.7. Index parsing and OID length restrictions 5
1.1.8. Transactions ... 5
1.1.9. Easy conversion to and from popular data formats 5
1.1.10. Better error condition handling 6
1.2. Related work within the SMIng working group 6
1.3. Terminology .. 6
2. Transport Protocol Considerations 7
3. PDU definitions .. 7
3.1. ASN.1 definitions for the PDUs 7
3.2. New PDU component definitions 19
3.2.1. Common PDU elements of the OOPS PDUs 19
3.2.2. Get-Object-PDU specific PDU elements 23
3.2.3. Write-Object-PDU specific PDU elements 27
3.2.4. Get-Configuration-Object-PDU specific PDU elements 29
3.2.5. Notification-Object-PDU specific elements 30
4. PDU processing ... 30
4.1. Processing a Get-Object-PDU 30
4.2. Processing a Write-Object-PDU. 33
4.3. Processing a Get-Configuration-Object-PDU request 34
4.4. Generating a Notification-Object-PDU 35
5. Examples ... 36
5.1. Retrieve a specific row from the ifTable 36
5.2. A multiple-packet example with a double filter 37
5.3. A Write-Object-PDU example 40
5.4. A Get-Configuration-Object-PDU example 42
5.5. A Notification-Object-PDU example: IF-MIB::linkUp 43
6. References ... 44
6.1. Normative References 44
6.2. Informative References 45
7. Intellectual Property 45
8. Security Considerations 45
9. IANA Considerations .. 46
10. Acknowledgements .. 46
11. Editor's Addresses .. 46
12. Full Copyright Statement 47

1. Introduction

 This document specifies some new PDU types to optimize specific
 operations in SNMP. This draft is still work in progress, though
 the technical concepts are perceived by the author to be stable and
 mostly implementable at this point. More feedback from implementors
 sought at this point in time. Comments and discussion on this
 document are encouraged and should take place on the EOS working
 group mailing list (eos@ops.ietf.org).

Wes Hardaker [Page 2]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

1.1. Background and Motivations

 Many recognized problems [5, 6] exist within the current PDUs
 defined for use by the SNMP protocol [1]. Many of these known
 problems are addressed by the new protocol operations defined within
 this draft. The general problems solved by this draft are described
 briefly in this section.

1.1.1. GET-NEXT complexity

 Many problems result from a device's inability to access its data in
 a way that can be efficiently traversed when searching for the next
 object in a series of GET-NEXT or GET-BULK SNMP requests.
 Internally, many implementations differ in how data is stored in a
 device and thus it would be impossible to define a MIB which would
 be efficient when implemented on every architecture.

 The operations defined in this document do not suffer from these
 problems, as the data can be returned in any order selected by the
 Command Responder. It MUST, however, return data in a consistent
 manner such that if the same data is requested twice at any point in
 time, the Command Responder will return the data in the same order.
 It is the exact order in which objects are returned is
 implementation specific.

 It is likely that every Command Responder will benefit from this
 design decision and that either most Command Generators don't care
 about ordering in the first place or have the resources to perform
 ordering themselves via utilization of database technologies that
 are not realistically available on many Command Responder platforms.
 Command Generator's that do need sorted data may even need the data
 sorted in a different manner than the MIBs specify, in which case
 the sorting burden placed on the Command Responder is wasted.

1.1.2. OID compression

 SNMPv2 PDUs are constructed using a sequence of varbinds. In many
 cases, when multiple objects are requested from the Command
 Responder, the OIDs contained within have common prefixes. It is
 widely recognized as a waste of bandwidth to duplicate this prefix
 repeatedly.

 The PDUs defined in this document only rely on a base OID (e.g., an
 object identifier pointing to the root of a SNMP Object or Table),
 and the sub-objects (e.g., a row in a SNMP Table) underneath it are
 defined as references from the base OID. This allows large groups
 of data to be transmitted while only requiring a single OID to
 identify the top most grouping object (e.g., a table).

Wes Hardaker [Page 3]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

1.1.3. Row operations

 The ability to manipulate an entire row within a SNMP Table at once
 has long been a frustration of programmers using the SET operations
 contained the SNMPv2 PDUs.

 The PDUs defined in this document allow explicit data dependencies
 to be marked within the write operations. This allows Command
 Generators to create more powerful requests, while at the same
 easing implementation burden within the Command Responder.

1.1.4. Complex object relationships

 Many people do not properly understand the interrelationships
 between SNMP Tables and have desired the ability to express their
 data in a more hierarchal fashion, such that SNMP tables can contain
 other SNMP tables. Although it is not possible to enable nested
 datatypes within SMIv2 today, the SMIng working group is trying to
 solve these problems and create the ability to define more complex
 relationships in SMIv3.

 The PDUs defined in this document allow hierarchal object data to be
 transmitted efficiently and as a single group, thus allowing the
 complex structures defined within SMIv3 to be efficiently
 transmitted.

1.1.5. Retrieval of more data than is desired

 Extracting only the data needed from an SNMP Table using the GETNEXT
 or GETBULK operations available in SNMP PDUs today is difficult at
 best. The request PDUs defined in this document allow more precise
 selection data and allow simple search criteria to be submitted to
 the remote Command Responders to help reduce the amount of data
 returned to the Command Generator. A delicate balance is required
 to ensure that the devices being polled for data are not taxed with
 expensive search requests, so the criteria imposed within these
 documents is restricted to a limited set of operators that may or
 may not be supported by the command responder implementation. The
 intention is not to shift all the complex decision processing burden
 from the Command Generator station to the command responder, but to
 increase efficiency on the wire where possible.

1.1.6. Row hole traversal and object grouping

 When requests to GET, GET-NEXT, and GET-BULK data come back in a
 SNMP RESPONSE PDU, the data can be hard to organize back into a
 logical structure again. Additionally, GET-BULK responses
 interleave its data with END-OF-MIB exceptions which adds further

Wes Hardaker [Page 4]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 complexity to the data processing.

 Since the PDUs defined in this document deal directly with MIB
 objects as a group, the data relationships within objects are
 preserved. This makes transferring large amounts of data efficient
 on both the sending and receiving side. The data groupings are now
 appropriately marked within the packet itself.

1.1.7. Index parsing and OID length restrictions

 Although the encoding and decoding of Table indexes into and out of
 OIDs is algorithmic, many SNMP software packages and toolkits make
 mistakes in implementing the algorithm. Additionally, since the
 maximum length of an OID is limited to 128 sub-identifiers, it
 limits the size of the index data that can be utilized within an
 SNMP table. This limitation results in MIBs which are poorly
 designed and/or broken and MIBs with less-than-ideal table indexes.
 Finally, it is impossible to decode the indexes from an OID without
 knowledge of the MIB module definition.

 The indexes within the PDUs defined in this document are encoded
 directly into the packet as opposed to being encoded into the OID.
 This simplifies both Command Generator and Command Responder code
 and reduces the chances of one side incorrectly encoding or decoding
 the indexes. Additionally, because encoding of indexes is done
 directly within the protocol no MIB module definition is needed to
 extract them from the protocol operation. Finally, it provides the
 ability to use a set of indexes which is larger than the OID-encoded
 imposed length of 128 sub-identifies.

1.1.8. Transactions

 The limited set of SNMP write operation transactions have been
 difficult to cope with when large sets of data must be pushed
 around, since all the objects within a SNMP SET PDU must be set as
 if simultaneously. In actuality, configuration data often contains
 independent sets of data.

 The Write-Object-PDU operation defined in this document defines a
 less restrictive and more flexible transaction model that lets large
 quantities of data be pushed more efficiently through a network.

1.1.9. Easy conversion to and from popular data formats

 A desire has been shown by network operators for SNMP objects to be
 easily accessible and convertible to and from more human friendly
 expression languages and storage systems, like XML or SQL Databases.
 The objects within the PDUs contained in this document are designed

Wes Hardaker [Page 5]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 for such a purpose. It should be, for example, trivial to convert
 them to and from a hierarchical XML schema set describing the
 objects in question. For the example, the BER hierarchal packet
 format can be quickly converted to XML by replacing the sequence
 tags with XML ASCII delimiter tags.

1.1.10. Better error condition handling

 Integer error codes are extremely useful for machine parsibility and
 interoperability, but it's frequently nice to have an extra error
 string that may be passed to an operator to assist in extra
 debugging of problems. The response PDUs defined in this document
 contain an "error string" for exactly this purpose.

