
 Internet Draft L. Yang
 Expiration: September 2006 Intel Corp.
 File: draft-ietf-forces-model-06.txt J. Halpern
 Working Group: ForCES Megisto Systems
 R. Gopal
 Nokia
 A. DeKok
 Infoblox, Inc.
 Z. Haraszti
 Clovis Solutions
 E. Deleganes
 Intel Corp.
 March 2006

ForCES Forwarding Element Model

draft-ietf-forces-model-06.txt

 Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than a "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.html.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document defines the forwarding element (FE) model used in the
 Forwarding and Control Element Separation (ForCES) protocol. The
 model represents the capabilities, state and configuration of

https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-forces-model-06.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.html
http://www.ietf.org/shadow.html

 Internet Draft ForCES FE Model March 2006

 forwarding elements within the context of the ForCES protocol, so
 that control elements (CEs) can control the FEs accordingly. More
 specifically, the model describes the logical functions that are
 present in an FE, what capabilities these functions support, and how
 these functions are or can be interconnected. This FE model is
 intended to satisfy the model requirements specified in the ForCES
 requirements draft, RFC 3564 [1]. A list of the basic logical
 functional blocks (LFBs) is also defined in the LFB class library to
 aid the effort in defining individual LFBs.

 Table of Contents

 Abstract...1
1. Definitions...4
2. Introduction..5

2.1. Requirements on the FE model...............................6
2.2. The FE Model in Relation to FE Implementations.............6
2.3. The FE Model in Relation to the ForCES Protocol............7
2.4. Modeling Language for the FE Model.........................7
2.5. Document Structure...8

3. FE Model Concepts...8
3.1. FE Capability Model and State Model........................8
3.2. LFB (Logical Functional Block) Modeling...................11

3.2.1. LFB Outputs..13
3.2.2. LFB Inputs...16
3.2.3. Packet Type..19
3.2.4. Metadata...19
3.2.5. LFB Events...26
3.2.6. LFB Element Properties...............................27
3.2.7. LFB Versioning.......................................27
3.2.8. LFB Inheritance......................................27

3.3. FE Datapath Modeling......................................28
3.3.1. Alternative Approaches for Modeling FE Datapaths.....29
3.3.2. Configuring the LFB Topology.........................33

4. Model and Schema for LFB Classes...............................37
4.1. Namespace...37
4.2. <LFBLibrary> Element......................................37
4.3. <load> Element..39
4.4. <frameDefs> Element for Frame Type Declarations...........39
4.5. <dataTypeDefs> Element for Data Type Definitions..........40

4.5.1. <typeRef> Element for Aliasing Existing Data Types...42
4.5.2. <atomic> Element for Deriving New Atomic Types.......42
4.5.3. <array> Element to Define Arrays.....................43
4.5.4. <struct> Element to Define Structures................47
4.5.5. <union> Element to Define Union Types................48
4.5.6. Augmentations..48

4.6. <metadataDefs> Element for Metadata Definitions...........49

https://datatracker.ietf.org/doc/html/rfc3564

4.7. <LFBClassDefs> Element for LFB Class Definitions..........50
4.7.1. <derivedFrom> Element to Express LFB Inheritance.....52

 Yang, et al. Expires September 2006 [Page 2]

 Internet Draft ForCES FE Model March 2006

4.7.2. <inputPorts> Element to Define LFB Inputs............52
4.7.3. <outputPorts> Element to Define LFB Outputs..........55

 4.7.4. <attributes> Element to Define LFB Operational
 Attributes..56
 4.7.5. <capabilities> Element to Define LFB Capability
 Attributes..59

4.7.6. <events> Element for LFB Notification Generation.....60
4.7.7. <description> Element for LFB Operational Specification

 ..64
4.8. Properties..64
4.9. XML Schema for LFB Class Library Documents................70

5. FE Attributes and Capabilities.................................81
5.1. XML for FEObject Class definition.........................81
5.2. FE Capabilities...87

5.2.1. ModifiableLFBTopology................................88
5.2.2. SupportedLFBs and SupportedLFBType...................88

5.3. FEAttributes..90
5.3.1. FEStatus...90
5.3.2. LFBSelectors and LFBSelectorType.....................90
5.3.3. LFBTopology and LFBLinkType..........................91
5.3.4. FENeighbors an FEConfiguredNeighborType..............91

6. Satisfying the Requirements on FE Model........................92
6.1. Port Functions..93
6.2. Forwarding Functions......................................93
6.3. QoS Functions...93
6.4. Generic Filtering Functions...............................94
6.5. Vendor Specific Functions.................................94
6.6. High-Touch Functions......................................94
6.7. Security Functions..94
6.8. Off-loaded Functions......................................94
6.9. IPFLOW/PSAMP Functions....................................95

7. Using the FE model in the ForCES Protocol......................95
7.1. FE Topology Query...97
7.2. FE Capability Declarations................................98
7.3. LFB Topology and Topology Configurability Query...........98
7.4. LFB Capability Declarations...............................98
7.5. State Query of LFB Attributes.............................99
7.6. LFB Attribute Manipulation...............................100
7.7. LFB Topology Re-configuration............................100

8. Example...100
8.1. Data Handling..108

8.1.1. Setting up a DLCI...................................108
8.1.2. Error Handling......................................109

8.2. LFB Attributes...109
8.3. Capabilities...110
8.4. Events...110

9. Acknowledgments...111
10. Security Considerations......................................112

11. Normative References...112

 Yang, et al. Expires September 2006 [Page 3]

 Internet Draft ForCES FE Model March 2006

12. Informative References.......................................112
13. Authors' Addresses...113
14. Intellectual Property Right..................................114
15. IANA consideration...114
16. Copyright Statement..114

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

 1. Definitions

 Terminology associated with the ForCES requirements is defined in
RFC 3564 [1] and is not copied here. The following list of

 terminology relevant to the FE model is defined in this section.

 FE Model -- The FE model is designed to model the logical processing
 functions of an FE. The FE model proposed in this document includes
 three components: the modeling of individual logical functional
 blocks (LFB model), the logical interconnection between LFBs (LFB
 topology) and the FE level attributes, including FE capabilities.
 The FE model provides the basis to define the information elements
 exchanged between the CE and the FE in the ForCES protocol.

