
 Internet Draft L. Yang
 Expiration: April 2004 Intel Labs
 File: draft-ietf-forces-model-01.txt J. Halpern
 Working Group: ForCES Megisto Systems
 R. Gopal
 Nokia
 A. DeKok
 IDT Inc.
 Z. Haraszti
 S. Blake
 Ericsson
 October 2003

ForCES Forwarding Element Model

draft-ietf-forces-model-01.txt

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF),
 its areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as ``work in
 progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document defines the forwarding element (FE) model used in the
 Forwarding and Control Plane Separation (ForCES) protocol. The
 model represents the capabilities, state and configuration of
 forwarding elements within the context of the ForCES protocol, so
 that control elements (CEs) can control the FEs accordingly. More
 specifically, the model describes the logical functions that are

https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 Internet Draft ForCES FE Model October 2003

 present in an FE, what capabilities these functions support, and
 how these functions are or can be interconnected. This FE model is
 intended to satisfy the model requirements specified in the ForCES
 requirements draft [1]. A list of the basic logical functional
 blocks (LFBs) is also defined in the LFB class library to aid the
 effort in defining individual LFBs.

 Table of Contents

 Abstract...1
1. Definitions...3
2. Introduction..5

2.1. Requirements on the FE model.............................6
2.2. The FE Model in Relation to FE Implementations...........6
2.3. The FE Model in Relation to the ForCES Protocol..........6
2.4. Modeling Language for FE Model...........................7
2.5. Document Structure.......................................8

3. FE Model Concepts...8
3.1. State Model and Capability Model.........................8
3.2. LFB Modeling..11

3.2.1. LFB Input and Input Group..........................13
3.2.2. LFB Output and Output Group........................15
3.2.3. Packet Type..16
3.2.4. Metadata...16
3.2.5. LFB Versioning.....................................18
3.2.6. LFB Inheritance....................................18

3.3. FE Datapath Modeling....................................19
3.3.1. Alternative Approaches for Modeling FE Datapaths...19
3.3.2. Configuring the LFB Topology.......................23

4. LFB Model -- LFB and Associated Data Definitions.............27
4.1. General Data Type Definitions...........................28

4.1.1. Arrays...29
4.1.2. Structures...29
4.1.3. Augmentations......................................30

4.2. Metadata Definitions....................................30
4.3. Frame Format Definitions................................30
4.4. LFB Class Definitions...................................31

4.4.1. LFB Inheritance....................................31
4.4.2. LFB Inputs...31
4.4.3. LFB Outputs..32
4.4.4. LFB Attributes.....................................33
4.4.5. LFB Operational Specification......................34

5. LFB Topology Model (To be written)...........................34
6. FE Level Attributes (To be written)..........................35
7. LFB Class Library..35

7.1. Port LFB..35

7.2. Dropper LFB...36

Yang, et al. Expires April 2004 [Page 2]

Internet Draft ForCES FE Model October 2003

7.3. Redirector (de-MUX) LFB.................................36
7.4. Scheduler LFB...36
7.5. Queue LFB...36
7.6. Counter LFB...37
7.7. Meter LFB and Policer LFB...............................37
7.8. Classifier LFB..37
7.9. Modifier LFB..38
7.10. Packet Header Rewriter LFB.............................38

8. Satisfying the Requirements on FE Model......................39
8.1. Port Functions..39
8.2. Forwarding Functions....................................40
8.3. QoS Functions...41
8.4. Generic Filtering Functions.............................41
8.5. Vendor Specific Functions...............................42
8.6. High-Touch Functions....................................42
8.7. Security Functions......................................42
8.8. Off-loaded Functions....................................43
8.9. IPFLOW/PSAMP Functions..................................43

9. Using the FE model in the ForCES Protocol....................43
9.1. FE Topology Query.......................................45
9.2. FE Capability Declarations..............................46
9.3. LFB Topology and Topology Configurability Query.........47
9.4. LFB Capability Declarations.............................47
9.5. State Query of LFB Attributes...........................48
9.6. LFB Attribute Manipulation..............................48
9.7. LFB Topology Re-configuration...........................49

10. Acknowledgments...49
11. Security Considerations.....................................49
12. Normative References..49
13. Informative References......................................50
14. Authors' Addresses..50
15. Intellectual Property Right.................................51
16. IANA consideration..51

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

1. Definitions

 A set of terminology associated with the ForCES requirements is
 defined in [1] and is not copied here. The following list of
 terminology is relevant to the FE model defined in this document.

https://datatracker.ietf.org/doc/html/rfc2119

Yang, et al. Expires April 2004 [Page 3]

Internet Draft ForCES FE Model October 2003

 FE Model -- The FE model is designed to model the logical
 processing functions of an FE. The FE model proposed in this
 document includes three components: the modeling of individual
 logical functional blocks (LFB model), the logical interconnection
 between LFBs (LFB topology) and the FE level attributes including
 FE capabilities. The FE model provides the basis to define the
 information elements exchanged between the CE and the FE in the
 ForCES protocol.

 Datapath -- A conceptual path taken by packets within the
 forwarding plane, inside an FE. There might exist more than one
 datapath within an FE.

 LFB (Logical Function Block) class (or type) -- A template
 representing a fine-grained, logically separable and well-defined
 packet processing operation in the datapath. LFB classes are the
 basic building blocks of the FE model.

 LFB (Logical Function Block) Instance -- As a packet flows through
 an FE along a datapath, it flows through one or multiple LFB
 instances, with each implementing an instance of a certain LFB
 class. There may be multiple instances of the same LFB in an FE's
 datapath. Note that we often refer to LFBs without distinguishing
 between LFB class and LFB instance when we believe the implied
 reference is obvious for the given context.

 LFB Model -- The LFB model describes the content and structures in
 LFB and associated data definition. There are four types of
 information defined in the LFB model. The core part of the LFB
 model is LFB class definitions while the other three are to define
 the associated data including common data types, supported frame
 formats and metadata.

 LFB Metadata -- Metadata is used to communicate per-packet state
 from one LFB to another, but is not sent across the network. The
 FE model defines how such metadata is identified, produced and
 consumed by the LFBs, but not how metadata is encoded within an
 implementation.

 LFB Attribute -- Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 attributes. The LFB attributes include, for example, flags, single
 parameter arguments, complex arguments, and tables that the CE can
 read or/and write via the ForCES protocol.

 LFB Topology -- Representation of how the LFB instances are
 logically interconnected and placed along the datapath within one

Yang, et al. Expires April 2004 [Page 4]

Internet Draft ForCES FE Model October 2003

 FE. Sometimes it is also called intra-FE topology, to be
 distinguished from inter-FE topology. LFB topology is outside of
 the LFB model, but part of the FE model.

 FE Topology -- Representation of how the multiple FEs in a single
 NE are interconnected. Sometimes it is called inter-FE topology,
 to be distinguished from intra-FE topology (i.e., LFB topology).
 Individual FE may not have the global knowledge of full FE
 topology, but the local view of its connectivity with other FEs are
 considered part of the FE model. FE topology is discovered by the
 ForCES base protocol or some other means.

 Inter-FE Topology -- See FE Topology.

 Intra-FE Topology -- See LFB Topology.

 LFB class library -- A set of LFB classes that are identified as
 the most common functions found in most FEs and hence should be
 defined first by the ForCES Working Group.

2. Introduction

 [2] specifies a framework by which control elements (CEs) can
 configure and manage one or more separate forwarding elements (FEs)
 within a networking element (NE) using the ForCES protocol. The
 ForCES architecture allows Forwarding Elements of varying
 functionality to participate in a ForCES network element. The
 implication of this varying functionality is that CEs can make only
 minimal assumptions about the functionality provided by FEs in a
 NE. Before CEs can configure and control the forwarding behavior
 of FEs, CEs need to query and discover the capabilities and states
 of their FEs. [1] mandates that the capabilities, states and
 configuration information be expressed in the form of an FE model.

RFC 3444 [11] made the observation that information models (IMs)
 and data models (DMs) are different because they serve different
 purposes. "The main purpose of an IM is to model managed objects
 at a conceptual level, independent of any specific implementations
 or protocols used". "DMs, conversely, are defined at a lower level
 of abstraction and include many details. They are intended for
 implementors and include protocol-specific constructs." Sometimes
 it is difficult to draw a clear line between the two. The FE model
 described in this document is first and foremost an information
 model, but it also has a flavor of a data model as it contains
 explicit definition of the LFB class schema and other data
 structures. It is expected that this FE model will be used as the
 basis to define the payload for information exchange between the CE
 and FE in the ForCES protocol.

https://datatracker.ietf.org/doc/html/rfc3444

Yang, et al. Expires April 2004 [Page 5]

Internet Draft ForCES FE Model October 2003

2.1. Requirements on the FE model

 [1] defines requirements which must be satisfied by a ForCES FE
 model. To summarize, an FE model must define:
 . Logically separable and distinct packet forwarding operations
 in an FE datapath (logical functional blocks or LFBs);
 . The possible topological relationships (and hence the sequence
 of packet forwarding operations) between the various LFBs;
 . The possible operational capabilities (e.g., capacity limits,
 constraints, optional features, granularity of configuration)
 of each type of LFB;
 . The possible configurable parameters (i.e., attributes) of
 each type of LFB;
 . Metadata that may be exchanged between LFBs.

2.2. The FE Model in Relation to FE Implementations

 The FE model proposed here is based on an abstraction of distinct
 logical functional blocks (LFBs), interconnected in a directed
 graph, and receiving, processing, modifying, and transmitting
 packets along with metadata. Note that a real forwarding datapath
 implementation should not be constrained by the model. On the
 contrary, the FE model should be designed such that different
 implementations of the forwarding datapath can all be logically
 mapped onto the model with the functionality and sequence of
 operations correctly captured. However, the model itself does not
 directly address the issue of how a particular implementation maps
 to an LFB topology. This is left to the forwarding plane vendors
 as to how the FE functionality is represented using the FE model.
 Nevertheless, we do strive to design the FE model such that it is
 flexible enough to accommodate most common implementations.

 The LFB topology model for a particular datapath implementation
 MUST correctly capture the sequence of operations on the packet.
 Metadata generation (by certain LFBs) must always precede any use
 of that metadata (by subsequent LFBs in the topology graph); this
 is required for logically consistent operation. Further,
 modifications of packet fields that are subsequently used as inputs
 for further processing must occur in the order specified in the
 model for that particular implementation to ensure correctness.

2.3. The FE Model in Relation to the ForCES Protocol

 The ForCES base protocol is used by the CEs and FEs to maintain the
 communication channel between the CEs and FEs. The ForCES protocol
 may be used to query and discover the inter-FE topology. The

Yang, et al. Expires April 2004 [Page 6]

Internet Draft ForCES FE Model October 2003

 details of a particular datapath implementation inside an FE
 including the LFB topology, along with the operational capabilities
 and attributes of each individual LFB, are conveyed to the CE
 within information elements in the ForCES protocol. The model of
 an LFB class should define all of the information that would need
 to be exchanged between an FE and a CE for the proper configuration
 and management of that LFB.

 Definition of the various payloads of ForCES messages (irrespective
 of the transport protocol ultimately selected) cannot proceed in a
 systematic fashion until a formal definition of the objects being
 configured and managed (the FE and the LFBs within) is undertaken.
 The FE Model document defines a set of classes and attributes for
 describing and manipulating the state of the LFBs of an FE. These
 class definitions themselves will generally not appear in the
 Forces protocol. Rather, Forces protocol operations will
 references classes defined in this model, including relevant
 attributes (and operations if such are defined).

Section 9 provides more detailed discussion on how the FE model
 should be used by the ForCES protocol.

2.4. Modeling Language for FE Model

 Even though not absolutely required, it is beneficial to use a
 formal data modeling language to represent the conceptual FE model
 described in this document and a full specification will be written
 using such a data modeling language. Using a formal language can
 help in enforcing consistency and logical compatibility among LFBs.
 In addition, formal definition of the LFB classes has the potential
 to facilitate the eventual automation of some part of the code
 generation process and the functional validation of arbitrary LFB
 topologies.