 Additionally, multiple errors can be returned at once allowing more
 comprehensive error reporting. In older PDUs only the first error
 encountered in processing a request could be returned in the
 response PDU.

1.2. Related work within the SMIng working group

 The PDUs in this document are designed for use with the first three
 versions of the SMI language. There are specific portions of the
 protocol operations that are not needed for SMIv1 or SMIv2
 documents. Command Responders and Command Generators which do not
 make use of any documents written in the SMIv3 format may not need
 the SMIv3 portions of the protocol, but MUST expect the possibility
 that these PDUs may arrive with these extensions requested.

1.3. Terminology

 The SMIv1, SMIv2, and SMIv3 documents are not entirely consistent in
 their terminology. In this document, we will use the following
 terminology throughout this document. Most of the terminology is
 equivalent to what is expected to be in the SMIv3 documents.

 Note: this section is not entirely finished yet, as we're awaiting
 the latest SMIng draft to match our terminology to theirs.

 Aggregate
 An aggregate is a collection of information. In SMIv2 terms,
 this is roughly equivalent to a table. In SMIv3 this is an
 array or other structure with multiple objects contained
 within it.

 Object
 An object is a particular instance of "something". In SMIv2
 terms, this would be a row. In SMIv3 this would be an

Wes Hardaker [Page 6]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 instantiated scalar or a particular row within an array.

 Element
 An element is one particular part of a an object. In SMIv2
 terms, this would be a column. In SMIv3 this would be a XXX,
 which may be defined as another object in itself.

 Command
 This document sticks with the SNMPv3 application documentation
 [4] terminology for describing the different application types
 that request and receive the PDUs defined in this document.

2. Transport Protocol Considerations

 The PDUs defined in this document allow the transmission of large
 data sets in a more compact format than previous SNMP PDUs allowed.
 However, it is still recommended that large requests and responses
 be transmitted over a SNMP transmission domain which provides for
 guaranteed network packet delivery (e.g., TCP). Large responses,
 containing many objects, carried over transmission domains which can
 not guarantee delivery (e.g., UDP) are still likely to be
 problematic. It is well beyond the scope of this document to
 redesign a reliable transmission mechanism.

3. PDU definitions

 This section defines the new PDUs in ASN.1 format. Supporting
 textual descriptions of PDU components are given in later sections.

3.1. ASN.1 definitions for the PDUs

 SNMP-OOPS DEFINITIONS ::= BEGIN

 --
 -- Notes: ignore the OptionField for now. They'll be fixed later.
 -- (for instance, they should all be unique definitions)
 --

 --
 -- DataTypes
 --

 ElementSyntax ::= CHOICE {
 simple SimpleSyntax,
 application-wide ApplicationSyntax
 }

Wes Hardaker [Page 7]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 SimpleSyntax ::= CHOICE {
 integer-value INTEGER (-2147483648..2147483647),
 string-value OCTET STRING (SIZE (0..65535)),
 objectID-value OBJECT IDENTIFIER
 }

 ApplicationSyntax ::= CHOICE {
 ipAddress-value IpAddress,
 counter-value Counter32,
 timeticks-value TimeTicks,
 arbitrary-value Opaque,
 big-counter-value Counter64,
 unsigned-integer-value Unsigned32,
 integer64-value Integer64,
 unsigned64-value Unsigned64,
 float32-value Float32,
 float64-value Float64,
 float128-value Float128
 }

 IpAddress ::= [APPLICATION 0]
 IMPLICIT OCTET STRING (SIZE (4))

 Counter32 ::= [APPLICATION 1]
 IMPLICIT INTEGER (0..4294967295)

 Unsigned32 ::= [APPLICATION 2]
 IMPLICIT INTEGER (0..4294967295)

 Gauge32 ::= Unsigned32

 TimeTicks ::= [APPLICATION 3]
 IMPLICIT INTEGER (0..4294967295)

 Opaque ::= [APPLICATION 4]
 IMPLICIT OCTET STRING

 -- APPLICATION 5 was used in 1442

 Counter64 ::= [APPLICATION 6]
 IMPLICIT INTEGER (0..18446744073709551615)

 -- APPLICATION 7 was used in 1442

 Integer64 ::= [APPLICATION 8]
 IMPLICIT INTEGER (-9223372036854775808..9223372036854775807)

 Unsigned64 ::= [APPLICATION 9]

Wes Hardaker [Page 8]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 IMPLICIT INTEGER (0..18446744073709551615)

 Float32 ::=
 [APPLICATION 9]
 IMPLICIT OCTET STRING(SIZE(4)) -- IEEE format

 Float64 ::=
 [APPLICATION 10]
 IMPLICIT OCTET STRING(SIZE(8)) -- IEEE format

 Float128 ::=
 [APPLICATION 11]
 IMPLICIT OCTET STRING(SIZE(8)) -- IEEE format

 max-bindings INTEGER ::= 2147483647

 --
 -- Get-Object-PDU definition
 --

 Get-Object-PDU ::=
 [XXX] -- 9?
 SEQUENCE {
 request-id Unsigned32,
 gop-flags GOPFlags,
 option-field OptionField,
 request-objects RequestObjects
 }

 GOPFlags ::=
 IMPLICIT OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- requestAcknowledgment(1),

 OptionField ::= SEQUENCE { } -- XXX needs formal definition

 RequestObjects ::=
 SEQUENCE (SIZE (0..max-bindings)) OF
 RequestObject

 RequestObject ::=
 SEQUENCE {
 max-return-objects Unsigned32,
 skip-objects Unsigned32,
 cursor OCTET STRING (SIZE(1..256)),
 request-flags RequestCharacteristics,

 option-field OptionField,

Wes Hardaker [Page 9]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 request-base-OID OBJECT IDENTIFIER,
 request-element-list ElementsRequestList,
 search-criteria SearchCriteria
 }

 RequestCharacteristics ::=
 IMPLICIT OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- restartOnInvalidCursor(1),
 -- returnAllDataOnSearchFailure(2)

 ElementsRequestList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 ElementSpecifier

 ElementSpecifier ::=
 CHOICE {
 -- request an index
 index-number[0] IMPLICIT INTEGER (0..4294967295)

 -- request an attribute
 element-number[1] IMPLICIT INTEGER (0..4294967295)

 -- fully qualified for AUGMENTation tables
 -- 0.0 prefix = request-base-OID for SMIv3
 subelement-specifier[2] IMPLICIT OBJECT IDENTIFIER,

 -- request multiple [sub,...]elements
 -- *only* usable in an ElementRequestList
 -- (not in ElementData)
 multiple-subelement[3]
 IMPLICIT SEQUENCE {
 -- fully qualified for AUGMENTation tables
 -- 0.0 prefix = request-base-OID for SMIv3
 element-specifier OBJECT IDENTIFIER,
 element-list ElementRequestList
 }

 -- used for referencing external indexes of augmentation
 -- tables or for SMIv3 sub attributes with external indexes
 -- This is for use *only* in a SearchCriteria
 subelement-index[4]
 IMPLICIT SEQUENCE {
 -- fully qualified for AUGMENTation tables
 -- 0.0 prefix = request-base-OID for SMIv3
 element-specifier OBJECT IDENTIFIER,
 element-index-number INTEGER (0..4294967295)
 }

Wes Hardaker [Page 10]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 }

 SearchCriteria ::=
 SEQUENCE {
 match-type MatchType
 data
 CHOICE {
 -- sub-sequences for logical operations
 sub-criteria[0] IMPLICIT SEQUENCE
 (SIZE(0..max-bindings))
 OF SearchCriteria,

 -- match operation data
 match-data[1] IMPLICIT SEQUENCE {
 which ElementSpecifier,
 what ElementSyntax
 }
 }
 }

 MatchType ::= INTEGER {
 -- any datatypes:
 equals(0),
 not-equals(1), -- note: not-equals NULL ::= exists

 -- numerical only:
 lessThan(10),
 lessThanOrEqual(11),
 greaterThan(12),
 greaterThanOrEqual(13),

 -- binary comparisons:
 regexp(20),
 not-regexp(21),

 -- logical operations:
 logicalAND(100),
 logicalOR(101),
 logicalNOT(102) -- sub-criteria must be exactly 1 in length

 -- ... IANA assigned up to 255
 -- enterprise specific:
 -- 256*EnterpriseID to
 -- 256*EnterpriseID + 255
 }

