
 Internet Draft L. Yang
 Expiration: July 2004 Intel Corp.
 File: draft-ietf-forces-model-03.txt J. Halpern
 Working Group: ForCES Megisto Systems
 R. Gopal
 Nokia
 A. DeKok
 IDT Inc.
 Z. Haraszti
 S. Blake
 Ericsson
 E. Deleganes
 Intel Corp.
 July 2004

ForCES Forwarding Element Model

draft-ietf-forces-model-03.txt

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF),
 its areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as ``work in
 progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document defines the forwarding element (FE) model used in the
 Forwarding and Control Element Separation (ForCES) protocol. The
 model represents the capabilities, state and configuration of

https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 Internet Draft ForCES FE Model July 2004

 forwarding elements within the context of the ForCES protocol, so
 that control elements (CEs) can control the FEs accordingly. More
 specifically, the model describes the logical functions that are
 present in an FE, what capabilities these functions support, and
 how these functions are or can be interconnected. This FE model is
 intended to satisfy the model requirements specified in the ForCES
 requirements draft [1]. A list of the basic logical functional
 blocks (LFBs) is also defined in the LFB class library to aid the
 effort in defining individual LFBs.

 Table of Contents

 Abstract...1
1. Definitions...4
2. Introduction..5

2.1. Requirements on the FE model.............................6
2.2. The FE Model in Relation to FE Implementations...........6
2.3. The FE Model in Relation to the ForCES Protocol..........7
2.4. Modeling Language for the FE Model.......................7
2.5. Document Structure.......................................8

3. FE Model Concepts...8
3.1. FE Capability Model and State Model......................9
3.2. LFB (Logical Functional Block) Modeling.................11

3.2.1. LFB Outputs..13
3.2.2. LFB Inputs...16
3.2.3. Packet Type..19
3.2.4. Metadata...20
3.2.5. LFB Versioning.....................................27
3.2.6. LFB Inheritance....................................27

3.3. FE Datapath Modeling....................................28
3.3.1. Alternative Approaches for Modeling FE Datapaths...29
3.3.2. Configuring the LFB Topology.......................33

4. Model and Schema for LFB Classes.............................37
4.1. Namespace...37
4.2. <LFBLibrary> Element....................................37
4.3. <load> Element..39
4.4. <frameDefs> Element for Frame Type Declarations.........39
4.5. <dataTypeDefs> Element for Data Type Definitions........40

 4.5.1. <typeRef> Element for Aliasing Existing Data Types.42
4.5.2. <atomic> Element for Deriving New Atomic Types.....42
4.5.3. <array> Element to Define Arrays...................43
4.5.4. <struct> Element to Define Structures..............45
4.5.5. <union> Element to Define Union Types..............46
4.5.6. Augmentations......................................46

4.6. <metadataDefs> Element for Metadata Definitions.........47
4.7. <LFBClassDefs> Element for LFB Class Definitions........48

4.7.1. <derivedFrom> Element to Express LFB Inheritance...49

Yang, et al. Expires January 2005 [Page 2]

Internet Draft ForCES FE Model July 2004

4.7.2. <inputPorts> Element to Define LFB Inputs..........49
4.7.3. <outputPorts> Element to Define LFB Outputs........52

 4.7.4. <attributes> Element to Define LFB Operational
 Attributes..54
 4.7.5. <capabilities> Element to Define LFB Capability
 Attributes..57
 4.7.6. <description> Element for LFB Operational
 Specification...58

4.8. XML Schema for LFB Class Library Documents..............58
5. FE Attributes and Capabilities...............................67

5.1. XML Schema for FE Attribute Documents...................68
5.2. FEDocument..72

5.2.1. FECapabilities.....................................72
5.2.2. FEAttributes.......................................75

5.3. Sample FE Attribute Document............................77
6. LFB Class Library..80

6.1. Port LFB..80
6.2. L2 Interface LFB..81
6.3. IP interface LFB..82
6.4. Classifier LFB..84
6.5. Next Hop LFB..85
6.6. Rate Meter LFB..87
6.7. Redirector (de-MUX) LFB.................................87
6.8. Packet Header Rewriter LFB..............................88
6.9. Counter LFB...88
6.10. Dropper LFB..89
6.11. IPv4 Fragmenter LFB....................................89
6.12. L2 Address Resolution LFB..............................90
6.13. Queue LFB..90
6.14. Scheduler LFB..91
6.15. MPLS ILM/Decapsulation LFB.............................91
6.16. MPLS Encapsulation LFB.................................92
6.17. Tunnel Encapsulation/Decapsulation LFB.................92
6.18. Replicator LFB...93

7. Satisfying the Requirements on FE Model......................93
7.1. Port Functions..94
7.2. Forwarding Functions....................................94
7.3. QoS Functions...94
7.4. Generic Filtering Functions.............................95
7.5. Vendor Specific Functions...............................95
7.6. High-Touch Functions....................................95
7.7. Security Functions......................................95
7.8. Off-loaded Functions....................................95
7.9. IPFLOW/PSAMP Functions..................................96

8. Using the FE model in the ForCES Protocol....................96
8.1. FE Topology Query.......................................98
8.2. FE Capability Declarations..............................99

Yang, et al. Expires January 2005 [Page 3]

Internet Draft ForCES FE Model July 2004

8.3. LFB Topology and Topology Configurability Query.........99
8.4. LFB Capability Declarations............................100
8.5. State Query of LFB Attributes..........................101
8.6. LFB Attribute Manipulation.............................101
8.7. LFB Topology Re-configuration..........................102

9. Acknowledgments...102
10. Security Considerations....................................102
11. Normative References.......................................102
12. Informative References.....................................103
13. Authors' Addresses...103
14. Intellectual Property Right................................104
15. IANA consideration...105

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

1. Definitions

 Terminology associated with the ForCES requirements is defined in
 [1] and is not copied here. The following list of terminology is
 relevant to the FE model defined in this document.

 FE Model -- The FE model is designed to model the logical
 processing functions of an FE. The FE model proposed in this
 document includes three components: the modeling of individual
 logical functional blocks (LFB model), the logical interconnection
 between LFBs (LFB topology) and the FE level attributes, including
 FE capabilities. The FE model provides the basis to define the
 information elements exchanged between the CE and the FE in the
 ForCES protocol.

 Datapath -- A conceptual path taken by packets within the
 forwarding plane inside an FE. Note that more than one datapath
 can exist within an FE.

 LFB (Logical Function Block) class (or type) -- A template
 representing a fine-grained, logically separable and well-defined
 packet processing operation in the datapath. LFB classes are the
 basic building blocks of the FE model.

 LFB (Logical Function Block) Instance -- As a packet flows through
 an FE along a datapath, it flows through one or multiple LFB
 instances, where each LFB implements an instance of a specific LFB

https://datatracker.ietf.org/doc/html/rfc2119

Yang, et al. Expires January 2005 [Page 4]

Internet Draft ForCES FE Model July 2004

 class. Multiple instances of the same LFB class can be present in
 an FE's datapath. Note that we often refer to LFBs without
 distinguishing between an LFB class and LFB instance when we
 believe the implied reference is obvious for the given context.

 LFB Model -- The LFB model describes the content and structures in
 an LFB, plus the associated data definition. Four types of
 information are defined in the LFB model. The core part of the LFB
 model is the LFB class definitions; the other three types define
 the associated data including common data types, supported frame
 formats and metadata.

 LFB Metadata -- Metadata is used to communicate per-packet state
 from one LFB to another, but is not sent across the network. The
 FE model defines how such metadata is identified, produced and
 consumed by the LFBs, but not how the per-packet state is
 implemented within actual hardware.

 LFB Attribute -- Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 attributes. The LFB attributes include: flags, single parameter
 arguments, complex arguments, and tables that the CE can read
 or/and write via the ForCES protocol.

 LFB Topology -- A representation of the logical interconnection and
 the placement of LFB instances along the datapath within one FE.
 Sometimes this representation is called intra-FE topology, to be
 distinguished from inter-FE topology. LFB topology is outside of
 the LFB model, but is part of the FE model.

 FE Topology -- A representation of how multiple FEs within a single
 NE are interconnected. Sometimes this is called inter-FE topology,
 to be distinguished from intra-FE topology (i.e., LFB topology).
 An individual FE might not have the global knowledge of the full FE
 topology, but the local view of its connectivity with other FEs is
 considered to be part of the FE model. The FE topology is
 discovered by the ForCES base protocol or some other means.

 Inter-FE Topology -- See FE Topology.

 Intra-FE Topology -- See LFB Topology.

 LFB class library -- A set of LFB classes that has been identified
 as the most common functions found in most FEs and hence should be
 defined first by the ForCES Working Group.

2. Introduction

Yang, et al. Expires January 2005 [Page 5]

Internet Draft ForCES FE Model July 2004

 [2] specifies a framework by which control elements (CEs) can
 configure and manage one or more separate forwarding elements (FEs)
 within a networking element (NE) using the ForCES protocol. The
 ForCES architecture allows Forwarding Elements of varying
 functionality to participate in a ForCES network element. The
 implication of this varying functionality is that CEs can make only
 minimal assumptions about the functionality provided by FEs in an
 NE. Before CEs can configure and control the forwarding behavior
 of FEs, CEs need to query and discover the capabilities and states
 of their FEs. [1] mandates that the capabilities, states and
 configuration information be expressed in the form of an FE model.

RFC 3444 [11] observed that information models (IMs) and data
 models (DMs) are different because they serve different purposes.
 "The main purpose of an IM is to model managed objects at a
 conceptual level, independent of any specific implementations or
 protocols used". "DMs, conversely, are defined at a lower level of
 abstraction and include many details. They are intended for
 implementors and include protocol-specific constructs." Sometimes
 it is difficult to draw a clear line between the two. The FE model
 described in this document is primarily an information model, but
 also includes some aspects of a data model, such as explicit
 definitions of the LFB class schema and FE schema. It is expected
 that this FE model will be used as the basis to define the payload
 for information exchange between the CE and FE in the ForCES
 protocol.

2.1. Requirements on the FE model

 [1] defines requirements that must be satisfied by a ForCES FE
 model. To summarize, an FE model must define:
 . Logically separable and distinct packet forwarding operations
 in an FE datapath (logical functional blocks or LFBs);
 . The possible topological relationships (and hence the sequence
 of packet forwarding operations) between the various LFBs;
 . The possible operational capabilities (e.g., capacity limits,
 constraints, optional features, granularity of configuration)
 of each type of LFB;
 . The possible configurable parameters (i.e., attributes) of
 each type of LFB;
 . Metadata that may be exchanged between LFBs.

2.2. The FE Model in Relation to FE Implementations

 The FE model proposed here is based on an abstraction of distinct
 logical functional blocks (LFBs), which are interconnected in a
 directed graph, and receive, process, modify, and transmit packets

https://datatracker.ietf.org/doc/html/rfc3444

Yang, et al. Expires January 2005 [Page 6]

Internet Draft ForCES FE Model July 2004

 along with metadata. The FE model should be designed such that
 different implementations of the forwarding datapath can be
 logically mapped onto the model with the functionality and sequence
 of operations correctly captured. However, the model itself does
 not directly address how a particular implementation maps to an LFB
 topology. It is left to the forwarding plane vendors to define how
 the FE functionality is represented using the FE model. Our goal
 is to design the FE model such that it is flexible enough to
 accommodate most common implementations.

 The LFB topology model for a particular datapath implementation
 MUST correctly capture the sequence of operations on the packet.
 Metadata generation (by certain LFBs) must always precede any use
 of that metadata (by subsequent LFBs in the topology graph); this
 is required for logically consistent operation. Further,
 modification of packet fields that are subsequently used as inputs
 for further processing must occur in the order specified in the
 model for that particular implementation to ensure correctness.

2.3. The FE Model in Relation to the ForCES Protocol

 The ForCES base protocol is used by the CEs and FEs to maintain the
 communication channel between the CEs and FEs. The ForCES protocol
 may be used to query and discover the inter-FE topology. The
 details of a particular datapath implementation inside an FE,
 including the LFB topology, along with the operational capabilities
 and attributes of each individual LFB, are conveyed to the CE
 within information elements in the ForCES protocol. The model of
 an LFB class should define all of the information that needs to be
 exchanged between an FE and a CE for the proper configuration and
 management of that LFB.

 Specifying the various payloads of the ForCES messages in a
 systematic fashion is difficult without a formal definition of the
 objects being configured and managed (the FE and the LFBs within).
 The FE Model document defines a set of classes and attributes for
 describing and manipulating the state of the LFBs within an FE.
 These class definitions themselves will generally not appear in the
 ForCES protocol. Rather, ForCES protocol operations will reference
 classes defined in this model, including relevant attributes (and
 the defined operations).

Section 8 provides more detailed discussion on how the FE model
 should be used by the ForCES protocol.

2.4. Modeling Language for the FE Model

Yang, et al. Expires January 2005 [Page 7]

Internet Draft ForCES FE Model July 2004

 Even though not absolutely required, it is beneficial to use a
 formal data modeling language to represent the conceptual FE model
 described in this document. Use of a formal language can help to
 enforce consistency and logical compatibility among LFBs. A full
 specification will be written using such a data modeling language.
 The formal definition of the LFB classes has the potential to
 facilitate the eventual automation of some part of the code
 generation process and the functional validation of arbitrary LFB
 topologies.

 Human readability was the most important factor considered when
 selecting the specification language. Encoding, decoding and
 transmission performance was not a selection factor for the
 language because the encoding method for over the wire transport is
 an issue independent of the specification language chosen. It is
 outside the scope of this document and up to the ForCES protocol to
 define.

 XML was chosen as the specification language in this document,
 because XML has the advantage of being both human and machine
 readable with widely available tools support.

2.5. Document Structure

Section 3 provides a conceptual overview of the FE model, laying
 the foundation for the more detailed discussion and specifications
 in the sections that follow. Section 4 and 5 constitute the core
 of the FE model, detailing the two major components in the FE
 model: LFB model and FE level attributes including capability and
 LFB topology. Section 6 presents a list of LFB classes in the LFB
 class library that will be further specified in separate documents
 according to the FE model presented in Sections 4 and 5. Section 7
 directly addresses the model requirements imposed by the ForCES
 requirement draft [1] while Section 8 explains how the FE model
 should be used in the ForCES protocol.

3. FE Model Concepts

 Some of the important concepts used throughout this document are
 introduced in this section. Section 3.1 explains the difference
 between a state model and a capability model, and how the two can
 be combined in the FE model. Section 3.2 introduces the concept of
 LFBs (Logical Functional Blocks) as the basic functional building
 blocks in the FE model. Section 3.3 discusses the logical inter-
 connection and ordering between LFB instances within an FE, that
 is, the LFB topology.

Yang, et al. Expires January 2005 [Page 8]

Internet Draft ForCES FE Model July 2004

 The FE model proposed in this document is comprised of two major
 components: LFB model and FE level attributes, including FE
 capabilities and LFB topology. The LFB model provides the content
 and data structures to define each individual LFB class. FE
 attributes provide information at the FE level particularly the
 capabilities of the FE at a coarse level. Part of the FE level
 information is the LFB topology, which expresses the logical inter-
 connection between the LFB instances along the datapath(s) within
 the FE. Details of these components are described in Section 4 and
 5. The intent of this section is to discuss these concepts at the
 high level and lay the foundation for the detailed description in
 the following sections.

3.1. FE Capability Model and State Model

 The ForCES FE model must describe both a capability and a state
 model. The FE capability model describes the capabilities and
 capacities of an FE by specifying the variation in functions
 supported and any limitations. The FE state model describes the
 current state of the FE, that is, the instantaneous values or
 operational behavior of the FE.

 Conceptually, the FE capability model tells the CE which states are
 allowed on an FE, with capacity information indicating certain
 quantitative limits or constraints. Thus, the CE has general
 knowledge about which configurations are applicable to a particular
 FE and which ones are not. For example, an FE capability model may
 describe the FE at a coarse level such as:
 . this FE can handle IPv4 and IPv6 forwarding;
 . this FE can perform classification on the following fields:
 source IP address, destination IP address, source port number,
 destination port number, etc;
 . this FE can perform metering;
 . this FE can handle up to N queues (capacity);
 . this FE can add and remove encapsulating headers of types
 including IPSec, GRE, L2TP.

 While one could try and build an object model to fully represent
 the FE capabilities, other efforts found this to be a significant
 undertaking. The main difficulty arises in describing detailed
 limits, such as the maximum number of classifiers, queues, buffer
 pools, and meters the FE can provide. We believe that a good
 balance between simplicity and flexibility can be achieved for the
 FE model by combining the coarse level capability reporting with an
 error reporting mechanism. That is, if the CE attempts to instruct
 the FE to set up some specific behavior it cannot support, the FE

Yang, et al. Expires January 2005 [Page 9]

Internet Draft ForCES FE Model July 2004

 will return an error indicating the problem. Examples of similar
 approaches include DiffServ PIB [4] and Framework PIB [5].

 The FE state model presents the snapshot view of the FE to the CE.
 For example, using an FE state model, an FE may be described to its
 corresponding CE as the following:
 . on a given port, the packets are classified using a given
 classification filter;
 . the given classifier results in packets being metered in a
 certain way, and then marked in a certain way;
 . the packets coming from specific markers are delivered into a
 shared queue for handling, while other packets are delivered
 to a different queue;
 . a specific scheduler with specific behavior and parameters
 will service these collected queues.

 Figure 1 shows the concepts of FE state, capabilities and
 configuration in the context of CE-FE communication via the ForCES
 protocol.

 +-------+ +-------+
 | | FE capabilities: what it can/cannot do. | |
 | |<---| |
 | | | |
 | CE | FE state: what it is now. | FE |
 | |<---| |
 | | | |
 | | FE configuration: what it should be. | |
 | |--->| |
 +-------+ +-------+

 Figure 1. Illustration of FE state, capabilities and configuration
 exchange in the context of CE-FE communication via ForCES.

 The concepts relating to LFB, particularly capability at the LFB
 level, and LFB topology will be discussed in the rest of this
 section.

 Capability information at the LFB level is an integral part of the
 LFB model, and is modeled the same way as the other operational
 parameters inside an LFB. For example, certain features of an LFB
 class may be optional, in which case it must be possible for the CE
 to determine whether or not an optional feature is supported by a
 given LFB instance. Such capability information can be modeled as
 a read-only attribute in the LFB instance, see Section 4.7.5 for
 details.

Yang, et al. Expires January 2005 [Page 10]

Internet Draft ForCES FE Model July 2004

 Capability information at the FE level may describe the LFB classes
 the FE can instantiate; the number of instances of each that can be
 created; the topological (i.e., linkage) limitations between these
 LFB instances, etc. Section 5 defines the FE level attributes
 including capability information.

 Once the FE capability is described to the CE, the FE state
 information can be represented by two levels. The first level is
 the logically separable and distinctive packet processing
 functions, called Logical Functional Blocks (LFBs). The second
 level of information describes how these individual LFBs are
 ordered and placed along the datapath to deliver a complete
 forwarding plane service. The interconnection and ordering of the
 LFBs is called LFB Topology. Section 3.2 discusses high level
 concepts around LFBs, whereas Section 3.3 discusses LFB topology
 issues.

3.2. LFB (Logical Functional Block) Modeling

 Each LFB performs a well-defined action or computation on the
 packets passing through it. Upon completion of such a function,
 either the packets are modified in certain ways (e.g.,
 decapsulator, marker), or some results are generated and stored,
 often in the form of metadata (like a classifier). Each LFB
 typically performs a single action. Classifiers, shapers, meters
 are all examples of such LFBs. Modeling LFBs at such a fine
 granularity allows us to use a small number of LFBs to express the
 higher-order FE functions (such as an IPv4 forwarder) precisely,
 which in turn can describe more complex networking functions and
 vendor implementations of software and hardware. Section 6
 provides a list of useful LFBs with such granularity.

 An LFB has one or more inputs, each of which takes a packet P, and
 optionally metadata M; and produces one or more outputs, each of
 which carries a packet P', and optionally metadata M'. Metadata is
 data associated with the packet in the network processing device
 (router, switch, etc.) and is passed from one LFB to the next, but
 is not sent across the network. In general, multiple LFBs are
 contained in one FE, as shown in Figure 2, and all the LFBs share
 the same ForCES protocol termination point that implements the
 ForCES protocol logic and maintains the communication channel to
 and from the CE.

Yang, et al. Expires January 2005 [Page 11]

Internet Draft ForCES FE Model July 2004

 +-----------+
 | CE |
 +-----------+
 ^
 | Fp reference point
 |
 +--------------------------|-----------------------------------+
 | FE | |
 | v |
 | +--+ |
 | | ForCES protocol | |
 | | termination point | |
 | +--+ |
 | ^ ^ |
 | : : Internal control |
 | : : |
 | +---:----------+ +---:----------| | | | | | | | |
 | | :LFB1 | | : LFB2 | |
 | =====>| v |============>| v |======>...|
 | Inputs| +----------+ |Outputs | +----------+ | |
 | (P,M) | |Attributes| |(P',M') | |Attributes| |(P",M") |
 | | +----------+ | | +----------+ | |
 | +--------------+ +--------------+ |
 | |
 +--+

 Figure 2. Generic LFB Diagram

 An LFB, as shown in Figure 2, has inputs, outputs and attributes
 that can be queried and manipulated by the CE indirectly via an Fp
 reference point (defined in [2]) and the ForCES protocol
 termination point. The horizontal axis is in the forwarding plane
 for connecting the inputs and outputs of LFBs within the same FE.
 The vertical axis between the CE and the FE denotes the Fp
 reference point where bidirectional communication between the CE
 and FE occurs: the CE to FE communication is for configuration,
 control and packet injection while FE to CE communication is used
 for packet re-direction to the control plane, monitoring and
 accounting information, errors, etc. Note that the interaction
 between the CE and the LFB is only abstract and indirect. The
 result of such an interaction is for the CE to indirectly
 manipulate the attributes of the LFB instances.

 A namespace is used to associate a unique name or ID with each LFB
 class. The namespace must be extensible so that a new LFB class

Yang, et al. Expires January 2005 [Page 12]

Internet Draft ForCES FE Model July 2004

 can also be added later to accommodate future innovation in the
 forwarding plane.