 Datapath -- A conceptual path taken by packets within the forwarding
 plane inside an FE. Note that more than one datapath can exist
 within an FE.

 LFB (Logical Functional Block) Class (or type) -- A template that
 representing a fine-grained, logically separable aspect of FE
 processing. Most LFBs relate to packet processing in the data path.
 LFB classes are the basic building blocks of the FE model.

 LFB Instance -- As a packet flows through an FE along a datapath, it
 flows through one or multiple LFB instances, where each LFB is an
 instance of a specific LFB class. Multiple instances of the same
 LFB class can be present in an FE's datapath. Note that we often
 refer to LFBs without distinguishing between an LFB class and LFB
 instance when we believe the implied reference is obvious for the
 given context.

 LFB Model -- The LFB model describes the content and structures in
 an LFB, plus the associated data definition. Four types of
 information are defined in the LFB model. The core part of the LFB
 model is the LFB class definitions; the other three types define the
 associated data including common data types, supported frame formats
 and metadata.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3564

 Yang, et al. Expires September 2006 [Page 4]

 Internet Draft ForCES FE Model March 2006

 LFB Metadata -- Metadata is used to communicate per-packet state
 from one LFB to another, but is not sent across the network. The FE
 model defines how such metadata is identified, produced and consumed
 by the LFBs, but not how the per-packet state is implemented within
 actual hardware. Metadata is sent between the FE and the CE on
 redirect packets.

 LFB Attribute -- Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 attributes. The LFB attributes include: flags, single parameter
 arguments, complex arguments, and tables that the CE can read or/and
 write via the ForCES protocol.

 LFB Topology -- A representation of the logical interconnection and
 the placement of LFB instances along the datapath within one FE.
 Sometimes this representation is called intra-FE topology, to be
 distinguished from inter-FE topology. LFB topology is outside of
 the LFB model, but is part of the FE model.

 FE Topology -- A representation of how multiple FEs within a single
 NE are interconnected. Sometimes this is called inter-FE topology,
 to be distinguished from intra-FE topology (i.e., LFB topology). An
 individual FE might not have the global knowledge of the full FE
 topology, but the local view of its connectivity with other FEs is
 considered to be part of the FE model. The FE topology is
 discovered by the ForCES base protocol or by some other means.

 Inter-FE Topology -- See FE Topology.

 Intra-FE Topology -- See LFB Topology.

 LFB class library -- A set of LFB classes that has been identified
 as the most common functions found in most FEs and hence should be
 defined first by the ForCES Working Group.

 2. Introduction

RFC 3746 [2] specifies a framework by which control elements (CEs)
 can configure and manage one or more separate forwarding elements
 (FEs) within a networking element (NE) using the ForCES protocol.
 The ForCES architecture allows Forwarding Elements of varying
 functionality to participate in a ForCES network element. The
 implication of this varying functionality is that CEs can make only
 minimal assumptions about the functionality provided by FEs in an
 NE. Before CEs can configure and control the forwarding behavior of
 FEs, CEs need to query and discover the capabilities and states of
 their FEs. RFC 3654 [1] mandates that the capabilities, states and
 configuration information be expressed in the form of an FE model.

https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc3654

 Yang, et al. Expires September 2006 [Page 5]

 Internet Draft ForCES FE Model March 2006

RFC 3444 [11] observed that information models (IMs) and data models
 (DMs) are different because they serve different purposes. "The
 main purpose of an IM is to model managed objects at a conceptual
 level, independent of any specific implementations or protocols
 used". "DMs, conversely, are defined at a lower level of
 abstraction and include many details. They are intended for
 implementors and include protocol-specific constructs." Sometimes
 it is difficult to draw a clear line between the two. The FE model
 described in this document is primarily an information model, but
 also includes some aspects of a data model, such as explicit
 definitions of the LFB class schema and FE schema. It is expected
 that this FE model will be used as the basis to define the payload
 for information exchange between the CE and FE in the ForCES
 protocol.

 2.1. Requirements on the FE model

RFC 3654 [1] defines requirements that must be satisfied by a ForCES
 FE model. To summarize, an FE model must define:
 . Logically separable and distinct packet forwarding operations
 in an FE datapath (logical functional blocks or LFBs);
 . The possible topological relationships (and hence the sequence
 of packet forwarding operations) between the various LFBs;
 . The possible operational capabilities (e.g., capacity limits,
 constraints, optional features, granularity of configuration)
 of each type of LFB;
 . The possible configurable parameters (i.e., attributes) of each
 type of LFB;
 . Metadata that may be exchanged between LFBs.

 2.2. The FE Model in Relation to FE Implementations

 The FE model proposed here is based on an abstraction of distinct
 logical functional blocks (LFBs), which are interconnected in a
 directed graph, and receive, process, modify, and transmit packets
 along with metadata. The FE model should be designed such that
 different implementations of the forwarding datapath can be
 logically mapped onto the model with the functionality and sequence
 of operations correctly captured. However, the model is not
 intended to directly address how a particular implementation maps to
 an LFB topology. It is left to the forwarding plane vendors to
 define how the FE functionality is represented using the FE model.
 Our goal is to design the FE model such that it is flexible enough
 to accommodate most common implementations.

 The LFB topology model for a particular datapath implementation must
 correctly capture the sequence of operations on the packet.

https://datatracker.ietf.org/doc/html/rfc3444
https://datatracker.ietf.org/doc/html/rfc3654

 Metadata generation by certain LFBs MUST always precede any use of

 Yang, et al. Expires September 2006 [Page 6]

 Internet Draft ForCES FE Model March 2006

 that metadata by subsequent LFBs in the topology graph; this is
 required for logically consistent operation. Further, modification
 of packet fields that are subsequently used as inputs for further
 processing MUST occur in the order specified in the model for that
 particular implementation to ensure correctness.

 2.3. The FE Model in Relation to the ForCES Protocol

 The ForCES base protocol is used by the CEs and FEs to maintain the
 communication channel between the CEs and FEs. The ForCES protocol
 may be used to query and discover the inter-FE topology. The
 details of a particular datapath implementation inside an FE,
 including the LFB topology, along with the operational capabilities
 and attributes of each individual LFB, are conveyed to the CE within
 information elements in the ForCES protocol. The model of an LFB
 class should define all of the information that needs to be
 exchanged between an FE and a CE for the proper configuration and
 management of that LFB.