 --
 -- Get-Object-Repsonse-PDU definition

Wes Hardaker [Page 11]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 --

 Get-Object-Repsonse-PDU ::=
 [XXX] -- 10?
 SEQUENCE {
 request-id Unsigned32,
 gop-flags GOPFlags,
 option-field OptionField,
 return-objects ReturnObjects
 }

 ReturnObjects ::=
 SEQUENCE (SIZE(0..max-bindings))
 OF ReturnObject

 ReturnObject ::=
 SEQUENCE {
 error-information-list ErrorInformationList,
 cursor OCTET STRING (SIZE(0..256)),
 response-flags RequestCharacteristics,
 option-field OptionField,

 request-base-OID OBJECT IDENTIFIER,

 returned-data-list DataList
 }

 -- should be an empty sequence if no errors occurred
 ErrorInformationList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 ErrorInformation

 ErrorInformation ::=
 SEQUENCE {
 error-status ErrorCode,
 error-index OBJECT IDENTIFIER,
 error-string OCTET STRING (SIZE(0..1024))
 }

 ErrorCode ::=
 INTEGER {
 -- From RFC3416:
 noError(0),
 tooBig(1),
 noSuchName(2),
 badValue(3),
 readOnly(4),

https://datatracker.ietf.org/doc/html/rfc3416

Wes Hardaker [Page 12]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18),

 -- new in this document:
 unknownFlag(100),
 invalidCursor(101),
 unSupportedSearchOperation(102),
 tooComplex(103),
 createFailed(104),
 deleteFailed(105),
 getConfigObjectNotSupported(106)

 -- reserved for enterprise usage:
 -- 256*EnterpriseID to 256*EnterpriseID + 255
 -- Enterprise errors MUST be treatable as a genErr for
 -- applications that don't understand the error enumeration.
 }

 -- old speak: multiple rows
 DataList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 ObjectData

 -- old speak: multiple columns with a row
 ObjectData ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 ElementData

 ElementData ::=
 SEQUENCE {
 which-element ElementSpecifier,
 element-value ElementValue
 }

 ElementValue ::=

Wes Hardaker [Page 13]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 CHOICE {
 base-type-object ElementSyntax,

 -- for SMIv3 sub-object aggregates and augmentation tables:
 sub-object DataList
 }

 --
 -- Write-Object-PDU definition
 --

 Write-Object-PDU ::=
 [XXX] -- 11?
 SEQUENCE {
 request-id Unsigned32,
 write-flags WriteSemantics,
 option-field OptionField,
 write-transactions WriteTransaction
 }

 WriteSemantics ::=
 OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- requestAcknowledgment(1),
 -- returnDataOnlyOnError(2)

 WriteTransaction ::=
 SEQUENCE {
 transaction-flags TransactionSemantics,
 option-field OptionField,

 transaction-data-list TransactionDataList
 }

 TransactionSemantics ::=
 OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- needSuccess(1),
 -- needAll(2),
 -- notOrderDependent(3)

 TransactionDataList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 TransactionData

 TransactionData ::=
 CHOICE {
 create-transaction[0] CreateTransaction,

Wes Hardaker [Page 14]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 modify-transaction[1] ModifyTransaction,
 delete-transaction[2] DeleteTransaction,
 method-transaction[3] MethodTransaction
 sub-transaction WriteTransaction
 }

 CreateTransaction ::= SEQUENCE {
 request-base-OID OBJECT IDENTIFIER,
 create-data-list DataList
 }

 ModifyTransaction ::= SEQUENCE {
 request-base-OID OBJECT IDENTIFIER,
 modify-search-criteria SearchCriteria,
 modify-data-list DataList
 }

 DeleteTransaction ::= SEQUENCE {
 request-base-OID OBJECT IDENTIFIER,
 delete-search-criteria SearchCriteria,
 }

 MethodTransaction ::= SEQUENCE {
 method-OID OBJECT IDENTIFIER,
 method-arguments DataList
 }

 --
 -- Write-Object-Response-PDU definition
 --

 Write-Object-Response-PDU ::=
 [XXX] -- 12?
 SEQUENCE {
 request-id Unsigned32,
 write-flags WriteSemantics,
 option-field OptionField,
 error-information-list ErrorInformationList,

 write-transaction-results WriteTransactionResults
 }

 WriteTransactionResults ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 WriteTransactionResponse

 WriteTransactionResult ::=
 SEQUENCE {

Wes Hardaker [Page 15]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 transaction-flags TransactionSemantics,
 option-field OptionField,

 transaction-response-list TransactionResponseList
 }

 TransactionResponseList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 TransactionResponse

 TransactionResponse ::=
 CHOICE {
 create-response[0] CreateResponse,
 modify-response[1] ModifyResponse,
 delete-response[2] DeleteResponse
 }

 CreateResponse ::= {
 request-base-OID OBJECT IDENTIFIER,
 create-data-list DataList -- copy of sent
 }

 ModifyResponse ::= {
 request-base-OID OBJECT IDENTIFIER,
 modify-data-list DataList -- ONLY indexes of
 -- modified elements
 -- and data
 }

 DeleteResponse ::= {
 request-base-OID OBJECT IDENTIFIER,
 delete-data-list DataList -- ONLY indexes
 }

 MethodResponse ::= SEQUENCE {
 method-OID OBJECT IDENTIFIER,
 method-return-data DataList
 }

 --
 -- Get-Configuration-Objects-PDU definition
 --

 Get-Configuration-Objects-PDU ::=
 [XXX] -- 13?
 SEQUENCE {
 request-id Unsigned32,
 gcop-flags GCOPFlags,

Wes Hardaker [Page 16]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 option-field OptionField,
 request-objects ConfigurationObjectsList
 }

 GCOPFlags ::=
 IMPLICIT OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- requestAcknowledgment(1),

 ConfigurationObjectsList ::=
 SEQUENCE OF (SIZE (0..max-bindings)) OF
 ConfigurationObjects

 ConfigurationObjects ::=
 SEQUENCE {
 request-flags ConfigurationFlags,
 option-field OptionField,
 requested-config RequestedConfig
 }

 ConfigurationFlags ::=
 IMPLICIT OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),

 RequestedConfig ::= OBJECT IDENTIFIER

 --
 -- Configuration-Objects-Response-PDU definition
 --
 Configuration-Objects-Response-PDU ::=
 [XXX] -- 14?
 SEQUENCE {
 request-id Unsigned32,
 gcop-flags GCOPFlags,
 option-field OptionField,
 config-results ConfigurationResults
 }

 ConfigurationResults ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 ConfigurationResult

 ConfigurationResult ::=
 SEQUENCE {
 request-flags ConfigurationResultFlags,
 option-field OptionField,
 error-information ErrorInformationList,
 config-transactions WriteTransaction

Wes Hardaker [Page 17]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 }

 --
 -- Notification-Objects-PDU definition
 --

 Notification-Object-PDU ::=
 [XXX] -- 15?
 SEQUENCE {
 request-id Unsigned32,
 notification-flags NotificationSemantics,
 option-field OptionField,

 notifications NotificationList
 }

 NotificatonList ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 Notification

 Notification ::=
 SEQUENCE {
 notification-id OBJECT IDENTIFIER,
 system-uptime TimeTicks,
 notification-string OCTET STRING,

 notification-objects NotificationObjects
 }

 NotificationObjects ::=
 SEQUENCE (SIZE(0..max-bindings)) OF
 NotificationObject

 NotificationObject ::=
 SEQUENCE {
 option-field OptionField,
 request-base-OID OBJECT IDENTIFIER,
 notification-data DataList
 }

 NotificationSemantics ::=
 OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- requestAcknowledgment(1)

 --
 -- Acknowledgment-PDU definition
 --

Wes Hardaker [Page 18]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 -- Note that this PDU used to Acknowledge any PDU with a
 -- requestAcknowledgement flag set.

 Acknowledgment-PDU ::=
 [XXX] -- 16?
 SEQUENCE {
 request-id Unsigned32,
 ack-flags AcknowledgmentFlags,
 option-field OptionField
 }

 AcknowledgmentFlags ::=
 OCTET STRING (SIZE(1))
 -- errorOnUnknowFlag(0),
 -- requestAcknowledgment(1)

 END

3.2. New PDU component definitions

 This section clarifies the data components contained within the PDUs
 defined above. See the "PDU Processing" section below for
 information on how processing of all of these elements together
 should be performed.