 The modeling language is used for writing the specification but not
 necessarily for encoding the data over-the-wire between FEs and
 CEs. When selecting the specification language, human readability
 is very important, while there are no performance requirements on
 the language for encoding, decoding, and transmission on the
 language. XML is used as the specification language in this
 document, because XML has the advantage of being human and machine
 readable with widely available tools support.

 The encoding method for over the wire transport is an issue
 independent of the specification language chosen here. It is
 outside the scope of this document and up to the ForCES protocol to
 define.

Yang, et al. Expires April 2004 [Page 7]

Internet Draft ForCES FE Model October 2003

2.5. Document Structure

Section 3 provides conceptual overview of the FE model, laying the
 foundation for the more detailed discussion and specifications in
 the sections that follow. Section 4, 5, and 6 together constitute
 the core of the FE model, detailing the three major components in
 the FE model: LFB model, LFB topology, and FE level attributes
 including capability. Section 7 presents a list of LFB classes in
 the LFB class library that will be further specified according to
 the FE model presented in earlier Sections (4, 5 and 6). Section 8
 directly addresses the model requirements imposed by the ForCES
 requirement draft [1] while Section 9 explains how the FE model
 should be used in the ForCES protocol.

3. FE Model Concepts

 Some of the most important concepts used throughout this document
 are introduced in this section. Section 3.1 explains the
 difference between a state model and a capability model, and how
 the two can be combined in the FE model. Section 3.2 introduces
 the concept of LFBs (Logical Functional Blocks) as the basic
 functional building blocks in the FE model. Section 3.3 discusses
 the logical inter-connection and ordering between LFB instances
 within an FE, that is, the LFB topology.

 The FE model proposed in this document is comprised of these three
 components: LFB model, LFB topology and FE attributes including FE
 capabilities. The LFB model provides the content and data
 structures to define each individual LFB class; LFB topology
 provides a mean to express the logical inter-connection between the
 LFB instances along the datapath(s) within the FE; and FE
 attributes provide information at the FE level and the capabilities
 about what the FE can or cannot do at a coarse level. Details on
 each of the three components are described in Section 4, 5 and 6,
 respectively. The intention of this section is to discuss these
 concepts at the high level and lay the foundation for the detailed
 description in the following sections.

3.1. State Model and Capability Model

 The FE capability model describes the capabilities and capacities
 of an FE in terms of variations of functions supported or
 limitations contained. Conceptually, the FE capability model
 presents the many possible states allowed on an FE with capacity
 information indicating certain quantitative limits or constraints.

Yang, et al. Expires April 2004 [Page 8]

Internet Draft ForCES FE Model October 2003

 For example, an FE capability model may describe the FE at a coarse
 level such as:
 . this FE can handle IPv4 and IPv6 forwarding;
 . this FE can perform classification on the following fields:
 source IP address, destination IP address, source port number,
 destination port number, etc;
 . this FE can perform metering;
 . this FE can handle up to N queues (capacity);
 . this FE can add and remove encapsulating headers of types
 including IPSec, GRE, L2TP.

 On the other hand, an FE state model describes the current state of
 the FE, that is, the instantaneous values or operational behavior
 of the FE. The FE state model presents the snapshot view of the FE
 to the CE. For example, using an FE state model, an FE may be
 described to its CE as the following:
 . on a given port the packets are classified using a given
 classification filter;
 . the given classifier results in packets being metered in a
 certain way, and then marked in a certain way;
 . the packets coming from specific markers are delivered into a
 shared queue for handling, while other packets are delivered
 to a different queue;
 . a specific scheduler with specific behavior and parameters
 will service these collected queues.

 The information on the capabilities and capacities of the FE helps
 the CE understand the flexibility and limitations of the FE
 functions, so that the CE knows at a coarse level what
 configurations are applicable to the FEs and what are not. Where
 it gets more complicated is for the capability model to cope with
 the detailed limits, issues such as how many classifiers the FE can
 handle, how many queues, and how many buffer pools the FE can
 support, how many meters the FE can provide.

 While one could try to build an object model for representing
 capabilities in full, other efforts have found this to be a
 significant undertaking. A middle of the road approach is to define
 coarse-grained capabilities and simple capacity measures. Then, if
 the CE attempts to instruct the FE to set up some specific behavior
 it is not capable of, the FE will return an error indicating the
 problem. Examples of such approach include Framework Policy
 Information Base (PIB) [RFC3318) and Differentiated Services QoS
 Policy Information Base [4]. The capability reporting classes in
 the DiffServ and Framework PIBs are all meant to allow the device
 to indicate some general guidelines about what it can or cannot do,
 but do not necessarily allow it to indicate every possible

Yang, et al. Expires April 2004 [Page 9]

Internet Draft ForCES FE Model October 2003

 configuration that it can or cannot support. If a device receives
 a configuration that it cannot implement, it can reject such
 configuration by replying with a failure report.

 Figure 1 shows the concepts of FE state, capabilities and
 configuration in the context of CE-FE communication via ForCES
 protocol.

 +-------+ +-------+
 | | FE capabilities: what it can/cannot do. | |
 | |<---| |
 | | | |
 | CE | FE state: what it is now. | FE |
 | |<---| |
 | | | |
 | | FE configuration: what it should be. | |
 | |--->| |
 +-------+ +-------+

 Figure 1. Illustration of FE state, capabilities and configuration
 exchange in the context of CE-FE communication via ForCES.

 The ForCES FE model must include both a state model and some flavor
 of a capability model. We believe that a good balance between
 simplicity and flexibility can be achieved for the FE model by
 combining the coarse level capability reporting with the error
 reporting mechanism. Examples of similar approach include DiffServ
 PIB [4] and Framework PIB [5].

 The concepts of LFB and LFB topology will be discussed in the rest
 of this section. It will become clear that some flavor of
 capability model is needed at both the FE level and LFB level.

 Capability information at the LFB level is an integral part of the
 LFB model, and is modeled the same way as the other operational
 parameters inside an LFB. For example, certain features of an LFB
 class may be optional, in which case it must be possible for the CE
 to determine if an optional feature is supported by a given LFB
 instance or not. Such capability information can be modeled as a
 read-only attribute in the LFB instance. See Section 4.4.4 for
 more details on LFB attributes.

 Capability information at the FE level may describe what LFB
 classes the FE can instantiate; how many instances of each can be
 created; the topological (i.e., linkage) limitations between these
 LFB instances, etc. Section 6 defines the FE level attributes
 including capability information.

Yang, et al. Expires April 2004 [Page 10]

Internet Draft ForCES FE Model October 2003

 Once the FE capability is described to the CE, the FE state
 information can be represented by two levels. The first level is
 the logically separable and distinctive packet processing
 functions, and we call these individual functions Logical
 Functional Blocks (LFBs). The second level of information is about
 how these individual LFBs are ordered and placed along the datapath
 to deliver a complete forwarding plane service. The
 interconnection and ordering of the LFBs is called LFB Topology.

Section 3.2 discuss high level concepts around LFBs while Section
3.3 discuss issues around LFB topology.

3.2. LFB Modeling

 Each LFB (Logical Functional Block) performs a well-defined action
 or computation on the packets passing through it. Upon completion
 of such function, either the packets are modified in certain ways
 (like decapsulator, marker), or some results are generated and
 stored, probably in the form of metadata (like classifier). Each
 LFB typically does one thing and one thing only. Classifiers,
 shapers, meters are all examples of LFB. Modeling LFB at such fine
 granularity allows us to use a small number of LFBs to create the
 higher-order FE functions (like IPv4 forwarder) precisely, which in
 turn can describe more complex networking functions and vendor
 implementations of software and hardware.

 (Editor's note: We need to revisit the granularity issue around LFB
 later and provide a practical design guideline as how to partition
 the FE functions into LFB classes. We will gain more insight on
 the subject once we debate and settle on the LFB list in the LFB
 class library, described in Section 7. So the text around
 granularity here might be revised to reflect the lessons we learn.)

 An LFB has one or more inputs, each of which takes a packet P, and
 optionally metadata M; and produces one or more outputs, each of
 which carries a packet P', and optionally metadata M'. Metadata is
 data associated with the packet in the network processing device
 (router, switch, etc.) and passed between one LFB to the next, but
 not sent across the network. It is most likely that there are
 multiple LFBs within one FE, as shown in Figure 2, and all the LFBs
 share the same ForCES protocol termination point that implements
 the ForCES protocol logic and maintains the communication channel
 to and from the CE.

 An LFB, as shown in Figure 2, has inputs, outputs and attributes
 that can be queried and manipulated by the CE indirectly via Fp
 reference point (defined in [2]) and the ForCES protocol

Yang, et al. Expires April 2004 [Page 11]

Internet Draft ForCES FE Model October 2003

 termination point. The horizontal axis is in the forwarding plane
 for connecting the inputs and outputs of LFBs within the same FE.
 The vertical axis between the CE and the FE denotes the Fp
 reference point where bidirectional communication between the CE
 and FE happens: the CE to FE communication is for configuration,
 control and packet injection while the FE to CE is for packet re-
 direction to the control plane, monitoring and accounting
 information, errors, etc. Note that the interaction between the CE
 and the LFB is only abstract and indirect. The result of such
 interaction is for the CE to indirectly manipulate the attributes
 of the LFB instances.

 +-----------+
 | CE |
 +-----------+
 ^
 | Fp reference point
 |
 +--------------------------|-----------------------------------+
 | FE | |
 | v |
 | +--+ |
 | | ForCES protocol | |
 | | termination point | |
 | +--+ |
 | ^ ^ |
 | : : Internal control |
 | : : |
 | +---:----------+ +---:----------+ |
 | | :LFB1 | | : LFB2 | | | | | |
 | =====>| v |============>| v |======>...|
 | Inputs| +----------+ |Outputs | +----------+ | |
 | (P,M) | |Attributes| |(P',M') | |Attributes| |(P",M") |
 | | +----------+ | | +----------+ | |
 | +--------------+ +--------------+ |
 | |
 +--+

 Figure 2. Generic LFB Diagram

 A namespace is used to associate a unique name or ID with each LFB
 class. The namespace must be extensible so that new LFB class can
 also be added later to accommodate future innovation in the
 forwarding plane.

Yang, et al. Expires April 2004 [Page 12]

Internet Draft ForCES FE Model October 2003

 LFB operation must be specified in the model to allow the CE to
 understand the behavior of the forwarding datapath. For instance,
 the CE must understand at what point in the datapath the IPv4
 header TTL is decremented (i.e., it needs to know if a control
 packet could be delivered to the CE either before or after this
 point in the datapath). In addition, the CE must understand where
 and what type of header modifications (e.g., tunnel header append
 or strip) are performed by the FEs. Further, the CE must verify
 that various LFB along a datapath within an FE are compatible to
 link together.

 There is value to vendors if the operation of LFB classes can be
 expressed in sufficient detail so that physical devices
 implementing different LFB functions can be integrated easily into
 a FE design. Therefore, semi-formal specification is needed; that
 is, a text description of the LFB operation (human readable), but
 sufficiently specific and unambiguous to allow conformance testing
 and efficient design (i.e., eliminate guess-work), so that
 interoperability between different CEs and FEs can be achieved.

 The LFB class model specifies information like:
 . number of inputs and outputs (and whether they are
 configurable)
 . metadata read/consumed from inputs;
 . metadata produced at the outputs;
 . packet type(s) accepted at the inputs and emitted at the
 outputs;
 . packet content modifications (including encapsulation or
 decapsulation);
 . packet routing criteria (when multiple outputs on an LFB are
 present);
 . packet timing modifications;
 . packet flow ordering modifications;
 . LFB capability information;
 . LFB operational attributes, etc.

Section 5 of this document provides detailed discussion on the LFB
 model with a formal specification of LFB class schema. The rest of

Section 3.2 here only intends to provide conceptual overview of
 some important issues in LFB modeling, without covering all the
 specific details.

3.2.1. LFB Input and Input Group

 An LFB input is a conceptual port of the LFB where the LFB can
 receive information from other LFBs. The information is typically a
 packet (or frame in general) and associated metadata, although in

Yang, et al. Expires April 2004 [Page 13]

Internet Draft ForCES FE Model October 2003

 some cases it might consist of only metadata, i.e., with a Null-
 packet.