 LFB operation must be specified in the model to allow the CE to
 understand the behavior of the forwarding datapath. For instance,
 the CE must understand at what point in the datapath the IPv4
 header TTL is decremented (i.e., it needs to know if a control
 packet could be delivered to the CE either before or after this
 point in the datapath). In addition, the CE must understand where
 and what type of header modifications (e.g., tunnel header append
 or strip) are performed by the FEs. Further, the CE must verify
 that the various LFBs along a datapath within an FE are compatible
 to link together.

 There is value to vendors if the operation of LFB classes can be
 expressed in sufficient detail so that physical devices
 implementing different LFB functions can be integrated easily into
 an FE design. Therefore, a semi-formal specification is needed;
 that is, a text description of the LFB operation (human readable),
 but sufficiently specific and unambiguous to allow conformance
 testing and efficient design (i.e., eliminate guess-work), so that
 interoperability between different CEs and FEs can be achieved.

 The LFB class model specifies information such as:
 . number of inputs and outputs (and whether they are
 configurable)
 . metadata read/consumed from inputs;
 . metadata produced at the outputs;
 . packet type(s) accepted at the inputs and emitted at the
 outputs;
 . packet content modifications (including encapsulation or
 decapsulation);
 . packet routing criteria (when multiple outputs on an LFB are
 present);
 . packet timing modifications;
 . packet flow ordering modifications;
 . LFB capability information;
 . LFB operational attributes, etc.

Section 4 of this document provides a detailed discussion of the
 LFB model with a formal specification of LFB class schema. The
 rest of Section 3.2 only intends to provide a conceptual overview
 of some important issues in LFB modeling, without covering all the
 specific details.

3.2.1. LFB Outputs

Yang, et al. Expires January 2005 [Page 13]

Internet Draft ForCES FE Model July 2004

 An LFB output is a conceptual port on an LFB that can send
 information to another LFB. The information is typically a packet
 and its associated metadata, although in some cases it might
 consist of only metadata, i.e., with no packet data.

 A single LFB output can be connected to only one LFB input. This
 is required to make the packet flow through the LFB topology
 unambiguously.

 Some LFBs will have a single output, as depicted in Figure 3.a.

 +---------------+ +-----------------+
 | | | |
 | | | OUT +-->
 ... OUT +--> ... |
 | | | EXCEPTIONOUT +-->
 | | | |
 +---------------+ +-----------------+

 a. One output b. Two distinct outputs

 +---------------+ +-----------------+
 | | | EXCEPTIONOUT +-->
 | OUT:1 +--> | |
 ... OUT:2 +--> ... OUT:1 +-->
 | ... +... | OUT:2 +-->
 | OUT:n +--> | ... +...
 +---------------+ | OUT:n +-->
 +-----------------+

 c. One output group d. One output and one output group

 Figure 3. Examples of LFBs with various output combinations.

 To accommodate a non-trivial LFB topology, multiple LFB outputs are
 needed so that an LFB class can fork the datapath. Two mechanisms
 are provided for forking: multiple singleton outputs and output
 groups (the two concepts can be also combined in the same LFB
 class).

 Multiple separate singleton outputs are defined in an LFB class to
 model a pre-determined number of semantically different outputs.
 That is, the number of outputs is known when the LFB class is
 defined. Additional singleton outputs cannot be created at LFB
 instantiation time, nor can they be created on the fly after the
 LFB is instantiated.

Yang, et al. Expires January 2005 [Page 14]

Internet Draft ForCES FE Model July 2004

 For example, an IPv4 LPM (Longest-Prefix-Matching) LFB may have one
 output(OUT) to send those packets for which the LPM look-up was
 successful (passing a META_ROUTEID as metadata); and have another
 output (EXCEPTIONOUT) for sending exception packets when the LPM
 look-up failed. This example is depicted in Figure 3.b. Packets
 emitted by these two outputs not only require different downstream
 treatment, but they are a result of two different conditions in the
 LFB, plus they also carry different metadata. This concept assumes
 that the number of distinct outputs is known when the LFB class is
 defined. For each singleton output, the LFB class definition
 defines what types of frames and metadata the output emits.

 An output group, on the other hand, is used to model the case where
 a flow of seemingly similar packets with an identical set of
 metadata needs to be split into multiple paths, and where the
 number of such paths is not known when the LFB class is defined
 (i.e., because it is not an inherent property of the LFB class).
 An output group consists of a number of outputs (called the output
 instances of the group), all sharing the same frame and metadata
 emission definitions (see Figure 3.c). Each output instance can
 connect to a different downstream LFB, just as if they were
 separate singleton outputs. But the number of output instances can
 be different between one instance of the LFB class and another.
 The class definition may include a lower and/or an upper limit on
 the number of output instances. In addition, for configurable FEs,
 the FE capability information may include further limits on the
 number of instances in specific output groups for certain LFBs.
 The actual number of output instances in a group is an attribute of
 the LFB instance, which is read-only for static topologies, and
 read-write for dynamic topologies. The output instances in a group
 are numbered sequentially, from 0 to N-1, and are addressable from
 within the LFB. The LFB has a built-in mechanism to select one
 specific output instance for each packet. This mechanism is
 described in the textual definition of the class and is typically
 configurable via some attributes of the LFB.

 For example, consider a re-director LFB, whose sole purpose is to
 direct packets to one of N downstream paths based on one of the
 metadata associated with each arriving packet. Such an LFB is
 fairly versatile and can be used in many different places in a
 topology. For example, a redirector can be used to divide the data
 path into an IPv4 and an IPv6 path based on a FRAMETYPE metadata
 (N=2), or to fork into color specific paths after metering using
 the COLOR metadata (red, yellow, green; N=3), etc.

 Using an output group in the above LFB class provides the desired
 flexibility to adapt each instance of this class to the required

Yang, et al. Expires January 2005 [Page 15]

Internet Draft ForCES FE Model July 2004

 operation. The metadata to be used as a selector for the output
 instance is a property of the LFB. For each packet, the value of
 the specified metadata may be used as a direct index to the output
 instance. Alternatively, the LFB may have a configurable selector
 table that maps a metadata value to output instance.

 Note that other LFBs may also use the output group concept to build
 in similar adaptive forking capability. For example, a classifier
 LFB with one input and N outputs can be defined easily by using the
 output group concept. Alternatively, a classifier LFB with one
 singleton output in combination with an explicit N-output re-
 director LFB models the same processing behavior. The decision of
 whether to use the output group model for a certain LFB class is
 left to the LFB class designers.

 The model allows the output group be combined with other singleton
 output(s) in the same class, as demonstrated in Figure 3.d. The
 LFB here has two types of outputs, OUT, for normal packet output,
 and EXCEPTIONOUT for packets that triggered some exception. The
 normal OUT has multiple instances, i.e., it is an output group.

 In summary, the LFB class may define one output, multiple singleton
 outputs, one or more output groups, or a combination of the latter
 two. Multiple singleton outputs should be used when the LFB must
 provide for forking the datapath, and at least one of the following
 conditions hold:
 - the number of downstream directions are inherent from the
 definition of the class (and hence fixed);
 - the frame type and set of metadata emitted on any of the outputs
 are substantially different from what is emitted on the other
 outputs (i.e., they cannot share frame-type and metadata
 definitions);

 An output group is appropriate when the LFB must provide for
 forking the datapath, and at least one of the following conditions
 hold:
 - the number of downstream directions is not known when the LFB
 class is defined;
 - the frame type and set of metadata emitted on these outputs are
 sufficiently similar or ideally identical, such they can share the
 same output definition.

3.2.2. LFB Inputs

 An LFB input is a conceptual port on an LFB where the LFB can
 receive information from other LFBs. The information is typically

Yang, et al. Expires January 2005 [Page 16]

Internet Draft ForCES FE Model July 2004

 a packet and associated metadata, although in some cases it might
 consist of only metadata, i.e., with no packet data.

 For LFB instances that receive packets from more than one other LFB
 instance (fan-in), there are three ways to model fan-in, all
 supported by the LFB model:
 - Implicit multiplexing via a single input
 - Explicit multiplexing via multiple singleton inputs
 - Explicit multiplexing via a group of inputs (input group)
 The above modes can be combined in the same LFB.

 The simplest form of multiplexing uses a singleton input (Figure
 4.a). Most LFBs will have only one singleton input. Multiplexing
 into a single input is possible because the model allows for more
 than one LFB output to connect to the same input of an LFB. This
 property applies to any LFB input without any special provisions in
 the LFB class. Multiplexing into a single input is applicable when
 the packets from the upstream LFBs are similar (in frame-type and
 accompanying metadata) and require similar processing. Note that
 this model does not address how potential contention is handled
 when multiple packets arrive simultaneously. If this needs to be
 explicitly modeled, one of the other two modeling solutions must be
 used.

 The second method to model fan-in uses individually defined
 singleton inputs (Figure 4.b). This model is meant for situations
 where the LFB needs to handle distinct types of packet streams,
 requiring input-specific handling inside the LFB, and where the
 number of such distinct cases is known when the LFB class is
 defined. For example, a Layer 2 Decapsulation/Encapsulation LFB
 may have two inputs, one for receiving Layer 2 frames for
 decapsulation, and one for receiving Layer 3 frames for
 encapsulation. This LFB type expects different frames (L2 vs. L3)
 at its inputs, each with different sets of metadata, and would thus
 apply different processing on frames arriving at these inputs.
 This model is capable of explicitly addressing packet contention,
 i.e., by defining how the LFB class handles the contending packets.

Yang, et al. Expires January 2005 [Page 17]

Internet Draft ForCES FE Model July 2004

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ v | |
 | LFB Y +---+-->|input Meter LFB |
 +--------------+ ^ | |
 | | |
 +--------------+ | | |
 | LFB Z |---+ | |
 +--------------+ +------------------------+

 (a) An LFB connects with multiple upstream LFBs via a single input.

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ +-->|layer2 |
 +--------------+ | |
 | LFB Y +------>|layer3 LFB |
 +--------------+ +------------------------+

 (b) An LFB connects with multiple upstream LFBs via two separate
 singleton inputs.

 +--------------+ +------------------------+
 | Queue LFB #1 +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ +-->|in:0 \ |
 | Queue LFB #2 +------>|in:1 | input group |
 +--------------+ |... | |
 +-->|in:N-1 / |
 ... | | |
 +--------------+ | | |
 | Queue LFB #N |---+ | Scheduler LFB |
 +--------------+ +------------------------+

 (c) A Scheduler LFB uses an input group to differentiate which
 queue LFB packets are coming from.

 Figure 3. Input modeling concepts (examples).

 The third method to model fan-in uses the concept of an input
 group. The concept is similar to the output group introduced in
 the previous section, and is depicted in Figure 4.c. An input

Yang, et al. Expires January 2005 [Page 18]

Internet Draft ForCES FE Model July 2004

 group consists of a number of input instances, all sharing the
 properties (same frame and metadata expectations). The input
 instances are numbered from 0 to N-1. From the outside, these
 inputs appear as normal inputs, i.e., any compatible upstream LFB
 can connect its output to one of these inputs. When a packet is
 presented to the LFB at a particular input instance, the index of
 the input where the packet arrived is known to the LFB and this
 information may be used in the internal processing. For example,
 the input index can be used as a table selector, or as an explicit
 precedence selector to resolve contention. As with output groups,
 the number of input instances in an input group is not defined in
 the LFB class. However, the class definition may include
 restrictions on the range of possible values. In addition, if an
 FE supports configurable topologies, it may impose further
 limitations on the number of instances for a particular port
 group(s) of a particular LFB class. Within these limitations,
 different instances of the same class may have a different number
 of input instances. The number of actual input instances in the
 group is an attribute of the LFB class, which is read-only for
 static topologies, and is read-write for configurable topologies.

 As an example for the input group, consider the Scheduler LFB
 depicted in Figure 3.c. Such an LFB receives packets from a number
 of Queue LFBs via a number of input instances, and uses the input
 index information to control contention resolution and scheduling.

 In summary, the LFB class may define one input, multiple singleton
 inputs, one or more input groups, or a combination thereof. Any
 input allows for implicit multiplexing of similar packet streams
 via connecting multiple outputs to the same input. Explicit
 multiple singleton inputs are useful when either the contention
 handling must be handled explicitly, or when the LFB class must
 receive and process a known number of distinct types of packet
 streams. An input group is suitable when the contention handling
 must be modeled explicitly, but the number of inputs are not
 inherent from the class (and hence not known when the class is
 defined), or when it is critical for LFB operation to know exactly
 on which input the packet was received.

3.2.3. Packet Type

 When LFB classes are defined, the input and output packet formats
 (e.g., IPv4, IPv6, Ethernet, etc.) must be specified: these are the
 types of packets a given LFB input is capable of receiving and
 processing, or a given LFB output is capable of producing. This
 requires that distinct packet types be uniquely labeled with a
 symbolic name and/or ID.

Yang, et al. Expires January 2005 [Page 19]

Internet Draft ForCES FE Model July 2004

 Note that each LFB has a set of packet types that it operates on,
 but does not care about whether the underlying implementation is
 passing a greater portion of the packets. For example, an IPv4 LFB
 might only operate on IPv4 packets, but the underlying
 implementation may or may not be stripping the L2 header before
 handing it over -- whether that is happening or not is opaque to
 the CE.

3.2.4. Metadata

 Metadata is the per-packet state that is passed from one LFB to
 another. The metadata is passed with the packet to assist
 subsequent LFBs to process that packet. The ForCES model captures
 how the per-packet state information is propagated from one LFB to
 other LFBs. Practically, such metadata propagation can happen
 within one FE, or cross the FE boundary between two interconnected
 FEs. We believe that the same metadata model can be used for both
 situations, however, our focus here is for intra-FE metadata.

3.2.4.1. Metadata Vocabulary

 Metadata has historically been understood to mean "data about
 data". While this definition is a start, it is inadequate to
 describe the multiple forms of metadata, which may appear within a
 complex network element. Our discussion here categorizes forms of
 metadata by two orthogonal axes.

 The first axis is "internal" versus "external", which describes
 where the metadata exists in the network model or implementation.
 For example, a particular vendor implementation of an IPv4
 forwarder may make decisions inside of a chip that are not visible
 externally. Those decisions are metadata for the packet that is
 "internal" to the chip. When a packet is forwarded out of the
 chip, it may be marked with a traffic management header. That
 header, which is metadata for the packet, is visible outside of the
 chip, and is therefore called "external" metadata.

 The second axis is "implicit" versus "explicit", which describes
 whether or not the metadata has a visible physical representation.
 For example, the traffic management header described in the
 previous paragraph may be represented as a series of bits in some
 format, and that header is associated with the packet. Those bits
 have physical representation, and are therefore "explicit"
 metadata. In situations where the metadata is not physically
 represented, it is called "implicit" metadata. This situation
 occurs, for example, when a particular path through a network

Yang, et al. Expires January 2005 [Page 20]

Internet Draft ForCES FE Model July 2004

 device is intended to be traversed only by particular kinds of
 packets, such as an IPv4 router. An implementation may not mark
 every packet along this path as being of type "IPv4", but the
 intention of the designers is that every packet is of that type.
 This understanding can be thought of as metadata about the packet,
 which is implicitly attached to the packet through the intent of
 the designers.

 In the ForCES model, we do NOT discuss or represent metadata
 "internal" to vendor implementations of LFBs. Our focus is solely
 on metadata "external" to the LFBs, and therefore visible in the
 ForCES model. The metadata discussed within this model may, or may
 not, be visible outside of the particular FE implementing the LFB
 model. In this regard, the scope of the metadata within ForCES is
 very narrowly defined.

 Note also that while we define metadata within this model, it is
 only a model. There is no requirement that vendor implementations
 of ForCES use the exact metadata representations described in this
 document. The only implementation requirement is that vendors
 implement the ForCES protocol, not the model.

3.2.4.2. Metadata lifecycle within the ForCES model

 Each metadata can be conveniently modeled as a <label, value> pair,
 where the label identifies the type of information, (e.g.,
 "color"), and its value holds the actual information (e.g., "red").
 The tag here is shown as a textual label, but it can be replaced or
 associated with a unique numeric value (identifier).

 The metadata life-cycle is defined in this model using three types
 of events: "write", "read" and "consume". The first "write"
 initializes the value of the metadata (implicitly creating and/or
 initializing the metadata), and hence starts the life-cycle. The
 explicit "consume" event terminates the life-cycle. Within the
 life-cycle, that is, after a "write" event, but before the next
 "consume" event, there can be an arbitrary number of "write" and
 "read" events. These "read" and "write" events can be mixed in an
 arbitrary order within the life-cycle. Outside of the life-cycle
 of the metadata, that is, before the first "write" event, or
 between a "consume" event and the next "write" event, the metadata
 should be regarded non-existent or non-initialized. Thus, reading
 a metadata outside of its life-cycle is considered an error.

 To ensure inter-operability between LFBs, the LFB class
 specification must define what metadata the LFB class "reads" or
 "consumes" on its input(s) and what metadata it "produces" on its

Yang, et al. Expires January 2005 [Page 21]

Internet Draft ForCES FE Model July 2004

 output(s). For maximum extensibility, this definition should
 neither specify which LFBs the metadata is expected to come from
 for a consumer LFB, nor which LFBs are expected to consume metadata
 for a given producer LFB.

 While it is important to define the metadata types passing between
 LFBs, it is not appropriate to define the exact encoding mechanism
 used by LFBs for that metadata. Different implementations are
 allowed to use different encoding mechanisms for metadata. For
 example, one implementation may store metadata in registers or
 shared memory, while another implementation may encode metadata in-
 band as a preamble in the packets.

 At any link between two LFBs, the packet is marked with a finite
 set of active metadata, where active means the metadata is within
 its life-cycle. (i.e., the metadata has been properly initialized
 and has not been consumed yet.) There are two corollaries of this
 model:

 1. No uninitialized metadata exists in the model.

 2. No more than one occurrence of each metadata tag can be
 associated with a packet at any given time.

3.2.4.3. LFB Operations on Metadata

 When the packet is processed by an LFB (i.e., between the time it
 is received and forwarded by the LFB), the LFB may perform read,
 write and/or consume operations on any active metadata associated
 with the packet. If the LFB is considered to be a black box, one
 of the following operations is performed on each active metadata.

 - IGNORE: ignores and forwards the metadata
 - READ: reads and forwards the metadata
 - READ/RE-WRITE: reads, over-writes and forwards the metadata
 - WRITE: writes and forwards the metadata
 (can also be used to create new metadata)
 - READ-AND-CONSUME: reads and consumes the metadata
 - CONSUME consumes metadata without reading

 The last two operations terminate the life-cycle of the metadata,
 meaning that the metadata is not forwarded with the packet when the
 packet is sent to the next LFB.

 In our model, a new metadata is generated by an LFB when the LFB
 applies a WRITE operation into a metadata type that was not present

Yang, et al. Expires January 2005 [Page 22]

Internet Draft ForCES FE Model July 2004

 when the packet was received by the LFB. Such implicit creation
 may be unintentional by the LFB, that is, the LFB may apply the
 WRITE operation without knowing or caring if the given metadata
 existed or not. If it existed, the metadata gets over-written; if
 it did not exist, the metadata is created.

 For source-type LFBs (i.e., an LFB that inserts packets into the
 model), WRITE is the only meaningful metadata operation.

 Sink-type LFBs (i.e., an LFB that removes the packet from the
 model), may either READ-AND-CONSUME (read) or CONSUME (ignore) each
 active metadata associated with the packet.

3.2.4.4. Metadata Production and Consumption

 For a given metadata on a given packet path, there must be at least
 one producer LFB that creates that metadata and should be at least
 one consumer LFB that needs the metadata. In this model, the
 producer and consumer LFBs of a metadata are not required to be
 adjacent. There may be multiple consumers for the same metadata
 and there may be multiple producers of the same metadata. When a
 packet path involves multiple producers of the same metadata, then
 subsequent producers overwrite that metadata value.

 The metadata that is produced by an LFB is specified by the LFB
 class definition on a per output port group basis. A producer may
 always generate the metadata on the port group, or may generate it
 only under certain conditions. We call the former an
 "unconditional" metadata, whereas the latter is a "conditional"
 metadata. In the case of conditional metadata, it should be
 possible to determine from the definition of the LFB when a
 "conditional" metadata is produced.

 The consumer behavior of an LFB, that is, the metadata that the LFB
 needs for its operation, is defined in the LFB class definition on
 a per input port group basis. An input port group may "require" a
 given metadata, or may treat it as "optional" information. In the
 latter case, the LFB class definition must explicitly define what
 happens if an optional metadata is not provided. One approach is
 to specify a default value for each optional metadata, and assume
 that the default value is used if the metadata is not provided with
 the packet.

 When a consumer requires a given metadata, it has dependencies on
 its up-stream LFBs. That is, the consumer LFB can only function if
 there is at least one producer of that metadata and no intermediate
 LFB consumes the metadata.

Yang, et al. Expires January 2005 [Page 23]

Internet Draft ForCES FE Model July 2004

 The model should expose this inter-dependency. Furthermore, it
 should be possible to take this inter-dependency into consideration
 when constructing LFB topologies, and also that the dependency can
 be verified when validating topologies.

 For extensibility reasons, the LFB specification should define what
 metadata the LFB requires without specifying which LFB(s) it
 expects a certain metadata to come from. Similarly, LFBs should
 specify what metadata they produce without specifying which LFBs
 the metadata is meant for.

 When specifying the metadata tags, some harmonization effort must
 be made so that the producer LFB class uses the same tag as its
 intended consumer(s), or vice versa.

3.2.4.5. Fixed, Variable and Configurable Tag

 When the produced metadata is defined for a given LFB class, most
 metadata will be specified with a fixed tag. For example, a Rate
 Meter LFB will always produce the "Color" metadata.

 A small subset of LFBs need to have the capability to produce one
 or more of their metadata with tags that are not fixed in the LFB
 class definition, but instead can be selected per LFB instance. An
 example of such an LFB class is a Generic Classifier LFB. We call
 this variable tag metadata production. If an LFB produces metadata
 with a variable tag, a corresponding LFB attribute--called the tag
 selector--specifies the tag for each such metadata. This mechanism
 is to improve the versatility of certain multi-purpose LFB classes,
 since it allows the same LFB class be used in different topologies,
 producing the right metadata tags according to the needs of the
 topology.