3.2.1. Common PDU elements of the OOPS PDUs

 The following is a list of PDU fields which are common to multiple
 PDU sets (for example, they may exist in both the Get-Object-PDU and
 Write-Object-PDU operation).

 request-id
 A numeric field indicating the current request number of a
 PDU. The response PDUs (Get-Object-Response-PDU, Write-
 Object-Response-PDU, Configuration-Objects-Response-PDU and
 the Acknowledgment-PDUs) MUST set this field to the value of
 the request-id from the request PDUs (Get-Object-PDU, Write-
 Object-PDU, Get-Configuration-Object-PDU or Notification-
 Object-PDU) that generated the response.

 common flags
 A few common flags exist in multiple spots within all of the
 PDUs. These flags are:

Wes Hardaker [Page 19]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 errorOnUnknowFlag
 This flag is used to indicates that for any unknown flags
 in the flag list, the Command Responder processing the
 request MUST immediately return an error without
 processing the request further. Otherwise, any unknown
 flags MUST be ignored and the request MUST be processed
 as if the flags were not set. However, even though
 processing must continue, an error MUST be inserted into
 the appropriate error-list, however, to indicate that the
 flag was ignored..

 requestAcknowledgment
 This flag indicates that the Command Responder should
 immediately return an Acknowledgment-PDU after the
 request has been received. The Acknowledgment-PDU serves
 as a quick reply to indicate that the request was
 received and is about to be processed. Requests which
 are expected to need time while processing are encouraged
 to set this flag so retransmissions or re-connections
 will be less necessary.

 Note: This flag is not intended to replace reliable
 transport mechanisms but merely to serve as an
 application level acknowledgment. Since the
 acknowledgment could be lost in a non-reliable transport
 protocol, utilization of reliable transport (e.g., TCP)
 is highly encouraged.

 *-option-field
 A sequence reserved for future use. Command responders which
 encounter unknown option types specified in this sequence MUST
 ignore the data and proceed as if the field itself wasn't
 included in the request. Future protocol extensions MUST
 define extensions to be implemented within this sequence in
 such a way that the option can be safely ignored by
 implementations which fail to understand it.

 This field exists in multiple places in the PDU definitions
 contained within this document. In all cases future extension
 documents may define extension fields for use within these
 option-field sequences. The sequences defined in the future
 MUST contain only an ASN.1 OPTION-ized list of parameters.
 The option index numbers for the sequence will be assigned and
 administered by IANA.

 XXX Note: Proper ASN.1 definitions of the option fields in

Wes Hardaker [Page 20]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 this document are missing.

 ErrorInformation
 The ErrorInformation sequences contain a list of errors
 associated with processing a request. Multiple errors may be
 present in this list, and not all of the errors reported may
 be fatal errors. Some errors reported in the ErrorInformation
 list may be warnings indicating troubles found while
 processing a request. It consists of the following elements:

 error-status
 This is a numeric value indicating the type of error
 being conveyed. It's value dictates the type, severity,
 and the component for which the error-index will refer
 to.

 error-index
 An index into "something", where "something" is defined
 by what the error-status field contains (as an example,
 the unSupportedSearchRange error indicates it's an index
 into the search objects in the original request). It is
 an OBJECT IDENTIFIER which should begin with a 0.0
 (zeroDotZero) prefix, and the components of the
 identifier after that will indicate which sub-element of
 either the index-request-list, column-request-list or
 search-criteria field caused the problem.

 error-string
 This SHOULD be set to a human-readable, administrative
 string describing the particular error (in greater detail
 than the error-status field alone can indicate).
 Software implementations MUST NOT expect the contents of
 field to be machine parsable. Standards documents MUST
 NOT dictate the format of the data to be conveyed by this
 field.

 *-base-OID
 A base-oid is the fundamental structure that a PDU will
 operate on. For SMIv2 structures, for instance, this will be
 either a scalar or a table. For SMIv3 objects, it should
 point to the highest instantiation of an aggregate object.

Wes Hardaker [Page 21]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 ElementSpecifier
 An ElementSpecifier is used in many places within the MIB to
 indicate which element is being referred to. It is used when
 both sending and receiving data. It is always used in
 conjunction with a base-oid. All of the elements referenced
 by the ElementSpecifier is related to the base-oid in some
 fashion. The sub-elements of the ElementSpecifier are:

 index-number
 This is used to reference an index of the SMI structure
 referenced by the base-oid. Indexes are enumerated from
 the INDEX clause of a SMI structure, starting with the
 number 1. If an index is accessible directly within the
 base-oid structure, the element-number specifier SHOULD
 be used instead.

 element-number
 This is used to reference an accessible element of the
 SMI structure referenced by the base-oid. The value
 directly corresponds with the assigned OID element number
 underneath the base-oid. For SMIv2 tables, this field
 MUST contain the column number being referenced. For
 SMIv2 scalars, this field MUST contain zero.

 subelement-specifier
 This is used for referencing a single sub-element within
 an augmentation table or other SMIv3 structure. SMIv3
 sub-element structure references MUST begin with the
 nullOID prefix (0.0).

 For example, if the base-oid was referring to the IF-
 MIB::ifTable, then a subelement-specifier of IF-
 MIB::ifName would reference the ifName field of the
 ifXTable augmentation table.

 multiple-subelements
 When multiple sub-elements need to be referenced within a
 PDU construct, the multiple-subelements field can be used
 to list numerous related fields.

 For example, if the base-oid was referring to the IF-
 MIB::ifTable, then a multiple-subelement specifier might
 have a element-specifier of IF-MIB::ifXTable and a
 element-list including both the ifXTable's ifName and

Wes Hardaker [Page 22]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 ifHCInOctets columns.

 subelement-index
 This is a method of specifying indexes of sub-elements
 and externally defined elements (E.G., augmentation
 tables). This field is only used in SearchCriteria.

 DataList
 XXX

3.2.2. Get-Object-PDU specific PDU elements

 The Get-Object-PDU and Get-Object-Response-PDU specific protocol
 elements are briefly summarized here:

 request-objects
 Each request within the Get-Object-PDU is broken into
 individual request-objects and each of these are processed
 independently by the receiving Command Responder. The results
 of each processed request-object are then combined into
 corresponding return-objects within the Get-Object-Response-
 PDU.

 max-return-objects
 The maximum number of objects to return in the Get-Object-
 Response-PDU. A value of 0 indicates that all available
 objects should be returned.

 skip-objects
 If the cursor field contains a zero-length string, an Command
 Responder MUST NOT return the first skip-objects number of
 objects that match the search criteria. Instead, objects
 numbering from (skip-objects + 1) to (max-return-objects +
 skip-objects + 1) must be returned. A value of 0 indicates
 that the Command Responder should start returning object data
 beginning with the first object that matches the search-
 criteria. The skip-objects field MUST be entirely ignored if
 the cursor (see below) field contents is valid.

 cursor
 An OCTET STRING defining the starting point for collecting

Wes Hardaker [Page 23]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 data. This field MUST be a zero length OCTET STRING when
 accessing the first object in a structure or table. When
 request processing stops because the max-returned-objects
 count had been reached for a given request-object, Command
 Responders MUST return a value in this field that can be used
 in future requests to resume a search from the stopping point
 . The value of the cursor is implementation dependent.
 Command Generators MUST treat it as generic data and MUST NOT
 expect it to be in format which is parsable by the Command
 Generator. Command Generators SHOULD use it when continuing a
 search operation in a follow-up request. Command responders
 MUST refer to the value of the skip-objects field if the
 cursor field is a zero length string. Command responders MUST
 ignore the value of the skip-objects field if the cursor field
 is a non-zero length string and is deemed to be a valid
 cursor.

 Cursors SHOULD be defined by the command responder in such a
 way as to avoid referencing an existing object. Cursors
 SHOULD be valid at any time in the future regardless of
 whether or not the underlying data within the Command
 Responder has changed. I.E., cursors should be data
 independent whenever possible and should be a reference into
 the appropriate place in the storage mechanism and not a
 reference to a data row within the storage mechanism. Command
 Responders MAY define cursors in such a way that they are not
 valid after an Command Responder reboots, but this is
 discouraged.