 Specifying the various payloads of the ForCES messages in a
 systematic fashion is difficult without a formal definition of the
 objects being configured and managed (the FE and the LFBs within).
 The FE Model document defines a set of classes and attributes for
 describing and manipulating the state of the LFBs within an FE.
 These class definitions themselves will generally not appear in the
 ForCES protocol. Rather, ForCES protocol operations will reference
 classes defined in this model, including relevant attributes and the
 defined operations.

Section 7 provides more detailed discussion on how the FE model
 should be used by the ForCES protocol.

 2.4. Modeling Language for the FE Model

 Even though not absolutely required, it is beneficial to use a
 formal data modeling language to represent the conceptual FE model
 described in this document. Use of a formal language can help to
 enforce consistency and logical compatibility among LFBs. A full
 specification will be written using such a data modeling language.
 The formal definition of the LFB classes may facilitate the eventual
 automation of some of the code generation process and the functional
 validation of arbitrary LFB topologies.

 Human readability was the most important factor considered when
 selecting the specification language, whereas encoding, decoding and
 transmission performance was not a selection factor. The encoding
 method for over the wire transport is not dependent on the
 specification language chosen and is outside the scope of this

 document and up to the ForCES protocol to define.

 Yang, et al. Expires September 2006 [Page 7]

 Internet Draft ForCES FE Model March 2006

 XML was chosen as the specification language in this document,
 because XML has the advantage of being both human and machine
 readable with widely available tools support.

 2.5. Document Structure

Section 3 provides a conceptual overview of the FE model, laying the
 foundation for the more detailed discussion and specifications in
 the sections that follow. Section 4 and 5 constitute the core of
 the FE model, detailing the two major components in the FE model:
 LFB model and FE level attributes including capability and LFB
 topology. Section 6 directly addresses the model requirements
 imposed by the ForCES requirement draft [1] while Section 7 explains
 how the FE model should be used in the ForCES protocol.

 3. FE Model Concepts

 Some of the important concepts used throughout this document are
 introduced in this section. Section 3.1 explains the difference
 between a state model and a capability model, and describes how the
 two can be combined in the FE model. Section 3.2 introduces the
 concept of LFBs (Logical Functional Blocks) as the basic functional
 building blocks in the FE model. Section 3.3 discusses the logical
 inter-connection and ordering between LFB instances within an FE,
 that is, the LFB topology.

 The FE model proposed in this document is comprised of two major
 components: the LFB model and FE level attributes, including FE
 capabilities and LFB topology. The LFB model provides the content
 and data structures to define each individual LFB class. FE
 attributes provide information at the FE level, particularly the
 capabilities of the FE at a coarse level. Part of the FE level
 information is the LFB topology, which expresses the logical inter-
 connection between the LFB instances along the datapath(s) within
 the FE. Details of these components are described in Section 4 and
 5. The intent of this section is to discuss these concepts at the
 high level and lay the foundation for the detailed description in
 the following sections.

 3.1. FE Capability Model and State Model

 The ForCES FE model includes both a capability and a state model.
 The FE capability model describes the capabilities and capacities of
 an FE by specifying the variation in functions supported and any
 limitations. The FE state model describes the current state of the
 FE, that is, the instantaneous values or operational behavior of the
 FE.

 Yang, et al. Expires September 2006 [Page 8]

 Internet Draft ForCES FE Model March 2006

 Conceptually, the FE capability model tells the CE which states are
 allowed on an FE, with capacity information indicating certain
 quantitative limits or constraints. Thus, the CE has general
 knowledge about configurations that are applicable to a particular
 FE. For example, an FE capability model may describe the FE at a
 coarse level such as:

 . this FE can handle IPv4 and IPv6 forwarding;
 . this FE can perform classification on the following fields:
 source IP address, destination IP address, source port number,
 destination port number, etc;
 . this FE can perform metering;
 . this FE can handle up to N queues (capacity);
 . this FE can add and remove encapsulating headers of types
 including IPSec, GRE, L2TP.

 While one could try and build an object model to fully represent the
 FE capabilities, other efforts found this to be a significant
 undertaking. The main difficulty arises in describing detailed
 limits, such as the maximum number of classifiers, queues, buffer
 pools, and meters the FE can provide. We believe that a good
 balance between simplicity and flexibility can be achieved for the
 FE model by combining coarse level capability reporting with an
 error reporting mechanism. That is, if the CE attempts to instruct
 the FE to set up some specific behavior it cannot support, the FE
 will return an error indicating the problem. Examples of similar
 approaches include DiffServ PIB [4] and Framework PIB [5].

 There is one common and shared aspect of capability that will be
 handled in a separate fashion. For all elements of information,
 certain property information is needed. All elements need
 information as to whether they are supported and if so whether the
 element is readable or writeable. Based on their type, many
 elements have additional common properties (for example, arrays have
 their current size.) There is a specific model and protocol
 mechanism for referencing this form of property information about
 elements of the model.

 The FE state model presents the snapshot view of the FE to the CE.
 For example, using an FE state model, an FE may be described to its
 corresponding CE as the following:

 . on a given port, the packets are classified using a given
 classification filter;
 . the given classifier results in packets being metered in a
 certain way, and then marked in a certain way;
 . the packets coming from specific markers are delivered into a
 shared queue for handling, while other packets are delivered to

 a different queue;

 Yang, et al. Expires September 2006 [Page 9]

 Internet Draft ForCES FE Model March 2006

 . a specific scheduler with specific behavior and parameters will
 service these collected queues.

 Figure 1 shows the concepts of FE state, capabilities and
 configuration in the context of CE-FE communication via the ForCES
 protocol.

 +-------+ +-------+
 | | FE capabilities: what it can/cannot do. | |
 | |<---| |
 | | | |
 | CE | FE state: what it is now. | FE |
 | |<---| |
 | | | |
 | | FE configuration: what it should be. | |
 | |--->| |
 +-------+ +-------+

 Figure 1. Illustration of FE state, capabilities and configuration
 exchange in the context of CE-FE communication via ForCES.