 Depending on the capability of the FE, the tag selector can be a
 read-only or a read-write attribute. In the former case, the tag
 cannot be modified by the CE. In the latter case the tag can be
 configured by the CE, hence we call this "configurable tag metadata
 production." (Note that in this definition configurable tag
 metadata production is a subset of variable tag metadata
 production.)

 Similar concepts can be introduced for the consumer LFBs to satisfy
 the different metadata needs. Most LFB classes will specify their
 metadata needs using fixed metadata tags. For example, a Next Hop
 LFB may always require a "NextHopId" metadata; but the Redirector

Yang, et al. Expires January 2005 [Page 24]

Internet Draft ForCES FE Model July 2004

 LFB may need to use a "ClassID" metadata in one instance, and a
 "ProtocolType" metadata in another instance as a basis for
 selecting the right output port. In this case, an LFB attribute is
 used to provide the required metadata tag at run-time. This
 metadata tag selector attribute may be read-only or read-write,
 depending on the capabilities of the LFB instance and the FE.

3.2.4.6. Metadata Usage Categories

 Depending on the role and usage of a metadata, various amount of
 encoding information must be provided when the metadata is defined,
 and some cases offer less flexibility in the value selection than
 others.

 There are three types of metadata related to metadata usage:
 - Relational (or binding) metadata
 - Enumerated metadata
 - Explicit/external value metadata

 The purpose of the relational metadata is to refer in one LFB
 instance (producer LFB) to a "thing" in another downstream LFB
 instance (consumer LFB), where the "thing" is typically an entry in
 a table attribute of the consumer LFB.

 For example, the Prefix Lookup LFB executes an LPM search using its
 prefix table and resolves to a next-hop reference. This reference
 needs to be passed as metadata by the Prefix Lookup LFB (producer)
 to the Next Hop LFB (consumer), and must refer to a specific entry
 in the next-hop table within the consumer.

 Expressing and propagating such a binding relationship is probably
 the most common usage of metadata. One or more objects in the
 producer LFB are related (bound) to a specific object in the
 consumer LFB. Such a relationship is established by the CE very
 explicitly, i.e., by properly configuring the attributes in both
 LFBs. Available methods include the following:

 The binding may be expressed by tagging the involved objects in
 both LFBs with the same unique (but otherwise arbitrary)
 identifier. The value of the tag is explicitly configured (written
 by the CE) into both LFBs, and this value is also carried by the
 metadata between the LFBs.

 Another way of setting up binding relations is to use a naturally
 occurring unique identifier of the consumer's object (for example,
 the array index of a table entry) as a reference (and as a value of
 the metadata). In this case, the index is either read or inferred

Yang, et al. Expires January 2005 [Page 25]

Internet Draft ForCES FE Model July 2004

 by the CE by communicating with the consumer LFB. Once the CE
 obtains the index, it needs to write it into the producer LFB to
 establish the binding.

 Important characteristics of the binding usage of metadata are:

 - The value of the metadata shows up in the CE-FE communication for
 BOTH the consumer and the producer. That is, the metadata value
 must be carried over the ForCES protocol. Using the tagging
 technique, the value is WRITTEN to both LFBs. Using the other
 technique, the value is WRITTEN to only the producer LFB and may be
 READ from the consumer LFB.

 - The metadata value is irrelevant to the CE, the binding is simply
 expressed by using the SAME value at the consumer and producer
 LFBs.

 - Hence the definition of the metadata is not required to include
 value assignments. The only exception is when some special
 value(s) of the metadata must be reserved to convey special events.
 Even though these special cases must be defined with the metadata
 specification, their encoded values can be selected arbitrarily.
 For example, for the Prefix Lookup LFB example, a special value may
 be reserved to signal the NO-MATCH case, and the value of zero may
 be assigned for this purpose.

 The second class of metadata is the enumerated type. An example is
 the "Color" metadata that is produced by a Meter LFB. As the name
 suggests, enumerated metadata has a relatively small number of
 possible values, each with a very specific meaning. All of the
 possible cases must be enumerated when defining this class of
 metadata. Although a value encoding must be included in the
 specification, the actual values can be selected arbitrarily (e.g.,
 <Red=0, Yellow=1, Green=2> and <Red=3, Yellow=2, Green 1> would be
 both valid encodings, what is important is that an encoding is
 specified).

 The value of the enumerated metadata may or may not be conveyed via
 the ForCES protocol between the CE and FE.

 The third class of metadata is the explicit type. This refers to
 cases where the value of the metadata is explicitly used by the
 consumer LFB to change some packet header fields. In other words,
 its value has a direct and explicit impact on some field and will
 be visible externally when the packet leaves the NE. Examples are:
 TTL increment given to a Header Modifier LFB, and DSCP value for a
 Remarker LFB. For explicit metadata, the value encoding must be

Yang, et al. Expires January 2005 [Page 26]

Internet Draft ForCES FE Model July 2004

 explicitly provided in the metadata definition, the values cannot
 be selected arbitrarily, but rather they should conform to what is
 commonly expected. For example, a TTL increment metadata should be
 encoded as zero for the no increment case, one for the single
 increment case, etc. A DSCP metadata should use 0 to encode
 DSCP=0, 1 to encode DSCP=1, etc.

3.2.5. LFB Versioning

 LFB class versioning is a method to enable incremental evolution of
 LFB classes. In general, an FE is not allowed to contain an LFB
 instance for more than one version of a particular class.
 Inheritance (discussed next in Section 3.2.6) has special rules. If
 an FE datapath model containing an LFB instance of a particular
 class C also simultaneously contains an LFB instance of a class C'
 inherited from class C; C could have a different version than C'.

 LFB class versioning is supported by requiring a version string in
 the class definition. CEs may support backwards compatibility
 between multiple versions of a particular LFB class, but FEs are
 not allowed to support more than one single version of a particular
 class.

3.2.6. LFB Inheritance

 LFB class inheritance is supported in the FE model as a method to
 define new LFB classes. This also allows FE vendors to add vendor-
 specific extensions to standardized LFBs. An LFB class
 specification MUST specify the base class (with version number) it
 inherits from (with the default being the base LFB class).
 Multiple-inheritance is not allowed, though, to avoid the
 unnecessary complexity.

 Inheritance should be used only when there is significant reuse of
 the base LFB class definition. A separate LFB class should be
 defined if little or no reuse is possible between the derived and
 the base LFB class.

 An interesting issue related to class inheritance is backward
 compatibility (between a descendant and an ancestor class).
 Consider the following hypothetical scenario where a standardized
 LFB class "L1" exists. Vendor A builds an FE that implements LFB
 "L1" and vendor B builds a CE that can recognize and operate on LFB
 "L1". Suppose that a new LFB class, "L2", is defined based on the
 existing "L1" class (for example, by extending its capabilities in
 some incremental way). Lets first examine the FE backward
 compatibility issue by considering what would happen if vendor B

Yang, et al. Expires January 2005 [Page 27]

Internet Draft ForCES FE Model July 2004

 upgrades its FE from "L1" to "L2" while vendor C's CE is not
 changed. The old L1-based CE can interoperate with the new L2-
 based FE if the derived LFB class "L2" is indeed backward
 compatible with the base class "L1".

 The reverse scenario is a much less problematic case, i.e., when CE
 vendor B upgrades to the new LFB class "L2", but the FE is not
 upgraded. Note that as long as the CE is capable of working with
 older LFB classes, this problem does not affect the model; hence we
 will use the term "backward compatibility" to refer to the first
 scenario concerning FE backward compatibility.

 Backward compatibility can be designed into the inheritance model
 by constraining LFB inheritance to require the derived class be a
 functional superset of the base class (i.e. the derived class can
 only add functions to the base class, but not remove functions).
 Additionally, the following mechanisms are required to support FE
 backward compatibility:
 1) When detecting an LFB instance of an LFB type that is
 unknown to the CE, the CE MUST be able to query the base
 class of such an LFB from the FE.
 2) The LFB instance on the FE SHOULD support a backward
 compatibility mode (meaning the LFB instance reverts itself
 back to the base class instance), and the CE SHOULD be able
 to configure the LFB to run in such a mode.

3.3. FE Datapath Modeling

 Packets coming into the FE from ingress ports generally flow
 through multiple LFBs before leaving out of the egress ports. How
 an FE treats a packet depends on many factors, such as type of the
 packet (e.g., IPv4, IPv6 or MPLS), actual header values, time of
 arrival, etc. The result of the operation of an LFB may have an
 impact on how the packet is to be treated in further (downstream)
 LFBs and this differentiation of packet treatment downstream can be
 conceptualized as having alternative datapaths in the FE. For
 example, the result of a 6-tuple classification (performed by a
 classifier LFB) could control which rate meter is applied to the
 packet (by a rate meter LFB) in a later stage in the datapath.

 LFB topology is a directed graph representation of the logical
 datapaths within an FE, with the nodes representing the LFB
 instances and the directed link the packet flow direction from one
 LFB to the next. Section 3.3.1 discusses how the FE datapaths can
 be modeled as LFB topology; while Section 3.3.2 focuses on issues
 around LFB topology reconfiguration.

Yang, et al. Expires January 2005 [Page 28]

Internet Draft ForCES FE Model July 2004

3.3.1. Alternative Approaches for Modeling FE Datapaths

 There are two basic ways to express the differentiation in packet
 treatment within an FE, one represents the datapath directly and
 graphically (topological approach) and the other utilizes metadata
 (the encoded state approach).

 . Topological Approach

 Using this approach, differential packet treatment is expressed
 by splitting the LFB topology into alternative paths. In other
 words, if the result of an LFB must control how the packet is
 further processed, then such an LFB will have separate output
 ports (one for each alternative treatment) connected to separate
 sub-graphs (each expressing the respective treatment
 downstream).

 . Encoded State Approach

 An alternative way of expressing differential treatment is using
 metadata. The result of the operation of an LFB can be encoded
 in a metadata, which is passed along with the packet to
 downstream LFBs. A downstream LFB, in turn, can use the
 metadata (and its value, e.g., as an index into some table) to
 decide how to treat the packet.

 Theoretically, the two approaches can substitute for each other, so
 one could consider using a single pure approach to describe all
 datapaths in an FE. However, neither model by itself is very
 useful for all practically relevant cases. For a given FE with
 certain logical datapaths, applying the two different modeling
 approaches result in very different looking LFB topology graphs. A
 model using only the topological approach may require a very large
 graph with many links (i.e., paths) and nodes (i.e., LFB instances)
 to express all alternative datapaths. On the other hand, a model
 using only the encoded state model would be restricted to a string
 of LFBs, which makes it unintuitive to describe different datapaths
 (such as MPLS and IPv4). Therefore, a mix of these two approaches
 will likely be used for a practical model. In fact, as we
 illustrate below, the two approaches can be mixed even within the
 same LFB.

 Using a simple example of a classifier with N classification
 outputs followed by other LFBs, Figure 5(a) shows what the LFB
 topology looks like by using the pure topological approach. Each
 output from the classifier goes to one of the N LFBs where no
 metadata is needed. The topological approach is simple,

Yang, et al. Expires January 2005 [Page 29]

Internet Draft ForCES FE Model July 2004

 straightforward and graphically intuitive. However, if N is large
 and N nodes following the classifier (LFB#1, LFB#2, ..., LFB#N) all
 belong to the same LFB type (for example, meter), but each has its
 own independent attributes, the encoded state approach gives a much
 simpler topology representation, as shown in Figure 5(b). The
 encoded state approach requires that a table of N rows of meter
 attributes is provided in the Meter node itself, with each row
 representing the attributes for one meter instance. A metadata M
 is also needed to pass along with the packet P from the classifier
 to the meter, so that the meter can use M as a look-up key (index)
 to find the corresponding row of the attributes that should be used
 for any particular packet P.

 Now what if all the N nodes (LFB#1, LFB#2, ..., LFB#N) are not of
 the same type? For example, if LFB#1 is a queue while the rest are
 all meters, what is the best way to represent such datapaths?
 While it is still possible to use either the pure topological
 approach or the pure encoded state approach, the natural
 combination of the two appears to be the best option. Figure 5(c)
 depicts two different functional datapaths using the topological
 approach while leaving the N-1 meter instances distinguished by
 metadata only, as shown in Figure 5(c).
 +----------+
 P | LFB#1 |
 +--------->|(Attrib-1)|
 +-------------+ | +----------+
 | 1|------+ P +----------+
 | 2|---------------->| LFB#2 |
 | classifier 3| |(Attrib-2)|
 | ...|... +----------+
 | N|------+ ...
 +-------------+ | P +----------+
 +--------->| LFB#N |
 |(Attrib-N)|
 +----------+

 5(a) Using pure topological approach

 +-------------+ +-------------+
 | 1| | Meter |
 | 2| (P, M) | (Attrib-1) |
 | 3|---------------->| (Attrib-2) |
 | ...| | ... |
 | N| | (Attrib-N) |
 +-------------+ +-------------+

Yang, et al. Expires January 2005 [Page 30]

Internet Draft ForCES FE Model July 2004

 5(b) Using pure encoded state approach to represent the LFB
 topology in 5(a), if LFB#1, LFB#2, ..., and LFB#N are of the
 same type (e.g., meter).

 +-------------+
 +-------------+ (P, M) | queue |
 | 1|------------->| (Attrib-1) |
 | 2| +-------------+
 | 3| (P, M) +-------------+
 | ...|------------->| Meter |
 | N| | (Attrib-2) |
 +-------------+ | ... |
 | (Attrib-N) |
 +-------------+

 5(c) Using a combination of the two, if LFB#1, LFB#2, ..., and
 LFB#N are of different types (e.g., queue and meter).

 Figure 5. An example of how to model FE datapaths

 From this example, we demonstrate that each approach has distinct
 advantages depending on the situation. Using the encoded state
 approach, fewer connections are typically needed between a fan-out
 node and its next LFB instances of the same type, because each
 packet carries metadata the following nodes can interpret and hence
 invoke a different packet treatment. For those cases, a pure
 topological approach forces one to build elaborate graphs with many
 more connections and often results in an unwieldy graph. On the
 other hand, a topological approach is intuitive and most useful for
 representing functionally different datapaths.

 For complex topologies, a combination of the two is the most useful
 and flexible. A general design guideline is provided to indicate
 which approach is best used for a particular situation. The
 topological approach should primarily be used when the packet
 datapath forks into areas with distinct LFB classes (not just
 distinct parameterizations of the same LFB class), and when the
 fan-outs do not require changes (adding/removing LFB outputs) or
 require only very infrequent changes. Configuration information
 that needs to change frequently should be expressed by the internal
 attributes of one or more LFBs (and hence using the encoded state
 approach).

Yang, et al. Expires January 2005 [Page 31]

Internet Draft ForCES FE Model July 2004

 +---+
 | |
 +----------+ V +----------+ +------+ |
 | | | | |if IP-in-IP| | |
 ---->| ingress |->+----->|classifier|---------->|Decap.|---->---+
 | ports | | |----+ | |
 +----------+ +----------+ |others+------+
 |
 V
 (a) The LFB topology with a logical loop

 +-------+ +-----------+ +------+ +-----------+
 | | | |if IP-in-IP | | | |
 --->|ingress|-->|classifier1|----------->|Decap.|-->+classifier2|->
 | ports | | |----+ | | | |
 +-------+ +-----------+ |others +------+ +-----------+
 |
 V
 (b) The LFB topology without the loop utilizing two
 independent classifier instances.

 Figure 6. An LFB topology example.

 It is important to point out that the LFB topology described here
 is the logical topology, not the physical topology (e.g. how the FE
 hardware is actually laid out). Nevertheless, the actual
 implementation may still influence how the functionality is mapped
 to the LFB topology. Figure 6 shows one simple FE example. In
 this example, an IP-in-IP packet from an IPSec application like VPN
 may go to the classifier first and have the classification done
 based on the outer IP header; upon being classified as an IP-in-IP
 packet, the packet is then sent to a decapsulator to strip off the
 outer IP header, followed by a classifier again to perform
 classification on the inner IP header. If the same classifier
 hardware or software is used for both outer and inner IP header
 classification with the same set of filtering rules, a logical loop
 is naturally present in the LFB topology, as shown in Figure 6(a).
 However, if the classification is implemented by two different
 pieces of hardware or software with different filters (i.e., one
 set of filters for outer IP header while another set for inner IP
 header), then it is more natural to model them as two different
 instances of classifier LFB, as shown in Figure 6(b).

 To distinguish multiple instances of the same LFB class, each LFB
 instance has its own LFB instance ID. One way to encode the LFB

Yang, et al. Expires January 2005 [Page 32]

Internet Draft ForCES FE Model July 2004

 instance ID is to encode it as x.y where x is the LFB class ID
 while y is the instance ID within each LFB class.

3.3.2. Configuring the LFB Topology

 While there is little doubt that the individual LFB must be
 configurable, the configurability question is more complicated for
 LFB topology. Since LFB topology is really the graphic
 representation of the datapaths within an FE, configuring the LFB
 topology means dynamically changing the datapaths, including
 changes to the LFBs along the datapaths on an FE (e.g., creating,
 instantiating or deleting LFBs), setting up or deleting
 interconnections between outputs of upstream LFBs to inputs of
 downstream LFBs.

 Why would the datapaths on an FE ever change dynamically? The
 datapaths on an FE is set up by the CE to provide certain data
 plane services (e.g., DiffServ, VPN, etc.) to the Network Element's
 (NE) customers. The purpose of reconfiguring the datapaths is to
 enable the CE to customize the services the NE is delivering at run
 time. The CE needs to change the datapaths when the service
 requirements change (e.g., when adding a new customer, or when an
 existing customer changes their service). However, note that not
 all datapath changes result in changes in the LFB topology graph.
 Changes in the graph are dependent on the approach used to map the
 datapaths into LFB topology. As discussed in 3.3.1, the
 topological approach and encoded state approach can result in very
 different looking LFB topologies for the same datapaths. In
 general, an LFB topology based on a pure topological approach is
 likely to experience more frequent topology reconfiguration than
 one based on an encoded state approach. However, even an LFB
 topology based entirely on an encoded state approach may have to
 change the topology at times, for example, to bypass some LFBs or
 insert new LFBs. Since a mix of these two approaches is used to
 model the datapaths, LFB topology reconfiguration is considered an
 important aspect of the FE model.

 We want to point out that allowing a configurable LFB topology in
 the FE model does not mandate that all FEs must have this
 capability. Even if an FE supports configurable LFB topology, it
 is expected there will be FE-specific limitations on what can
 actually be configured. Performance-optimized hardware
 implementations may have zero or very limited configurability,
 while FE implementations running on network processors may provide
 more flexibility and configurability. It is entirely up to the FE
 designers to decide whether or not the FE actually implements
 reconfiguration and if so, how much. Whether it is a simple

Yang, et al. Expires January 2005 [Page 33]

Internet Draft ForCES FE Model July 2004

 runtime switch to enable or disable (i.e., bypass) certain LFBs, or
 more flexible software reconfiguration is all implementation detail
 internal to the FE and outside of the scope of FE model. In either
 case, the CE(s) must be able to learn the FE's configuration
 capabilities. Therefore, the FE model must provide a mechanism for
 describing the LFB topology configuration capabilities of an FE.
 These capabilities may include (see Section 5 for full details):
 . What LFB classes can the FE instantiate
 . Maximum number of instance of the same LFB class that can be
 created
 . Any topological limitations, For example:
 o The maximum number of instances of the same class or any
 class that can be created on any given branch of the
 graph
 o Ordering restrictions on LFBs (e.g., any instance of LFB
 class A must be always downstream of any instance of LFB
 class B).

 Note that even when the CE is allowed to configure LFB topology for
 the FE, the CE is not expected to be able to interpret an arbitrary
 LFB topology and determine which specific service or application
 (e.g. VPN, DiffServ, etc.) is supported by the FE. However, once
 the CE understands the coarse capability of an FE, it is the
 responsibility of the CE to configure the LFB topology to implement
 the network service the NE is supposed to provide. Thus, the
 mapping the CE has to understand is from the high level NE service
 to a specific LFB topology, not the other way around. The CE is not
 expected to have the ultimate intelligence to translate any high
 level service policy into the configuration data for the FEs.
 However, it is conceivable that within a given network service
 domain (such as DiffServ), a certain amount of intelligence can be
 programmed into the CE to give the CE a general understanding of
 the LFBs involved to allow the translation from a high level
 service policy to the low level FE configuration to be done
 automatically. Note that this is considered an implementation
 issue internal to the control plane and outside the scope of the FE
 model. Therefore, it is not discussed any further in this draft.

Yang, et al. Expires January 2005 [Page 34]

Internet Draft ForCES FE Model July 2004

 +----------+ +-----------+
 ---->| Ingress |---->|classifier |--------------+
 | | |chip | |
 +----------+ +-----------+ |
 v
 +---+
 +--------+ | Network Processor |
 <----| Egress | | +------+ +------+ +-------+ |
 +--------+ | |Meter | |Marker| |Dropper| |
 ^ | +------+ +------+ +-------+ |
 | | |
 +----------+-------+ |
 | | |
 | +---------+ +---------+ +------+ +---------+ |
 | |Forwarder|<------|Scheduler|<--|Queue | |Counter | |
 | +---------+ +---------+ +------+ +---------+ |
 |--+

 (a) The Capability of the FE, reported to the CE

 +-----+ +-------+ +---+
 | A|--->|Queue1 |--------------------->| |
 ------>| | +-------+ | | +---+
 | | | | | | | | | |
 | | +-------+ +-------+ | | | |
 | B|--->|Meter1 |----->|Queue2 |------>| |->| |
 | | | | +-------+ | | | |
 | | | |--+ | | | |
 +-----+ +-------+ | +-------+ | | +---+
 classifier +-->|Dropper| | | IPv4
 +-------+ +---+ Fwd.
 Scheduler
 (b) One LFB topology as configured by the CE and
 accepted by the FE

Yang, et al. Expires January 2005 [Page 35]

Internet Draft ForCES FE Model July 2004

 Queue1
 +---+ +--+
 | A|------------------->| |--+
 +->| | | | |
 | | B|--+ +--+ +--+ +--+ | | | |
 | +---+ | | | | | |
 | Meter1 +->| |-->| | |
 | | | | | |
 | +--+ +--+ | Ipv4
 | Counter1 Dropper1 Queue2| +--+ Fwd.
 +---+ | +--+ +--->|A | +-+
 | A|---+ | |------>|B | | |
 ------>| B|------------------------------>| | +--->|C |->| |->
 | C|---+ +--+ | +->|D | | |
 | D|-+ | | | +--+ +-+
 +---+ | | +---+ Queue3| | Scheduler
 Classifier1 | | | A|------------> +--+ | |
 | +->| | | |--+ |
 | | B|--+ +--+ +-------->| | |
 | +---+ | | | | +--+ |
 | Meter2 +->| |-+ |
 | | | |
 | +--+ Queue4 |
 | Marker1 +--+ |
 +---------------------------->| |----+
 | |
 +--+
 (c) Another LFB topology as configured by the CE and
 accepted by the FE

 Figure 7. An example of configuring LFB topology.