 If a cursor is deemed invalid by the command responder, the
 command responder must do one of two things:

 a) If the restartOnInvalidCursor request-flag is set, the
 search operation MUST NOT be performed and an appropriate
 invalidCursor error should be returned in the response.

 b) If the restartOnInvalidCursor flag is not set, the search
 operation should start at the point indicated by the
 skip-objects field.

 As an example cursor, an Command Responder which was
 performing internal Get-Object-PDU translations to internal or
 subagent based GETNEXT instrumentation might return a cursor
 containing the BER encoding of the last OID returned within
 the response. The next request could merely continue
 processing using the encoded OID just as if a real GETNEXT had

Wes Hardaker [Page 24]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 come in.

 request-flags
 A flag list indicating particular features to be used when
 processing the Get-Object-PDU. The two Get-Object-PDU
 specific flags are:

 restartOnInvalidCursor
 This flag indicates that when an invalid cursor is sent
 in the Get-Object-PDU request, the Command Responder
 should behave as described in the cursor field
 description above.

 returnAllDataOnSearchFailure
 When a search operation fails due to an unsupported
 match-type, this flag indicates how to handle the error
 condition. If the returnAllDataOnSearchFailure bit is
 set, the search condition must be functionally ignored as
 if it did not restrict the data being returned. If not
 set, an error unSupportedSearchOperation condition must
 be inserted into the error-information-list and the
 request in particular is not processed.

 request-base-OID
 The base OID for a given element to request information from.
 For SMIv2 objects, this is either the OID pointing to a table
 or a particular scalar. For SMIv3 objects, it should point to
 the highest instantiation of an aggregate object.

 request-element-list
 This sequence contains a list of attributes to be returned in
 the response. IE, what particular data attributes or columns
 of a object or tabel's row should be returned. If this
 sequence is empty, then all data for the requested request-
 base-OID object MUST be returned. Command Generators SHOULD
 specify the data they wish to have returned rather than leave
 this field empty. Command Generators SHOULD request
 accessible index elements be returned as element values rather
 than indexes values.

 search-criteria
 This sequence contains criteria which indicates which elements

Wes Hardaker [Page 25]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 should be returned. If the search-criteria is understood and
 if the object data to be returned does not match the criteria
 imposed by the restrictions in a request, then it SHOULD NOT
 be returned.

 Command Generator implementations should specify attribute
 matching in preference to index matching, and thus index
 matching SHOULD ONLY be used for externally defined index
 values which don't have a attribute number assignment within
 the object.

 match-type
 Specifies the criteria to be imposed for a given search value.
 match-type's are simple logical operators used in search-
 criteria expressions.

 If the returnAllDataOnSearchFailure bit is set, then if a
 search operation fails due to a condition like an unsupported
 or unknown match-type, all data MUST BE returned as if the
 search-type operator had always returned "true" (i.e., the
 Get-Object-Response should contain all possible data that the
 match-type would have been used to discriminate against).
 Note that other, properly-understood, components of the
 search-criteria can still limit the data returned to the
 requester.

 If the returnAllDataOnSearchFailure bit is not set then the
 related return-objects field for the given request MUST NOT
 contain any data when sent back to the requester.

 XXX: mention WOPs

 In either case, an unSupportedSearchOperation error condition
 will be added to the error-information-list field of the Get-
 Object-Response-PDU and the error-index field will be set to
 the search component that caused the failure. As mentioned
 above, if the returnAllDataOnSearchFailure bit is set data is
 still returned to the requester and the error can be viewed as
 a warning that possibly more data was returned than was
 requested.

 Implementations SHOULD return a unSupportedSearchOperation
 error in the error-information-list for each unsupported
 unique match-type within the requested search-criteria.

Wes Hardaker [Page 26]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 response-flags
 The flags field MUST be set according to how the response was
 handled within the responder. Ideally this should be an exact
 copy of the flags field from the request, assuming the flags
 were understood. Flags from the request which were not
 understood by the command responder MUST be set to 0 in the
 returned Get-Object-Response-PDU.

3.2.3. Write-Object-PDU specific PDU elements

 These protocol elements are specific to Write-Object-PDU requests.

 write-flags

 Global flags to apply to the entire Write-Object-PDU. The are
 broken down as follows:

 returnDataOnlyOnError
 If the returnDataOnlyOnError bit is set, then the Write-
 Object-Response-PDU will only contain a duplicate set-
 objects portion of the message if there was an error
 somewhere in the processing of the message, otherwise the
 objects list will be truncated. Command Responder
 implementations SHOULD support this flag, but if for any
 reason they decide to return the set-objects data portion
 of the message they MUST NOT set the
 returnDataOnlyOnError bit. If the flag is set, and the
 command responder supports it, then the write-
 transaction-responses field must be an zero length
 sequence.

 write-transactions
 Flags which apply to each sub-element of the write transaction
 to be performed. Currently there are 3 bits to define
 transactional processing semantics to be used when processing
 this message. These values are described in greater detail in
 the next section.

 TransactionData
 Indicates what type of operation is to be performed by this
 transaction set and contains the data associated with that
 operation. Specifically:

Wes Hardaker [Page 27]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 create-transaction, create-data-list
 Creates a new row within a row. It is an error condition
 if either the row can not be created (noCreation) or if
 the row already existed (createFailed). The create-data-
 list parameter specifies the data to be used to create
 the row with.

 modify-transaction, modify-search-criteria, modify-data-list
 Modifies an existing row or set of rows. The rows that
 are to be affected by the modify-transaction are
 identified by the modify-search-criteria parameters. The
 data in the modify-data-list parameter specifies what
 values will be updated by the request. Note that a
 modify-transaction can not be used to create new rows.

 delete-transaction, delete-search-criteria
 Deletes a given row or set of rows. If a row can not be
 deleted for some reason, it is considered to be an error
 condition (deleteFailed). The delete-search-criteria
 identifies which rows should be deleted from the table.

 method-transaction, method-OID, method-arguments
 The method-transaction is similar to a function call,
 defined by the documentation associated with the method-
 OID, in that it expects arguments (method-arguments) and
 generates return values (method-return-data). It is up
 to future specifications to define method OIDs that can
 make use of this functionality.

 sub-transaction
 A sub-transaction most likely contains a collection of
 transactions which are bound together by a different
 transaction-flags settings.

 modify-search-criteria

 delete-search-criteria
 The search criteria imposed by the modify-search-criteria and
 delete-search-criteria are identical in operation to the Get-
 Object-PDU equivalents, except that instead of requested
 information back the describe which objects should be
 modified. Unlike the Get-Object-PDU match-type handling, an
 unsupported match-type will always trigger an

Wes Hardaker [Page 28]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 unSupportedSearchOperation error condition and no modification
 or deletion will occur for that transaction (or any other
 transactions dependent on the success of transaction one
 containing the error).

 create-response
 A create-response object returns a copy of all the data sent
 in a create request. The response MUST contain an exact copy
 of the related request if the returnDataOnerror bit in the
 write-transactions flags is not set. If the returnDataOnerror
 bit in the write-transactions flag is set, this MUST be a
 encoded as an empty sequence.

 modify-response
 A modify response returns the data affected by the outgoing
 transaction. The modify-search-criteria field MUST be an
 exact copy from the associated Write-Object-PDU modify-
 transaction component. The modify-data-list should contain
 all the elements modified by the request. It MUST include all
 index objects for the object elements that were modified, plus
 the data values from the request.

 delete-response
 A delete response returns the data affected by the outgoing
 transaction. The modify-search-criteria field MUST be an
 exact copy from the associated Write-Object-PDU delete-
 transaction component. It MUST ONLY include the index objects
 for the object elements that were deleted.

3.2.4. Get-Configuration-Object-PDU specific PDU elements

 A Get-Configuration-Object-PDU is used to request current
 configuration state for some portion of an Command Responder. The
 Configuration-Objects-Response-PDU will contain transactions
 suitable for use in a Write-Object-PDU request which can be issued
 to the Command Responder to restore itself to its current state.
 These elements of the Get-Configuration-Object-PDU are described
 here.

 requested-config
 A list of object identifiers for which configuration is
 desired. These object identifiers can be one of:

Wes Hardaker [Page 29]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 a) Defined OIDs from a particular MIB module which describes
 what configuration components should be returned in the
 Configuration-Objects-Response-PDU.

 b) An OID of an object which contains configuration
 information. IE, this could point to a particular table
 from a MIB module.

 c) The ZeroDotZero (0.0) OID which can be used to request
 all configuration information from an Command Responder.