 It is inevitable that there will be LFB instances that will receive
 packets from more than one other LFB instances (fan-in). If these
 fan-in links all carry the same type of information (packet type
 and set of metadata) and require the same processing within the
 LFB, then one input should be sufficient. If, however, the LFB
 class can receive two or more very different types of input, and
 the processing of these inputs are also very distinct, then that
 may justify the definition of multiple inputs. But in these cases
 splitting the LFB class into two LFB classes should always be
 considered as an alternative. In intermediate cases, e.g., where
 the inputs are somewhat different but they require very similar
 processing, the shared input solution should be preferred. For
 example, if an Ethernet framer LFB is capable of receiving IPv4 and
 IPv6 packets, these can be served by the same LFB input.

 Note that we assume the model allows for connecting more than one
 LFB output to a single LFB input directly. There is no restriction
 on the number of up-stream LFBs connecting their outputs to the
 same input of a single LFB instance. Note that the behavior of the
 system when multiple packets arrive at such an input simultaneously
 is not defined by the model. If such behavior needs to be
 described, it can be done either by separating the single input to
 become multiple inputs (one per output), or by inserting other
 appropriate LFBs (such as Queues and possibly Schedulers) between
 the multiple outputs and the single input.

 If there are multiple inputs with the same input type, we model
 them as an input group, that is, multiple instances of the same
 input type. In general, an input group is useful to allow an LFB
 to differentiate packet treatment based on where the packet came
 from.

 +----+ +----+
 |LFB1+---+ |LFB1+---+
 +----+ | +---------+ +----+ | +-----------+
 +--->|in LFB3 | input / +--->|in:1 LFB3 |
 +----+ | +---------+ group \ +--->|in:2 |
 |LFB2+---+ +----+ | +-----------+
 +----+ |LFB2+---+
 +----+

 (a) without input group (b) with input group

 Figure 3. An example of using input group.

Yang, et al. Expires April 2004 [Page 14]

Internet Draft ForCES FE Model October 2003

 Consider the following two cases in Figure 3(a) and (b). In Figure
 3(a), the output from two LFBs are directly connected into one
 input of LFB3, assuming that it can be guaranteed no two packets
 arrive at the same time instance. If LFB3 must do something
 different based on the source of the packet (LFB1 or LFB2), the
 only way to model that is to make LFB1 and LFB2 to pass some
 metadata with different values so that LFB3 can make the
 differentiation based on the metadata. In Figure 3(b), that
 differentiation can be elegantly expressed within LFB3 using the
 input group concept where the instance id can server as the
 differentiating key. For example, a scheduler LFB can potentially
 use an input group consisting of a variable number of inputs to
 differentiate the queues from which the packets are coming.

3.2.2. LFB Output and Output Group

 An LFB output is a conceptual port of the LFB where it can send
 information to some other LFBs. The information is typically a
 packet (or frame in general) and associated metadata, although in
 some cases it might emit only metadata,, i.e., with a Null-packet.

 We assume that a single LFB output can be connected to only one LFB
 input (this is required to make the packet flow through the LFB
 topology unambiguous). Therefore, to allow any non-trivial
 topology, multiple outputs must be allowed for an LFB class. If
 there are multiple outputs with the same output type, we model them
 as output group, that is, multiple instances of the same output
 type. For illustration of output group, consider the hypothetical
 LFB in Figure 4. The LFB has two types of outputs, one of which
 can be instantiated to form an output group.

 +------------------+
 | UNPROC +-->
 | |
 | PKTOUT:1 +--> \
 --> PKTIN PKTOUT:2 +--> |
 | . + . | Output group
 | . + . |
 | PKTOUT:N +--> /
 +------------------+

 Figure 4. An example of an LFB with output group.

 Multiple outputs should mainly be used for functional separation
 where the outputs are connected to very different types of LFBs.
 For example, an IPv4 LPM (Longest-Prefix-Matching) LFB may have one
 default output to send those packets for which look-up was

Yang, et al. Expires April 2004 [Page 15]

Internet Draft ForCES FE Model October 2003

 successful (passing a META_ROUTEID as metadata); and have another
 output for sending packets for which the look-up failed. The
 former output may be connected to a route handler LFB, while the
 latter can be connected to an ICMP response generator LFB or to a
 packet handler LFB that passes the packet up to the CE.

3.2.3. Packet Type

 When LFB classes are defined, the input and output packet formats
 (e.g., IPv4, IPv6, Ethernet, etc.) must be specified: these are the
 types of packets a given LFB input is capable of receiving and
 processing, or a given LFB output is capable of producing. This
 requires that distinct frame types be uniquely labeled with a
 symbolic name and/or ID.

 Note that each LFB has a set of packet types that it operates on,
 but it does not care about whether the underlying implementation is
 passing a greater portion of the packets. For example, an IPv4 LFB
 might only operate on IPv4 packets, but the underlying
 implementation may or may not be stripping the L2 header before
 handing it over -- whether that is happening or not is opaque to
 the CE.

3.2.4. Metadata

 Metadata is used to communicate per-packet state from one LFB to
 another. To ensure inter-operability among LFBs, the LFB class
 specification must define what metadata the LFB class "reads" or
 "consumes" on its input(s) and what metadata it "produces" on its
 output(s). For that purpose, metadata types must be identified.
 For example, an META_IFID, passed from a port LFB to an IPv4
 processing LFB (with the IP packet) can be one of the defined
 metadata types.

 Symbolic names can be assigned for common metadata types. In
 addition, additional information such as numeric data type, maximum
 and minimum accepted values, and special values should be defined
 for each metadata value. Some of these constraints will be defined
 in the LFB class model, and some of them may be specific
 capabilities of a particular LFB instance.

 While it is important to define the metadata passing between LFB in
 terms of its name, value and interpretation, it is not necessary to
 define the exact encoding mechanism used by LFBs for metadata.
 Different implementations are allowed to use different encoding
 mechanisms for metadata. For example, one implementation may store

Yang, et al. Expires April 2004 [Page 16]

Internet Draft ForCES FE Model October 2003

 metadata in registers or shared memory, while another
 implementation may encode metadata in-band as preamble in the
 packets.

 A given LFB may require a certain metadata at its inputs for its
 internal processing. What should happen with the metadata after it
 is read by the LFB? In particular, should the metadata be
 propagated along with the packet when the packet is forwarded from
 the LFB to the next LFB, or should it be removed (consumed) by the
 LFB?

 In certain cases, passing the metadata along is desirable. For
 example, a META_CLASSID metadata may denote the result of a
 classification LFB and used in more than one downstream LFBs to
 trigger the proper operation on the packet. In this case the first
 LFB that uses the META_CLASSID should also allow the META_CLASSID
 to be passed with the packet to the next LFB, and so on. On the
 other hand, it is easy to see that if metadata is never consumed by
 LFBs, then as the packet trickles through the datapath, a large
 number of metadata will potentially be accumulated by the packet.

 We believe that one way to accommodate both scenarios is to specify
 the propagation mode for each element of metadata utilized by an
 LFB class. Metadata elements which are not propagated are
 specified with the CONSUME mode, while elements which are
 propagated are specified with the PROPAGATE mode.

 However, whether a metadata is useful beyond an LFB may depend on
 the actual LFB topology, i.e., what other LFBs are placed
 downstream. So the propagation mode of metadata should be
 configurable.

 A packet may arrive to an LFB with metadata that is not meaningful
 to that LFB, but may be important to some other downstream LFBs.
 To cater to such cases it should be the assumed (default) behavior
 of all LFB classes that they transparently propagate any metadata
 elements that they do not utilize internally.

 Actual implementations of LFBs in hardware may have limitations on
 how much metadata they can pass through. The limitation may be
 expressed in terms of total framesize (packet + metadata), metadata
 total size, number of metadata elements, or a combination of these.
 The limitation may be on the FE level or may be specific to LFBs
 within an FE. The pass-through capabilities of LFB instances and
 FEs can be queried as part of the capability discovery process.

Yang, et al. Expires April 2004 [Page 17]

Internet Draft ForCES FE Model October 2003

 (Editor's note: The definition of metadata here is only preliminary
 and the authors intend to work on the subject in more detail.
 Input is most welcome.)

3.2.5. LFB Versioning

 LFB class versioning is a method to enable incremental evolution of
 LFB classes. Unlike inheritance (discussed next in Section 3.2.6),
 where it assumed that an FE datapath model containing an LFB
 instance of a particular class C could also simultaneously contain
 an LFB instance of a class C' inherited from class C; with
 versioning, an FE would not be allowed to contain an LFB instance
 for more than one version of a particular class.

 LFB class versioning is supported by requiring a version string in
 the class definition. CEs may support backwards compatibility
 between multiple versions of a particular LFB class, but FEs are
 not allowed to support more than one single version of a particular
 class.

3.2.6. LFB Inheritance

 LFB class inheritance is supported in the FE model as a means of
 defining new LFB classes. This also allows FE vendors to add
 vendor-specific extensions to standardized LFBs. An LFB class
 specification MUST specify the base class (with version number) it
 inherits from (with the default being the base LFB class).
 Multiple-inheritance is not allowed, though, to avoid the
 unnecessary complexity.

 Inheritance should be used only when there is significant reuse of
 the base LFB class definition. A separate LFB class should be
 defined if there is not enough reuse between the derived and the
 base LFB class.

 An interesting issue related to class inheritance is backward
 compatibility (between a descendant and an ancestor class).
 Consider the following hypothetical scenario where there exists a
 standardized LFB class "L1". Vendor A builds an FE that implements
 LFB "L1" and vendors B builds a CE that can recognize and operate
 on LFB "L1". Suppose that a new LFB class, "L2", is defined based
 on the existing "L1" class (for example, by extending its
 capabilities in some incremental way). Lets first examine the FE
 backward compatibility issue by considering what would happen if
 vendor B upgrades its FE from "L1" to "L2" while vendor C's CE is
 not changed. The old L1-based CE can interoperate with the new L2-

Yang, et al. Expires April 2004 [Page 18]

Internet Draft ForCES FE Model October 2003

 based FE if the derived LFB class "L2" is indeed backward
 compatible with the base class "L1".

 The reverse scenario is a much less problematic case, i.e., when CE
 vendor B upgrades to the new LFB class "L2", but the FE is not
 upgraded. Note that as long as the CE is capable of working with
 older LFB classes, this problem does not affect the model; hence we
 will use the term "backward compatibility" to refer to the first
 scenario concerning FE backward compatibility.

 Inheritance can be designed into the model with backward
 compatibility support by constraining the LFB inheritance such that
 the derived class is always a functional superset of the base
 class, i.e., the derived class can only grow on top of the base
 class, but not shrink from it. Additionally, the following
 mechanisms are required to support FE backward compatibility:
 1) When detecting an LFB instance of an LFB type that is
 unknown to the CE, the CE MUST be able to query the base
 class of such an LFB from the FE.
 2) The LFB instance on the FE SHOULD support a backward
 compatibility mode (meaning the LFB instance reverts itself
 back to the base class instance), and the CE SHOULD be able
 to configure the LFB to run in such mode.

3.3. FE Datapath Modeling

 Packets coming into the FE from ingress ports generally flow
 through multiple LFBs before leaving out of the egress ports. How
 an FE treats a packet depends on many factors, such as type of the
 packet (e.g., IPv4, IPv6 or MPLS), actual header values, time of
 arrival, etc. The result of the operation of an LFB may have an
 impact on how the packet is to be treated in further (downstream)
 LFBs and this differentiation of packet treatment downstream can be
 conceptualized as having alternative datapaths in the FE. For
 example, the result of a 6-tuple classification (performed by a
 classifier LFB) controls what rate meter is applied to the packet
 (by a rate meter LFB) in a later stage in the datapath.

 LFB topology is a directed graph representation of the logical
 datapaths within an FE, with the nodes representing the LFB
 instances and the directed link the packet flow direction from one
 LFB to the next. Section 3.3.1 discusses how the FE datapaths can
 be modeled as LFB topology; while Section 3.3.2 focuses on issues
 around LFB topology reconfiguration.