 The concepts relating to LFBs, particularly capability at the LFB
 level and LFB topology will be discussed in the rest of this
 section.

 Capability information at the LFB level is an integral part of the
 LFB model, and is modeled the same way as the other operational
 parameters inside an LFB. For example, when certain features of an
 LFB class are optional, the CE MUST be able to determine whether
 those optional features are supported by a given LFB instance. Such
 capability information can be modeled as a read-only attribute in
 the LFB instance, see Section 4.7.5 for details.

 Capability information at the FE level may describe the LFB classes
 that the FE can instantiate; the number of instances of each that
 can be created; the topological (linkage) limitations between these
 LFB instances, etc. Section 5 defines the FE level attributes
 including capability information.

 Once the FE capability is described to the CE, the FE state
 information can be represented by two levels. The first level is
 the logically separable and distinct packet processing functions,
 called Logical Functional Blocks (LFBs). The second level of
 information describes how these individual LFBs are ordered and
 placed along the datapath to deliver a complete forwarding plane
 service. The interconnection and ordering of the LFBs is called LFB
 Topology. Section 3.2 discusses high level concepts around LFBs,
 whereas Section 3.3 discusses LFB topology issues.

 Yang, et al. Expires September 2006 [Page 10]

 Internet Draft ForCES FE Model March 2006

 3.2. LFB (Logical Functional Block) Modeling

 Each LFB performs a well-defined action or computation on the
 packets passing through it. Upon completion of its prescribed
 function, either the packets are modified in certain ways (e.g.,
 decapsulator, marker), or some results are generated and stored,
 often in the form of metadata (e.g., classifier). Each LFB
 typically performs a single action. Classifiers, shapers and meters
 are all examples of such LFBs. Modeling LFBs at such a fine
 granularity allows us to use a small number of LFBs to express the
 higher-order FE functions (such as an IPv4 forwarder) precisely,
 which in turn can describe more complex networking functions and
 vendor implementations of software and hardware. These LFBs will be
 defined in detail in one or more documents.

 An LFB has one or more inputs, each of which takes a packet P, and
 optionally metadata M; and produces one or more outputs, each of
 which carries a packet P', and optionally metadata M'. Metadata is
 data associated with the packet in the network processing device
 (router, switch, etc.) and is passed from one LFB to the next, but
 is not sent across the network. In general, multiple LFBs are
 contained in one FE, as shown in Figure 2, and all the LFBs share
 the same ForCES protocol termination point that implements the
 ForCES protocol logic and maintains the communication channel to and
 from the CE.

 Yang, et al. Expires September 2006 [Page 11]

 Internet Draft ForCES FE Model March 2006

 +-----------+
 | CE |
 +-----------+
 ^
 | Fp reference point
 |
 +--------------------------|-----------------------------------+
 | FE | |
 | v |
 | +--+ |
 | | ForCES protocol | |
 | | termination point | |
 | +--+ |
 | ^ ^ |
 | : : Internal control |
 | : : |
 | +---:----------+ +---:----------| | | | | | | | |
 | | :LFB1 | | : LFB2 | |
 | =====>| v |============>| v |======>...|
 | Inputs| +----------+ |Outputs | +----------+ | |
 | (P,M) | |Attributes| |(P',M') | |Attributes| |(P",M") |
 | | +----------+ | | +----------+ | |
 | +--------------+ +--------------+ |
 | |
 +--+

 Figure 2. Generic LFB Diagram

 An LFB, as shown in Figure 2, has inputs, outputs and attributes
 that can be queried and manipulated by the CE indirectly via an Fp
 reference point (defined in RFC 3746 [2]) and the ForCES protocol
 termination point. The horizontal axis is in the forwarding plane
 for connecting the inputs and outputs of LFBs within the same FE.
 The vertical axis between the CE and the FE denotes the Fp reference
 point where bidirectional communication between the CE and FE
 occurs: the CE to FE communication is for configuration, control and
 packet injection while FE to CE communication is used for packet re-
 direction to the control plane, monitoring and accounting
 information, errors, etc. Note that the interaction between the CE
 and the LFB is only abstract and indirect. The result of such an
 interaction is for the CE to indirectly manipulate the attributes of
 the LFB instances.

 A namespace is used to associate a unique name or ID with each LFB
 class. The namespace MUST be extensible so that a new LFB class can
 be added later to accommodate future innovation in the forwarding
 plane.

https://datatracker.ietf.org/doc/html/rfc3746

 Yang, et al. Expires September 2006 [Page 12]

 Internet Draft ForCES FE Model March 2006

 LFB operation is specified in the model to allow the CE to
 understand the behavior of the forwarding datapath. For instance,
 the CE must understand at what point in the datapath the IPv4 header
 TTL is decremented. That is, the CE needs to know if a control
 packet could be delivered to it either before or after this point in
 the datapath. In addition, the CE MUST understand where and what
 type of header modifications (e.g., tunnel header append or strip)
 are performed by the FEs. Further, the CE MUST verify that the
 various LFBs along a datapath within an FE are compatible to link
 together.

 There is value to vendors if the operation of LFB classes can be
 expressed in sufficient detail so that physical devices implementing
 different LFB functions can be integrated easily into an FE design.
 Therefore, a semi-formal specification is needed; that is, a text
 description of the LFB operation (human readable), but sufficiently
 specific and unambiguous to allow conformance testing and efficient
 design, so that interoperability between different CEs and FEs can
 be achieved.

 The LFB class model specifies information such as:

 . number of inputs and outputs (and whether they are
 configurable)
 . metadata read/consumed from inputs;
 . metadata produced at the outputs;
 . packet type(s) accepted at the inputs and emitted at the
 outputs;
 . packet content modifications (including encapsulation or
 decapsulation);
 . packet routing criteria (when multiple outputs on an LFB are
 present);
 . packet timing modifications;
 . packet flow ordering modifications;
 . LFB capability information;
 . Events that can be detected by the LFB, with notification to
 the CE;
 . LFB operational attributes, etc.

Section 4 of this document provides a detailed discussion of the LFB
 model with a formal specification of LFB class schema. The rest of

Section 3.2 only intends to provide a conceptual overview of some
 important issues in LFB modeling, without covering all the specific
 details.