 Unsupported OBJECT IDENTIFIERS requested will be reported in
 the ErrorInformationList in the Configuration-Objects-
 Response-PDU as a getConfigObjectNotSupported error.

3.2.5. Notification-Object-PDU specific elements

 The Notification-Object-PDU can be used to send SNMP Notifications
 to a notification receiver. The elements contained within a
 Notification-Object-PDU are described in this section.

 notification-id
 This is the notification ID as defined by NOTIFICATION-TYPE
 and other SMI macros.

 system-uptime
 The current value of sysUpTime.0 when the notification was
 sent from the notification generator.

 notification-string
 A human readable string describing the notification.
 Notification Receivers MUST NOT expect this field to be
 machine parsable.

 notification-objects
 Data objects included with the notification. Minimally, this
 must contain the OBJECTS field as defined by NOTIFICATION-TYPE
 SMI or other similar SMI macros.

4. PDU processing

4.1. Processing a Get-Object-PDU

Wes Hardaker [Page 30]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 The following describes the procedure for processing a Get-Object-
 PDU to produce a Get-Object-Response-PDU. The Get-Object-Response-
 PDU MUST contain the same request-id as the Get-Object-PDU. The
 Get-Object-Response-PDU MUST contain the same number of return-
 objects as there were request-objects in the Get-Object-PDU being
 processed. return-objects MUST appear in a order which matches the
 request-objects they are associated with from the Get-Object-PDU.

 Apply the following procedure to each of the request-objects within
 the Get-Object-PDU to generate a corresponding return-objects
 sequence to be placed in the Get-Object-Response-PDU.

 Each request-object MUST generate a corresponding return-object with
 less than or equal to max-return-objects pieces as specified in the
 request-object unless the max-return-objects field value is zero.
 If max-return-objects field is zero then all objects meeting the
 search-criteria evaluation MUST be returned. [XXX: transport and
 sizing issues]

 If the cursor field is specified in the request-object, the cursor
 field MUST be used, if it is valid, to determine a starting point
 for the data to be returned. If the contents of the cursor field
 are invalid or it is impossible to determine a valid starting place
 and the restartOnInvalidCursor bit is set in the search-criteria,
 then the data returned should start with the skip-objects+1 object.
 Note that when counting objects to skip, only objects which meet the
 requirements imposed by the search-criteria WILL be counted. If the
 restartOnInvalidCursor bit is not set, then no objects should be
 returned in the Get-Object-Response-PDU return-objects list.
 Regardless of whether the restartOnInvalidCursor bit is set or not,
 an invalidCursor error MUST be inserted into the error-information-
 list in the return-objects field in the Get-Object-Response-PDU.

 The cursor field in the Get-Object-Response-PDU MUST be a zero-
 length OCTET STRING if the Get-Object-PDU's max-return-objects is
 not 0 and there are less than max-return-objects being returned in
 the Get-Object-Response-PDU. If the number of objects being
 returned is equal to the max-return-objects parameter, then the
 cursor field MAY be a zero length string if the last object being
 returned is also the last object in the possible set of data for the
 given search-criteria.

 Implementations MUST return data in a dependable order. Successive
 requests with identical search-criteria and request-base-OIDs MUST
 return objects in the same order in which they were returned
 previously. I.E., if object A (as defined by it's indexes) is
 returned before object B at one point in time, it MUST always be
 returned before object B for any future requests.

Wes Hardaker [Page 31]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 When the maximum number of objects to be returned has been reached,
 a cursor MUST be constructed which meets the criteria described
 above. It MUST be usable in the future to determine the starting
 place for future follow-on Get-Object-PDUs. The contents of the
 cursor field SHOULD [XXX: maybe this should be a MUST?] be data
 independent such that it is impossible for a cursor constructed by
 an Command Responder to be considered invalid at any point in the
 future. Since cursors are designed to alleviate processing overhead
 associated with restarting searches in the future, it is highly
 recommended that Command Responder implementations make efficient
 and appropriate use of the cursor field.

 When searching for objects which are to be returned to the
 requester, the search-criteria MUST be consulted. Any object not
 matching the supported elements of the criteria imposed by the
 search-criteria field MUST NOT be included in the response. When
 processing the search-criteria field, any match-type which is not
 supported by the processing engine MUST result in an
 unSupportedSearchOperation error being inserted into the response's
 error-information list. Additionally, one of the following must be
 followed based on the value of the returnAllDataOnSearchFailure
 flag:

 a) If the returnAllDataOnSearchFailure bit is set, then the
 evaluation MUST return all the data as if the unsupported
 match-type imposed no filtering on the data. Generally, this
 would mean that any match-type should be considered as
 evaluating to true, except in the case where the evaluation is
 enclosed directly within a logicalNOT operation, in which case
 the result of the logicalNOT must evaluate to true.

 b) If the returnAllDataOnSearchFailure bit is unset, then the
 response MUST contain an empty returned-data-list.

 Logical operations (logicalAND, logicalOR, logicalNOT) WILL use the
 sub-criteria field of the SearchCriteria to specify a list of sub-
 criteria the logical operation is to operate on. If the match type
 is logicalNOT there MUST be exactly one element in the sub-criteria
 list.

 When constructing a return-objects list, the request-element-list
 must be consulted to determine which elements of a given object are
 to be returned in the response. When sending a Get-Object-PDU, the
 request-element-list SHOULD use the element-number specifier when
 possible in preference to the index-number specifier when the index
 is an accessible element in an object.

Wes Hardaker [Page 32]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

4.2. Processing a Write-Object-PDU.

 When a Write-Object-PDU is received by an Command Responder it must
 process the transaction(s) found in the write-transaction field.
 The transaction-flags field of the write-transaction indicates how
 the sub-transactions grouped in a single write-transaction relate to
 each other.

 The main Write-Object-PDU contains a single WriteTransaction which
 itself may be composed of multiple sub-transactions (create, modify,
 delete, method, or sub-transactions). The hierarchal nature of the
 transaction-data-list allows for more complex transaction
 relationships to be defined. Command Responders MAY implement
 nested sub-transactions but are not required to in order to conform
 with this specification.

 The flags that make up the transaction-flags can be summarized as
 follows:

 needSuccess
 If the needSuccess bit is set the containing transaction is
 considered sucessful if and only if no error conditions must
 occur during the processing of the sub-transactions in the
 transactions-data-list. If processing the sub-transactions
 results in a failure then the containing transaction is also
 considered to be a failure. If this bit is not set then the
 containing transaction itself will always be considered
 successful.

 needAll
 If the needAll bit is set each sub-transaction in the
 transaction-data-list must be attempted for this transaction
 to be considered successful. If this is not set, processing
 of the transactions-data-list MUST stop after the first
 transaction in the transaction-data-list which is successful.

 notOrderDependent
 If the notOrderDependent bit is set the transactions contained
 in the transaction-data-list MAY be executed in an order. If
 the needAll bit is set they may even be processed in parallel.
 Note that all transactions must still revert to their previous
 state if an error condition requires a state rollback for all
 the transactions.

 Thus, the following combinations of the first two flags can be
 better described in combination:

Wes Hardaker [Page 33]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 needSuccess = true, needAll = true: doAll [doUntilFailure]
 All contained transactions must succeed. If any failure
 occurs, the entire set of transactions in the transactions-
 data-list must be rolled back. This mode is most similar to
 the previous SNMP SET-PDU.

 needSuccess = false, needAll = true: tryAll
 With this combination set, the command responder must try to
 achieve all the transactions, however if any transaction fails
 it is not required to roll back the rest of the transactions.
 The failed transactions themselves, however, must individually
 properly revert to the previous state. This mode allows a
 bunch of independent transactions to be specified in one
 management operation. It is roughly equivalent to a bunch of
 individual and independent SNMP SET-PDU operations.

 needSuccess = true, needAll = false: doAtLeastOne
 [doUntilSuccess]
 In this case, at least one must succeed for the transaction as
 a whole to succeed. More importantly, if any one transaction
 component does succeed, processing MUST be stopped and the
 transaction as a whole is considered successful. Another way
 to put it: at most one successful component is executed and
 never more than one. This mode is useful for specifying, for
 example, a transaction with one or more "fall-back"
 transactions in case one fails.

 needSuccess = false, needAll = false: tryAtLeastOne
 In this case, at least one must succeed for the transaction as
 a whole to succeed. More importantly, if any one transaction
 component does succeed, processing MUST be stopped. The
 different between this combination of bits and the previous is
 that this transaction itself always succeeds, even if all the
 sub-transactions fail. It is impossible for a transaction of
 this type to be considered a failure in itself.