3.3.1. Alternative Approaches for Modeling FE Datapaths

Yang, et al. Expires April 2004 [Page 19]

Internet Draft ForCES FE Model October 2003

 There are two basic ways to express the differentiation in packet
 treatment within an FE, one representing the datapath directly and
 graphically (topological approach) and the other utilizing metadata
 (the encoded state approach).

 . Topological Approach

 Using this approach, differential packet treatment is expressed
 via actually splitting the LFB topology into alternative paths.
 In other words, if the result of an LFB must control how the
 packet is further processed, then such an LFB will have separate
 output ports (one for each alternative treatment) connected to
 separate sub-graphs (each expressing the respective treatment
 downstream).

 . Encoded State Approach

 An alternative way of expressing differential treatment is using
 metadata. The result of the operation of an LFB can be encoded
 in a metadata which is passed along with the packet to
 downstream LFBs. A downstream LFB, in turn, can use the
 metadata (and its value, e.g., as an index into some table) to
 decide how to treat the packet.

 Theoretically, the two approaches can substitute for each other, so
 one may consider using purely one (or the other) approach to
 describe all datapaths in an FE. However, neither model by itself
 is very useful for practically relevant cases. For a given FE with
 certain logical datapaths, applying the two different modeling
 approaches would result in very different looking LFB topology
 graphs. A model using purely the topological approach may require
 a very large graph with many links (i.e., paths) and nodes (i.e.,
 LFB instances) to express all alternative datapaths. On the other
 hand, a model using purely the encoded state model would be
 restricted to a string of LFBs, which would make it very
 unintuitive to describe very different datapaths (such as MPLS and
 IPv4). Therefore, a mix of these two approaches will likely be
 used for a practical model. In fact, as we illustrate it below,
 the two approaches can be mixed even within the same LFB.

 Using a simple example of a classifier with N classification
 outputs followed by some other LFBs, Figure 5(a) shows what the LFB
 topology looks like by using the purely topological approach. Each
 output from the classifier goes to one of the N LFBs followed and
 no metadata is needed here. The topological approach is simple,
 straightforward and graphically intuitive. However, if N is large
 and the N nodes followed the classifier (LFB#1, LFB#2, ..., LFB#N)

Yang, et al. Expires April 2004 [Page 20]

Internet Draft ForCES FE Model October 2003

 all belong to the same LFB type (for example, meter) but each with
 its own independent attributes, the encoded state approach gives a
 much simpler topology representation, as shown in Figure 5(b). The
 encoded state approach requires that a table of N rows of meter
 attributes is provided in the Meter node itself, with each row
 representing the attributes for one meter instance. A metadata M
 is also needed to pass along with the packet P from the classifier
 to the meter, so that the meter can use M as a look-up key (index)
 to find the corresponding row of the attributes that should be used
 for any particular packet P.

 Now what if all the N nodes (LFB#1, LFB#2, ..., LFB#N) are not of
 the same type? For example, if LFB#1 is a queue while the rest are
 all meters, what is the best way to represent such datapaths?
 While it is still possible to use either the pure topological
 approach or the pure encoded state approach, the natural
 combination of the two seems the best by representing the two
 different functional datapaths using topological approach while
 leaving the N-1 meter instances distinguished by metadata only, as
 shown in Figure 5(c).
 +----------+
 P | LFB#1 |
 +--------->|(Attrib-1)|
 +-------------+ | +----------+
 | 1|------+ P +----------+
 | 2|---------------->| LFB#2 |
 | classifier 3| |(Attrib-2)|
 | ...|... +----------+
 | N|------+ ...
 +-------------+ | P +----------+
 +--------->| LFB#N |
 |(Attrib-N)|
 +----------+

 5(a) Using pure topological approach

 +-------------+ +-------------+
 | 1| | Meter |
 | 2| (P, M) | (Attrib-1) |
 | 3|---------------->| (Attrib-2) |
 | ...| | ... |
 | N| | (Attrib-N) |
 +-------------+ +-------------+

 5(b) Using pure encoded state approach to represent the LFB
 topology in 5(a), if LFB#1, LFB#2, ..., and LFB#N are of the
 same type (e.g., meter).

Yang, et al. Expires April 2004 [Page 21]

Internet Draft ForCES FE Model October 2003

 +-------------+
 +-------------+ (P, M) | queue |
 | 1|------------->| (Attrib-1) |
 | 2| +-------------+
 | 3| (P, M) +-------------+
 | ...|------------->| Meter |
 | N| | (Attrib-2) |
 +-------------+ | ... |
 | (Attrib-N) |
 +-------------+

 5(c) Using a combination of the two, if LFB#1, LFB#2, ..., and
 LFB#N are of different types (e.g., queue and meter).

 Figure 5. An example of how to model FE datapaths

 From this example, we demonstrate that each approach has distinct
 advantage for different situations. Using the encoded state
 approach, fewer connections are typically needed between a fan-out
 node and its next LFB instances of the same type, because each
 packet carries metadata with it so that the following nodes can
 interpret and hence invoke a different packet treatment. For those
 cases, a pure topological approach forces one to build elaborate
 graphs with a lot more connections and often results in an unwieldy
 graph. On the other hand, a topological approach is intuitive and
 most useful for representing functionally very different datapaths.

 For complex topologies, a combination of the two is the most useful
 and flexible. Here we provide a general design guideline as to
 what approach is best used for what situation. The topological
 approach should primarily be used when the packet datapath forks
 into areas with distinct LFB classes (not just distinct
 parameterizations of the same LFB classes), and when the fan-outs
 do not require changes (adding/removing LFB outputs) at all or
 require only very infrequent changes. Configuration information
 that needs to change frequently should preferably be expressed by
 the internal attributes of one or more LFBs (and hence using the
 encoded state approach).
 +---+
 | |
 +----------+ V +----------+ +------+ |
 | | | | |if IP-in-IP| | |
 ---->| ingress |->+----->|classifier|---------->|Decap.|---->---+
 | ports | | |----+ | |

Yang, et al. Expires April 2004 [Page 22]

Internet Draft ForCES FE Model October 2003

 +----------+ +----------+ |others+------+
 |
 V
 (a) The LFB topology with a logical loop

 +-------+ +-----------+ +------+ +-----------+
 | | | |if IP-in-IP | | | |
 --->|ingress|-->|classifier1|----------->|Decap.|-->+classifier2|->
 | ports | | |----+ | | | |
 +-------+ +-----------+ |others +------+ +-----------+
 |
 V
 (b) The LFB topology without the loop utilizing two
 independent classifier instances.

 Figure 6. An LFB topology example.

 It is important to point out that the LFB topology here is the
 logical topology that the packets flow through, not the physical
 topology as determined by how the FE hardware is laid out.
 Nevertheless, the actual implementation may still influence how the
 functionality should be mapped into the LFB topology. Figure 6
 shows one simple FE example. In this example, an IP-in-IP packet
 from an IPSec application like VPN may go to the classifier first
 and have the classification done based on the outer IP header; upon
 being classified as an IP-in-IP packet, the packet is then sent to
 a decapsulator to strip off the outer IP header, followed by a
 classifier again to perform classification on the inner IP header.
 If the same classifier hardware or software is used for both outer
 and inner IP header classification with the same set of filtering
 rules, a logical loop is naturally present in the LFB topology, as
 shown in Figure 6(a). However, if the classification is
 implemented by two different pieces of hardware or software with
 different filters (i.e., one set of filters for outer IP header
 while another set for inner IP header), then it is more natural to
 model them as two different instances of classifier LFB, as shown
 in Figure 6(b).

 To distinguish multiple instances of the same LFB class, each LFB
 instance has its own LFB instance ID. One way to encode the LFB
 instance ID is to encode it as x.y where x is the LFB class ID
 while y is the instance ID within each LFB class.

3.3.2. Configuring the LFB Topology

Yang, et al. Expires April 2004 [Page 23]

Internet Draft ForCES FE Model October 2003

 While there is little doubt that the individual LFB must be
 configurable, the configurability question is more complicated for
 LFB topology. Since LFB topology is really the graphic
 representation of the datapaths within FE, configuring the LFB
 topology means dynamically changing the datapaths including changes
 to the LFBs along the datapaths on an FE, e.g., creating (i.e.,
 instantiating) or deleting LFBs, setting up or deleting
 interconnections between outputs of upstream LFBs to inputs of
 downstream LFBs.

 Why would the datapaths on an FE ever change dynamically? The
 datapaths on an FE is set up by the CE to provide certain data
 plane services (e.g., DiffServ, VPN, etc.) to the NE's customers.
 The purpose of reconfiguring the datapaths is to enable the CE to
 customize the services the NE is delivering at run time. The CE
 needs to change the datapaths when the service requirements change,
 e.g., when adding a new customer, or when an existing customer
 changes their service. However, note that not all datapath changes
 result in changes in the LFB topology graph, and that is determined
 by the approach we use to map the datapaths into LFB topology. As
 discussed in 3.3.1, the topological approach and encoded state
 approach can result in very different looking LFB topologies for
 the same datapaths. In general, an LFB topology based on a pure
 topological approach is likely to experience more frequent topology
 reconfiguration than one based on an encoded state approach.
 However, even an LFB topology based entirely on an encoded state
 approach may have to change the topology at times, for example, to
 totally bypass some LFBs or insert new LFBs. Since a mix of these
 two approaches is used to model the datapaths, LFB topology
 reconfiguration is considered an important aspect of the FE model.

 We want to point out that allowing a configurable LFB topology in
 the FE model does not mandate that all FEs must have such
 capability. Even if an FE supports configurable LFB topology, it
 is expected that there will be FE-specific limitations on what can
 actually be configured. Performance-optimized hardware
 implementation may have zero or very limited configurability, while
 FE implementations running on network processors may provide more
 flexibility and configurability. It is entirely up to the FE
 designers to decide whether or not the FE actually implements such
 reconfiguration and how much. Whether it is a simple runtime
 switch to enable or disable (i.e., bypass) certain LFBs, or more
 flexible software reconfiguration is all implementation detail
 internal to the FE but outside of the scope of FE model. In either
 case, the CE(s) must be able to learn the FE's configuration
 capabilities. Therefore, the FE model must provide a mechanism for

Yang, et al. Expires April 2004 [Page 24]

Internet Draft ForCES FE Model October 2003

 describing the LFB topology configuration capabilities of an FE.
 These capabilities may include (see Section 6 for details):
 . What LFB classes can the FE instantiate?
 . How many instances of the same LFB class can be created?
 . What are the topological limitations? For example:
 o How many instances of the same class or any class can be
 created on any given branch of the graph?
 o Ordering restrictions on LFBs (e.g., any instance of LFB
 class A must be always downstream of any instance of LFB
 class B).

 Even if the CE is allowed to configure LFB topology for an FE, how
 can the CE interpret an arbitrary LFB topology (presented to the CE
 by the FE) and know what to do with it? In another word, how does
 the CE know the mapping between an LFB topology and a particular NE
 service or application (e.g., VPN, DiffServ, etc.)? We argue that
 first of all, it is unlikely that an FE can support any arbitrary
 LFB topology; secondly, once the CE understands the coarse
 capability of an FE, it is up to the CE to configure the LFB
 topology according to the network service the NE is supposed to
 provide. So the more important mapping that the CE has to
 understand is from the high level NE service to a specific LFB
 topology, not the other way around. Do we expect the CE has the
 ultimate intelligence to translate any high level service policy
 into the configuration data for the FEs? No, but it is conceivable
 that within a given network service domain (like DiffServ), a
 certain amount of intelligence can be programmed into the CE such
 that the CE has a general understanding of the LFBs involved and so
 the translation from a high level service policy to the low level
 FE configuration can be done automatically. In any event, this is
 considered an implementation issue internal to the control plane
 and outside the scope of the FE model. Therefore, it is not
 discussed any further in this draft.