 3.2.1. LFB Outputs

 An LFB output is a conceptual port on an LFB that can send

 information to another LFB. The information is typically a packet

 Yang, et al. Expires September 2006 [Page 13]

 Internet Draft ForCES FE Model March 2006

 and its associated metadata, although in some cases it might consist
 of only metadata, i.e., with no packet data.

 A single LFB output can be connected to only one LFB input. This is
 required to make the packet flow through the LFB topology
 unambiguously.

 Some LFBs will have a single output, as depicted in Figure 3.a.

 +---------------+ +-----------------+
 | | | |
 | | | OUT +-->
 ... OUT +--> ... |
 | | | EXCEPTIONOUT +-->
 | | | |
 +---------------+ +-----------------+

 a. One output b. Two distinct outputs

 +---------------+ +-----------------+
 | | | EXCEPTIONOUT +-->
 | OUT:1 +--> | |
 ... OUT:2 +--> ... OUT:1 +-->
 | ... +... | OUT:2 +-->
 | OUT:n +--> | ... +...
 +---------------+ | OUT:n +-->
 +-----------------+

 c. One output group d. One output and one output group

 Figure 3. Examples of LFBs with various output combinations.

 To accommodate a non-trivial LFB topology, multiple LFB outputs are
 needed so that an LFB class can fork the datapath. Two mechanisms
 are provided for forking: multiple singleton outputs and output
 groups, which can be combined in the same LFB class.

 Multiple separate singleton outputs are defined in an LFB class to
 model a pre-determined number of semantically different outputs.
 That is, the LFB class definition MUST include the number of
 outputs, implying the number of outputs is known when the LFB class
 is defined. Additional singleton outputs cannot be created at LFB
 instantiation time, nor can they be created on the fly after the LFB
 is instantiated.

 For example, an IPv4 LPM (Longest-Prefix-Matching) LFB may have one
 output(OUT) to send those packets for which the LPM look-up was
 successful, passing a META_ROUTEID as metadata; and have another
 output (EXCEPTIONOUT) for sending exception packets when the LPM

 Yang, et al. Expires September 2006 [Page 14]

 Internet Draft ForCES FE Model March 2006

 look-up failed. This example is depicted in Figure 3.b. Packets
 emitted by these two outputs not only require different downstream
 treatment, but they are a result of two different conditions in the
 LFB and each output carries different metadata. This concept
 assumes the number of distinct outputs is known when the LFB class
 is defined. For each singleton output, the LFB class definition
 defines the types of frames and metadata the output emits.

 An output group, on the other hand, is used to model the case where
 a flow of similar packets with an identical set of metadata needs to
 be split into multiple paths. In this case, the number of such paths
 is not known when the LFB class is defined because it is not an
 inherent property of the LFB class. An output group consists of a
 number of outputs, called the output instances of the group, where
 all output instances share the same frame and metadata emission
 definitions (see Figure 3.c). Each output instance can connect to a
 different downstream LFB, just as if they were separate singleton
 outputs, but the number of output instances can differ between LFB
 instances of the same LFB class. The class definition may include a
 lower and/or an upper limit on the number of outputs. In addition,
 for configurable FEs, the FE capability information may define
 further limits on the number of instances in specific output groups
 for certain LFBs. The actual number of output instances in a group
 is an attribute of the LFB instance, which is read-only for static
 topologies, and read-write for dynamic topologies. The output
 instances in a group are numbered sequentially, from 0 to N-1, and
 are addressable from within the LFB. The LFB has a built-in
 mechanism to select one specific output instance for each packet.
 This mechanism is described in the textual definition of the class
 and is typically configurable via some attributes of the LFB.

 For example, consider a re-director LFB, whose sole purpose is to
 direct packets to one of N downstream paths based on one of the
 metadata associated with each arriving packet. Such an LFB is
 fairly versatile and can be used in many different places in a
 topology. For example, a redirector can be used to divide the data
 path into an IPv4 and an IPv6 path based on a FRAMETYPE metadata
 (N=2), or to fork into color specific paths after metering using the
 COLOR metadata (red, yellow, green; N=3), etc.

 Using an output group in the above LFB class provides the desired
 flexibility to adapt each instance of this class to the required
 operation. The metadata to be used as a selector for the output
 instance is a property of the LFB. For each packet, the value of
 the specified metadata may be used as a direct index to the output
 instance. Alternatively, the LFB may have a configurable selector
 table that maps a metadata value to output instance.

 Yang, et al. Expires September 2006 [Page 15]

 Internet Draft ForCES FE Model March 2006

 Note that other LFBs may also use the output group concept to build
 in similar adaptive forking capability. For example, a classifier
 LFB with one input and N outputs can be defined easily by using the
 output group concept. Alternatively, a classifier LFB with one
 singleton output in combination with an explicit N-output re-
 director LFB models the same processing behavior. The decision of
 whether to use the output group model for a certain LFB class is
 left to the LFB class designers.

 The model allows the output group to be combined with other
 singleton output(s) in the same class, as demonstrated in Figure
 3.d. The LFB here has two types of outputs, OUT, for normal packet
 output, and EXCEPTIONOUT for packets that triggered some exception.
 The normal OUT has multiple instances, thus, it is an output group.

 In summary, the LFB class may define one output, multiple singleton
 outputs, one or more output groups, or a combination thereof.
 Multiple singleton outputs should be used when the LFB must provide
 for forking the datapath, and at least one of the following
 conditions hold:

 . the number of downstream directions are inherent from the
 definition of the class and hence fixed;
 . the frame type and set of metadata emitted on any of the
 outputs are substantially different from what is emitted on
 the other outputs (i.e., they cannot share frame-type and
 metadata definitions);

 An output group is appropriate when the LFB must provide for forking
 the datapath, and at least one of the following conditions hold:

 . the number of downstream directions is not known when the LFB
 class is defined;
 . the frame type and set of metadata emitted on these outputs are
 sufficiently similar or ideally identical, such they can share
 the same output definition.

 3.2.2. LFB Inputs

 An LFB input is a conceptual port on an LFB where the LFB can
 receive information from other LFBs. The information is typically a
 packet and associated metadata, although in some cases it might
 consist of only metadata, without any packet data.