 Also, error reporting will always occur on failed objects even if
 they don't affect the containing transactions and surrounding
 transactions.

 Note that more data can be returned in many cases when search
 operations required operations on multiple rows based on the search
 criteria.

 XXX: response generation.

4.3. Processing a Get-Configuration-Object-PDU request

Wes Hardaker [Page 34]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 A Get-Configuration-Object-PDU will contain a sequence of OBJECT
 IDENTIFIERs indicating which particular configuration objects are
 being requested. The types of OBJECT IDENTIFIERs which may be
 specified in the list were previously defined.

 When an Command Responder receives a Get-Configuration-Object-PDU it
 should return in the Configuration-Objects-Response-PDU a valid set
 of WriteTransactions which will return a device to the current
 configuration state at the time the request was received. Exactly
 one WriteTransaction MUST be returned for each OBJECT IDENTIFIER
 requested in the request-objects field.

4.4. Generating a Notification-Object-PDU

 A Notification-Object-PDU is generated by first creating an
 appropriate request-id, filling in the appropriate bits of the
 notification-flags and specifying any options in the option-field.
 The notifications field is then filled in with the notifications to
 be sent in this PDU. Note that the Notification-Object-PDU allows
 for multiple notifications to be sent within a single PDU. This
 paves the way for future delivery of multiple notifications at once.
 Predicted applications capability for this included combined
 delivery of multiple notifications as well as automated Command
 Responder data sampling at regular intervals.

 For each notification to be delivered, the following procedure is
 then used to create each notification with the notifications field:
 The notification-id field is filled in with the appropriate OBJECT
 IDENTIFIER as required by the specification defining the
 notification to be sent (E.G., a NOTIFICATION-TYPE macro for SMIv2
 MIB modules). The system-uptime MUST contain the current value of
 the sysUpTime object for the Notification Generator sending the
 notification. The notification-string field should be filled in
 with a human readable string if possible, otherwise a zero-length
 OCTET STRING should be used instead.

 The notification-objects field MUST then be populated with the
 objects required by the specification defining the notification
 (E.G., the OBJECTS field of the NOTIFICATION-TYPE macro for SMIv2
 MIB modules). Notification-objects will need to make use of the
 subelement-specifier field of an ElementSpecifier when sending
 objects from a related table. See the "Examples" section below for
 an example of this. The notification-objects field MUST be
 populated in the same order as required by the defining
 specification. Any optional objects the Notification Generator
 wishes to append to the notification-objects field may then be
 appended to the generated notification-objects field.

Wes Hardaker [Page 35]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

5. Examples

 Here are some example requests and responses of data retrieval. In
 each case, the curly braces indicate a sequence of some kind within
 BER.

5.1. Retrieve a specific row from the ifTable

 This example retrieves the ifDescr and ifType columns for the 5th
 interface from the ifTable

 The Request:

 Get-Object-PDU {
 request-id 1
 option-field { }
 request-objects { {
 max-return-objects 0 -- get all
 skip-objects 0 -- starting with the first
 cursor "" -- 0 length for 1st request
 flags 0x00 -- none specified.
 option-field {}

 request-base-object IF-MIB::ifTable

 request-element-list { element-number = 2,
 element-number = 3 }

 search-criteria { match-type = 0, -- equals
 match-data = {
 which = 1, -- ifIndex
 what = 5 -- 5th
 } }
 } }
 }

 The Response:

 Get-Object-Response-PDU {
 request-id 1
 option-field {}
 response-objects ::= { {
 error-information-list {} -- no Errors
 cursor "" -- no other data
 response-flags 0x00 -- none specified.
 option-field {} -- no options

 request-base-object IF-MIB::ifTable

Wes Hardaker [Page 36]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 returned-data-list { {
 { which-element = 2,
 element-value = "interface 5" },
 { which-element = 3,
 element-value = 6 }
 } }
 } }
 }

5.2. A multiple-packet example with a double filter

 This example shows the retrieval of the elements of the ifTable
 which are of type "ethernetCsmacd" and have a ifSpeed >= 10,000,000
 bps. Retrieve only 1 row at a time, and include columns from the
 ifXTable augmentation table. Note that the response has the objects
 returned in the order the remote Command Responder specified
 [interface 12, then interface 5], not in something that would
 directly corresponds to the older-style lexicographical ordering.
 The order returned must be consistent from one request to the next
 (i.e., interface 12 will always be returned before interface 5 in
 any future requests at any point in time where they are both to be
 returned), but the manner in which the ordering is accomplished is
 implementation specific. The cursor is used to indicate to the base
 Command Responder where the request should restart from.
 The first request:

 Get-Object-PDU {
 request-id 2
 option-field { }
 request-objects { {
 max-return-objects 1 -- only return 1
 skip-objects 0 -- starting with the first
 cursor "" -- 0 length for first request
 flags 0x00 -- none
 option-field {}

 request-base-object IF-MIB::ifTable

 -- get ifIndex, ifDescr, and ifType and
 -- ifHCInOctets, ifHCOutOctets from the ifXTable
 request-element-list { element-number = 1,
 element-number = 2,
 element-number = 3,
 multiple-subelement = {
 element-specifier = ifXTable,
 element-list = {
 6, 10

Wes Hardaker [Page 37]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 }
 }
 }

 search-criteria { match-type = 100, -- AND
 sub-criteria = {
 {
 match-type = 0, -- equals
 match-data = {
 which = 3, -- ifType
 what = 6 -- ethernetCsmacd
 }
 },
 {
 -- greaterThanOrEqual
 match-type = 12,
 match-data = {
 which = 5, -- ifSpeed
 what = 10000000
 }
 }
 } }
 } }
 }

 The first response:

 Get-Object-Response-PDU {
 request-id 2
 option-field {}
 response-objects ::= { {
 error-information-list {} -- no Errors
 cursor "interface 12"
 response-flags 0x00 -- none
 option-field {}

 request-base-object IF-MIB::ifTable

 returned-data-list { {
 { which-element = 1,
 element-value = 12 },
 { which-element = 2,
 element-value = "interface 12" },
 { which-element = 3,
 element-value = 6 }
 { which-element = ifXTable
 element-value = {
 { which-element = 6,

Wes Hardaker [Page 38]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 element-value = 12345 },
 { which-element = 10,
 element-value = 12345 },
 }
 }
 } }

 } }
 }

 The second request to obtain the more data:

 Get-Object-PDU {
 request-id 3
 option-field { }
 request-objects { {
 max-return-objects 1 -- only return 1
 skip-objects 0 -- functionally not used
 cursor "interface 12" -- continue
 flags 0x00 -- none
 option-field {}

 request-base-object IF-MIB::ifTable

 -- get ifIndex, ifDescr, and ifType and
 -- ifHCInOctets, ifHCOutOctets from the ifXTable
 request-element-list { element-number = 1,
 element-number = 2,
 element-number = 3,
 multiple-subelement = {
 element-specifier = ifXTable,
 element-list = {
 6, 10
 }
 }
 }

 search-criteria { match-type = 100, -- AND
 sub-criteria = {
 {
 match-type = 0, -- equals
 match-data = {
 which = 3, -- ifType
 what = 6 -- ethernetCsmacd
 }
 },
 {
 -- greaterThanOrEqual

Wes Hardaker [Page 39]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 match-type = 12,
 match-data = {
 which = 5, -- ifSpeed
 what = 10000000
 }
 }
 } }
 } }
 }

 The second response. The zero length cursor means there is no
 further information and no further requests are needed.
 Get-Object-Response-PDU {
 request-id 3
 option-field {}
 response-objects ::= { {
 error-information-list {} -- no Errors
 cursor "" -- has last object
 response-flags 0x00 -- none
 option-field {}

 request-base-object IF-MIB::ifTable

 returned-data-list { {
 { which-element = 1,
 element-value = 5 },
 { which-element = 2,
 element-value = "interface 5" },
 { which-element = 3,
 element-value = 6 }
 { which-element = ifXTable
 element-value = {
 { which-element = 6,
 element-value = 23456 },
 { which-element = 10,
 element-value = 23456 },
 }
 }
 } }