 Figure 7 shows an example where a QoS-enabled router has several
 line cards that have a few ingress ports and egress ports, a
 specialized classification chip, a network processor containing
 codes for FE blocks like meter, marker, dropper, counter, queue,
 scheduler and Ipv4 forwarder. Some of the LFB topology is already
 fixed and has to remain static due to the physical layout of the
 line cards. For example, all the ingress ports might be hard-wired
 into the classification chip and so all packets must flow from the
 ingress port into the classification engine. On the other hand,
 the LFBs on the network processor and their execution order are
 programmable. However, certain capacity limits and linkage
 constraints could exist between these LFBs. Examples of the
 capacity limits might be: 8 meters; 16 queues in one FE; the
 scheduler can handle at most up to 16 queues; etc. The linkage
 constraints might dictate that the classification engine may be

Yang, et al. Expires January 2005 [Page 36]

Internet Draft ForCES FE Model July 2004

 followed by a meter, marker, dropper, counter, queue or IPv4
 forwarder, but not a scheduler; queues can only be followed by a
 scheduler; a scheduler must be followed by the IPv4 forwarder; the
 last LFB in the datapath before going into the egress ports must be
 the IPv4 forwarder, etc.

 Once the FE reports these capabilities and capacity limits to the
 CE, it is now up to the CE to translate the QoS policy into a
 desirable configuration for the FE. Figure 7(a) depicts the FE
 capability while 7(b) and 7(c) depict two different topologies that
 the FE might be asked to configure to. Note that both the ingress
 and egress are omitted in (b) and (c) to simplify the
 representation. The topology in 7(c) is considerably more complex
 than 7(b) but both are feasible within the FE capabilities, and so
 the FE should accept either configuration request from the CE.

4. Model and Schema for LFB Classes

 The main goal of the FE model is to provide an abstract, generic,
 modular, implementation-independent representation of the FEs.
 This is facilitated using the concept of LFBs, which are
 instantiated from LFB classes. LFB classes and associated
 definitions will be provided in a collection of XML documents. The
 collection of these XML documents is called a LFB class library,
 and each document is called an LFB class library document (or
 library document, for short). Each of the library documents will
 conform to the schema presented in this section. The root element
 of the library document is the <LFBLibrary> element.

 It is not expected that library documents will be exchanged between
 FEs and CEs "over-the-wire". But the model will serve as an
 important reference for the design and development of the CEs
 (software) and FEs (mostly the software part). It will also serve
 as a design input when specifying the ForCES protocol elements for
 CE-FE communication.

4.1. Namespace

 The LFBLibrary element and all of its sub-elements are defined in
 the following namespace:

http://ietf.org/forces/1.0/lfbmodel

4.2. <LFBLibrary> Element

 The <LFBLibrary> element serves as a root element of all library
 documents. It contains one or more of the following main blocks:

http://ietf.org/forces/1.0/lfbmodel

Yang, et al. Expires January 2005 [Page 37]

Internet Draft ForCES FE Model July 2004

 . <frameTypeDefs> for the frame declarations;
 . <dataTypeDefs> for defining common data types;
 . <metadataDefs> for defining metadata, and
 . <LFBClassDefs> for defining LFB classes.

 Each block is optional, that is, one library may contain only
 metadata definitions, another may contain only LFB class
 definitions, yet another may contain all of the above.

 In addition to the above main blocks, a library document can import
 other library documents if it needs to refer to definitions
 contained in the included document. This concept is similar to the
 "#include" directive in C. Importing is expressed by the <load>
 elements, which must precede all the above elements in the
 document. For unique referencing, each LFBLibrary instance
 document has a unique label defined in the "provide" attribute of
 the LFBLibrary element.

 The <LFBLibrary> element also includes an optional <description>
 element, which can be used to provide textual description about the
 library.

 The following is a skeleton of a library document:

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 provides="this_library">

 <description>
 ...
 </description>

 <!-- Loading external libraries (optional) -->
 <load library="another_library"/>
 ...

 <!-- FRAME TYPE DEFINITIONS (optional) -->
 <frameTypeDefs>
 ...
 </frameTypeDefs>

 <!-- DATA TYPE DEFINITIONS (optional) -->
 <dataTypeDefs>
 ...
 </dataTypeDefs>

Yang, et al. Expires January 2005 [Page 38]

Internet Draft ForCES FE Model July 2004

 <!-- METADATA DEFINITIONS (optional) -->
 <metadataDefs>
 ...
 </metadataDefs>

 <!ùLFB CLASS DEFINITIONS (optional) -->
 <LFBCLassDefs>
 ...
 </LFBCLassDefs>
 </LFBLibrary>

4.3. <load> Element

 This element is used to refer to another LFB library document.
 Similar to the "include" directive in C, this makes the objects
 (metadata types, data types, etc.) defined in the referred library
 available for referencing in the current document.

 The load element must contain the label of the library to be
 included and may contain a URL to specify where the library can be
 retrieved. The load element can be repeated unlimited times.
 Three examples for the <load> elements:

 <load library="a_library"/>
 <load library="another_library" location="another_lib.xml"/>
 <load library="yetanother_library"
 location="http://www.petrimeat.com/forces/1.0/lfbmodel/lpm.xml"/>

4.4. <frameDefs> Element for Frame Type Declarations

 Frame names are used in the LFB definition to define the types of
 frames the LFB expects at its input port(s) and emits at its output
 port(s). The <frameDefs> optional element in the library document
 contains one or more <frameDef> elements, each declaring one frame
 type.

 Each frame definition contains a unique name (NMTOKEN) and a brief
 synopsis. In addition, an optional detailed description may be
 provided.

Yang, et al. Expires January 2005 [Page 39]

Internet Draft ForCES FE Model July 2004

 Uniqueness of frame types must be ensured among frame types defined
 in the same library document and in all directly or indirectly
 included library documents.

 The following example defines two frame types:

 <frameDefs>
 <frameDef>
 <name>ipv4</name>
 <synopsis>IPv4 packet</synopsis>
 <description>
 This frame type refers to an IPv4 packet.
 </description>
 </frameDef>
 <frameDef>
 <name>ipv6</name>
 <synopsis>IPv6 packet</synopsis>
 <description>
 This frame type refers to an IPv6 packet.
 </description>
 </frameDef>
 ...
 </frameDefs>

4.5. <dataTypeDefs> Element for Data Type Definitions

 The (optional) <dataTypeDefs> element can be used to define
 commonly used data types. It contains one or more <dataTypeDef>
 elements, each defining a data type with a unique name. Such data
 types can be used in several places in the library documents,
 including:

 . Defining other data types
 . Defining metadata
 . Defining attributes of LFB classes

 This is similar to the concept of having a common header file for
 shared data types.

 Each <dataTypeDef> element contains a unique name (NMTOKEN), a
 brief synopsis, an optional longer description, and a type
 definition element. The name must be unique among all data types
 defined in the same library document and in any directly or
 indirectly included library documents. For example:

Yang, et al. Expires January 2005 [Page 40]

Internet Draft ForCES FE Model July 2004

 <dataTypeDefs>
 <dataTypeDef>
 <name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 ... type definition ...
 </dataTypeDef>
 <dataTypeDef>
 <name>ipv4addr</name>
 <synopsis>IPv4 address</synopsis>
 ... type definition ...
 </dataTypeDef>
 ...
 </dataTypeDefs>

 There are two kinds of data types: atomic and compound. Atomic
 data types are appropriate for single-value variables (e.g.
 integer, ASCII string, byte array).

 The following built-in atomic data types are provided, but
 additional atomic data types can be defined with the <typeRef> and
 <atomic> elements:

 <name> Meaning
 ---- -------
 char 8-bit signed integer
 uchar 8-bit unsigned integer
 int16 16-bit signed integer
 uint16 16-bit unsigned integer
 int32 32-bit signed integer
 uint32 32-bit unsigned integer
 int64 64-bit signed integer
 uint64 64-bit unisgned integer
 string[N] ASCII null-terminated string with
 buffer of N characters (string max
 length is N-1)
 byte[N] A byte array of N bytes
 float16 16-bit floating point number
 float32 32-bit IEEE floating point number
 float64 64-bit IEEE floating point number

 These built-in data types can be readily used to define metadata or
 LFB attributes, but can also be used as building blocks when
 defining new data types.

Yang, et al. Expires January 2005 [Page 41]

Internet Draft ForCES FE Model July 2004

 Compound data types can build on atomic data types and other
 compound data types. There are four ways that compound data types
 can be defined. They may be defined as an array of elements of
 some compound or atomic data type. They may be a structure of
 named elements of compound or atomic data types (ala C structures).
 They may be a union of named elements of compound or atomic data
 types (ala C unions). They may also be defined as augmentations
 (explained below in 4.5.6) of existing compound data types.

 Given that the FORCES protocol will be getting and setting
 attribute values, all atomic data types used here must be able to
 be conveyed in the FORCES protocol. Further, the FORCES protocol
 will need a mechanism to convey compound data types. However, the
 details of such representations are for the protocol document, not
 the model documents.

 For the definition of the actual type in the <dataTypeDef> element,
 the following elements are available: <typeRef>, <atomic>, <array>,
 <struct>, and <union>.

 [EDITOR: How to support augmentation is for further study.]

4.5.1. <typeRef> Element for Aliasing Existing Data Types

 The <typeRef> element refers to an existing data type by its name.
 The referred data type must be defined either in the same library
 document, or in one of the included library documents. If the
 referred data type is an atomic data type, the newly defined type
 will also be regarded as atomic. If the referred data type is a
 compound type, the new type will also be a compound. Some usage
 examples:

 <dataTypeDef>
 <name>short</name>
 <synopsis>Alias to int16</synopsis>
 <typeRef>int16</typeRef>
 </dataTypeDef>
 <dataTypeDef>
 <name><name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 <typeRef>byte[6]</typeRef>
 </dataTypeDef>

4.5.2. <atomic> Element for Deriving New Atomic Types

Yang, et al. Expires January 2005 [Page 42]

Internet Draft ForCES FE Model July 2004

 The <atomic> element allows the definition of a new atomic type
 from an existing atomic type, applying range restrictions and/or
 providing special enumerated values. Note that the <atomic>
 element can only use atomic types as base types, and its result is
 always another atomic type.

 For example, the following snippet defines a new "dscp" data type:

 <dataTypeDef>
 <name>dscp</name>
 <synopsis>Diffserv code point.</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <rangeRestriction>
 <allowedRange min="0" max="63"/>
 </rangeRestriction>
 <specialValues>
 <specialValue value="0">
 <name>DSCP-BE</name>
 <synopsis>Best Effort</synopsis>
 </specialValue>
 ...
 </specialValues>
 </atomic>
 </dataTypeDef>

4.5.3. <array> Element to Define Arrays

 The <array> element can be used to create a new compound data type
 as an array of a compound or an atomic data type. The type of the
 array entry can be specified either by referring to an existing
 type (using the <typeRef> element) or defining an unnamed type
 inside the <array> element using any of the <atomic>, <array>,
 <struct>, or <union> elements.

 The array can be "fixed-size" or "variable-size", which is
 specified by the "type" attribute of the <array> element. The
 default is "variable-size". For variable size arrays, an optional
 "max-length" attribute can specify the maximum allowed length. This
 attribute should be used to encode semantic limitations, and not
 implementation limitations. The latter should be handled by
 capability attributes of LFB classes, and should never be included
 in data type definitions. If the "max-length" attribute is not
 provided, the array is regarded as of unlimited-size.

Yang, et al. Expires January 2005 [Page 43]

Internet Draft ForCES FE Model July 2004

 For fixed-size arrays, a "length" attribute must be provided that
 specifies the constant size of the array.

 The result of this construct is always a compound type, even if the
 array has a fixed size of 1.

 Arrays can only be subscripted by integers, and will be presumed to
 start with index 0.

 The following example shows the definition of a fixed size array
 with pre-defined data type as array elements:

 <dataTypeDef>
 <name>dscp-mapping-table</name>
 <synopsys>
 A table of 64 DSCP values, used to re-map code space.
 </synopsis>
 <array type="fixed-size" length="64">
 <typeRef>dscp</typeRef>
 </array>
 </dataTypeDef>

 The following example defines a variable size array with an upper
 limit on its size:

 <dataTypeDef>
 <name>mac-alias-table </name>
 <synopsys>A table with up to 8 IEEE MAC addresses</synopsis>
 <array type="variable-size" max-length="8">
 <typeRef>ieeemacaddr</typeRef>
 </array>
 </dataTypeDef>

 The following example shows the definition of an array with local
 (unnamed) type definition:

 <dataTypeDef>
 <name>classification-table</name>
 <synopsys>
 A table of classification rules and result opcodes.
 </synopsis>
 <array type="variable-size">
 <struct>
 <element>
 <name>rule</name>
 <synopsis>The rule to match</synopsis>
 <typeRef>classrule</typeRef>

Yang, et al. Expires January 2005 [Page 44]

Internet Draft ForCES FE Model July 2004

 </element>
 <element>
 <name>opcode</name>
 <synopsis>The result code</synopsis>
 <typeRef>opcode</typeRef>
 </element>
 </struct>
 </array>
 </dataTypeDef>

 In the above example each entry of the array is a <struct> of two
 fileds ("rule" and "opcode").

4.5.4. <struct> Element to Define Structures

 A structure is comprised of a collection of data elements. Each
 data element has a data type (either an atomic type or an existing
 compound type) and is assigned a name unique within the scope of
 the compound data type being defined. These serve the same
 function as "struct" in C, etc.

 The actual type of the field can be defined by referring to an
 existing type (using the <typeDef> element), or can be a locally
 defined (unnamed) type created by any of the <atomic>, <array>,
 <struct>, or <union> elements.

 The result of this construct is always regarded a compound type,
 even if the <struct> contains only one field.

 An example:

 <dataTypeDef>
 <name>ipv4prefix</name>
 <synopsis>
 IPv4 prefix defined by an address and a prefix length
 </synopsis>
 <struct>
 <element>
 <name>address</name>
 <synopsis>Address part</synopsis>
 <typeRef>ipv4addr</typeRef>
 </element>
 <element>
 <name>prefixlen</name>
 <synopsis>Prefix length part</synopsis>
 <atomic>
 <baseType>uchar</baseType>

Yang, et al. Expires January 2005 [Page 45]

Internet Draft ForCES FE Model July 2004

 <rangeRestriction>
 <allowedRange min="0" max="32"/>
 </rangeRestriction>
 </atomic>
 </element>
 </struct>
 </dataTypeDef>

4.5.5. <union> Element to Define Union Types

 Similar to the union declaration in C, this construct allows the
 definition of overlay types. Its format is identical to the
 <struct> element.

 The result of this construct is always regarded a compound type,
 even if the union contains only one element.

4.5.6. Augmentations

 Compound types can also be defined as augmentations of existing
 compound types. If the existing compound type is a structure,
 augmentation may add new elements to the type. The type of an
 existing element can only be replaced with an augmentation derived
 from the current type, an existing element cannot be deleted. If
 the existing compound type is an array, augmentation means
 augmentation of the array element type.

 One consequence of this is that augmentations are compatible with
 the compound type from which they are derived. As such,
 augmentations are useful in defining attributes for LFB subclasses
 with backward compatibility. In addition to adding new attributes
 to a class, the data type of an existing attribute may be replaced
 by an augmentation of that attribute, and still meet the
 compatibility rules for subclasses.

 For example, consider a simple base LFB class A that has only one
 attribute (attr1) of type X. One way to derive class A1 from A can
 be by simply adding a second attribute (of any type). Another way
 to derive a class A2 from A can be by replacing the original
 attribute (attr1) in A of type X with one of type Y, where Y is an
 augmentation of X. Both classes A1 and A2 are backward compatible
 with class A.

 [EDITOR: How to support the concept of augmentation in the XML
 schema is for further study.]

Yang, et al. Expires January 2005 [Page 46]

Internet Draft ForCES FE Model July 2004

4.6. <metadataDefs> Element for Metadata Definitions

 The (optional) <metadataDefs> element in the library document
 contains one or more <metadataDef> elements. Each <metadataDef>
 element defines a metadata.

 Each <metadataDef> element contains a unique name (NMTOKEN).
 Uniqueness is defined over all metadata defined in this library
 document and in all directly or indirectly included library
 documents. The <metadataDef> element also contains a brief
 synopsis, an optional detailed description, and a compulsory type
 definition information. Only atomic data types can be used as value
 types for metadata.

 Two forms of type definitions are allowed. The first form uses the
 <typeRef> element to refer to an existing atomic data type defined
 in the <dataTypeDefs> element of the same library document or in
 one of the included library documents. The usage of the <typeRef>
 element is identical to how it is used in the <dataTypeDef>
 elements, except here it can only refer to atomic types.

 [EDITOR: The latter restriction is not yet enforced by the XML
 schema.]

 The second form is an explicit type definition using the <atomic>
 element. This element is used here in the same way as in the
 <dataTypeDef> elements.

 The following example shows both usages:

 <metadataDefs>
 <metadataDef>
 <name>NEXTHOPID</name>
 <synopsis>Refers to a Next Hop entry in NH LFB</synopsis>
 <typeRef>int32</typeRef>
 </metadataDef>
 <metadataDef>
 <name>CLASSID</name>
 <synopsis>
 Result of classification (0 means no match).
 </synopsis>
 <atomic>
 <baseType>int32</baseType>
 <specialValues>
 <specialValue value="0">
 <name>NOMATCH</name>

Yang, et al. Expires January 2005 [Page 47]

Internet Draft ForCES FE Model July 2004

 <synopsis>
 Classification didnÆt result in match.
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </metadataDef>
 </metadataDefs>

4.7. <LFBClassDefs> Element for LFB Class Definitions

 The (optional) <LFBClassDefs> element can be used to define one or
 more LFB classes using <LFBClassDef> elements. Each <LFBClassDef>
 element defines an LFB class and includes the following elements:
 . <name> provides the symbolic name of the LFB class. Example:
 "ipv4lpm"
 . <synopsis> provides a short synopsis of the LFB class.
 Example: "IPv4 Longest Prefix Match Lookup LFB"
 . <version> is the version indicator
 . <derivedFrom> is the inheritance indicator
 . <inputPorts> lists the input ports and their specifications
 . <outputPorts> lists the output ports and their specifications
 . <attributes> defines the operational attributes of the LFB
 . <capabilities> defines the capability attributes of the LFB
 . <description> contains the operational specification of the
 LFB

 [EDITOR: LFB class names should be unique not only among classes
 defined in this document and in all included documents, but also
 unique across a large collection of libraries. Obviously some
 global control is needed to ensure such uniqueness. This subject
 requires further study.]

 Here is a skeleton of an example LFB class definition:

 <LFBClassDefs>
 <LFBClassDef>
 <name>ipv4lpm</name>
 <synopsis>IPv4 Longest Prefix Match Lookup LFB</synopsis>
 <version>1.0</version>
 <derivedFrom>baseclass</derivedFrom>

 <inputPorts>
 ...
 </inputPorts>

Yang, et al. Expires January 2005 [Page 48]

Internet Draft ForCES FE Model July 2004

 <outputPorts>
 ...
 </outputPorts>

 <attributes>
 ...
 </attributes>

 <capabilities>
 ...
 </capabilities>

 <description>
 This LFB represents the IPv4 longest prefix match lookup
 operation.
 The modeled behavior is as follows:
 Blah-blah-blah.
 </description>

 </LFBClassDef>
 ...
 </LFBClassDefs>

 Note that the <name>, <synopsis>, and <version> elements, all other
 elements are optional in <LFBClassDef>. However, when they are
 present, they must occur in the above order.

4.7.1. <derivedFrom> Element to Express LFB Inheritance

 The optional <derivedFrom> element can be used to indicate that
 this class is a derivative of some other class. The content of
 this element must be the unique name (<name>) of another LFB class.
 The referred LFB class must be defined in the same library document
 or in one of the included library documents.

 [EDITOR: The <derivedFrom> element will likely need to specify the
 version of the ancestor, which is not included in the schema yet.
 The process and rules of class derivation are still being studied.]

 It is assumed that the derived class is backwards compatible with
 the base class.

4.7.2. <inputPorts> Element to Define LFB Inputs

 The optional <inputPorts> element is used to define input ports.
 An LFB class may have zero, one, or more inputs. If the LFB class
 has no input ports, the <inputPorts> element must be omitted. The

Yang, et al. Expires January 2005 [Page 49]

Internet Draft ForCES FE Model July 2004

 <inputPorts> element can contain one or more <inputPort> elements,
 one for each port or port-group. We assume that most LFBs will
 have exactly one input. Multiple inputs with the same input type
 are modeled as one input group. Input groups are defined the same
 way as input ports by the <inputPort> element, differentiated only
 by an optional "group" attribute.

 Multiple inputs with different input types should be avoided if
 possible (see discussion in Section 3.2.1). Some special LFBs will
 have no inputs at all. For example, a packet generator LFB does
 not need an input.

 Single input ports and input port groups are both defined by the
 <inputPort> element, they are differentiated by only an optional
 "group" attribute.

 The <inputPort> element contains the following elements:
 . <name> provides the symbolic name of the input. Example: "in".
 Note that this symbolic name must be unique only within the
 scope of the LFB class.
 . <synopsis> contains a brief description of the input. Example:
 "Normal packet input".
 . <expectation> lists all allowed frame formats. Example: {"ipv4"
 and "ipv6"}. Note that this list should refer to names
 specified in the <frameDefs> element of the same library
 document or in any included library documents. The
 <expectation> element can also provide a list of required
 metadata. Example: {"classid", "vifid"}. This list should
 refer to names of metadata defined in the <metadataDefs> element
 in the same library document or in any included library
 documents. For each metadata, it must be specified whether the
 metadata is required or optional. For each optional metadata, a
 default value must be specified, which is used by the LFB if the
 metadata is not provided with a packet.