 +----------+ +-----------+
 ---->| Ingress |---->|classifier |--------------+
 | | |chip | |
 +----------+ +-----------+ |
 v
 +---+
 +--------+ | Network Processor |
 <----| Egress | | +------+ +------+ +-------+ |
 +--------+ | |Meter | |Marker| |Dropper| |
 ^ | +------+ +------+ +-------+ |
 | | |
 +----------+-------+ |
 | | |

Yang, et al. Expires April 2004 [Page 25]

Internet Draft ForCES FE Model October 2003

 | +---------+ +---------+ +------+ +---------+ |
 | |Forwarder|<------|Scheduler|<--|Queue | |Counter | |
 | +---------+ +---------+ +------+ +---------+ |
 |--+

 (a) The Capability of the FE, reported to the CE

 +-----+ +-------+ +---+
 | A|--->|Queue1 |--------------------->| |
 ------>| | +-------+ | | +---+
 | | | | | | | | | |
 | | +-------+ +-------+ | | | |
 | B|--->|Meter1 |----->|Queue2 |------>| |->| |
 | | | | +-------+ | | | |
 | | | |--+ | | | |
 +-----+ +-------+ | +-------+ | | +---+
 classifier +-->|Dropper| | | IPv4
 +-------+ +---+ Fwd.
 Scheduler
 (b) One LFB topology as configured by the CE and
 accepted by the FE

 Queue1
 +---+ +--+
 | A|------------------->| |--+
 +->| | | | |
 | | B|--+ +--+ +--+ +--+ | | | |
 | +---+ | | | | | |
 | Meter1 +->| |-->| | |
 | | | | | |
 | +--+ +--+ | Ipv4
 | Counter1 Dropper1 Queue2| +--+ Fwd.
 +---+ | +--+ +--->|A | +-+
 | A|---+ | |------>|B | | |
 ------>| B|------------------------------>| | +--->|C |->| |->
 | C|---+ +--+ | +->|D | | |
 | D|-+ | | | +--+ +-+
 +---+ | | +---+ Queue3| | Scheduler
 Classifier1 | | | A|------------> +--+ | |
 | +->| | | |--+ |
 | | B|--+ +--+ +-------->| | |
 | +---+ | | | | +--+ |
 | Meter2 +->| |-+ |
 | | | |
 | +--+ Queue4 |
 | Marker1 +--+ |

Yang, et al. Expires April 2004 [Page 26]

Internet Draft ForCES FE Model October 2003

 +---------------------------->| |----+
 | |
 +--+
 (c) Another LFB topology as configured by the CE and
 accepted by the FE

 Figure 7. An example of configuring LFB topology.

 Figure 7 shows an example where a QoS-enabled router has several
 line cards that have a few ingress ports and egress ports, a
 specialized classification chip, a network processor containing
 codes for FE blocks like meter, marker, dropper, counter, queue,
 scheduler and Ipv4 forwarder. Some of the LFB topology is already
 fixed and has to remain static due to the physical layout of the
 line cards. For example, all the ingress ports might be already
 hard wired into the classification chip and so all packets must
 follow from the ingress port into the classification engine. On
 the other hand, the LFBs on the network processor and their
 execution order are programmable, even though there might exist
 certain capacity limits and linkage constraints between these LFBs.
 Examples of the capacity limits might be: there can be no more than
 8 meters; there can be no more than 16 queues in one FE; the
 scheduler can handle at most up to 16 queues; etc. The linkage
 constraints might dictate that classification engine may be
 followed by a meter, marker, dropper, counter, queue or IPv4
 forwarder, but not scheduler; queues can only be followed by a
 scheduler; a scheduler must be followed by the IPv4 forwarder; the
 last LFB in the datapath before going into the egress ports must be
 the IPv4 forwarder, etc.

 Once the FE reports such capability and capacity to the CE, it is
 now up to the CE to translate the QoS policy into the desirable
 configuration for the FE. Figure 7(a) depicts the FE capability
 while 7(b) and 7(c) depict two different topologies that the FE
 might be asked to configure to. Note that both the ingress and
 egress are omitted in (b) and (c) for simple representation. The
 topology in 7(c) is considerably more complex than 7(b) but both
 are feasible within the FE capabilities, and so the FE should
 accept either configuration request from the CE.

4. LFB Model -- LFB and Associated Data Definitions

 The main goal of the FE model is to provide an abstract, generic,
 modular, implementation independent representation of the FEs. This
 is facilitated using the concept of LFBs which are instantiated
 from LFB classes. The LFB model is defined in this section to

Yang, et al. Expires April 2004 [Page 27]

Internet Draft ForCES FE Model October 2003

 describe the content and structures in LFB and associated data type
 definition.

 The core part of the model is the definition of LFB classes.
Section 4.4 provides more discussion on what will be part of an LFB

 class definition.

 Operational parameters of the LFBs that must be visible to the CEs
 are conceptualized in the model as the LFB attributes. These
 include, for example, flags, single parameter arguments, complex
 arguments, and tables. The definition of the attributes of an LFB
 MUST be part of the LFB class definition. To promote consistent and
 terse definitions of the attributes of LFB classes, commonly used
 attribute types SHOULD be defined in the model outside of the LFB
 class definitions, so that LFB class definitions can "share" these
 type definitions by simply referring to the types. What will
 comprise a data type definition is further discussed in Section

4.1.

 LFBs form a directed graph with each other by sending and receiving
 packets and associated metadata. To provide consistency and logical
 inter-operability among LFB classes, packet types (generic frame
 types) and metadata types MUST BE specified outside of the LFB
 class definitions (but part of the LFB model), so that the LFB
 class definitions can simply refer to these types. These blocks are
 further discussed in Section 4.3 and Section 4.2, respectively.
 In summary, the LFB model will consist of the following four
 categories of definitions:
 1) Common data type definitions (Section 4.1)
 2) Metadata definitions (Section 4.2);
 3) Frame format definitions (Section 4.3);
 4) LFB class definitions (Section 4.4).

 It is not expected that the above information is exchanged between
 FEs and CEs "over-the-wire". But the model will serve as an
 important reference for the design and development of the CEs
 (software) and FEs (mostly the software part).

4.1. General Data Type Definitions

 Data types will be used to describe the LFB attributes (see Section
4.4.4). This is similar to the concept of having a common header

 file for shared data types. Data types will include atomic data
 types (e.g. integer, ASCII string), as well as compound or derived
 data types (such as arrays and structures). Given that the FORCES
 protocol will be getting and setting attribute values, all atomic
 data types used here must be able to be conveyed in the FORCES

Yang, et al. Expires April 2004 [Page 28]

Internet Draft ForCES FE Model October 2003

 protocol. Further, the FORCES protocol will need a mechanism to
 convey compound data types. Details of such representation are for
 the protocol document, not the model documents.

 Compound data types can build on atomic data types and other
 compound data types. There are three ways that compound data types
 can be defined. They may be defined as an array of elements of
 some compound or atomic data type. They may be a structure of
 named elements of compound or atomic data types (ala C structures).
 They may also be defined as augmentations (explained below in
 4.1.3) of existing compound data types.

 In addition, any data type may be used to define a new type by
 restricting the range of values that an instance of the data type
 can take on, and specifying specific semantics that go with that.
 This is similar to the SNMP notion of a textual convention.

 For each data type the following information MUST be provided:
 . Symbolic name of data type. Example: "T_IPV4ADDRESS".
 . Actual type declaration.

 In addition, a data type definition MAY include the following:
 . Range restrictions.
 . A set of symbolic names for special values. Example:
 "IPV4ADDR_LOOPBACK".

 Note that not all attributes will exist at all times in all
 implementations. While the capabilities will frequently indicate
 this non-existence, CEs may attempt to reference non-existent or
 non-permitted attributes anyway. The FORCES protocol mechanisms
 should include appropriate error indicators for this case.

4.1.1. Arrays

 Compound data types can be defined as arrays of compound or atomic
 data types. Arrays can only be subscripted by integers, and will
 be presumed to start with subscript 0. The mechanism defined above
 for non-supported attributes can also apply to attempts to
 reference non-existent array elements or to set non-permitted
 elements. The valid range of the subscripts of the array must be
 defined either in the definition of the array or in the LFB class
 which uses the compound type definition.

4.1.2. Structures

 A structure is comprised of a collection of data elements. Each
 data element has a data type (either an atomic type or an existing

Yang, et al. Expires April 2004 [Page 29]

Internet Draft ForCES FE Model October 2003

 compound type.) and is assigned a name unique within the scope of
 the compound data type being defined. These serve the same
 function as "struct" in C, etc.

4.1.3. Augmentations

 Compound types can also be defined as augmentations of existing
 compound types. If the existing compound type is a structure,
 augmentation may add new elements to the type. They may replace
 the type of an existing element with an augmentation derived from
 the current type. They may not delete an existing element, nor may
 they replace the type of an existing element with one that is not
 an augmentation of the type that the element has in the basis for
 the augmentation. If the existing compound type is an array,
 augmentation means augmentation of the array element type.

 One consequence of this is that augmentations are compatible with
 the compound type from which they are derived. As such,
 augmentations are useful in defining attributes for LFB subclasses
 with backward compatibility. In addition to adding new attributes
 to a class, the data type of an existing attribute may be replaced
 by an augmentation of that attribute, and still meet the
 compatibility rules for subclasses.

 For example, consider a simple base LFB class A that has only one
 attribute (attr1) of type X. One way to derive class A1 from A can
 be simply adding a second attribute (of any type). Another way to
 derive a class A2 from A can be replacing the original attribute
 (attr1) in A of type X with one of type Y, where Y is an
 augmentation of X. Both classes A1 and A2 are backward compatible
 with class A.

4.2. Metadata Definitions

 For each metadata type, the following MUST be specified:
 . Metadata symbolic name. Used to refer to the metadata type in
 LFB type specifications. Example: META_CLASSID.
 . Brief synopsis of the metadata. Example: "Result of
 classification (0 means no match)".
 . Data type and valid range.

 In addition, the following information MAY BE part of the metadata
 definition:
 . Symbolic definitions for frequently used or special values of
 the metadata.

4.3. Frame Format Definitions

Yang, et al. Expires April 2004 [Page 30]

Internet Draft ForCES FE Model October 2003

 This part of the LFB model will list packet types (frame types in
 general) that LFB classes can receive at their inputs and/or emit
 at their outputs.

 For each distinct frame type, the following MUST be provided:
 . Symbolic name of frame type. Example: FRAME_IPV4.
 . Brief synopsis of the frame type. Example: "IPv4 packet".

4.4. LFB Class Definitions

 Each LFB Class definition must provide the following information:
 . Symbolic name of LFB class. Example: "LFB_IPV4_LPM"
 . Short synopsis of LFB class. Example: "IPv4 LPM Lookup LFB"
 . Version indicator
 . Inheritance indicator (see discussion in Section 4.4.1)
 . Inputs (see discussion in Section 4.4.2)
 . Outputs (see discussion in Section 4.4.3)
 . Attributes (see discussion in Section 4.4.4)
 . Operational specification (see discussion in Section 4.4.5)

4.4.1. LFB Inheritance

 To support LFB class inheritance, the LFB specification must have a
 place holder for indicating the base class and its version. It is
 assumed that the derived class is backward compatible with the base
 class.

4.4.2. LFB Inputs

 An LFB class may have zero, one, or more inputs. We assume that
 most LFBs will have exactly one input. Multiple inputs with the
 same input type are modeled as one input group. The input group
 should count as one entry in the input specification. The number
 of inputs (including input groups) is fixed.

 Multiple inputs with different input type should be avoided if
 possible (see discussion in Section 3.2.1). Some special LFBs will
 have no inputs at all. For example, a packet generator LFB does
 not need an input.

 The LFB class definition MUST specify whether or not the number of
 inputs of the LFB is fixed, and the exact number if fixed. For each
 LFB input (group), the following MUST be specified:

Yang, et al. Expires April 2004 [Page 31]

Internet Draft ForCES FE Model October 2003

 . Symbolic name of input. Example: "PKT_IN". Note that this
 symbolic name must be unique only within the scope of the LFB
 class.
 . Brief synopsis of the input. Example: "Normal packet input".
 . Indication of whether this input is an input group (i.e., if
 it is allowed to be instantiated).
 . List of allowed frame formats. Example: "{FRAME_IPV4,
 FRAME_IPV6}". Note that this list should refer to symbols
 specified in the frame definition of the LFB model (see

Section 4.3).
 . List of required metadata. Example: {META_CLASSID, META_IFID}.
 This list should refer to symbols specified in the metadata
 definition of the LFB model (see Section 4.2). For each
 metadata it should be specified whether the metadata is
 required or optional. For each optional metadata a default
 value MAY BE specified, which is used by the LFB if the
 metadata is not provided at the input.