 } }
 }

5.3. A Write-Object-PDU example

 The following is an example of a Write-Object-PDU request which will
 set the ifAdminStatus flag to "down" for all interfaces in the
 ifTable of type 'basicISDN'. Additionally, an acknowledgment is

Wes Hardaker [Page 40]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 requested to verify that an Command Responder has started received
 the request.
 Write-Object-PDU {
 request-id 10
 write-flags 0x40 -- requestAcknowledgment
 option-field { }

 write-transactions {
 transaction-flags 0x00 -- none specified
 option-field { }

 transaction-data-list {
 modify-transaction {
 request-base-OID IF-MIB::ifTable
 modify-search-criteria { match-type = 0, -- equals
 match-data = {
 which = 3, -- ifType
 what = 20 -- basicISDN
 }
 }
 modify-data-list { {
 -- ifAdminStatus
 which-element 7
 element-value 2 -- down
 } }
 }
 }
 } }
 }

 First, the Command Responder will send an acknowledgment indicating
 the reception of the Write-Object-PDU. This is sent because the
 requestAcknowledgment flag was set in the write-flags field.
 Acknowledgment-PDU {
 request-id 10
 ack-flags 0x00
 option-field {}
 }

 The Write-Object-Response-PDU will indicate which interfaces were
 actually affected by the Write-Object-PDU (in this example the 4th
 and 2nd interfaces):
 Write-Object-Response-PDU {
 request-id 10
 write-flags 0x00 -- none
 option-field {} -- no options
 error-information-list {} -- no Errors
 write-transaction-results ::= { {

Wes Hardaker [Page 41]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 transaction-flags 0x00 -- none
 option-field {} -- no options
 transaction-response-list ::= {
 modify-transaction ::= {
 request-base-OID IF-MIB::ifTable
 modify-data-list ::= {
 { which-element/index-number 1 -- ifIndex
 element-value 4 } -- 4th interface
 { which-element/index-number 1 -- ifIndex
 element-value 2 } -- 2nd interface
 }
 }
 }
 } }
 }

5.4. A Get-Configuration-Object-PDU example

 The following shows how a Command Generator might request the
 current configuration of the SNMP-TARGET-MIB::snmpTargetAddrTable,
 and an example response from a Command Responder.
 Get-Configuration-Objects-PDU {
 request-id 30
 gcop-flags 0x00
 option-field { }
 request-objects { {
 request-flags 0x00
 option-field { }
 request-objects SNMP-TARGET-MIB::snmpTargetAddrTable
 } }
 }

 The following shows a possible response for the above request.
 Configuration-Objects-Response-PDU {
 request-id 30
 gcop-flags 0x00
 option-field { }
 config-results { {
 request-flags 0x00
 option-field { }
 error-information { }
 config-transactions {
 transaction-flags 0x60 -- needSuccess, needAll
 option-field { }
 transaction-data-list {
 -- deletes all existing rows
 delete-transaction {
 request-base-OID snmpTargetAddrTable

Wes Hardaker [Page 42]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 delete-search-criteria { } -- all data!
 }
 -- creates a new row
 create-transaction {
 request-base-OID snmpTargetAddrTable
 create-data-list {
 -- snmpTargetAddrName
 { which-element/index-number 1
 element-value "localhost" }
 -- snmpTargetAddrTDomain
 { which-element/element-number 2
 element-value snmpUDPDomain }
 -- snmpTargetAddrTAddress
 { which-element/element-number 3
 element-value 0x7f00000100a2 }
 -- snmpTargetAddrTimeout
 { which-element/element-number 4
 element-value 5 }
 -- snmpTargetAddrRetryCount
 { which-element/element-number 5
 element-value 5 }
 -- snmpTargetAddrTagList
 { which-element/element-number 6
 element-value "mytag" }
 -- snmpTargetAddrParams
 { which-element/element-number 7
 element-value "myparam" }
 -- snmpTargetAddrStorageType
 { which-element/element-number 8
 element-value 3 }
 -- snmpTargetAddrRowStatus
 { which-element/element-number 9
 element-value 4 }
 }
 }
 }
 }
 } }
 }

5.5. A Notification-Object-PDU example: IF-MIB::linkUp

 The following shows a standard linkUp notification sent using the
 new Notification-Object-PDU.
 Notification-Object-PDU {
 request-id 40
 notification-flags 0x40 -- requestAcknowledgment
 option-field {}

Wes Hardaker [Page 43]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 notifications ::= { {
 notification-id IF-MIB::linkUP
 system-uptime 100
 notification-string "Interface 12 enabled at the console"
 notification-objects ::= {
 { which-element = IF-MIB::ifTable
 element-value = {
 { which-element = 1, -- ifIndex
 element-value = 12 }, -- #12
 { which-element = 7, -- ifAdminStatus
 element-value = 1 }, -- up
 { which-element = 8, -- ifOperStatus
 element-value = 1 } -- up
 }
 }
 }
 } }
 }

 The notification receiver would then respond with the following
 acknowledgment:
 Acknowledgment-PDU {
 request-id 40
 ack-flags 0x00
 option-field {}
 }

6. References

6.1. Normative References

[1] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Version 2 of the Protocol Operations for the Simple
 Network Management Protocol (SNMP)", RFC3416, December 2002.

[2] Blumenthal, U. and B. Wijnen, "The User-Based Security Model (USM)
 for Version 3 of the Simple Network Management Protocol (SNMPv3)",
 STD 62, RFC 3414, December 2002.

[3] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", STD 62, RFC 3415, December 2002.

[4] Levi, D., Meyer, P. and B. Stewart, "Simple Network Management
 Protocol (SNMP) Applications", STD 62, RFC 3413, December 2002.

https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc3413

Wes Hardaker [Page 44]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

6.2. Informative References

[5] Woodcock, D., "Operator Requirements of Infrastructure Management
 Methods", Internet Draft draft-ops-operator-req-mgmt-02.txt,
 expired August 2002.

[6] Schoenwaelder, J., "Overview of the 2002 IAB Network Management
 Workshop", Internet Draft draft-iab-nm-workshop-00.txt, expires
 April 2003.

[7] Hovey, R. and S. Bradner, "The Organizations Involved in the IETF
 Standards Process", BCP 11, RFC 2028, October 1996.

7. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11 [7]. Copies
 of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementors or users of this
 specification can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

8. Security Considerations

 XXX: discuss VACM

 The protocol defined in this document by itself does not provide a
 secure environment. Even if the network itself is secure (for
 example by using IPSec), there is no control as to who on the secure
 network is allowed access to management information.

https://datatracker.ietf.org/doc/html/draft-ops-operator-req-mgmt-02.txt
https://datatracker.ietf.org/doc/html/draft-iab-nm-workshop-00.txt
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2028
https://datatracker.ietf.org/doc/html/bcp11

Wes Hardaker [Page 45]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

 It is recommended that the implementors consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model STD 62, RFC 3414 [2] and the View-
 based Access Control Model STD 62, RFC 3415 [3] is recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity is properly configured so that:

 - only those principals (users) having legitimate rights can
 access or modify the values of any MIB objects supported by
 that entity;

 - the occurrence of particular events on the entity will be
 communicated appropriately;

 - the entity responds appropriately and with due credence to
 events and information that have been communicated to it.

9. IANA Considerations

 IANA will need to administer assignment rights for the following
 field identifiers within the PDUs defined in this document:

option-field OPTIONAL tags
 The BER encoded OPTIONAL-field tags for the various *-option-field
 PDU components will need to be assigned and administered by IANA.

XXX Some more XXX.

10. Acknowledgements

 Many people participated in various discussions about the PDUs
 defined in this document. Special thanks go to:
 Michael Baer (Network Associates Laboratories)
 Robert Moore (IBM)
 David Perkins (Riverstone Networks and SNMPinfo)
 Randy Presuhn (BMC Software)
 Dave Shield (University of Liverpool)
 Steve Waldbusser (Next Beacon)
 Glenn Waters (Nortel Networks)

11. Editor's Addresses

 Wes Hardaker
 P.O. Box 382
 Davis, California 95617
 USA
 Email: hardaker@tislabs.com

https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3415

Wes Hardaker [Page 46]

Internet Draft Object Oriented Operations for SNMP Feb. 2003

12. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Wes Hardaker [Page 47]