 In addition, the optional "group" attribute of the <inputPort>
 element can specify if the port can behave as a port group, i.e.,
 it is allowed to be instantiated. This is indicated by a "yes"
 value (the default value is "no").

 An example <inputPorts> element, defining two input ports, the
 second one being an input port group:

 <inputPorts>
 <inputPort>
 <name>in</name>
 <synopsis>Normal input</synopsis>

Yang, et al. Expires January 2005 [Page 50]

Internet Draft ForCES FE Model July 2004

 <expectation>
 <frameExpected>
 <ref>ipv4</ref>
 <ref>ipv6</ref>
 </frameExpected>
 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 <inputPort group="yes">
 ... another input port ...
 </inputPort>
 </inputPorts>

 For each <inputPort>, the frame type expectations are defined by
 the <frameExpected> element using one or more <ref> elements (see
 example above). When multiple frame types are listed, it means
 that "one of these" frame types are expected. A packet of any
 other frame type is regarded as incompatible with this input port
 of the LFB class. The above example list two frames as expected
 frame types: "ipv4" and "ipv6".

 Metadata expectations are specified by the <metadataExpected>
 element. In its simplest form, this element can contain a list of
 <ref> elements, each referring to a metadata. When multiple
 instances of metadata are listed by <ref> elements, it means that
 "all of these" metadata must be received with each packet (except
 metadata that are marked as "optional" by the "dependency"
 attribute of the corresponding <ref> element). For a metadata that
 is specified "optional", a default value must be provided using the
 "defaultValue" attribute. The above example lists three metadata
 as expected metadata, two of which are mandatory ("classid" and
 "vifid"), and one being optional ("vrfid").

 [EDITOR: How to express default values for byte[N] atomic types is
 yet to be defined.]

 The schema also allows for more complex definitions of metadata
 expectations. For example, using the <one-of> element, a list of
 metadata can be specified to express that at least one of the
 specified metadata must be present with any packet. For example:

 <metadataExpected>
 <one-of>

Yang, et al. Expires January 2005 [Page 51]

Internet Draft ForCES FE Model July 2004

 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 The above example specifies that either the "prefixmask" or the
 "prefixlen" metadata must be provided with any packet.

 The two forms can also be combined, as it is shown in the following
 example:

 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 <one-of>
 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 Although the schema is constructed to allow even more complex
 definition of metadata expectations, we do not discuss these here.

4.7.3. <outputPorts> Element to Define LFB Outputs

 The optional <outputPorts> element is used to define output ports.
 An LFB class may have zero, one, or more outputs. If the LFB class
 has no output ports, the <outputPorts> element must be omitted.
 The <outputPorts> element can contain one or more <outputPort>
 elements, one for each port or port-group. If there are multiple
 outputs with the same output type, we model them as an output port
 group. Some special LFBs may have no outputs at all (e.g.,
 Dropper).

 Single output ports and output port groups are both defined by the
 <outputPort> element; they are differentiated by only an optional
 "group" attribute.

 The <outputPort> element contains the following elements:
 . <name> provides the symbolic name of the output. Example:
 "out". Note that the symbolic name must be unique only within
 the scope of the LFB class.
 . <synopsis> contains a brief description of the output port.
 Example: "Normal packet output".

Yang, et al. Expires January 2005 [Page 52]

Internet Draft ForCES FE Model July 2004

 . <product> lists the allowed frame formats. Example: {"ipv4",
 "ipv6"}. Note that this list should refer to symbols specified
 in the <frameDefs> element in the same library document or in
 any included library documents. The <product> element may also
 contain the list of emitted (generated) metadata. Example:
 {"classid", "color"}. This list should refer to names of
 metadata specified in the <metadataDefs> element in the same
 library document or in any included library documents. For each
 generated metadata, it should be specified whether the metadata
 is always generated or generated only in certain conditions.
 This information is important when assessing compatibility
 between LFBs.

 In addition, the optional "group" attribute of the <outputPort>
 element can specify if the port can behave as a port group, i.e.,
 it is allowed to be instantiated. This is indicated by a "yes"
 value (the default value is "no").

 The following example specifies two output ports, the second being
 an output port group:

 <outputPorts>
 <outputPort>
 <name>out</name>
 <synopsis>Normal output</synopsis>
 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref>nhid</ref>
 <ref>nhtabid</ref>
 </metadataProduced>
 </product>
 </outputPort>
 <outputPort group="yes">
 <name>exc</name>
 <synopsis>Exception output port group</synopsis>
 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref availability="conditional">errorid</ref>
 </metadataProduced>

Yang, et al. Expires January 2005 [Page 53]

Internet Draft ForCES FE Model July 2004

 </product>
 </outputPort>
 </outputPorts>

 The types of frames and metadata the port produces are defined
 inside the <product> element in each <outputPort>. Within the
 <product> element, the list of frame types the port produces is
 listed in the <frameProduced> element. When more than one frame is
 listed, it means that "one of" these frames will be produced.

 The list of metadata that is produced with each packet is listed in
 the optional <metadataProduced> element of the <product>. In its
 simplest form, this element can contain a list of <ref> elements,
 each referring to a metadata type. The meaning of such a list is
 that "all of" these metadata are provided with each packet, except
 those that are listed with the optional "availability" attribute
 set to "conditional". Similar to the <metadataExpected> element of
 the <inputPort>, the <metadataProduced> element supports more
 complex forms, which we do not discuss here further.

4.7.4. <attributes> Element to Define LFB Operational Attributes

 Operational parameters of the LFBs that must be visible to the CEs
 are conceptualized in the model as the LFB attributes. These
 include, for example, flags, single parameter arguments, complex
 arguments, and tables. Note that the attributes here refer to only
 those operational parameters of the LFBs that must be visible to
 the CEs. Other variables that are internal to LFB implementation
 are not regarded as LFB attributes and hence are not covered.

 Some examples for LFB attributes are:
 . Configurable flags and switches selecting between operational
 modes of the LFB
 . Number of inputs or ouputs in a port group
 . Metadata CONSUME vs. PROPAGATE mode selectors
 . Various configurable lookup tables, including interface
 tables, prefix tables, classification tables, DSCP mapping
 tables, MAC address tables, etc.
 . Packet and byte counters
 . Various event counters
 . Number of current inputs or outputs for each input or output
 group
 . Metadata CONSUME/PROPAGATE mode selector

Yang, et al. Expires January 2005 [Page 54]

Internet Draft ForCES FE Model July 2004

 There may be various access permission restrictions on what the CE
 can do with an LFB attribute. The following categories may be
 supported:
 . No-access attributes. This is useful when multiple access
 modes maybe defined for a given attribute to allow some
 flexibility for different implementations.
 . Read-only attributes.
 . Read-write attributes.
 . Write-only attributes. This could be any configurable data
 for which read capability is not provided to the CEs. (e.g.,
 the security key information)
 . Read-reset attributes. The CE can read and reset this
 resource, but cannot set it to an arbitrary value. Example:
 Counters.
 . Firing-only attributes. A write attempt to this resource will
 trigger some specific actions in the LFB, but the actual value
 written is ignored.

 The LFB class may define more than one possible access mode for a
 given attribute (for example, "write-only" and "read-write"), in
 which case it is left to the actual implementation to pick one of
 the modes. In such cases a corresponding capability attribute must
 inform the CE about the access mode the actual LFB instance
 supports (see next subsection on capability attributes).

 The attributes of the LFB class are listed in the <attributes>
 element. Each attribute is defined by an <attribute> element. An
 <attribute> element contains the following elements:
 . <name> defines the name of the attribute. This name must be
 unique among the attributes of the LFB class. Example:
 "version".
 . <synopsis> should provide a brief description of the purpose
 of the attribute.
 . The data type of the attribute can be defined either via a
 reference to a predefined data type or providing a local
 definition of the type. The former is provided by using the
 <typeRef> element, which must refer to the unique name of an
 existing data type defined in the <dataTypeDefs> element in
 the same library document or in any of the included library
 documents. When the data type is defined locally (unnamed
 type), one of the following elements can be used: <atomic>,
 <array>, <struct>, and <union>. Their usage is identical to
 how they are used inside <dataTypeDef> elements (see Section

4.5).
 . The optional <defaultValue> element can specify a default
 value for the attribute, which is applied when the LFB is
 initialized or reset. [EDITOR: A convention to define default

Yang, et al. Expires January 2005 [Page 55]

Internet Draft ForCES FE Model July 2004

 values for compound data types and byte[N] atomic types is yet
 to be defined.]

 In addition to the above elements, the <attribute> element includes
 an optional "access" attribute, which can take any of the following
 values or even a list of these values: "read-only", "read-write",
 "write-only", "read-reset", and "trigger-only". The default access
 mode is "read-write".

 The following example defines two attributes for an LFB:

 <attributes>
 <attribute access="read-only">
 <name>foo</name>
 <synopsis>number of things</synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute access="read-write write-only">
 <name>bar</name>
 <synopsis>number of this other thing</synopsis>
 <atomic>
 <baseType>uint32</baseType>
 <rangeRestriction>
 <allowedRange min="10" max="2000"/>
 </rangeRestriction>
 </atomic>
 <defaultValue>10</defaultValue>
 </attribute>
 </attributes>

 The first attribute ("foo") is a read-only 32-bit unsigned integer,
 defined by referring to the built-in "uint32" atomic type. The
 second attribute ("bar") is also an integer, but uses the <atomic>
 element to provide additional range restrictions. This attribute
 has two possible access modes, "read-write" or "write-only". A
 default value of 10 is provided.

 Note that not all attributes are likely to exist at all times in a
 particular implementation. While the capabilities will frequently
 indicate this non-existence, CEs may attempt to reference non-
 existent or non-permitted attributes anyway. The FORCES protocol
 mechanisms should include appropriate error indicators for this
 case.

 The mechanism defined above for non-supported attributes can also
 apply to attempts to reference non-existent array elements or to
 set read-only elements.

Yang, et al. Expires January 2005 [Page 56]

Internet Draft ForCES FE Model July 2004

4.7.5. <capabilities> Element to Define LFB Capability Attributes

 The LFB class specification will provide some flexibility for the
 FE implementation regarding how the LFB class is implemented. For
 example, the class may define some optional features, in which case
 the actual implementation may or may not provide the given feature.
 In these cases the CE must be able to query the LFB instance about
 the availability of the feature. In addition, the instance may
 have some limitations that are not inherent from the class
 definition, but rather the result of some implementation
 limitations. For example, an array attribute may be defined in the
 class definition as "unlimited" size, but the physical
 implementation may impose a hard limit on the size of the array.

 Such capability related information is expressed by the capability
 attributes of the LFB class. The capability attributes are always
 read-only attributes, and they are listed in a separate
 <capabilities> element in the <LFBClassDef>. The <capabilities>
 element contains one or more <capability> elements, each defining
 one capability attribute. The format of the <capability> element
 is almost the same as the <attribute> element, it differs in two
 aspects: it lacks the access mode attribute (because it is always
 read-only), and it lacks the <defaultValue> element (because
 default value is not applicable to read-only attributes).

 Some examples of capability attributes:
 . The version of the LFB class that this LFB instance complies
 with;
 . Supported optional features of the LFB class;
 . Maximum number of configurable outputs for an output group;
 . Metadata pass-through limitations of the LFB;
 . Maximum size of configurable attribute tables;
 . Additional range restriction on operational attributes;
 . Supported access modes of certain attributes (if the access
 mode of an operational attribute is specified as a list of two
 or mode modes).

 The following example lists two capability attributes:

 <capabilities>
 <capability>
 <name>version</name>
 <synopsis>
 LFB class version this instance is compliant with.
 </synopsis>

Yang, et al. Expires January 2005 [Page 57]

Internet Draft ForCES FE Model July 2004

 <typeRef>version</typeRef>
 </capability>
 <capability>
 <name>limitBar</name>
 <synopsis>
 Maximum value of the "bar" attribute.
 </synopsis>
 <typeRef>uint16</typeRef>
 </capability>
 </capabilities>

4.7.6. <description> Element for LFB Operational Specification

 The <description> element of the <LFBClass> provides unstructured
 text (in XML sense) to verbally describe what the LFB does.

4.8. XML Schema for LFB Class Library Documents

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:lfb="http://ietf.org/forces/1.0/lfbmodel"
 targetNamespace="http://ietf.org/forces/1.0/lfbmodel"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema for Defining LFB Classes and associated types (frames,
 data types for LFB attributes, and metadata).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="synopsis" type="xsd:string"/>
 <!-- Document root element: LFBLibrary -->
 <xsd:element name="LFBLibrary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="load" type="loadType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="frameDefs" type="frameDefsType"
 minOccurs="0"/>
 <xsd:element name="dataTypeDefs" type="dataTypeDefsType"
 minOccurs="0"/>
 <xsd:element name="metadataDefs" type="metadataDefsType"
 minOccurs="0"/>
 <xsd:element name="LFBClassDefs" type="LFBClassDefsType"

Yang, et al. Expires January 2005 [Page 58]

Internet Draft ForCES FE Model July 2004

 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="provides" type="xsd:Name" use="required"/>
 </xsd:complexType>
 <!-- Uniqueness constraints -->
 <xsd:key name="frame">
 <xsd:selector xpath="lfb:frameDefs/lfb:frameDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="dataType">
 <xsd:selector xpath="lfb:dataTypeDefs/lfb:dataTypeDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="metadataDef">
 <xsd:selector xpath="lfb:metadataDefs/lfb:metadataDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="LFBClassDef">
 <xsd:selector xpath="lfb:LFBClassDefs/lfb:LFBClassDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 </xsd:element>
 <xsd:complexType name="loadType">
 <xsd:attribute name="library" type="xsd:Name" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="frameDefsType">
 <xsd:sequence>
 <xsd:element name="frameDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="dataTypeDefsType">
 <xsd:sequence>
 <xsd:element name="dataTypeDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>

Yang, et al. Expires January 2005 [Page 59]

Internet Draft ForCES FE Model July 2004

 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Predefined (built-in) atomic data-types are:
 char, uchar, int16, uint16, int32, uint32, int64, uint64,
 string[N], byte[N],
 float16, float32, float64
 -->
 <xsd:group name="typeDeclarationGroup">
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 <xsd:element name="array" type="arrayType"/>
 <xsd:element name="struct" type="structType"/>
 <xsd:element name="union" type="structType"/>
 </xsd:choice>
 </xsd:group>
 <xsd:simpleType name="typeRefNMTOKEN">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\c+"/>
 <xsd:pattern value="string\[\d+\]"/>
 <xsd:pattern value="byte\[\d+\]"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="atomicType">
 <xsd:sequence>
 <xsd:element name="baseType" type="typeRefNMTOKEN"/>
 <xsd:element name="rangeRestriction"
 type="rangeRestrictionType minOccurs="0"/>
 <xsd:element name="specialValues" type="specialValuesType"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rangeRestrictionType">
 <xsd:sequence>
 <xsd:element name="allowedRange" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="min" type="xsd:integer"
 use="required"/>
 <xsd:attribute name="max" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>

Yang, et al. Expires January 2005 [Page 60]

Internet Draft ForCES FE Model July 2004

 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="specialValuesType">
 <xsd:sequence>
 <xsd:element name="specialValue" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 </xsd:sequence>
 <xsd:attribute name="value" type="xsd:token"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="arrayType">
 <xsd:sequence>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 <xsd:attribute name="type" use="optional"
 default="variable-size">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fixed-size"/>
 <xsd:enumeration value="variable-size"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="length" type="xsd:integer" use="optional"/>
 <xsd:attribute name="maxLength" type="xsd:integer"
 use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="structType">
 <xsd:sequence>
 <xsd:element name="element" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataDefsType">
 <xsd:sequence>

Yang, et al. Expires January 2005 [Page 61]

Internet Draft ForCES FE Model July 2004

 <xsd:element name="metadataDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="LFBClassDefsType">
 <xsd:sequence>
 <xsd:element name="LFBClassDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="version" type="versionType"/>
 <xsd:element name="derivedFrom" type="xsd:NMTOKEN"
 minOccurs="0"/>
 <xsd:element name="inputPorts" type="inputPortsType"
 minOccurs="0"/>
 <xsd:element name="outputPorts" type="outputPortsType"
 minOccurs="0"/>
 <xsd:element name="attributes" type="LFBAttributesType"
 minOccurs="0"/>
 <xsd:element name="capabilities"
 type="LFBCapabilitiesType" minOccurs="0"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Key constraint to ensure unique attribute names within
 a class:
 -->
 <xsd:key name="attributes">
 <xsd:selector xpath="lfb:attributes/lfb:attribute"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="capabilities">
 <xsd:selector xpath="lfb:capabilities/lfb:capability"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>

Yang, et al. Expires January 2005 [Page 62]

Internet Draft ForCES FE Model July 2004

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="versionType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:pattern value="[1-9][0-9]*\.([1-9][0-9]*|0)"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="inputPortsType">
 <xsd:sequence>
 <xsd:element name="inputPort" type="inputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="inputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="expectation" type="portExpectationType"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="booleanType" use="optional"
 default="no"/>
 </xsd:complexType>
 <xsd:complexType name="portExpectationType">
 <xsd:sequence>
 <xsd:element name="frameExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type -->
 <xsd:element name="ref" type="xsd:string"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of"
 type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

Yang, et al. Expires January 2005 [Page 63]

Internet Draft ForCES FE Model July 2004

 <xsd:complexType name="metadataInputChoiceType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataInputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="dependency" use="optional"
 default="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="defaultValue" type="xsd:token"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="outputPortsType">
 <xsd:sequence>
 <xsd:element name="outputPort" type="outputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="outputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="product" type="portProductType"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="booleanType" use="optional"
 default="no"/>

Yang, et al. Expires January 2005 [Page 64]

Internet Draft ForCES FE Model July 2004

 </xsd:complexType>
 <xsd:complexType name="portProductType">
 <xsd:sequence>
 <xsd:element name="frameProduced">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type -->
 <xsd:element name="ref" type="xsd:NMTOKEN"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataProduced" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of"
 type="metadataOutputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputChoiceType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataOutputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="availability" use="optional"
 default="unconditional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unconditional"/>

Yang, et al. Expires January 2005 [Page 65]

Internet Draft ForCES FE Model July 2004

 <xsd:enumeration value="conditional"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="LFBAttributesType">
 <xsd:sequence>
 <xsd:element name="attribute" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 <xsd:element name="defaultValue" type="xsd:token"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="access" use="optional"
 default="read-write">
 <xsd:simpleType>
 <xsd:list itemType="accessModeType"/>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="accessModeType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="read-only"/>
 <xsd:enumeration value="read-write"/>
 <xsd:enumeration value="write-only"/>
 <xsd:enumeration value="read-reset"/>
 <xsd:enumeration value="trigger-only"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="LFBCapabilitiesType">
 <xsd:sequence>
 <xsd:element name="capability" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>

Yang, et al. Expires January 2005 [Page 66]

Internet Draft ForCES FE Model July 2004

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="booleanType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>

5. FE Attributes and Capabilities

 A ForCES forwarding element handles traffic on behalf of a ForCES
 control element. While the standards will describe the protocol
 and mechanisms for this control, different implementations and
 different instances will have different capabilities. The CE needs
 to be able to determine what each instance it is responsible for is
 actually capable of doing. As stated previously, this is an
 approximation. The CE is expected to be prepared to cope with
 errors in requests and variations in detail not captured by the
 capabilities information about an FE.

 In addition to its capabilities, an FE will have some information
 (attributes) that can be used in understanding and controlling the
 forwarding operations. Some of the attributes will be read only,
 while others will also be writeable.

 The ForCES protocol will define the actual mechanism for getting
 and setting attribute information. This model defines the starting
 set of information that will be available. This definition
 includes the semantics and the structuring of the information. It
 also provides for extensions to this information.

 In order to crisply define the attribute information and structure,
 this document describes the attributes as information in an
 abstract XML document. Conceptually, each FE contains such a
 document. The document structure is defined by the XML Schema
 contained in this model. Operationally, the ForCES protocol refers
 to information contained in that document in order to read or write
 FE attributes and capabilities. This document is an abstract
 representation of the information. There is no requirement that
 such a document actually exist in memory. Unless the ForCES
 protocol calls for transfer of the information in XML, the

Yang, et al. Expires January 2005 [Page 67]

Internet Draft ForCES FE Model July 2004

 information is not required to ever be represented in the FE in
 XML. The XML schema serves only to identify the elements and
 structure of the information.

 The subsections in this part of the document provide the details on
 this aspect of the FE model. 5.1 gives the XML schema for the
 abstract FE attribute document. 5.2 elaborates on each of the
 defined attributes of the FE, following the hierarchy of the
 schema. 5.3 provides an example XML FE attribute document to
 clarify the meaning of 5.1 and 5.2.