4.4.3. LFB Outputs

 An LFB class may have zero, one, or more outputs. If there are
 multiple outputs with the same output type, we model them as output
 group. Some special LFBs may have no outputs at all (e.g.,
 Dropper).

 The number of outputs may be fixed for some LFB types and may be
 configurable for others. The LFB Class definition MUST specify the
 number of outputs (or output types) of the LFB. The output group
 should count as one entry in the output specification, but the
 entry should indicate that instantiation of the output is
 allowed.

 For each LFB output (group) the following MUST be specified:
 . Symbolic name of the output. Example: "UNPROC". In case of an
 output group, the symbolic name is the prefix used to
 construct unique symbols for each output instance. Example:
 "PKTOUT". Note that the symbolic name must be unique only
 within the scope of the LFB class.
 . Brief synopsis of the output. Example: "Normal packet output".
 . Indication of whether this output is an output group (i.e., if
 it is allowed to be instantiated).
 . List of allowed frame formats. Example: "{FRAME_IPV4,
 FRAME_IPV6}". Note that this list should refer to symbols
 specified in the frame definition of the LFB model (see

Section 4.3).
 . List of emitted (generated) metadata. Example: {META_CLASSID,
 META_IFID}. This list should refer to symbols specified in the

Yang, et al. Expires April 2004 [Page 32]

Internet Draft ForCES FE Model October 2003

 metadata definition of the LFB model (see Section 4.2). For
 each generated metadata, it should be specified whether the
 metadata is always generated or generated only in certain
 conditions. This information is important when assessing
 compatibility between LFBs.

4.4.4. LFB Attributes

 The operational state of the LFB is modeled by the variables of the
 LFB, collectively called attributes. Note that the attributes here
 refer to the operational parameters of the LFBs that must be
 visible to the CEs. The other variables that are internal to LFB
 implementation are not included here in the LFB attributes and are
 not modeled here.

 Attribute types will include the following three categories:
 . Capability attributes (see Section 9.4 for more on LFB
 capabilities). Examples:
 * Supported optional features of the LFB class;
 * Maximum number of configurable outputs for an output group;
 * Metadata pass-through limitations of the LFB;
 * Maximum size of configurable attribute tables;
 * Supported access modes of certain attributes (see below).
 . Operational attributes, some of them are configurable by the
 CE, while others might be internally maintained state which
 are read-only for the CE and necessary for the CE to operate
 properly. Examples:
 * Configurable flags and switches selecting between
 operational modes of the LFB;
 * ARP tables;
 * Number of outputs in an output group;
 * Metadata CONSUME vs. PROPAGATE mode selector.
 . Statistical attributes (collected by the FE and provided for
 reading to the CE). Examples:
 * Packet and byte counters;
 * Other event counters.

 Some of the attributes will be generically available in all LFBs
 while others will be specific to the LFB class. Examples of
 generic LFB attributes are:
 . LFB class inheritance information (see Section 4.4.1)
 . Number and type of inputs (in case the LFB is self-
 descriptive)
 . Number and type of outputs (in case the LFB is self-
 descriptive)
 . Number of current outputs for each output group
 . Metadata CONSUME/PROPAGATE mode selector

Yang, et al. Expires April 2004 [Page 33]

Internet Draft ForCES FE Model October 2003

 There may be various access permission restrictions on what the CE
 can do with an LFB attribute. The following categories may be
 supported:
 . No-access attributes. This is useful when multiple access
 modes maybe defined for a given attribute to allow some
 flexibility for different implementations.
 . Read-only attributes.
 . Read-write attributes.
 . Write-only attributes. This could be any configurable data
 for which read capability is not provided to the CEs. (??? Do
 we have good example???)
 . Read-reset attributes. The CE can read and reset this
 resource, but cannot set it to an arbitrary value. Example:
 Counters.
 . Firing-only attributes. A write attempt to this resource will
 trigger some specific actions in the LFB, but the actual value
 written is ignored. (??? Example???)

 The LFB class may define more than one possible access mode for a
 given attribute (for example, write-only and read-write), in which
 case it is left to the actual implementation to pick one of the
 modes. In such cases a corresponding capability parameter must
 inform the CE of which mode the actual LFB instance supports.
 The attributes of the LFB class must be defined as a list. For each
 attribute the following information MUST be provided:
 . Reference to the data type (e.g., specified in the generic
 data type block of the LFB model or in an LFB specific data
 type block).
 . Access permission(s).
 . Additional range restrictions (i.e., beyond what is specified
 by the data type definition).
 . Default value. Applied when the LFB is initialized or reset.

 The actual structuring of LFB attributes requires further study.

4.4.5. LFB Operational Specification

 This section of the model should verbally describe what the LFB
 does. This will most likely be embedded in an unstructured text
 field in the model.

5. LFB Topology Model (To be written)

 (Editor's note: This is a place holder to describe the details on
 how to model LFB topology.)

Yang, et al. Expires April 2004 [Page 34]

Internet Draft ForCES FE Model October 2003

6. FE Level Attributes (To be written)

 (Editor's note: This is a place holder to describe the FE level
 attributes including FE capabilities, for examples:
 . How this FE is connected with other FEs (if known by the FE)?
 . What LFB classes can the FE instantiate?
 . How many instances of the same LFB class can be created?
 . What are the topological limitations? For example:
 o How many instances of the same class or any class can be
 created on any given branch of the graph?
 o Ordering restrictions on LFBs (e.g., any instance of LFB
 class A must be always downstream of any instance of LFB
 class B).
)

7. LFB Class Library

 A set of LFB classes are identified here in the LFB class library
 as necessary to build common FE functions.

 Several working groups in the IETF have already done some relevant
 work in modeling the provisioning policy data for some of the
 functions we are interested in, for example, DiffServ
 (Differentiated Services) PIB [4], IPSec PIB [8]. Whenever
 possible, we should try to reuse the work done elsewhere instead of
 reinventing the wheel.

7.1. Port LFB

 A Port LFB is used to map a physical port into the LFB model.

 The Port LFB maps sources and sinks of packets from outside the LFB
 model onto one logical block which defines and models a physical
 port implementing those functions.

 The Port LFB contains a number of configurable parameters, which
 may include, but are not limited to, the following items:
 . the number of ports on this LFB;
 . the sub-interfaces if any;
 . the static attributes of each port (e.g., port type,
 direction, link speed);
 . the configurable attributes of each port (e.g., IP address,
 administrative status);
 . the statistics collected on each port (e.g., number of packets
 received);

Yang, et al. Expires April 2004 [Page 35]

Internet Draft ForCES FE Model October 2003

 . the current status (up or down).

 The Port LFB can have three modes of operation:
 . ingress only
 . egress only
 . hybrid (contains ingress and egress functions)

7.2. Dropper LFB

 A dropper LFB has one input, and no outputs. It discards all
 packets that it receives without any modification or examination of
 those packets.

 The purpose of a dropper LFB is to allow the description of "sinks"
 within the model, where those sinks do not result in the packet
 being sent into any object external to the model.

7.3. Redirector (de-MUX) LFB

 A redirector LFB has one input, and N outputs.

 The purpose of the redirector LFB is to explicitly represent a
 place in the LFB Topology where the redirection process occurs, and
 where it may be configured.

 The redirector LFB takes an input packet P, and uses the metadata M
 to redirect that packet to one or more of N outputs, e.g. unicast
 forwarding, multicast, or broadcast.

 Note that other LFBs may also have redirecting functionality, if
 they have multiple outputs.

7.4. Scheduler LFB

 A Scheduler LFB has multiple inputs and one output. The purpose of
 the Scheduler LFB is to perform time-dependent packet forwarding.
 The Scheduler LFB multiplexes from its inputs onto its output(s),
 based on internal configuration such as packet priority, etc. The
 packet is not modified during this process.

7.5. Queue LFB

 The Queue LFB has one input and one output. It takes input packets
 and places them onto queues. These packets are later forwarded to
 the output(s) of the LFB, based on back-pressure from the next LFB
 which typically is a scheduler LFB.

Yang, et al. Expires April 2004 [Page 36]

Internet Draft ForCES FE Model October 2003

7.6. Counter LFB

 A counter LFB updates its statistical attributes, by counting
 packets, or metadata. The packet is not modified, and the metadata
 may, or may not, be modified.

 The purpose of a Counter LFB is to record simple accounting of
 events on the FE.

 A counter LFB is independent of time 't', in that it does not
 perform any time-dependent counting. The time at which a count is
 made may, however, be associated with that count.

7.7. Meter LFB and Policer LFB

 A Meter LFB is a counter LFB that is time dependent. That is, it
 meters the rate over time at which packets or metadata flow through
 the LFB. The purpose of the Meter LFB is to record time-dependent
 accounting of events on the FE.

 When a Meter LFB has multiple outputs, with one output being a
 marker, or dropping the packet, then the Meter LFB becomes a
 Policer LFB, performing a policing function.

7.8. Classifier LFB

 A Classifier LFB uses its attributes to classify the packet into
 one of N different logical classes.

 The purpose of a Classifier LFB is to logically partition packets
 into one or more classes. The result of this partitioning is that
 the Classifier LFB produces metadata that describes the classes
 into which the packet has been partitioned. The packet is not
 modified during this process.

 A Classifier LFB takes an input packet and metadata, and produces
 the same packet with new or more metadata. A classifier is
 parameterized by filters. Classification is done by matching the
 contents of the incoming packets according to the filters, and the
 result of classification is produced in the form of metadata. Note
 that this classifier is modeled solely based on its internal
 processing, and not on its inputs and outputs. The block is a
 single-exit classifier that does NOT physically redirect the
 packet. In contrast, a DiffServ-like classifier is a 1:N (fan-out)
 device: It takes a single traffic stream as input and generate N
 logically separate traffic streams as output. That kind of multi-

Yang, et al. Expires April 2004 [Page 37]

Internet Draft ForCES FE Model October 2003

 exit classifier can be modeled by combining this classifier with a
 redirector (see Section 6.1.6).

 A filter decides if input packets match particular criteria. That
 is, it "marks" a packet as either matching, or non-matching to the
 filter criteria. According to [DiffServ], "a filter consists of a
 set of conditions on the component values of a packet's
 classification key (the header values, contents, and attributes
 relevant for classification)".

 Note that other FE LFBs MAY perform simple classification on the
 packet or metadata. The purpose of the FE Classifier LFB is to
 model an LFB that "digests" large amounts of input data (packet,
 metadata), to produce a "summary" of the classification results, in
 the form of additional metadata. Other FE LFBs can then use this
 summary information to quickly and simply perform trivial
 "classifications".

 The requirement for a unique and separate FE Classifier LFB comes
 about because it would not make sense to model a classifier LFB
 inside each of every other LFB. Such a model would be highly
 redundant. We therefore specifically model a complex
 classification LFB, and explicitly state that other blocks may make
 decisions based on the parameters S, t, and M, but not on P.

 Note that a classifier LFB may have multiple outputs. In that
 case, it may redirect input packets to one (or more) of the
 outputs, and may not associate any metadata with those output
 packets.

7.9. Modifier LFB

 A modifier LFB modifies incoming packets and sends them out.
 Usually the metadata is used to determine how to modify the packet.

 This LFB is defined in a generic manner, and we expect that
 specific examples of packet and/or metadata modification will be
 described as a subclass of the modifier LFB.

 For example, we may have an explicit LFB for packet compression and
 decompression, or for encryption and decryption, or for packet
 encapsulation. The decision as to how best to model these
 functions will be made based on further investigation of the LFB
 model, and with practical experience using it.

7.10. Packet Header Rewriter LFB

Yang, et al. Expires April 2004 [Page 38]

Internet Draft ForCES FE Model October 2003

 This LFB is used to re-write fields on the packet header, such as
 IPv4 TTL decrementing, checksum calculation, or TCP/IP NAT.