 For LFB instances that receive packets from more than one other LFB
 instance (fan-in). There are three ways to model fan-in, all
 supported by the LFB model and can be combined in the same LFB:

 . Implicit multiplexing via a single input

 Yang, et al. Expires September 2006 [Page 16]

 Internet Draft ForCES FE Model March 2006

 . Explicit multiplexing via multiple singleton inputs
 . Explicit multiplexing via a group of inputs (input group)

 The simplest form of multiplexing uses a singleton input (Figure
 4.a). Most LFBs will have only one singleton input. Multiplexing
 into a single input is possible because the model allows more than
 one LFB output to connect to the same LFB input. This property
 applies to any LFB input without any special provisions in the LFB
 class. Multiplexing into a single input is applicable when the
 packets from the upstream LFBs are similar in frame-type and
 accompanying metadata, and require similar processing. Note that
 this model does not address how potential contention is handled when
 multiple packets arrive simultaneously. If contention handling
 needs to be explicitly modeled, one of the other two modeling
 solutions must be used.

 The second method to model fan-in uses individually defined
 singleton inputs (Figure 4.b). This model is meant for situations
 where the LFB needs to handle distinct types of packet streams,
 requiring input-specific handling inside the LFB, and where the
 number of such distinct cases is known when the LFB class is
 defined. For example, a Layer 2 Decapsulation/Encapsulation LFB may
 have two inputs, one for receiving Layer 2 frames for decapsulation,
 and one for receiving Layer 3 frames for encapsulation. This LFB
 type expects different frames (L2 vs. L3) at its inputs, each with
 different sets of metadata, and would thus apply different
 processing on frames arriving at these inputs. This model is
 capable of explicitly addressing packet contention by defining how
 the LFB class handles the contending packets.

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ v | |
 | LFB Y +---+-->|input Meter LFB |
 +--------------+ ^ | |
 | | |
 +--------------+ | | |
 | LFB Z |---+ | |
 +--------------+ +------------------------+

 (a) An LFB connects with multiple upstream LFBs via a single input.

 Yang, et al. Expires September 2006 [Page 17]

 Internet Draft ForCES FE Model March 2006

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ +-->|layer2 |
 +--------------+ | |
 | LFB Y +------>|layer3 LFB |
 +--------------+ +------------------------+

 (b) An LFB connects with multiple upstream LFBs via two separate
 singleton inputs.

 +--------------+ +------------------------+
 | Queue LFB #1 +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ +-->|in:0 \ |
 | Queue LFB #2 +------>|in:1 | input group |
 +--------------+ |... | |
 +-->|in:N-1 / |
 ... | | |
 +--------------+ | | |
 | Queue LFB #N |---+ | Scheduler LFB |
 +--------------+ +------------------------+

 (c) A Scheduler LFB uses an input group to differentiate which queue
 LFB packets are coming from.

 Figure 3. Input modeling concepts (examples).

 The third method to model fan-in uses the concept of an input group.
 The concept is similar to the output group introduced in the
 previous section, and is depicted in Figure 4.c. An input group
 consists of a number of input instances, all sharing the properties
 (same frame and metadata expectations). The input instances are
 numbered from 0 to N-1. From the outside, these inputs appear as
 normal inputs, i.e., any compatible upstream LFB can connect its
 output to one of these inputs. When a packet is presented to the
 LFB at a particular input instance, the index of the input where the
 packet arrived is known to the LFB and this information may be used
 in the internal processing. For example, the input index can be
 used as a table selector, or as an explicit precedence selector to
 resolve contention. As with output groups, the number of input
 instances in an input group is not defined in the LFB class.
 However, the class definition may include restrictions on the range
 of possible values. In addition, if an FE supports configurable
 topologies, it may impose further limitations on the number of
 instances for a particular port group(s) of a particular LFB class.
 Within these limitations, different instances of the same class may
 have a different number of input instances. The number of actual

 input instances in the group is an attribute of the LFB class, which

 Yang, et al. Expires September 2006 [Page 18]

 Internet Draft ForCES FE Model March 2006

 is read-only for static topologies, and is read-write for
 configurable topologies.

 As an example for the input group, consider the Scheduler LFB
 depicted in Figure 3.c. Such an LFB receives packets from a number
 of Queue LFBs via a number of input instances, and uses the input
 index information to control contention resolution and scheduling.

 In summary, the LFB class may define one input, multiple singleton
 inputs, one or more input groups, or a combination thereof. Any
 input allows for implicit multiplexing of similar packet streams via
 connecting multiple outputs to the same input. Explicit multiple
 singleton inputs are useful when either the contention handling must
 be handled explicitly, or when the LFB class must receive and
 process a known number of distinct types of packet streams. An
 input group is suitable when contention handling must be modeled
 explicitly, but the number of inputs are not inherent from the class
 (and hence is not known when the class is defined), or when it is
 critical for LFB operation to know exactly on which input the packet
 was received.

 3.2.3. Packet Type

 When LFB classes are defined, the input and output packet formats
 (e.g., IPv4, IPv6, Ethernet, etc.) MUST be specified. These are the
 types of packets a given LFB input is capable of receiving and
 processing, or a given LFB output is capable of producing. This
 requires distinct packet types be uniquely labeled with a symbolic
 name and/or ID.

 Note that each LFB has a set of packet types that it operates on,
 but does not care whether the underlying implementation is passing a
 greater portion of the packets. For example, an IPv4 LFB might only
 operate on IPv4 packets, but the underlying implementation may or
 may not be stripping the L2 header before handing it over -- whether
 that is happening or not is opaque to the CE.

 3.2.4. Metadata

 Metadata is the per-packet state that is passed from one LFB to
 another. The metadata is passed with the packet to assist subsequent
 LFBs to process that packet. The ForCES model captures how the per-
 packet state information is propagated from one LFB to other LFBs.
 Practically, such metadata propagation can happen within one FE, or
 cross the FE boundary between two interconnected FEs. We believe
 that the same metadata model can be used for either situation;
 however, our focus here is for intra-FE metadata.