5.1. XML Schema for FE Attribute Documents

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema for the Abstract FE Attributes and Capabilities Document
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="FEDocument">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FECapabilities" type="FECapabilitiesType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="FEAttributes" type="FEAttributesType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="FECapabilitiesType">
 <xsd:sequence>
 <xsd:element name="ModifiableLFBTopology" type="xsd:boolean"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="SupportedLFBs" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SupportedLFB" type="SupportedLFBType"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="SupportedAttributes"
 type="SupportedAttributesType"

Yang, et al. Expires January 2005 [Page 68]

Internet Draft ForCES FE Model July 2004

 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="SupportedLFBType">
 <xsd:sequence>
 <!-- the name of a supported LFB -->
 <xsd:element name="LFBName" type="xsd:NMTOKEN"/>
 <!-- how many of this LFB class can exist -->
 <xsd:element name="LFBOccurrenceLimit"
 type="xsd:nonNegativeInteger" minOccurs="0" maxOccurs="1"/>
 <!-- For each port group, how many ports can exist -->
 <xsd:element name="PortGroupLimits" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PortGroupLimit" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PortGroupName" type="xsd:NMTOKEN"/>
 <xsd:element name="MinPortCount"
 type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="MaxPortCount"
 type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- for the named LFB Class, the LFB Classes it may follow -->
 <xsd:element name="CanOccurAfters" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CanOccurAfter"
 type="LFBAdjacencyLimitType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- for the named LFB Class, which LFB Classes may follow -->
 <xsd:element name="CanOccurBefores" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>

Yang, et al. Expires January 2005 [Page 69]

Internet Draft ForCES FE Model July 2004

 <xsd:element name="CanOccurBefore"
 type="LFBAdjacencyLimitType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- information defined by the Class Definition -->
 <xsd:element name="LFBClassCapabilities" type="xsd:anyType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="LFBAdjacencyLimitType">
 <xsd:sequence>
 <xsd:element name="NeighborLFB" type="xsd:NMTOKEN"/>
 <xsd:element name="viaPort" type="xsd:NMTOKEN"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="SupportedAttributesType">
 <xsd:sequence>
 <xsd:element name="SupportedAttribute"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="AttributeName" type="xsd:NMTOKEN"/>
 <xsd:element name="AccessModes" type="xsd:NMTOKEN"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FEAttributesType">
 <xsd:sequence>
 <xsd:element name="Vendor" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Model" type="xsd:string" minOccurs="0"/>
 <xsd:element name="FEStatus" type="FEStateType" minOccurs="0"/>
 <xsd:element name="LFBInstances" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="LFBInstance" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="LFBClassName" type="xsd:NMTOKEN"/>">

Yang, et al. Expires January 2005 [Page 70]

Internet Draft ForCES FE Model July 2004

 <xsd:element name="LFBInstanceID" type="xsd:NMTOKEN"/>">
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="LFBTopology" type="LFBTopologyType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="FEConfiguredNeighbors" minOccurs="0"
 maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FEConfiguredNeighbor"
 type="FEConfiguredNeighborType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="LFBTopologyType">
 <xsd:sequence>
 <xsd:element name="LFBLink" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FromLFBID" type="xsd:NMTOKEN"/>
 <xsd:element name="FromPortGroup" type="xsd:NMTOKEN"/>
 <xsd:element name="FromPortIndex"
 type="xsd:nonNegativeInteger"/>
 <xsd:element name="ToLFBID" type="xsd:NMTOKEN"/>
 <xsd:element name="ToPortGroup" type="xsd:NMTOKEN"/>
 <xsd:element name="ToPortIndex"
 type="xsd:nonNegativeInteger"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FEConfiguredNeighborType">
 <xsd:sequence>
 <xsd:element name="NeighborID" type="xsd:anyType"/>
 <xsd:element name="NeighborInterface" type="xsd:anyType"/>
 <xsd:element name="NeighborNetworkAddress" type="xsd:anyType"
 minOccurs="0" maxOccurs="1"/>

Yang, et al. Expires January 2005 [Page 71]

Internet Draft ForCES FE Model July 2004

 <xsd:element name="NeighborMACAddress" type="xsd:anyType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The values for the simple state attribute -->
 <!-- These should probably be directly encodable in the -->
 <!-- protocol so they may end up numeric instead of strings -->
 <xsd:simpleType name="FEStateType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="AdminDisable"/>
 <xsd:enumeration value="OperDisable"/>
 <xsd:enumeration value="OperEnable"/>
 </xsd:restriction>
 </xsd:simpleType>

 </xsd:schema>

5.2. FEDocument

 An instance of this document captures the capabilities and FE level
 attribute / state information about a given FE. Currently, two
 elements are allowed in the FEDocument, FECapabilities and
 FEAttributes.

 At the moment, all capability and attribute information in this
 abstract document is defined as optional. We may wish to mandate
 support for some capability and/or attribute information.

 If a protocol using binary encoding of this information is adopted
 by the ForCES working group, then each relevant element defined in
 the schema will have a "ProtocolEncoding" attribute added, with a
 "Fixed" value providing the value that is used in the protocol for
 that element, so that the XML and the on the wire protocol can be
 correlated.

5.2.1. FECapabilities

 This element, if it occurs, must occur only once and contains all
 the capability related information about the FE. Capability
 information is always considered to be read-only.

 The currently defined elements allowed within the FECapabilities
 element are ModifiableLFBTopology, LFBsSupported,
 WriteableAttributes and ReadableAttributes.

5.2.1.1. ModifiableLFBTopology

Yang, et al. Expires January 2005 [Page 72]

Internet Draft ForCES FE Model July 2004

 This element has a boolean value. This element indicates whether
 the LFB topology of the FE may be changed by the CE. If the
 element is absent, the default value is assumed to be true, and the
 CE presumes the LFB topology may be changed. If the value is
 present and set to false, the LFB topology of the FE is fixed. In
 that case, the LFBs supported clause may be omitted, and the list
 of supported LFBs is inferred by the CE from the LFB topology
 information. If the list of supported LFBs is provided when
 ModifiableLFBTopology is false, the CanOccurBefore and
 CanOccurAfter information should be omitted.

5.2.1.2. SupportedLFBs and SupportedLFB

 One capability that the FE should include is the list of supported
 LFB classes. The SupportedLFBs element, which occurs at most once,
 serves as a wrapper for the list of LFB classes supported. Each
 class is described in a SupportedLFB element.

 Each occurrence of the SupportedLFB element describes an LFB class
 that the FE supports. In addition to indicating that the FE
 supports the class, FEs with modifiable LFB topology should include
 information about how LFBs of the specified class may be connected
 to other LFBs. This information should describe which LFB classes
 the specified LFB class may succeed or precede in the LFB topology.
 The FE should include information as to which port groups may be
 connected to the given adjacent LFB class. If port group
 information is omitted, it is assumed that all port groups may be
 used.

5.2.1.2.1. LFBName

 This element has as its value the name of the LFB being described.

5.2.1.2.2. LFBOccurrenceLimit

 This element, if present, indicates the largest number of instances
 of this LFB class the FE can support. For FEs that do not have the
 capability to create or destroy LFB instances, this can either be
 omitted or be the same as the number of LFB instances of this class
 contained in the LFB list attribute.

5.2.1.2.3. PortGroupLimits and PortGroupLimit

 The PortGroupLimits element is the wrapper to hold information
 about the port groups supported by the LFB class. It holds
 multiple occurrences of the PortGroupLimit element.

Yang, et al. Expires January 2005 [Page 73]

Internet Draft ForCES FE Model July 2004

 Each occurrence of the PortGroupLimit element contains the port
 occurrence information for a single port group of the LFB class.
 Each occurrence has the name of the port group in the PortGroupName
 element, the fewest number of ports that can exist in the group in
 the MinPortCount element, and the largest number of ports that can
 exist in the group in the MaxPortCount element.

 5.2.1.2.4.CanOccurAfters and CanOccurAfter

 The CanOccurAfters element is a wrapper to hold the multiple
 occurrences of the CanOccurAfter permissible placement information.

 The CanOccurAfter element describes a permissible positioning of
 the SupportedLFB. Specifically, it names an LFB that can
 topologically precede the SupportedLFB. That is, the SupportedLFB
 can have an input port connected to an output port of the LFB that
 it CanOccurAfter. The LFB class that the SupportedLFB can follow
 is identified by the NeighborLFB element of the CanOccurAfter
 element. If this neighbor can only be connected to a specific set
 of input port groups, then the viaPort element is included. This
 element occurs once for each input port group of the SupportedLFB
 that can be connected to an output port of the NeighborLFB.

 [e.g., Within a SupportedLFB element, each CanOccurAfter element
 must have a unique NeighborLFB, and within each CanOccurAfter
 element each viaPort must represent a unique and valid input port
 group of the SupportedLFB. The "unique" clauses for this have not
 yet been added to the schema.]

5.2.1.2.5. CanOccurBefores and CanOccurBefore

 The CanOccurBefores element is a wrapper to hold the multiple
 occurrences of the CanOccurBefore permissible placement
 information.

 The CanOccurBefore element similarly lists those LFB classes that
 the SupportedLFB may precede in the topology. In this element, the
 viaPort element represents the output port group of the
 SupportedLFB that may be connected to the NeighborLFB. As with
 CanOccurAfter, viaPort may occur multiple times if multiple output
 ports may legitimately connect to the given NeighborLFB class.

 [And a similar set of uniqueness constraints apply to the
 CanOccurBefore clauses, even though an LFB may occur both in
 CanOccurAfter and CanOccurBefore.]

Yang, et al. Expires January 2005 [Page 74]

Internet Draft ForCES FE Model July 2004

5.2.1.2.6. LFBClassCapabilities

 This element contains capability information about the subject LFB
 class whose structure and semantics are defined by the LFB class
 definition.

5.2.1.3. SupportedAttributes

 This element serves as a wrapper to hold the information about
 attributed related capabilities. Specifically, attributes should
 be described in this element if:
 a) they are optional elements in the standard and are supported
 by the FE, or
 b) the standard allows for a range of access permissions (for
 example, read-only or read-write).

 Each attribute so described is contained in the SupportedAttributes
 element. That element contains an AttributeName element whose
 value is the name of the element being described and an AccessModes
 element, whose value is the list of permissions.

5.2.2. FEAttributes

 The FEAttributes element contains the attributes of the FE that are
 not considered "capabilities". Some of these attributes are
 writeable, and some are read-only, which should be indicated by the
 capability information. At the moment, the set of attributes is
 woefully incomplete. Each attribute is identified by a unique
 element tag, and the value of the element is the value of the
 attribute.

5.2.2.1. FEStatus

 This attribute carries the overall state of the FE. For now, it is
 restricted to the strings AdminDisable, OperDisable and OperEnable.

 5.2.2.2.LFBInstances and LFBInstance

 The LFBInstances element serves as a wrapper to hold the multiple
 occurrences of the LFBInstance information about individual LFB
 instances on the FE.

 Each occurrence of the LFBInstance element describes a single LFB
 instance. Each element contains an LFBClassName indicating what
 class this instance has, and an LFBInstanceID indicating the ID
 used for referring to this instance. For now, the ID uses the

Yang, et al. Expires January 2005 [Page 75]

Internet Draft ForCES FE Model July 2004

 NMTOKEN construction. Further protocol work is likely to replace
 this with a range restricted integer.

5.2.2.3. LFBTopology and LFBLink

 This optional element contains the information about each inter-LFB
 link inside the FE. Each link is described in an LFBLink element.
 This element contains sufficient information to identify precisely
 the end points of a link. The FromLFBID and ToLFBID fields
 indicate the LFB instances at each end of the link, and must
 reference LFBs in the LFB instance table. The FromPortGroup and
 ToPortGroup must identify output and input port groups defined in
 the LFB classes of the LFB instances identified by the FromLFBID
 and ToLFBID. The FromPortIndex and ToPortIndex fields select the
 elements from the port groups that this link connects. All links
 are uniquely identified by the FromLFBID, FromPortGroup, and
 FromPortIndex fields. Multiple links may have the same ToLFBID,
 ToPortGroup, and ToPortIndex as this model supports fan in of
 inter-LFB links but not fan out.

5.2.2.4. FEConfiguredNeighbors an FEConfiguredNeighbor

 The FEConfiguredNeighbors element is a wrapper to hold the
 configuration information that one or more FEConfiguredNeighbor
 elements convey about the configured FE topology.

 The FEConfiguredNeighbor element occurs once for each configured FE
 neighbor the FE knows about. It should not be filled in based on
 FE level protocol operations. In general, neighbor discovery
 operation on the FE should be represented and manipulated as an
 LFB. However, for FEs that include neighbor discovery and do not
 have such an LFB, it is permitted to fill in the information in
 this table based on such protocols.

 Similarly, the MAC address information in the table is intended to
 be used in situations where neighbors are configured by MAC
 address. Resolution of network layer to MAC address information
 should be captured in ARP LFBs, not duplicated in this table. Note
 that the same neighbor may be reached through multiple interfaces
 or at multiple addresses. There is no uniqueness requirement of
 any sort on occurrences of the FEConfiguredNeighbor element.

 Information about the intended forms of exchange with a given
 neighbor is not captured here, only the adjacency information is
 included.

 5.2.2.4.1.NeighborID

Yang, et al. Expires January 2005 [Page 76]

Internet Draft ForCES FE Model July 2004

 This is the ID in some space meaningful to the CE for the neighbor.
 If this table remains, we probably should add an FEID from the same
 space as an attribute of the FE.

 5.2.2.4.2.NeighborInterface

 This identifies the interface through which the neighbor is
 reached.

 [Editors note: As the port structures become better defined, the
 type for this should be filled in with the types necessary to
 reference the various possible neighbor interfaces, include
 physical interfaces, logical tunnels, virtual circuits, etc.]

5.2.2.4.3. NeighborNetworkAddress

 Neighbor configuration is frequently done on the basis of a network
 layer address. For neighbors configured in that fashion, this is
 where that address is stored.

 5.2.2.4.4.NeighborMacAddress

 Neighbors are sometimes configured using MAC level addresses
 (Ethernet MAC address, circuit identifiers, etc.) If such
 addresses are used to configure the adjacency, then that
 information is stored here. Note that over some ports such as
 physical point to point links or virtual circuits considered as
 individual interfaces, there is no need for either form of address.

5.3. Sample FE Attribute Document

 <?xml version="1.0">
 <fm:FEDocument xmlns:fm="http://www.ietf.org/...theschema...">

 <fm:FECapabilities>

 <fm:ModifiableLFBTopology> true </fm:ModifiableLFBTopology>

 <fm:SupportedLFBs>
 <fm:SupportedLFB>
 <!-- A simple single-input multi-output classifier -->
 <fm:LFBName> Classifier </fm:LFBName>
 <fm:LFBOccurrenceLimit> 3 </fm:LFBOccurrenceLimit>

 <fm:PortGroupLimits>
 <fm:PortGroupLimit>

Yang, et al. Expires January 2005 [Page 77]

Internet Draft ForCES FE Model July 2004

 <!-- The input port -->
 <fm:PortGroupName> InputPortGroup </fm:PortGroupName>
 <fm:MinPortCount> 1 </fm:MinPortCount>
 <fm:MaxPortCount> 1 </fm:MaxPortCount>
 </fm:PortGroupLimit>
 <fm:PortGroupLimit>
 <!--The normal output ports -->
 <fm:PortGroupName> OutputPortGroup </fm:PortGroupName>
 <fm:MinPortCount> 0 </fm:MinPortCount>
 <fm:MaxPortCount> 32 </fm:MaxPortCount>
 </fm:PortGroupLimit>
 <fm:PortGroupLimit>
 <!-- The optional error port -->
 <fm:PortGroupName> ErrorPortGroup </fm:PortGroupName>
 <fm:MinPortCount> 0 </fm:MinPortCount>
 <fm:MaxPortCount> 1 </fm:MaxPortCount>
 </fm:PortGroupLimit>
 </fm:PortGroupLimits>
 <fm:CanOccurAfters>
 <fm:CanOccurAfter>
 <fm:NeighborLFB> Port </fm:NeighborLFB>
 <!-- omitted viaPort -->
 </fm:CanOccurAfter>
 <fm:CanOccurAfter
 <fm:NeighborLFB> InternalSource </fm:NeighborLFB>
 <!-- omitted viaPort -->
 </fm:CanOccurAfter>
 </fm:CanOccurAfters>
 <fm:CanOccurBefores>
 <fm:CanOccurBefore>
 <fm:NeighborLFB> Marker </fm:NeighborLFB>
 <!-- omitted viaPort -->
 </fm:CanOccurBefore>
 </fm:CanOccurBefores>
 </fm:SupportedLFB>
 <!-- then Supported LFB elements for Port, InternalSource -->
 <!-- Marker, ... -->
 </fm:SupportedLFBs>

 <fm:SupportedAttributes>
 <fm:SupportedAttribute>
 <fm:AttributeName> FEStatus </fm:AttributeName>
 <fm:AccessModes> read write </fm:AccessModes>
 </fm:SupportedAttribute>
 <fm:SupportedAttribute>
 <fm:AttributeName> Vendor </fm:AttributeName>
 <fm:AccessModes> read </fm:AccessModes>

Yang, et al. Expires January 2005 [Page 78]

Internet Draft ForCES FE Model July 2004

 </fm:SupportedAttribute
 <fm:SupportedAttribute>
 <fm:AttributeName> Model </fm:AttributeName>
 <fm:AccessModes> read </fm:AccessModes>
 </fm:SupportedAttribute>
 </fm:SupportedAttributes>
 </fm:FECapabilities>

 <fm:FEAttributes>
 <fm:Vendor> World Wide Widgets </fm:Vendor>
 <fm:Model> Foo Forward Model 6 </fm:Model>
 <fm:FEStatus> OperEnable </fm:FEStatus>
 <fm:LFBInstances>
 <fm:LFBInstance>
 <fm:LFBClassName> Classifier </fm:LFBClassName>
 <fm:LFBInstanceID> Inst5 </fm:LFBInstanceID>
 </fm:LFBInstance>
 <fm:LFBInstance>
 <fm:LFBClassName> Interface </fm:LFBClassName>
 <fm:LFBInstanceID> Inst11 </fm:LFBInstanceID>
 </fm:LFBInstance>
 <fm:LFBInstance>
 <fm:LFBClassName> Meter </fm:LFBClassName>
 <fm:LFBInstanceID> Inst17 </fm:LFBInstanceID>
 </fm:LFBInstance>
 </fm:LFBIntances>
 <fm:LFBTopology>
 <fm:LFBLink>
 <fm:FromLFBID> Inst11 </fm:fromLFBID>
 <fm:FromPortGroup> IFOnwardGroup </fm:FromPortGroup>
 <fm:FromPortIndex> 1 </fm:FromPortIndex>
 <fm:ToLFBID> Inst5 </fm:ToLFBID>
 <fm:ToPortGroup> InputPortGroup </fm:ToPortGroup>
 <fm:ToPortIndex> 1 </fm:ToPortIndex>
 </fm:LFBLink>
 <fm:LFBLink>
 <fm:FromLFBID> Inst5 </fm:fromLFBID>
 <fm:FromPortGroup> OutputGroup </fm:FromPortGroup>
 <fm:FromPortIndex> 1 </fm:FromPortIndex>
 <fm:ToLFBID> Inst17 </fm:ToLFBID>
 <fm:ToPortGroup> InMeterGroup </fm:ToPortGroup>
 <fm:ToPortIndex> 1 </fm:ToPortIndex>
 </fm:LFBLink>
 </fm:LFBTopology>
 </fm:FEAttributes>
 </fm:FEDocument>

Yang, et al. Expires January 2005 [Page 79]

Internet Draft ForCES FE Model July 2004

6. LFB Class Library

 A set of initial LFB classes are identified here in the LFB class
 library as necessary to build common FE functions. Some of the LFB
 classes described here are abstract base classes from which
 specific LFB sub-classes will be derived. Hence, the base classes
 may not be used directly in a particular FE's model, but the sub-
 classes (yet to be defined) could be. This initial list attempts
 to describe LFB classes at the expected level of granularity. This
 list is neither exhaustive nor sufficiently detailed.

 Several working groups in the IETF have already done some relevant
 work in modeling the provisioning policy data for some of the
 functions we are interested in, for example, the DiffServ
 (Differentiated Services) PIB [4] and IPSec PIB [8]. Whenever
 possible, we have tried to reuse the work done elsewhere.

6.1. Port LFB

 A Port LFB is used to model physical I/O ports on the FE. It is
 both a source of data "received" by the FE and a sink of data
 "transmitted" by the FE. The Port LFB contains a number of static
 attributes, which may include, but are not limited to, the
 following items:
 . the number of physical ports on this LFB
 . physical port type
 . physical port link speed (may be variable; e.g., 10/100/1000
 Ethernet).

 In addition, the Port LFB contains a number of configurable
 attributes, including:
 . physical port current status (up or down)
 . physical port loopback
 . physical port mapping to L2 interface.

 The Port LFB can be sub-classed into technology specific LFB
 classes, with additional static and configurable attributes.
 Examples of possible sub-classes include:
 . Ethernet
 . Packet-over-SONET OC-N
 . ATM-over-SONET/SDN OC-N
 . T3
 . E3
 . T1
 . E1
 . CSIX-L1 switching fabric port (Fi interface)
 . CE-FE port (for Fp interface).

Yang, et al. Expires January 2005 [Page 80]

Internet Draft ForCES FE Model July 2004

 LFB class inheritance can be used to sub-class derived LFB classes
 with additional properties, such as TDM channelization.

 The Port LFB "receives" (sources) and "transmits" (sinks) frames in
 technology specific formats (described in the respective LFB class
 definition but not otherwise modeled) into/out of the FE. Packets
 "received" from a physical port are sourced on (one of) the LFB's
 output port(s), while packets to be "transmitted" on a physical
 port are sinked on (one of) the LFB's input port(s). The Port LFB
 is unique among LFB classes in that packets accepted on a LFB input
 port are not emitted back out on an LFB output port (except in the
 case of physical port loopback operation).

 The Port LFB transmits technology specific L2 frames to
 topologically adjacent LFB instances (i.e., no frame
 decapsulation/encapsulation is modeled in this LFB class). When
 transmitting a frame to an adjacent downstream LFB, the Port LFB
 provides two items of metadata: the frame length and the L2
 interface identifier. When receiving frames from an adjacent
 upstream LFB, the frame is accompanied by two items of metadata:
 frame length and outgoing port identifier.

 Statistics are not maintained by the Port LFB; statistics
 associated with a particular port may be maintained by an L2
 interface LFB (see Section 6.2).

6.2. L2 Interface LFB

 The L2 Interface LFB models L2 protocol termination. The L2
 Interface LFB performs two sets of functions: decapsulation and
 demultiplexing as needed on the receive side of an FE, and
 encapsulation and multiplexing as needed on the transmit side.
 Hence the LFB has two distinct sets of inputs and outputs tailored
 for these separate functions. The L2 Interface LFB is not modeled
 as two separate (receive/transmit) LFBs because there are shared
 attributes between the decapsulation and encapsulation functions.