 We may want to have multiple LFBs for different kinds of header re-
 writing.

8. Satisfying the Requirements on FE Model

 (Editor's Note: The text in this section is very preliminary but
 we decide to leave it as is because it is too early to understand
 how to model all the functions as dictated in [1] when Section 7
 is still very much work in progress. This section should be
 revised once Section 7 is more settled.)

 A minimum set of FE functions is defined in [1] that must be
 supported by any proposed FE model. In this section, we
 demonstrate how the three components in FE model as described in

Section 4, 5, 6 along with the LFB class library defined in Section
7 can be used to express all the logical functions required in [1].

8.1. Port Functions

 Every FE contains a certain number of interfaces (ports), including
 both the inter-NE interfaces and intra-NE interfaces. The inter-NE
 interfaces are the external interfaces for the NE to
 receive/forward packets from/to the external world. The intra-NE
 interfaces are used for FE-FE or FE-CE communications. Same model
 should be used for both the inter-FE and intra-FE interfaces, but
 it is necessary to make the distinction between the two known to
 the CE so that the CE can do different configuration.

 The port LFB class is designed to model the specific physical ports
 while the source/sink LFB can be used to model the logical
 interface.

 The intra-NE interfaces that are used for FE-FE communications
 should be modeled just like the inter-NE interfaces. The ForCES
 base protocol will include FE topology query so that the CE can
 learn of how the multiple FEs are interconnected via such
 interfaces. But the intra-NE interfaces that are used for FE-CE
 communications are part of the ForCES protocol entity on the FE and
 so it is not necessary to model them explicitly. It is assumed
 that every FE will have at least one internal interface to
 communicate to the CE and such interface do not have to be visible
 in the FE model.

Yang, et al. Expires April 2004 [Page 39]

Internet Draft ForCES FE Model October 2003

8.2. Forwarding Functions

 Support for IPv4 and IPv6 unicast and multicast forwarding
 functions must be provided by the model.

 Typically, the control plane maintains the Routing Information Base
 (RIB), which contains all the routes discovered by all the routing
 protocols with all kinds of attributes relevant to the routes. The
 forwarding plane uses a different database, the Forwarding
 Information Base (FIB), which contains only the active subset of
 those routes (only the best routes chosen for forwarding) with
 attributes that are only relevant for forwarding. A component in
 the control plane, termed Route Table Manager (RTM), is responsible
 to manage the RIB in the CE and maintain the FIB used by the FEs.
 Therefore, the most important aspect in modeling the forwarding
 functions is the data model for the FIB. The model also needs to
 support the possibility of multiple paths.

 At the very minimum, each route in the FIB needs to contain the
 following layer-3 information:
 . the prefix of the destination IP address;
 . the length of the prefix;
 . the number of equal-cost multi-path;
 . the next hop IP address and the egress interface for each
 path.

 Another aspect of the forwarding functions is the method to resolve
 a next hop destination IP address into the associated media
 address. There are many ways to resolve Layer 3 to Layer 2 address
 mapping depending upon link layer. For example, in case of Ethernet
 links, the Address Resolution Protocol (ARP, defined in RFC 826) is
 used for IPv4 address resolution.

 Assuming a separate table is maintained in the FEs for address
 resolution, the following information is necessary for each address
 resolution entry:
 . the next hop IP address;
 . the media address.

 Different implementation may have different ways to maintain the
 FIB and the resolution table. For example, a FIB may consist of two
 separate tables, one to match the prefix to the next hop and the
 other to match the next hop to the egress interface. Another
 implementation may use one table instead. Our approach of using
 the fine-grained FE blocks to model the forwarding functions allow
 such flexibility.

Yang, et al. Expires April 2004 [Page 40]

https://datatracker.ietf.org/doc/html/rfc826

Internet Draft ForCES FE Model October 2003

 For example, a combination of a classifier, followed by a modifier
 and a redirector can model the forwarding function.

8.3. QoS Functions

 The IETF community has already done lots work in modeling the QoS
 functions in the datapath. The IETF DiffServ working group has
 defined an informal data model [3]for QoS-related functions like
 classification, metering, marking, actions of marking, dropping,
 counting and multiplexing, queueing, etc. The latest work on
 DiffServ PIB (Policy Information Base) [4] defines a set of
 provisioning classes to provide policy control of resources
 implementing the Diferentiated Services Architecture. DiffServ PIB
 also has an element of capability flavor to it. The IETF Policy
 Framework working group is also defining an informational model [6]
 to describe the QoS mechanisms inherent in different network
 devices, including hosts. This model is intended to be used with
 the QoS Policy Information Model [7] to model how policies can be
 defined to manage and configure the QoS mechanisms present in the
 datapath of devices.

 Here is a list of QoS functions that should be supported by the FE
 model:
 . Classifier
 . Meter
 . Marker
 . Dropper
 . Counter
 . Queue and Scheduler
 . Shaper

 LFB class library as described in Section 7 already supports most
 of these functions directly.

 Note that A shaper should be modeled as a queue feeding a scheduler
 input that is serviced using a non-work-conserving policy. The
 queue LFB would include multiple FIFO queue resources (selected by
 META_QUEUE_ID) and AQManagers assigned to queues. The scheduler
 LFB would include multiple input resources with associated service
 policies. Queue outputs would be bound to scheduler inputs via
 passing META_SCHED_ID with the packet at the output of the queue.
 The metadata is only there to allow correlation in configuration
 parameters between the queueing LFB and the scheduler LFB (assign
 queue X to scheduler input Y by configuring queue X to emit
 META_SCHED_ID Y).

8.4. Generic Filtering Functions

Yang, et al. Expires April 2004 [Page 41]

Internet Draft ForCES FE Model October 2003

 A combination of classifier, redirector, modifier etc. can model
 complex set of filtering functions. For example, Figure 8
 represents a filtering function that classifies packets into one of
 two logical classes: forward, and drop. These logical classes are
 represented as meta data M1, and M2. The re-director uses this
 meta data to re-direct the packet to one of two outputs. The first
 sinks the packet back into the network. The second silently drops
 the packets.

 classifier -> redirector ---M1--- sink
 \
 \-M2--- dropper

 Figure 8. A filtering function example.

8.5. Vendor Specific Functions

 New LFB class can always be defined according to the LFB model as
 described in Section 7 to support vendor specific functions. New
 LFB class can also be derived from an existing LFB class by
 inheritance.

 8.6.High-Touch Functions

 High-touch functions are those that take action on the contents or
 headers of a packet based on content other than what is found in
 the IP header. Examples of such functions include NAT, ALG,
 firewall, tunneling and L7 content recognition.

 The ForCES working group first needs to agree upon a small set of
 common high-touch functions with well-defined behavior to be
 included in the LFB class library. Here is a list of candidate
 blocks:
 . NAT
 . Firewall
 . Encapsulator
 . Decapsulator

8.7. Security Functions

 The FE model must be able to describe the types of encryption
 and/or decryption functions that an FE supports and the associated
 attributes for such functions.

 The IP Security Policy (IPSP) Working Group in the IETF has started
 work in defining the IPSec Policy Information Base [8]. Further

Yang, et al. Expires April 2004 [Page 42]

Internet Draft ForCES FE Model October 2003

 study on this is needed to determine whether it can be reused here
 and any other additional work is needed.

8.8. Off-loaded Functions

 In addition to the packet processing functions that are typical to
 find on the FEs, some logical functions may also be executed
 asynchronously by some FEs, according to a certain finite-state
 machine, triggered not only by packet events, but by timer events
 as well. Examples of such functions include finite-state machine
 execution required by TCP termination or OSPF Hello processing off-
 loaded from the CE. The FE model must be capable of expressing
 these asynchronous functions, so that the CE may take advantage of
 such off-loaded functions on the FEs.

 The ForCES working group first needs to agree upon a small set of
 such off-loaded functions with well-understood behavior and
 interactions with the control plane.

8.9. IPFLOW/PSAMP Functions

 [9] defines architecture for IP traffic flow monitoring, measuring
 and exporting. The LFB model supports statistics collection on the
 LFB by including statistical attributes (Section 4.4.4) for all the
 LFB class definitions, and meter LFB (Section 7.2.2) and counter
 LFB (Section 7.2.1) can also be used to support accounting
 functions in the FE.

 [10] describes a framework to define a standard set of capabilities
 for network elements to sample subsets of packets by statistical
 and other methods. Time event generation, filter LFB, and
 counter/meter LFB are the elements needed to support packet
 filtering and sampling functions -- these elements are all included
 in the FE model.

9. Using the FE model in the ForCES Protocol

 The actual model of the forwarding plane in a given NE is
 something the CE must learn and control via communicating with the
 FEs (or by other means). Most of this communication will happen in
 the post-association phase using the ForCES protocol. The
 following types of information must be exchanged between CEs and
 FEs via the ForCES protocol:
 1) FE topology query;
 2) FE capability declaration;
 3) LFB topology (per FE) and configuration capabilities query;
 4) LFB capability declaration;

Yang, et al. Expires April 2004 [Page 43]

Internet Draft ForCES FE Model October 2003

 5) State query of LFB attributes;
 6) Manipulation of LFB attributes;
 7) LFB topology reconfiguration.

 Items 1) through 5) are query exchanges, the main flow of
 information being from the FEs to the CEs. Items 1) through 4) are
 typically queried by the CE(s) in the beginning of the post-
 association (PA) phase, though they may be repeatedly queried at
 any time in the PA phase. Item 5) (state query) will be used at
 the beginning of the PA phase, and often frequently during the PA
 phase (especially for the query of statistical counters).

 Items 6) and 7) are "command" type of exchanges, the main flow of
 information being from the CEs to the FEs. Messages in Item 6)
 (the LFB re-configuration commands) are expected to be used
 frequently. Item 7) (LFB topology re-configuration) is needed
 only if dynamic LFB topologies are supported by the FEs and it is
 expected to be used infrequently.

 Among the seven types of payload information the ForCES protocol
 carries between CEs and FEs, the FE model covers all of them
 except item 1), which concerns the inter-FE topology. The FE
 model focuses on the LFB and LFB topology within a single FE.
 Since the information of item 1) requires global knowledge about
 all the FEs and their inter-connection with each other, this
 exchange is made part of the ForCES base protocol instead of the
 FE model.

 The relationship between the FE model and the seven post-
 association messages are visualized in Figure 9:

 +--------+
 -->| CE |
 /----\ . +--------+
 ____/ FE Model . ^ |
 | |................ (1),2 | | 6, 7
 | | (off-line) . 3, 4, 5 | |
 ____/ . | v
 . +--------+
 e.g. RFCs -->| FE |
 +--------+

 Figure 9. Relationship between FE model and the ForCES protocol
 messages, where (1) is part of the ForCES base protocol, and the
 rest are defined by the FE model.

Yang, et al. Expires April 2004 [Page 44]

Internet Draft ForCES FE Model October 2003

 The actual encoding of these messages is defined by the ForCES
 protocol and beyond the scope of the FE model. Their discussion is
 nevertheless important here for the following reasons:
 . These PA model components have considerable impact on the FE
 model. For example, some of the above information can be
 represented as attributes of the LFBs, in which case such
 attributes must be defined in the LFB classes.
 . The understanding of the type of information that must be
 exchanged between the FEs and CEs can help to select the
 appropriate protocol format and the actual encoding method
 (such as XML, TLVs).
 . Understanding the frequency of these types of messages should
 influence the selection of the protocol format (efficiency
 considerations).

 The remaining sub-sections of this section address each of the
 seven message types.

9.1. FE Topology Query

 (Editor's Note: It is still an open issue where the FE topology
 information query belongs -- it can be either supported as part of
 FE attributes in the FE model, or it can be supported by the ForCES
 protocol explicitly. Hence the text here is tentative and subject
 to change per WG discussion.)