 Yang, et al. Expires September 2006 [Page 19]

 Internet Draft ForCES FE Model March 2006

 3.2.4.1. Metadata Vocabulary

 Metadata has historically been understood to mean "data about data".
 While this definition is a start, it is inadequate to describe the
 multiple forms of metadata, which may appear within a complex
 network element. The discussion here categorizes forms of metadata
 by two orthogonal axes.

 The first axis is "internal" versus "external", which describes
 where the metadata exists in the network model or implementation.
 For example, a particular vendor implementation of an IPv4 forwarder
 may make decisions inside of a chip that are not visible externally.
 Those decisions are metadata for the packet that is "internal" to
 the chip. When a packet is forwarded out of the chip, it may be
 marked with a traffic management header. That header, which is
 metadata for the packet, is visible outside of the chip, and is
 therefore called "external" metadata.

 The second axis is "implicit" versus "expressed", which specifies
 whether or not the metadata has a visible physical representation.
 For example, the traffic management header described in the previous
 paragraph may be represented as a series of bits in some format, and
 that header is associated with the packet. Those bits have physical
 representation, and are therefore "expressed" metadata. If the
 metadata does not have a physical representation, it is called
 "implicit" metadata. This situation occurs, for example, when a
 particular path through a network device is intended to be traversed
 only by particular kinds of packets, such as an IPv4 router. An
 implementation may not mark every packet along this path as being of
 type "IPv4", but the intention of the designers is that every packet
 is of that type. This understanding can be thought of as metadata
 about the packet, which is implicitly attached to the packet through
 the intent of the designers.

 In the ForCES model, we do not discuss or represent metadata
 "internal" to vendor implementations of LFBs. Our focus is solely
 on metadata "external" to the LFBs, and therefore visible in the
 ForCES model. The metadata discussed within this model may, or may
 not be visible outside of the particular FE implementing the LFB
 model. In this regard, the scope of the metadata within ForCES is
 very narrowly defined.

 Note also that while we define metadata within this model, it is
 only a model. There is no requirement that vendor implementations
 of ForCES use the exact metadata representations described in this
 document. The only implementation requirement is that vendors
 implement the ForCES protocol, not the model.

 Yang, et al. Expires September 2006 [Page 20]

 Internet Draft ForCES FE Model March 2006

 3.2.4.2. Metadata lifecycle within the ForCES model

 Each metadata can be conveniently modeled as a <label, value> pair,
 where the label identifies the type of information, (e.g., "color"),
 and its value holds the actual information (e.g., "red"). The tag
 here is shown as a textual label, but it can be replaced or
 associated with a unique numeric value (identifier).

 The metadata life-cycle is defined in this model using three types
 of events: "write", "read" and "consume". The first "write"
 implicitly creates and initializes the value of the metadata, and
 hence starts the life-cycle. The explicit "consume" event
 terminates the life-cycle. Within the life-cycle, that is, after a
 "write" event, but before the next "consume" event, there can be an
 arbitrary number of "write" and "read" events. These "read" and
 "write" events can be mixed in an arbitrary order within the life-
 cycle. Outside of the life-cycle of the metadata, that is, before
 the first "write" event, or between a "consume" event and the next
 "write" event, the metadata should be regarded non-existent or non-
 initialized. Thus, reading a metadata outside of its life-cycle is
 considered an error.

 To ensure inter-operability between LFBs, the LFB class
 specification must define what metadata the LFB class "reads" or
 "consumes" on its input(s) and what metadata it "produces" on its
 output(s). For maximum extensibility, this definition should
 neither specify which LFBs the metadata is expected to come from for
 a consumer LFB, nor which LFBs are expected to consume metadata for
 a given producer LFB.

 While it is important to define the metadata types passing between
 LFBs, it is not appropriate to define the exact encoding mechanism
 used by LFBs for that metadata. Different implementations are
 allowed to use different encoding mechanisms for metadata. For
 example, one implementation may store metadata in registers or
 shared memory, while another implementation may encode metadata in-
 band as a preamble in the packets. In order to allow the CE to
 understand and control the meta-data related operations, the model
 represents each metadata tag as a 32-bit integer. Each LFB
 definition indicates in its metadata declarations the 32-bit value
 associated with a given metadata tag. Ensuring consistency of usage
 of tags is important, and outside the scope of the model.

 At any link between two LFBs, the packet is marked with a finite set
 of active metadata, where active means the metadata is within its
 life-cycle. There are two corollaries of this model:

 1. No un-initialized metadata exists in the model.

 Yang, et al. Expires September 2006 [Page 21]

 Internet Draft ForCES FE Model March 2006

 2. No more than one occurrence of each metadata tag can be
 associated with a packet at any given time.

 3.2.4.3. LFB Operations on Metadata

 When the packet is processed by an LFB (i.e., between the time it is
 received and forwarded by the LFB), the LFB may perform read, write
 and/or consume operations on any active metadata associated with the
 packet. If the LFB is considered to be a black box, one of the
 following operations is performed on each active metadata.

 . IGNORE: ignores and forwards the metadata
 . READ: reads and forwards the metadata
 . READ/RE-WRITE: reads, over-writes and forwards the metadata
 . WRITE: writes and forwards the metadata
 (can also be used to create new metadata)
 . READ-AND-CONSUME: reads and consumes the metadata
 . CONSUME consumes metadata without reading

 The last two operations terminate the life-cycle of the metadata,
 meaning that the metadata is not forwarded with the packet when the
 packet is sent to the next LFB.

 In our model, a new metadata is generated by an LFB when the LFB
 applies a WRITE operation to a metadata type that was not present
 when the packet was received by the LFB. Such implicit creation may
 be unintentional by the LFB, that is, the LFB may apply the WRITE
 operation without knowing or caring if the given metadata existed or
 not. If it existed, the metadata gets over-written; if it did not
 exist, the metadata is created.

 For LFBs that insert packets into the model, WRITE is the only
 meaningful metadata operation.

 For LFBs that remove the packet from the model, they may either
 READ-AND-CONSUME (read) or CONSUME (ignore) each active metadata
 associated with the packet.

 3.2.4.4. Metadata Production and Consumption

 For a given metadata on a given packet path, there MUST be at least
 one producer LFB that creates that metadata and SHOULD be at least
 one consumer LFB that needs that metadata. In this model, the
 producer and consumer LFBs of a metadata are not required to be
 adjacent. In addition, there may be multiple producers and
 consumers for the same metadata. When a packet path involves
 multiple producers of the same metadata, then subsequent producers
 overwrite that metadata value.