 On the decapsulation input(s), the LFB accepts an L2 protocol
 specific frame, along with frame length and L2 interface metadata.
 The LFB decapsulates the L2 frame by removing any L2
 header/trailers (while simultaneously applying any checksum/CRC
 functions), determines the L2 or L3 protocol type of the next-layer
 packet (based on a PID or Ethertype within the L2 frame header),
 adjusts the frame length metadata, and uses the L2 interface
 metadata to select an L2 interface attribute. The L2 interface
 attribute supports a number of additional attributes, including:
 . L2 MTU

Yang, et al. Expires January 2005 [Page 81]

Internet Draft ForCES FE Model July 2004

 . supported next-layer L2 or L3 protocols
 . L2-specific receive counters (byte, packet)
 . counting mode
 . L2 or L3 interface metadata for next-layer packet
 . LFB output port.
 The LFB may support multiple decapsulation output ports within two
 output groups; one for normal forwarding, and one for exception
 packets. The LFB emits the decapsulated packet along with the
 modified frame length metadata, an L2 or L3 protocol type metadata,
 and an L2 or L3 interface metadata.

 On the encapsulation input(s), the LFB accepts a packet along with
 frame length, protocol type, and L2 interface metadata. The L2
 interface metadata is used to select an L2 interface attribute,
 which supports a number of additional attributes, including:
 . L2-specific transmit counters (byte, packet)
 . counting mode (may be taken from receive counters mode)
 . L2 or L3 interface metadata for next-layer frame (we assume
 that L2 protocols could be layered on top of an L3 protocol;
 e.g., L2TP or PWE3), or port metadata.
 . LFB output port
 The LFB encapsulates the packet using the appropriate L2
 header/trailer and protocol type information (calculating
 checksums/CRCs as necessary), and provides the frame to the next
 LFB along with incremented frame length metadata, updated protocol
 type metadata, and updated interface (or port) metadata, on a
 configurable LFB encapsulation output.

 As in the case of the Port LFB, technology specific variants of the
 L2 interface LFB will be sub-classes of the L2 Interface LFB.
 Example sub-classes include:
 . Ethernet/802.1Q
 . PPP
 . ATM AAL5.
 Each sub-class will likely support static and configurable
 attributes specific to the L2 technology; for example the
 Ethernet/802.1Q Interface LFB will support a per-interface MAC
 address attribute. Note that each technology specific sub-class
 may require additional metadata. For example, the Ethernet/802.1Q
 Interface LFB requires an outgoing MAC destination address to
 generate an outgoing Ethernet header.

 The L2 interface management function is separated into a distinct
 LFB from the Port LFB because L2 encapsulations can be nested
 within frames; e.g., PPP-over-Ethernet-over-ATM AAL5 (PPPoEoA).

6.3. IP interface LFB

Yang, et al. Expires January 2005 [Page 82]

Internet Draft ForCES FE Model July 2004

 The IP Interface LFB models a container for IP interface-specific
 attributes. These may include:
 . IP protocols supported (IPv4 and/or IPv6)
 . IP MTU
 . interface MIB counters
 . table metadata for associated forwarding tables (LPM,
 multicast)
 . table metadata for associated classification tables.
 The IP Interface LFB also performs basic protocol-specific packet
 header validation functions (e.g., IP version, IPv4 header length,
 IPv4 header checksum, MTU, TTL=0, etc.). The IP Interface LFB
 class supports three different L3 protocols: IPv4, IPv6, and MPLS,
 although individual LFB instances might support a subset of these
 protocols, configurable on each interface attribute.

 As with the L2 Interface LFB, the IP Interface LFB supports two
 modes of operation: one needed on the receive side of an FE, and
 one on the transmit side, using separate sets of LFB inputs and
 outputs. In the first mode of operation (for FE receive
 processing), the IP Interface LFB accepts IP packets along with
 frame length, L3 protocol type, and interface metadata (possibly
 including additional metadata items such as L2-derived class
 metadata). The interface metadata is used to select an interface
 attribute, and the protocol type is checked against the protocols
 supported for this interface. Error checks are applied, including
 whether the particular protocol type is supported on this
 interface, and if no errors occur, the appropriate counters are
 incremented and the protocol type is used to select the outgoing
 LFB output from a set dedicated to the first mode of operation.
 The IP header protocol type/next header field may also be used to
 select an LFB output; for example, IPv4 packets with AH header may
 be directed to a particular next LFB, or IPv6 packets with Hop-by-
 Hop Options. If errors do occur, the appropriate error counters
 are incremented, and the error type is used to select a specific
 exception LFB output.

 In the second mode of operation (for FE transmit processing), the
 IP Interface LFB accepts an IP packet along with frame length,
 protocol type, and interface metadata. Again, the interface
 metadata is used to select an interface attribute. The interface
 attribute stores the outgoing L2 or IP interface (e.g., tunnel)
 interface metadata. The IP MTU of the outgoing interface is
 checked, along with the protocol type of the packet. If no errors
 occur, the appropriate counters are incremented, and the next level
 interface metadata may be used to select an IP Interface LFB output
 dedicated to the second mode of operation. Otherwise, the

Yang, et al. Expires January 2005 [Page 83]

Internet Draft ForCES FE Model July 2004

 appropriate error counters are incremented, and the error type is
 used to select an exception output.

 Because the IP Interface LFB is the repository for the interface
 MIB counters, two special pairs of inputs are provided for packets
 which have been selected to be discarded further downstream (one
 each for the receive and transmit counters). Packets arriving on
 these LFB inputs must be accompanied by frame length and L3
 interface metadata. An exception output on the LFB should be
 connected to a dropper LFB.

6.4. Classifier LFB

 The function of classification is to logically partition packets
 into one of N different classes, based on some sequence of one or
 more mathematical operations applied to the packet and its
 associated metadata. Various LFBs perform an intrinsic
 classification function. Where this function is a well-defined
 protocol operation, a separate LFB may be defined (e.g., IP
 Interface LFB, which performs header verification).

 Several common applications need to classify packets using a
 particular mathematical operation (e.g., longest prefix match (LPM)
 or ternary match) against a fixed set of fields in a packet's
 header plus metadata, or an easily recognized part of the packet
 payload. Two example applications are classification for
 Differentiated Services or for security processing. Typically the
 packet is evaluated against a potentially large set of rules
 (called "filters"), which are processed in a particular order to
 ensure a deterministic result. This sort of classification
 functionality is modeled by the Classifier LFB.

 The Classifier LFB accepts an input packet and metadata, and
 produces the unmodified packet along with a class metadata, which
 may be used to map the packet to a particular LFB output.

 The Classifier LFB supports multiple classifier attributes. Each
 classifier is parameterized by one or more filters. Classification
 is performed by selecting the classifier to use on a particular
 packet (e.g., by metadata lookup on a configurable metadata item),
 and by evaluating the selected contents of the accepted packet
 against that classifier's filters. A filter decides if the input
 packet satisfies particular criteria. According to [DiffServ], "a
 filter consists of a set of conditions on the component values of a
 packet's classification key (the header values, contents, and
 attributes relevant for classification)".

Yang, et al. Expires January 2005 [Page 84]

Internet Draft ForCES FE Model July 2004

 Note that other LFBs may perform simple classification on the
 packet or its metadata. The purpose of the Classifier LFB is to
 model an LFB that "digests" large amounts of input data (packet,
 metadata), to produce a "summary" of the classification results, in
 the form of additional (or modified) metadata. Other LFBs can then
 use this summary information to quickly and simply perform trivial
 classification operations.

 The Classifier LFB can be sub-classed into several function-
 specific LFB classes which perform common classification functions.
 These may include:
 . Longest Prefix Match (LPM)
 . IP Multicast lookup (S,G)
 . Multifield Exact Match
 . Multifield Ternary Match.

6.5. Next Hop LFB

 The Next Hop LFB is used to resolve next hop information following
 a forwarding lookup. Next Hop information normally includes the
 outgoing interface (or interfaces, in the case of multicast), as
 well as the outgoing IP address(es). This next hop information
 associated with a forwarding prefix or classification rule is often
 separated into a separate data structure in implementations to
 allow the two pieces of information to be decoupled, because there
 is frequently a fan-in relationship between forwarding prefix/rule
 entries and next hop information, and decoupling them can permit
 more efficient data structure management.

 The Next Hop LFB maintains next hop attributes organized into
 multiple next hop tables. The relevant table for a packet is
 selected based on next hop table metadata. A set of one or more
 next hop attributes is selected based on next hop index metadata.
 Each next hop attribute stores the following information:
 . a list of one or more outgoing interfaces
 . next hop IP addresses, or, an index to a table of this
 information
 . that is maintained at a downstream LFB
 . a list of outgoing MTUs
 . TTL decrement value

 The Next Hop LFB has two primary operations. The first is to map
 the incoming next hop table and next hop index metadata into a
 configurable next hop attribute. This mapping may be direct (one
 metadata pair to one next hop attribute). If the next hop index
 metadata selects a set of next hop attributes, final attribute
 resolution depends on a selection algorithm that uses some

Yang, et al. Expires January 2005 [Page 85]

Internet Draft ForCES FE Model July 2004

 additional metadata, or an internal classification operation, to
 select among a set of possible next hop attributes. One example is
 weighted next hop selection, where individual packets are mapped to
 particular next hop attributes in the set according to weights and
 to some flow order-preserving function (e.g., such as an address
 pair hash). Another alternative is class-based next hop selection,
 based on some class metadata.

 The second operation is a derivative of the first. The next hop
 table and next hop index metadata are used to select a set of one
 or more next hop attributes. Then the outgoing interface values
 stored in those attributes are compared against the incoming
 interface metadata provided to the Next Hop LFB, to determine
 whether the incoming interface is in the set. This operation, in
 combination with a IP source address forwarding lookup (which
 provides the next hop table/index metadata), can be used to perform
 a reverse path forwarding (RPF) check.

 The Next Hop LFB has two inputs: one for normal next hop
 resolution, and one for the incoming interface metadata test (e.g.,
 RPF). The LFB requires incoming interface, frame length, next hop
 table, and next hop index metadata. There are two normal output
 groups, one for the normal next hop resolution, and another for the
 RPF check. No additional metadata is produced for the latter, but
 for the former, the following metadata may be produced:
 . outgoing interface(s)
 . next hop IP address(es)
 . TTL decrement value (if TTL decrement is not performed by the
 Next Hop LFB)
 An alternative mode of operation produces index metadata instead of
 outgoing interface and next hop IP address metadata. This index
 metadata is used to access a cache of the outgoing interface and
 next hop IP address that may be stored on the egress FE (this
 permits more efficient communication across the FE interface).
 This index metadata can also be used as input metadata to a MPLS
 Encapsulation LFB.

 The Next Hop LFB supports an exception output port group.
 Exception conditions include:
 . RPF test failed
 . No route to host
 . No route to network
 . Packet too big
 . TTL expired
 The mapping between exception conditions and exception outputs is
 configurable, and an exception code metadata is produced on these
 outputs.

Yang, et al. Expires January 2005 [Page 86]

Internet Draft ForCES FE Model July 2004

6.6. Rate Meter LFB

 The Rate Meter LFB is used to meter the packet flow through the LFB
 according to a rate- and time-dependent function. Packets are
 provided to the Rate Meter LFB along with packet length metadata
 (and optional color metadata) and are associated with a meter
 attribute either statically (based on LFB input) or via some other
 configurable metadata item. The metering algorithm of the
 associated meter attribute is applied to the packet, using the
 packet length and the current time as inputs, along with previous
 state maintained by the attribute. A color metadata is associated
 with the packet in accordance with the metering algorithm used.
 The color metadata is optionally emitted with the packet, or used
 to map the packet to a particular LFB output. Color-aware metering
 algorithms use color metadata if provided with the packet (e.g., by
 a Classifier LFB), or assume a default color value.

 The Rate Meter LFB supports a number of static attributes,
 including:
 . supported metering algorithms
 . maximum number of meter attributes

 The Rate Meter LFB supports a number of configurable attributes,
 including:
 . number of LFB inputs
 . number of LFB outputs
 . mapping of LFB input to meter attribute (when mapped
 statically)
 . metadata item to select for mapping to meter attribute
 . mapping of metadata value to meter attribute
 . default meter attribute (when not mapped statically or via
 correct
 . metadata)
 . per-attribute metering algorithm
 . per-attribute metering parameters, including:
 . minimum rate
 . maximum rate
 . burst size
 . color metadata enable
 . mapping of packet color to LFB output

 A Rate Meter LFB can be used to implement a policing function, by
 connecting a LFB output directly to a Dropper LFB, and mapping non-
 conforming (e.g., "red") traffic to that output.

6.7. Redirector (de-MUX) LFB

Yang, et al. Expires January 2005 [Page 87]

Internet Draft ForCES FE Model July 2004

 The Redirector LFB is used to select between alternative datapaths
 based on the value of some metadata item. The Redirector LFB
 accepts an input packet P, and uses associated metadata item M to
 demultiplex that packet onto one of N outputs; e.g., unicast
 forwarding, multicast, or broadcast. Configurable attributes
 include:
 . number of LFB output ports (N)
 . metadata item to demultiplex on (M)
 . mapping of metadata value to output port
 . default output port (for un-matched input metadata values).

 Note that other LFBs may include demultiplexing functionality
 (i.e., if they have multiple outputs in an output group). The
 Redirector LFB is especially useful for demultiplexing based on
 metadata items that are not generated or modified by an immediate
 upstream LFB.

6.8. Packet Header Rewriter LFB

 The Packet Header Rewriter LFB is used to re-write fields in a
 packet's header. Function-specific sub-classes of the Packet
 Header Rewriter LFB may be specified as sub-classes of the Modifier
 LFB. These may include:
 . IPv4 TTL/IPv6 Hop Count
 . IPv4 header checksum
 . DSCP
 . IPv4 NAT

 The precise means by which the packet header rewriting functions
 will be specified is TBD.

6.9. Counter LFB

 The Counter LFB is used to maintain packet and/or byte statistics
 on the packet flow through the LFB. Packets are provided to the
 Counter LFB on an LFB input along with packet length metadata and
 are associated with a count attribute either statically (based on
 the LFB input) or via some other configurable metadata item. The
 Counter LFB modifies neither the packet nor any associated
 metadata.

 The Counter LFB supports a number of static attributes, including:
 . supported counting modes (e.g., byte, packet, both)
 . supported logging modes (e.g., last recorded packet time)
 . maximum number of count attributes

Yang, et al. Expires January 2005 [Page 88]

Internet Draft ForCES FE Model July 2004

 The Counter LFB supports a number of configurable attributes,
 including:
 . number of LFB inputs
 . mapping of LFB input to count attribute (when mapped
 statically)
 . metadata item to select for mapping to count attribute
 . mapping of metadata value to count attribute
 . default count attribute (when not mapped statically or via
 correct
 . metadata)
 . counting mode per-attribute
 . logging mode per-attribute

 The Counter LFB does not perform any time-dependent counting. The
 time at which a count is made may, however, be logged as part of
 the count attribute.

 Other LFBs may maintain internal statistics (e.g., interface LFBs).
 The Counter LFB is especially useful to maintain counts associated
 with QoS policy.

6.10. Dropper LFB

 A Dropper LFB has one input, and no outputs. It discards all
 packets that it accepts without any modification or examination of
 those packets.

 The purpose of a Dropper LFB is to allow the description of "sinks"
 within the model, where those sinks do not result in the packet
 being sent into any object external to the model.

 The Dropper LFB has no configurable attributes.

6.11. IPv4 Fragmenter LFB

 The IPv4 Fragmenter LFB fragments IPv4 packets according to the MTU
 of the outgoing interface. The IPv4 Fragmenter LFB accepts packets
 with frame length and MTU metadata, and produces a sequence of one
 or more valid IPv4 packets properly fragmented, each along with
 corrected frame length metadata.

 The source of the outgoing interface MTU is TBD. The IPv4
 fragmentation function is not incorporated into the IP Interface
 LFB because forwarding implementations may include additional
 forwarding functions between fragmentation and final output
 interface processing.

Yang, et al. Expires January 2005 [Page 89]

Internet Draft ForCES FE Model July 2004

6.12. L2 Address Resolution LFB

 The L2 Address Resolution LFB is used to map a next hop IP address
 into an L2 address. The LFB accepts packets with output L2
 interface and next hop IP address metadata, and produces the packet
 along with the correct L2 destination address. The L2 Address
 Resolution LFB maintains multiple address resolution table
 attributes accessed by the output L2 interface metadata. Each
 table attribute maintains a set of configurable L2 address
 attributes, accessed by the next hop IP address.

 The L2 Address Resolution LFB has a normal output group, which
 produces the L2 destination address metadata as well as an
 exception output. This exception output can be used to divert the
 packet to another LFB (e.g., an ARP/ND Protocol LFB, or a Port LFB
 used to reach the CE) for address resolution.

6.13. Queue LFB

 The Queue LFB is used to represent queueing points in the packet
 datapath. It is always used in combination with one or more
 Scheduler LFBs. The Queue LFB manages one or more FIFO packet
 queues as configurable attributes. The Queue LFB provides one or
 more LFB inputs, and packets are mapped from LFB inputs to queues,
 either statically, or via queue metadata. Each queue attribute is
 mapped one-to-one with a scheduling input on a downstream Scheduler
 LFB. The Queue LFB provides one or more LFB outputs, along with
 optional scheduling input metadata.

 Additional per-queue configurable attributes include the following:
 . maximum depth discard behavior (tail drop/head drop/Active
 Queue Management (AQM))
 . AQM parameters (specific to the AQM algorithm; e.g., RED)
 . Explicit Congestion Notification (ECN) enable

 Packets are provided to the Queue LFB along with a packet length
 metadata and an optional queue metadata. Because the Queue LFB can
 model sophisticated AQM mechanisms such as per-color marking
 thresholds (e.g., Weighted RED), packets may also be accompanied
 with color metadata.

 If ECN is enabled on a queue serving IP packets, then the IP packet
 header is modified if congestion is marked. A protocol type
 metadata must accompany the packet to indicate the packet protocol
 (e.g., IPv4, IPv6, Ethernet), so that the implementation can
 determine the location of the ECN bits in the header [RFC3168]. In
 the case of IPv4, if congestion is signaled, the header checksum

https://datatracker.ietf.org/doc/html/rfc3168

Yang, et al. Expires January 2005 [Page 90]

Internet Draft ForCES FE Model July 2004

 must be modified. The Queue LFB supports a capability to indicate
 whether it corrects the IPv4 header checksum after marking
 congestion experienced. Support for the checksum fixup is not
 mandatory since the checksum may be recalculated in another LFB
 further downstream.

6.14. Scheduler LFB

 The Scheduler LFB is used to perform packet scheduling at queueing
 points in the packet datapath, and hence is always used in
 combination with one or more upstream Queue or Scheduler LFBs. The
 Scheduler LFB supports one or more logical scheduling inputs. A
 scheduling input can be mapped one-to-one to a Scheduler LFB input,
 or the scheduling input can be selected via metadata (and both
 mechanisms may be used in combination).

 The Scheduler LFB multiplexes its scheduling inputs onto a single
 LFB output, based on its scheduling algorithm along with the per-
 input scheduling configuration. The packet is not modified during
 the scheduling process.

 Packets are provided to the Scheduler LFB along with a packet
 length metadata and an optional scheduling input metadata.

 Configurable attributes include:
 . number of logical scheduler inputs
 . number of LFB inputs
 . mapping of LFB input to scheduler input
 . scheduling algorithm
 . per-input scheduling parameters, including:
 . priority
 . minimum service rate
 . maximum service rate
 . burst duration (at maximum service rate)

 Hierarchical scheduling configurations can be created by cascading
 two or more Scheduler LFBs.

6.15. MPLS ILM/Decapsulation LFB

 The MPLS Incoming Label Map (ILM)/Decapsulation LFB accepts MPLS-
 encapsulated packets, examines (and possibly removes) the top-most
 label, and emits the packet on one output within an output group,
 along with configurable index and class metadata. The configurable
 metadata can be used as input for an IP Interface LFB, a Next Hop
 LFB, or the same (or another) MPLS ILM/Decapsulation LFB. This
 allows the FE to terminate, forward, or "pop and lookup" on the

Yang, et al. Expires January 2005 [Page 91]

Internet Draft ForCES FE Model July 2004

 value of the top-most label. The LFB maintains a set of ILM table
 attributes indexed by incoming IP interface metadata. Each ILM
 table entry is an attribute specifying whether to remove the label,
 and which output port to emit the packet on. An exception output
 is provided for packets with expired TTL.

6.16. MPLS Encapsulation LFB

 The MPLS Encapsulation LFB accepts IP or MPLS-encapsulated packets
 and appends an MPLS label stack, which is selected by output
 interface and configurable index metadata. The TTL of the accepted
 packet is copied from the outermost header into the labels in the
 label stack, and the S bit is set on the bottom label if the
 accepted packet is IP. The MPLS EXP bits are copied (or mapped)
 according to per-stack attributes.

 The MPLS Encapsulation LFB maintains multiple stack table
 attributes indexed by output interface metadata. Entry attributes
 within a table are indexed by configurable index metadata. Each
 entry attribute maintains a label stack, along with a configurable
 attribute for EXP bit handling, and possibly class and/or queue
 metadata to emit with the packet.

 MPLS ILM/decapsulation and encapsulation functions are modeled in
 separate LFBs because some implementations split these operations
 across FEs.

6.17. Tunnel Encapsulation/Decapsulation LFB

 The Tunnel Encapsulation/Decapsulation LFB models tunnel header
 encapsulation and decapsulation/demultiplexing. The LFB maintains
 separate encapsulation and decapsulation input and output groups.
 The encapsulation input group accepts packets with tunnel metadata,
 appends a tunnel header that is stored in a configurable attribute
 indexed by the tunnel metadata, and emits the packet on an
 encapsulation output. The decapsulation input group accepts
 packets encapsulated with a tunnel header along with tunnel
 metadata, removes the tunnel header (performing any tunnel-
 protocol-specific classification) according to attributes
 configured on a per-tunnel basis and accessed via the tunnel
 metadata, and emits the packet along with configurable metadata.
 For example, the configurable metadata that is output may be used
 as input interface metadata by a downstream IP or L2 Interface LFB.
 A decapsulation exception output is available and is used in the
 event that decapsulation fails.

Yang, et al. Expires January 2005 [Page 92]

Internet Draft ForCES FE Model July 2004

 The Tunnel Encapsulation/Decapsulation LFB may be sub-classed into
 tunnel-protocol-specific LFBs, including:
 . IP-IP
 . GRE
 . L2TP
 . Generic IPv6 Tunnels

6.18. Replicator LFB

 The Replicator LFB is used to replicate accepted packets and emit
 them on one or more outputs in an output group. Packets are
 accepted along with replicator index metadata. The LFB maintains
 an attribute table indexed by this metadata. Each table entry
 attribute specifies the number of times the packet must be
 replicated, the outputs (within the output group) that each
 replicated packet should be emitted on, and configurable metadata
 to be associated with each replicated packet.