 An FE may contain zero, one or more external ingress ports.
 Similarly, an FE may contain zero, one or more external egress
 ports. In another word, not every FE has to contain any external
 ingress or egress interfaces. For example, Figure 10 shows two
 cascading FEs. FE #1 contains one external ingress interface but
 no external egress interface, while FE #2 contains one external
 egress interface but no ingress interfce. It is possible to
 connect these two FEs together via their internal interfaces to
 achieve the complete ingress-to-egress packet processing function.
 This provides the flexibility to spread the functions across
 multiple FEs and interconnect them together later for certain
 applications.

 While the inter-FE communication protocol is out of scope for
 ForCES, it is up to the CE to query and understand how multiple FEs
 are inter-connected to perform a complete ingress-egress packet
 processing function, like that described in Figure 10. The inter-
 FE topology information may be provided by FEs, may be hard-coded
 into CE, or may be provided by some other entity (e.g., a bus
 manager) independent of the FEs. So while the ForCES protocol
 supports FE topology query from FEs, it is optional for the CE to

Yang, et al. Expires April 2004 [Page 45]

Internet Draft ForCES FE Model October 2003

 use it, assuming the CE has other means to gather such topology
 information.

 +---+
 | +---------+ +------------+ +---------+ |
 input| | | | | | output |
 ---+->| Ingress |-->|Header |-->|IPv4 |---------+--->+
 | | port | |Decompressor| |Forwarder| FE | |
 | +---------+ +------------+ +---------+ #1 | |
 +---+ V
 |
 +-----------------------<-----------------------------+
 |
 | +--+
 V | +------------+ +----------+ |
 | input | | | | output |
 +->--+->|Header |-->| Egress |---------+-->
 | |Compressor | | port | FE |
 | +------------+ +----------+ #2 |
 +--+

 Figure 10. An example of two FEs connected together.

 Once the inter-FE topology is discovered by the CE after this
 query, it is assumed that the inter-FE topology remains static.
 However, it is possible that an FE may go down during the NE
 operation, or a board may be inserted and a new FE activated, so
 the inter-FE topology will be affected. It is up to the ForCES
 protocol to provide mechanism for the CE to detect such events and
 deal with the change in FE topology. FE topology is outside the
 scope of the FE model.

9.2. FE Capability Declarations

 FEs will have many types of limitations. Some of the limitations
 must be expressed to the CEs as part of the capability model. The
 CEs must be able to query these capabilities on a per-FE basis.
 Examples:
 . Metadata passing capabilities of the FE. Understanding these
 capabilities will help the CE to evaluate the feasibility of
 LFB topologies, and hence to determine the availability of
 certain services.
 . Global resource query limitations (applicable to all LFBs of
 the FE).
 . LFB supported by the FE.
 . LFB class instantiation limit.

Yang, et al. Expires April 2004 [Page 46]

Internet Draft ForCES FE Model October 2003

 . LFB topological limitations (linkage constraint, ordering
 etc.)

9.3. LFB Topology and Topology Configurability Query

 The ForCES protocol must provide the means for the CEs to discover
 the current set of LFB instances in an FE and the interconnections
 between the LFBs within the FE. In addition, there should be
 sufficient information provided on whether the FE supports any CE-
 initiated (dynamic) changes to the LFB topology, and if so, what
 are the allowed topologies. Topology configurability can also be
 considered as part of the FE capability query as described in

Section 9.3.

9.4. LFB Capability Declarations

 LFB class specifications will define a generic set of capabilities.
 When an LFB instance is implemented (instantiated) on a vendor's
 FE, some additional limitations may be introduced. Note that we
 discuss here only limitations that are within the flexibility of
 the LFB class specification, that is, the LFB instance will remain
 compliant with the LFB class specification despite these
 limitations. For example, certain features of an LFB class may be
 optional, in which case it must be possible for the CE to determine
 if an optional feature is supported by a given LFB instance or not.
 Also, the LFB class definitions will probably contain very few
 quantitative limits (e.g., size of tables), since these limits are
 typically imposed by the implementation. Therefore, quantitative
 limitations should always be expressed by capability arguments.

 LFB instances in the model of a particular FE implementation will
 possess limitations on the capabilities defined in the
 corresponding LFB class. The LFB class specifications must define
 a set of capability arguments, and the CE must be able to query the
 actual capabilities of the LFB instance via querying the value of
 such arguments. The capability query will typically happen when
 the LFB is first detected by the CE. Capabilities need not be re-
 queried in case of static limitations. In some cases, however, some
 capabilities may change in time (e.g., as a result of
 adding/removing other LFBs, or configuring certain attributes of
 some other LFB when the LFBs share physical resources), in which
 case additional mechanisms must be implemented to inform the CE
 about the changes.

 The following two broad types of limitations will exist:
 . Qualitative restrictions. For example, a standardized multi-
 field classifier LFB class may define a large number of

Yang, et al. Expires April 2004 [Page 47]

Internet Draft ForCES FE Model October 2003

 classification fields, but a given FE may support only a
 subset of those fields.
 . Quantitative restrictions, such as the maximum size of tables,
 etc.

 The capability parameters that can be queried on a given LFB class
 will be part of the LFB class specification. The capability
 parameters should be regarded as special attributes of the LFB. The
 actual values of these arguments may be, therefore, obtained using
 the same attribute query mechanisms as used for other LFB
 attributes.

 Capability attributes will typically be read-only arguments, but in
 certain cases they may be configurable. For example, the size of a
 lookup table may be limited by the hardware (read-only), in other
 cases it may be configurable (read-write, within some hard limits).

 Assuming that capabilities will not change frequently, the
 efficiency of the protocol/schema/encoding is of secondary concern.

9.5. State Query of LFB Attributes

 This feature must be provided by all FEs. The ForCES protocol and
 the data schema/encoding conveyed by the protocol must together
 satisfy the following requirements to facilitate state query of the
 LFB attributes:
 . Must permit FE selection. This is primarily to refer to a
 single FE, but referring to a group of (or all) FEs may
 optional be supported.
 . Must permit LFB instance selection. This is primarily to refer
 to a single LFB instance of an FE, but optionally addressing
 of a group of LFBs (or all) may be supported.
 . Must support addressing of individual attribute of an LFB.
 . Must provide efficient encoding and decoding of the addressing
 info and the configured data.
 . Must provide efficient data transmission of the attribute
 state over the wire (to minimize communication load on the CE-
 FE link).

9.6. LFB Attribute Manipulation

 This is a place-holder for all operations that the CE will use to
 populate, manipulate, and delete attributes of the LFB instances on
 the FEs. This is how the CE configures an individual LFB instance.

 The same set of requirements as described in Section 9.5 for
 attribute query applies here for attribute manipulation as well.

Yang, et al. Expires April 2004 [Page 48]

Internet Draft ForCES FE Model October 2003

 Support for various levels of feedback from the FE to the CE (e.g.,
 request received, configuration completed), as well as multi-
 attribute configuration transactions with atomic commit and
 rollback, may be necessary in some circumstances.

 (Editor's note: It remains an open issue as to whether or not other
 methods are needed in addition to "get attribute" and "set
 attribute" (such as multi-attribute transactions). If the answer
 to that question is yes, it is not clear whether such methods
 should be supported by the FE model itself or the ForCES protocol.)

9.7. LFB Topology Re-configuration

 Operations that will be needed to reconfigure LFB topology:
 . Create a new instance of a given LFB class on a given FE.
 . Connect a given output of LFB x to the given input of LFB y.
 . Disconnect: remove a link between a given output of an LFB and
 a given input of another LFB.
 . Delete a given LFB (automatically removing all interconnects
 to/from the LFB).

10. Acknowledgments

 The authors would also like to thank the following individuals for
 their invaluable technical input: David Putzolu, Hormuzd Khosravi,
 Eric Johnson, David Durham, Andrzej Matejko, T. Sridhar, Jamal Hadi
 Salim, Alex Audu, Gamil Cain.

11. Security Considerations

 The FE model describes the representation and organization of data
 sets and attributes in the FEs. ForCES framework document [2]
 provides a comprehensive security analysis for the overall ForCES
 architecture. For example, the ForCES protocol entities must be
 authenticated per the ForCES requirements before they can access
 the information elements described in this document via ForCES.
 The access to the information contained in the FE model is
 accomplished via the ForCES protocol which will be defined in
 separate documents and so the security issues will be addressed
 there.

12. Normative References

 [1] Khosravi, H. et al., "Requirements for Separation of IP Control
 and Forwarding", work in progress, July 2003, <draft-ietf-forces-

requirements-10.txt>.

Yang, et al. Expires April 2004 [Page 49]

https://datatracker.ietf.org/doc/html/draft-ietf-forces-requirements-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-requirements-10.txt

Internet Draft ForCES FE Model October 2003

13. Informative References

 [2] Yang, L. et al., "Forwarding and Control Element Separation
 (ForCES) Framework", work in progress, July 2003, <draft-ietf-

forces-framework-07.txt>.

 [3] Bernet, Y. et al., "An Informal Management Model for Diffserv
 Routers", May 2002.

 [4] Chan, K. et al., "Differentiated Services Quality of Service
 Policy Information Base", March 2003.

 [5] Sahita, R. et al., "Framework Policy Information Base", RFC
3318, March 2003.

 [6] Moore, B. et al., "Information Model for Describing Network
 Device QoS Datapath Mechanisms", work in progress, May 2002,
 <draft-ietf-policy-qos-device-info-model-08.txt>.

 [7] Snir, Y. et al., "Policy Framework QoS Information Model", work
 in progress, Nov 2001, <draft-ietf-policy-qos-info-model-04.txt".

 [8] Li, M. et al., "IPsec Policy Information Base", work in
 progress, January 2003, <draft-ietf-ipsp-ipsecpib-07.txt>.

 [9] Quittek, J. et Al., "Requirements for IP Flow Information
 Export", work in progress, June 2003, <draft-ietf-ipfix-reqs-

10.txt>.

 [10] Duffield, N., "A Framework for Passive Packet Measurement ",
 work in progress, June 2003, <draft-ietf-psamp-framework-03.txt>.

 [11] Pras, A. and Schoenwaelder, J., FRC 3444 "On the Difference
 between Information Models and Data Models", January 2003.

14. Authors' Addresses

 L. Lily Yang
 Intel Labs
 2111 NE 25th Avenue
 Hillsboro, OR 97124, USA
 Phone: +1 503 264 8813
 Email: lily.l.yang@intel.com

Yang, et al. Expires April 2004 [Page 50]

https://datatracker.ietf.org/doc/html/draft-ietf-forces-framework-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-framework-07.txt
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/draft-ietf-policy-qos-device-info-model-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-policy-qos-info-model-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsp-ipsecpib-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipfix-reqs-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipfix-reqs-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-psamp-framework-03.txt

Internet Draft ForCES FE Model October 2003

 Joel M. Halpern
 Megisto Systems, Inc.
 20251 Century Blvd.
 Germantown, MD 20874-1162, USA
 Phone: +1 301 444-1783
 Email: jhalpern@megisto.com

 Ram Gopal
 Nokia Research Center
 5, Wayside Road,
 Burlington, MA 01803, USA
 Phone: +1 781 993 3685
 Email: ram.gopal@nokia.com

 Alan DeKok
 IDT Inc.
 1575 Carling Ave.
 Ottawa, ON K1G 0T3, Canada
 Phone: +1 613 724 6004 ext. 231
 Email: alan.dekok@idt.com

 Zsolt Haraszti
 Ericsson
 920 Main Campus Dr, St. 500
 Raleigh, NC 27606, USA
 Phone: +1 919 472 9949
 Email: zsolt.haraszti@ericsson.com

 Steven Blake
 Ericsson
 920 Main Campus Dr, St. 500
 Raleigh, NC 27606, USA
 Phone: +1 919 472 9913
 Email: steven.blake@ericsson.com

15. Intellectual Property Right

 The authors are not aware of any intellectual property right issues
 pertaining to this document.

16. IANA consideration

 A namespace is needed to uniquely identify the LFB type in the LFB
 class library.

 Frame type supported on input and output of LFB must also be
 uniquely identified.

Yang, et al. Expires April 2004 [Page 51]

Internet Draft ForCES FE Model October 2003

 A set of metadata supported by the LFB model must also be uniquely
 identified with names.

 Yang, et al. Expires April 2004 [Page 52]