 The Replicator LFB can be used for multicast replication, or for
 transparent packet interception.

7. Satisfying the Requirements on FE Model

 This section describes how the proposed FE model meets the
 requirements outlined in Section 5 of RFC 3654 [1]. The
 requirements can be separated into general requirements (Sections
 5, 5.1 - 5.4) and the specification of the minimal set of logical
 functions that the FE model must support (Section 5.5).

 The general requirement on the FE model is that it be able to
 express the logical packet processing capability of the FE,
 through both a capability and a state model. In addition, the FE
 model is expected to allow flexible implementations and be
 extensible to allow defining new logical functions.

 A major component of the proposed FE model is the Logical Function
 Block (LFB) model. Each distinct logical function in an FE is
 modeled as an LFB. Operational parameters of the LFB that must be
 visible to the CE are conceptualized as LFB attributes. These
 attributes support flexible implementations by allowing an FE to
 specify supported optional features and to indicate which
 attributes are configurable by the CE for an LFB class (e.g.,
 express the capability of the FE). Configurable attributes also
 provide the CE some flexibility in specifying the behavior of an
 LFB. When multiple LFBs belonging to the same LFB class are
 instantiated on an FE, each of those LFBs could be configured with

https://datatracker.ietf.org/doc/html/rfc3654#section-5

Yang, et al. Expires January 2005 [Page 93]

Internet Draft ForCES FE Model July 2004

 different attribute settings. By querying the settings of the
 attributes for an instantiated LFB, one can determine the state of
 that LFB.

 Instantiated LFBs are interconnected in a directed graph that
 describes the ordering of the functions within an FE. This
 directed graph is described by the topology model. The
 combination of the attributes of the instantiated LFBs and the
 topology describe the packet processing functions available on the
 FE (current state).

 Another key component of the FE model is the FE attributes. The FE
 attributes are used mainly to describe the capabilities of the FE,
 but they also convey information about the FE state.

 The FE model also includes a definition of the minimal set of LFBs
 that is required by Section 5.5 of [1]. The sections that follow
 provide more detail on the specifics of each of those LFBs.

7.1. Port Functions

 The FE model can be used to define a Port LFB class and its
 technology-specific subclasses (see Section 6.1) to map the
 physical port of the device to the LFB model with both static and
 configurable attributes. The static attributes model the type of
 port, link speed, etc. The configurable attributes model the
 addressing, administrative status etc.

7.2. Forwarding Functions

 Because forwarding function is one of the most common and important
 functions in the forwarding plane, it requires special attention in
 modeling to allow design flexibility, implementation efficiency,
 modeling accuracy and configuration simplicity. Toward that end,
 it is recommended that the core forwarding function being modeled
 by the combination of two LFBs -- Longest Prefix Match (LPM)
 classifier LFB (see Section 6.4) and Next Hop LFB (see Section

6.5). Special header writer LFB (see Section 6.8) is also needed
 to take care of TTL decrement and checksum etc.

7.3. QoS Functions

 The LFB class library already includes descriptions of the Meter
 (Section 6.6.), Queue (Section 6.13), Scheduler (Section 6.14),
 Counter (Section 6.9) and Dropper (Section 6.10) LFBs to support
 the QoS functions in the forwarding path. The FE model can also be
 used to define other useful QoS functions as needed. These LFBs

Yang, et al. Expires January 2005 [Page 94]

Internet Draft ForCES FE Model July 2004

 allow the CE to manipulate the attributes to model IntServ or
 DiffServ functions.

7.4. Generic Filtering Functions

 Various combinations of Classifier (Section 6.4), Redirector
 (Section 6.7), Meter (Section 6.6.) and Dropper (Section 6.10) LFBs
 can model a complex set of filtering functions.

7.5. Vendor Specific Functions

 New LFB classes can be defined according to the LFB model as
 described in Section 4 to support vendor specific functions. A new
 LFB class can also be derived from an existing LFB class through
 inheritance.

 7.6.High-Touch Functions

 High-touch functions are those that take action on the contents or
 headers of a packet based on content other than what is found in
 the IP header. Examples of such functions include NAT, ALG,
 firewall, tunneling and L7 content recognition. It is not
 practical to include all possible high touch functions in the
 initial LFB library in Section 6 due to the number and complexity.
 However, the flexibility of the LFB model and the power of
 interconnection in LFB topology should make it possible to model
 any high-touch functions.

7.7. Security Functions

 Security functions are not included in the initial LFB class
 library. However, the FE model is flexible and powerful enough to
 model the types of encryption and/or decryption functions that an
 FE supports and the associated attributes for such functions.

 The IP Security Policy (IPSP) Working Group in the IETF has started
 work in defining the IPSec Policy Information Base [8]. We will
 try to reuse as much of the work as possible.

7.8. Off-loaded Functions

 In addition to the packet processing functions that are typical to
 find on the FEs, some logical functions may also be executed
 asynchronously by some FEs, according to a certain finite-state
 machine, triggered not only by packet events, but by timer events
 as well. Examples of such functions include finite-state machine
 execution required by TCP termination or OSPF Hello processing off-

Yang, et al. Expires January 2005 [Page 95]

Internet Draft ForCES FE Model July 2004

 loaded from the CE. By defining LFBs for such functions, the FE
 model is capable of expressing these asynchronous functions, so
 that the CE may take advantage of such off-loaded functions on the
 FEs.

7.9. IPFLOW/PSAMP Functions

 [9] defines architecture for IP traffic flow monitoring, measuring
 and exporting. The LFB model supports statistics collection on the
 LFB by including statistical attributes (Section 4.7.4) in the LFB
 class definitions; in addition, special statistics collection LFBs
 such as meter LFB (Section 7.2.2) and counter LFB (Section 7.2.1)
 can also be used to support accounting functions in the FE.

 [10] describes a framework to define a standard set of capabilities
 for network elements to sample subsets of packets by statistical
 and other methods. Time event generation, filter LFB, and
 counter/meter LFB are the elements needed to support packet
 filtering and sampling functions -- these elements can all be
 supported in the FE model.

8. Using the FE model in the ForCES Protocol

 The actual model of the forwarding plane in a given NE is something
 the CE must learn and control by communicating with the FEs (or by
 other means). Most of this communication will happen in the post-
 association phase using the ForCES protocol. The following types
 of information must be exchanged between CEs and FEs via the ForCES
 protocol:
 1) FE topology query;
 2) FE capability declaration;
 3) LFB topology (per FE) and configuration capabilities query;
 4) LFB capability declaration;
 5) State query of LFB attributes;
 6) Manipulation of LFB attributes;
 7) LFB topology reconfiguration.

 Items 1) through 5) are query exchanges, where the main flow of
 information is from the FEs to the CEs. Items 1) through 4) are
 typically queried by the CE(s) in the beginning of the post-
 association (PA) phase, though they may be repeatedly queried at
 any time in the PA phase. Item 5) (state query) will be used at
 the beginning of the PA phase, and often frequently during the PA
 phase (especially for the query of statistical counters).

 Items 6) and 7) are "command" types of exchanges, where the main
 flow of information is from the CEs to the FEs. Messages in Item

Yang, et al. Expires January 2005 [Page 96]

Internet Draft ForCES FE Model July 2004

 6) (the LFB re-configuration commands) are expected to be used
 frequently. Item 7) (LFB topology re-configuration) is needed only
 if dynamic LFB topologies are supported by the FEs and it is
 expected to be used infrequently.

 Among the seven types of payload information the ForCES protocol
 carries between CEs and FEs, the FE model covers all of them except
 item 1), which concerns the inter-FE topology. The FE model
 focuses on the LFB and LFB topology within a single FE. Since the
 information related to item 1) requires global knowledge about all
 of the FEs and their inter-connection with each other, this
 exchange is part of the ForCES base protocol instead of the FE
 model.

 The relationship between the FE model and the seven post-
 association messages are visualized in Figure 9:

 +--------+
 -->| CE |
 /----\ . +--------+
 ____/ FE Model . ^ |
 | |................ (1),2 | | 6, 7
 | | (off-line) . 3, 4, 5 | |
 ____/ . | v
 . +--------+
 e.g. RFCs -->| FE |
 +--------+

 Figure 9. Relationship between the FE model and the ForCES protocol
 messages, where (1) is part of the ForCES base protocol, and the
 rest are defined by the FE model.

 The actual encoding of these messages is defined by the ForCES
 protocol and beyond the scope of the FE model. Their discussion is
 nevertheless important here for the following reasons:
 . These PA model components have considerable impact on the FE
 model. For example, some of the above information can be
 represented as attributes of the LFBs, in which case such
 attributes must be defined in the LFB classes.
 . The understanding of the type of information that must be
 exchanged between the FEs and CEs can help to select the
 appropriate protocol format and the actual encoding method (such as
 XML, TLVs).
 . Understanding the frequency of these types of messages should
 influence the selection of the protocol format (efficiency
 considerations).

Yang, et al. Expires January 2005 [Page 97]

Internet Draft ForCES FE Model July 2004

 An important part of the FE model is the port the FE uses for its
 message exchanges to and from the CE. In the case that a dedicated
 port is used for CE-FE communication, we propose to use a special
 port LFB, called the CE-FE Port LFB (a subclass of the general Port
 LFB in Section 6.1), to model this dedicated CE-FE port. The CE-FE
 Port LFB acts as both a source and sink for the traffic from and to
 the CE. Sometimes the CE-FE traffic does not have its own
 dedicated port, instead the data fabric is shared for the data
 plane traffic and the CE-FE traffic. A special processing LFB can
 be used to model the ForCES packet encapsulation and decapsulation
 in such cases.

 The remaining sub-sections of this section address each of the
 seven message types.

8.1. FE Topology Query

 An FE may contain zero, one or more external ingress ports.
 Similarly, an FE may contain zero, one or more external egress
 ports. In other words, not every FE has to contain any external
 ingress or egress interfaces. For example, Figure 10 shows two
 cascading FEs. FE #1 contains one external ingress interface but
 no external egress interface, while FE #2 contains one external
 egress interface but no ingress interface. It is possible to
 connect these two FEs together via their internal interfaces to
 achieve the complete ingress-to-egress packet processing function.
 This provides the flexibility to spread the functions across
 multiple FEs and interconnect them together later for certain
 applications.

 While the inter-FE communication protocol is out of scope for
 ForCES, it is up to the CE to query and understand how multiple FEs
 are inter-connected to perform a complete ingress-egress packet
 processing function, such as the one described in Figure 10. The
 inter-FE topology information may be provided by FEs, may be hard-
 coded into CE, or may be provided by some other entity (e.g., a bus
 manager) independent of the FEs. So while the ForCES protocol
 supports FE topology query from FEs, it is optional for the CE to
 use it, assuming the CE has other means to gather such topology
 information.

Yang, et al. Expires January 2005 [Page 98]

Internet Draft ForCES FE Model July 2004

 +---+
 | +---------+ +------------+ +---------+ |
 input| | | | | | output |
 ---+->| Ingress |-->|Header |-->|IPv4 |---------+--->+
 | | port | |Decompressor| |Forwarder| FE | |
 | +---------+ +------------+ +---------+ #1 | |
 +---+ V
 |
 +-----------------------<-----------------------------+
 |
 | +--+
 V | +------------+ +----------+ |
 | input | | | | output |
 +->--+->|Header |-->| Egress |---------+-->
 | |Compressor | | port | FE |
 | +------------+ +----------+ #2 |
 +--+

 Figure 10. An example of two FEs connected together.

 Once the inter-FE topology is discovered by the CE after this
 query, it is assumed that the inter-FE topology remains static.
 However, it is possible that an FE may go down during the NE
 operation, or a board may be inserted and a new FE activated, so
 the inter-FE topology will be affected. It is up to the ForCES
 protocol to provide a mechanism for the CE to detect such events
 and deal with the change in FE topology. FE topology is outside
 the scope of the FE model.

8.2. FE Capability Declarations

 FEs will have many types of limitations. Some of the limitations
 must be expressed to the CEs as part of the capability model. The
 CEs must be able to query these capabilities on a per-FE basis.
 Examples:
 . Metadata passing capabilities of the FE. Understanding these
 capabilities will help the CE to evaluate the feasibility of
 LFB topologies, and hence to determine the availability of
 certain services.
 . Global resource query limitations (applicable to all LFBs of
 the FE).
 . LFB supported by the FE.
 . LFB class instantiation limit.
 . LFB topological limitations (linkage constraint, ordering
 etc.)

8.3. LFB Topology and Topology Configurability Query

Yang, et al. Expires January 2005 [Page 99]

Internet Draft ForCES FE Model July 2004

 The ForCES protocol must provide the means for the CEs to discover
 the current set of LFB instances in an FE and the interconnections
 between the LFBs within the FE. In addition, sufficient
 information should be available to determine whether the FE
 supports any CE-initiated (dynamic) changes to the LFB topology,
 and if so, determine the allowed topologies. Topology
 configurability can also be considered as part of the FE capability
 query as described in Section 9.3.

8.4. LFB Capability Declarations

 LFB class specifications define a generic set of capabilities.
 When an LFB instance is implemented (instantiated) on a vendor's
 FE, some additional limitations may be introduced. Note that we
 discuss only those limitations that are within the flexibility of
 the LFB class specification. That is, the LFB instance will remain
 compliant with the LFB class specification despite these
 limitations. For example, certain features of an LFB class may be
 optional, in which case it must be possible for the CE to determine
 if an optional feature is supported by a given LFB instance or not.
 Also, the LFB class definitions will probably contain very few
 quantitative limits (e.g., size of tables), since these limits are
 typically imposed by the implementation. Therefore, quantitative
 limitations should always be expressed by capability arguments.

 LFB instances in the model of a particular FE implementation will
 possess limitations on the capabilities defined in the
 corresponding LFB class. The LFB class specifications must define
 a set of capability arguments, and the CE must be able to query the
 actual capabilities of the LFB instance via querying the value of
 such arguments. The capability query will typically happen when
 the LFB is first detected by the CE. Capabilities need not be re-
 queried in case of static limitations. In some cases, however,
 some capabilities may change in time (e.g., as a result of
 adding/removing other LFBs, or configuring certain attributes of
 some other LFB when the LFBs share physical resources), in which
 case additional mechanisms must be implemented to inform the CE
 about the changes.

 The following two broad types of limitations will exist:
 . Qualitative restrictions. For example, a standardized multi-
 field classifier LFB class may define a large number of
 classification fields, but a given FE may support only a
 subset of those fields.
 . Quantitative restrictions, such as the maximum size of tables,
 etc.

Yang, et al. Expires January 2005 [Page 100]

Internet Draft ForCES FE Model July 2004

 The capability parameters that can be queried on a given LFB class
 will be part of the LFB class specification. The capability
 parameters should be regarded as special attributes of the LFB.
 The actual values of these arguments may be, therefore, obtained
 using the same attribute query mechanisms as used for other LFB
 attributes.

 Capability attributes will typically be read-only arguments, but in
 certain cases they may be configurable. For example, the size of a
 lookup table may be limited by the hardware (read-only), in other
 cases it may be configurable (read-write, within some hard limits).

 Assuming that capabilities will not change frequently, the
 efficiency of the protocol/schema/encoding is of secondary concern.

8.5. State Query of LFB Attributes

 This feature must be provided by all FEs. The ForCES protocol and
 the data schema/encoding conveyed by the protocol must together
 satisfy the following requirements to facilitate state query of the
 LFB attributes:
 . Must permit FE selection. This is primarily to refer to a
 single FE, but referring to a group of (or all) FEs may
 optional be supported.
 . Must permit LFB instance selection. This is primarily to
 refer to a single LFB instance of an FE, but optionally
 addressing of a group of LFBs (or all) may be supported.
 . Must support addressing of individual attribute of an LFB.
 . Must provide efficient encoding and decoding of the addressing
 info and the configured data.
 . Must provide efficient data transmission of the attribute
 state over the wire (to minimize communication load on the CE-
 FE link).

8.6. LFB Attribute Manipulation

 This is a place-holder for all operations that the CE will use to
 populate, manipulate, and delete attributes of the LFB instances on
 the FEs. This is how the CE configures an individual LFB instance.

 The same set of requirements as described in Section 9.5 for
 attribute query applies here for attribute manipulation as well.

 Support for various levels of feedback from the FE to the CE (e.g.,

Yang, et al. Expires January 2005 [Page 101]

Internet Draft ForCES FE Model July 2004

 request received, configuration completed), as well as multi-
 attribute configuration transactions with atomic commit and
 rollback, may be necessary in some circumstances.

 (Editor's note: It remains an open issue as to whether or not other
 methods are needed in addition to "get attribute" and "set
 attribute" (such as multi-attribute transactions). If the answer
 to that question is yes, it is not clear whether such methods
 should be supported by the FE model itself or the ForCES protocol.)

8.7. LFB Topology Re-configuration

 Operations that will be needed to reconfigure LFB topology:
 . Create a new instance of a given LFB class on a given FE.
 . Connect a given output of LFB x to the given input of LFB y.
 . Disconnect: remove a link between a given output of an LFB and
 a given input of another LFB.
 . Delete a given LFB (automatically removing all interconnects
 to/from the LFB).

9. Acknowledgments

 Many of the colleagues in our companies and participants in the
 ForCES mailing list have provided invaluable input into this work.

10. Security Considerations

 The FE model describes the representation and organization of data
 sets and attributes in the FEs. ForCES framework document [2]
 provides a comprehensive security analysis for the overall ForCES
 architecture. For example, the ForCES protocol entities must be
 authenticated per the ForCES requirements before they can access
 the information elements described in this document via ForCES.
 The access to the information contained in the FE model is
 accomplished via the ForCES protocol, which will be defined in
 separate documents, and so the security issues will be addressed
 there.

11. Normative References

 [1] Khosravi, H. et al., "Requirements for Separation of IP Control
 and Forwarding", RFC 3654, November 2003.

 [2] Yang, L. et al., "Forwarding and Control Element Separation
 (ForCES) Framework", work in progress, November 2003, <draft-ietf-

forces-framework-13.txt>.

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/draft-ietf-forces-framework-13.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-framework-13.txt

Yang, et al. Expires January 2005 [Page 102]

Internet Draft ForCES FE Model July 2004

12. Informative References

 [3] Bernet, Y. et al., "An Informal Management Model for Diffserv
 Routers", RFC 3290, May 2002.

 [4] Chan, K. et al., "Differentiated Services Quality of Service
 Policy Information Base", RFC 3317, March 2003.

 [5] Sahita, R. et al., "Framework Policy Information Base", RFC
3318, March 2003.

 [6] Moore, B. et al., "Information Model for Describing Network
 Device QoS Datapath Mechanisms", RFC 3670, January 2004.

 [7] Snir, Y. et al., "Policy Framework QoS Information Model", RFC
3644, Nov 2003.

 [8] Li, M. et al., "IPsec Policy Information Base", work in
 progress, January 2003, <draft-ietf-ipsp-ipsecpib-07.txt>.

 [9] Quittek, J. et Al., "Requirements for IP Flow Information
 Export", work in progress, January 2004, <draft-ietf-ipfix-reqs-

15.txt>.

 [10] Duffield, N., "A Framework for Passive Packet Measurement ",
 work in progress, December 2003, <draft-ietf-psamp-framework-

05.txt>.

 [11] Pras, A. and Schoenwaelder, J., FRC 3444 "On the Difference
 between Information Models and Data Models", January 2003.

13. Authors' Addresses

 L. Lily Yang
 Intel Corp.
 Mail Stop: JF3-206
 2111 NE 25th Avenue
 Hillsboro, OR 97124, USA
 Phone: +1 503 264 8813
 Email: lily.l.yang@intel.com

 Joel M. Halpern
 Megisto Systems, Inc.
 20251 Century Blvd.
 Germantown, MD 20874-1162, USA
 Phone: +1 301 444-1783

https://datatracker.ietf.org/doc/html/rfc3290
https://datatracker.ietf.org/doc/html/rfc3317
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/rfc3670
https://datatracker.ietf.org/doc/html/rfc3644
https://datatracker.ietf.org/doc/html/rfc3644
https://datatracker.ietf.org/doc/html/draft-ietf-ipsp-ipsecpib-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipfix-reqs-15.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipfix-reqs-15.txt
https://datatracker.ietf.org/doc/html/draft-ietf-psamp-framework-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-psamp-framework-05.txt

Yang, et al. Expires January 2005 [Page 103]

Internet Draft ForCES FE Model July 2004

 Email: jhalpern@megisto.com

 Ram Gopal
 Nokia Research Center
 5, Wayside Road,
 Burlington, MA 01803, USA
 Phone: +1 781 993 3685
 Email: ram.gopal@nokia.com

 Alan DeKok
 IDT Inc.
 1575 Carling Ave.
 Ottawa, ON K1G 0T3, Canada
 Phone: +1 613 724 6004 ext. 231
 Email: alan.dekok@idt.com

 Zsolt Haraszti
 Modular Networks
 First Flight Venture Center
 2 Davis Drive
 PO Box 12076
 Research Triangle Park, NC 27709, USA
 Phone: +1 919 765 0027 x2017
 Email: zsolt@modularnet.com

 Steven Blake
 Modular Networks
 First Flight Venture Center
 2 Davis Drive
 PO Box 12076
 Research Triangle Park, NC 27709, USA
 Phone: +1 919 765 0027 x2016
 Email: slblake@modularnet.com

 Ellen Deleganes
 Intel Corp.
 Mail Stop: JF3-206
 2111 NE 25th Avenue
 Hillsboro, OR 97124, USA
 Phone: +1 503 712 4173
 Email: ellen.m.deleganes@intel.com

14. Intellectual Property Right

 The authors are not aware of any intellectual property right issues
 pertaining to this document.

Yang, et al. Expires January 2005 [Page 104]

Internet Draft ForCES FE Model July 2004

15. IANA consideration

 A namespace is needed to uniquely identify the LFB type in the LFB
 class library.

 Frame type supported on input and output of LFB must also be
 uniquely identified.

 A set of metadata supported by the LFB model must also be uniquely
 identified with names or IDs.

 Yang, et al. Expires January 2005 [Page 105]