 Yang, et al. Expires September 2006 [Page 22]

 Internet Draft ForCES FE Model March 2006

 The metadata that is produced by an LFB is specified by the LFB
 class definition on a per output port group basis. A producer may
 always generate the metadata on the port group, or may generate it
 only under certain conditions. We call the former an
 "unconditional" metadata, whereas the latter is a "conditional"
 metadata. In the case of conditional metadata, it should be
 possible to determine from the definition of the LFB when a
 "conditional" metadata is produced.
 The consumer behavior of an LFB, that is, the metadata that the LFB
 needs for its operation, is defined in the LFB class definition on a
 per input port group basis. An input port group may "require" a
 given metadata, or may treat it as "optional" information. In the
 latter case, the LFB class definition MUST explicitly define what
 happens if an optional metadata is not provided. One approach is to
 specify a default value for each optional metadata, and assume that
 the default value is used if the metadata is not provided with the
 packet.

 When a consumer LFB requires a given metadata, it has dependencies
 on its up-stream LFBs. That is, the consumer LFB can only function
 if there is at least one producer of that metadata and no
 intermediate LFB consumes the metadata.

 The model should expose these inter-dependencies. Furthermore, it
 should be possible to take inter-dependencies into consideration
 when constructing LFB topologies, and also that the dependencies can
 be verified when validating topologies.

 For extensibility reasons, the LFB specification SHOULD define what
 metadata the LFB requires without specifying which LFB(s) it expects
 a certain metadata to come from. Similarly, LFBs SHOULD specify
 what metadata they produce without specifying which LFBs the
 metadata is meant for.

 When specifying the metadata tags, some harmonization effort must be
 made so that the producer LFB class uses the same tag as its
 intended consumer(s), or vice versa.

 3.2.4.5. Fixed, Variable and Configurable Tag

 When the produced metadata is defined for a given LFB class, most
 metadata will be specified with a fixed tag. For example, a Rate
 Meter LFB will always produce the "Color" metadata.

 A small subset of LFBs need the capability to produce one or more of
 their metadata with tags that are not fixed in the LFB class
 definition, but instead can be selected per LFB instance. An
 example of such an LFB class is a Generic Classifier LFB. We call

 this capability "variable tag metadata production". If an LFB

 Yang, et al. Expires September 2006 [Page 23]

 Internet Draft ForCES FE Model March 2006

 produces metadata with a variable tag, the corresponding LFB
 attribute, called the tag selector, specifies the tag for each such
 metadata. This mechanism improves the versatility of certain multi-
 purpose LFB classes, since it allows the same LFB class to be used
 in different topologies, producing the right metadata tags according
 to the needs of the topology. This selection of tags is variable in
 that the produced output may have any number of different tags. The
 meaning of the various tags is still defined by the metadata
 declaration associated with the LFB class definition. This also
 allows the CE to correctly set the tag values in the table to match
 the declared meanings of the metadata tag values.

 Depending on the capability of the FE, the tag selector can be
 either a read-only or a read-write attribute. If the selector is
 read-only, the tag cannot be modified by the CE. If the selector is
 read-write, the tag can be configured by the CE, hence we call this
 "configurable tag metadata production." Note that using this
 definition, configurable tag metadata production is a subset of
 variable tag metadata production.

 Similar concepts can be introduced for the consumer LFBs to satisfy
 different metadata needs. Most LFB classes will specify their
 metadata needs using fixed metadata tags. For example, a Next Hop
 LFB may always require a "NextHopId" metadata; but the Redirector
 LFB may need a "ClassID" metadata in one instance, and a
 "ProtocolType" metadata in another instance as a basis for selecting
 the right output port. In this case, an LFB attribute is used to
 provide the required metadata tag at run-time. This metadata tag
 selector attribute may be read-only or read-write, depending on the
 capabilities of the LFB instance and the FE.

 3.2.4.6. Metadata Usage Categories

 Depending on the role and usage of a metadata, various amounts of
 encoding information MUST be provided when the metadata is defined,
 where some cases offer less flexibility in the value selection than
 others.

 There are three types of metadata related to metadata usage:

 . Relational (or binding) metadata
 . Enumerated metadata
 . Explicit/external value metadata

 The purpose of the relational metadata is to refer in one LFB
 instance (producer LFB) to a "thing" in another downstream LFB
 instance (consumer LFB), where the "thing" is typically an entry in
 a table attribute of the consumer LFB.

 Yang, et al. Expires September 2006 [Page 24]

 Internet Draft ForCES FE Model March 2006

 For example, the Prefix Lookup LFB executes an LPM search using its
 prefix table and resolves to a next-hop reference. This reference
 needs to be passed as metadata by the Prefix Lookup LFB (producer)
 to the Next Hop LFB (consumer), and must refer to a specific entry
 in the next-hop table within the consumer.

 Expressing and propagating such a binding relationship is probably
 the most common usage of metadata. One or more objects in the
 producer LFB are bound to a specific object in the consumer LFB.
 Such a relationship is established by the CE explicitly by properly
 configuring the attributes in both LFBs. Available methods include
 the following:

 The binding may be expressed by tagging the involved objects in both
 LFBs with the same unique, but otherwise arbitrary, identifier. The
 value of the tag is explicitly configured by the CE by writing the
 value into both LFBs, and this value is also carried by the metadata
 between the LFBs.

 Another way of setting up binding relations is to use a naturally
 occurring unique identifier of the consumer's object as a reference
 and as a value of the metadata (e.g., the array index of a table
 entry). In this case, the index is either read or inferred by the
 CE by communicating with the consumer LFB. Once the CE obtains the
 index, it needs to write it into the producer LFB to establish the
 binding.

 Important characteristics of the binding usage of metadata are:

 . The value of the metadata shows up in the CE-FE communication
 for both the consumer and the producer. That is, the metadata
 value MUST be carried over the ForCES protocol. Using the
 tagging technique, the value is written to both LFBs. Using
 the other technique, the value is written to only the producer
 LFB and may be READ from the consumer LFB.

 . The metadata value is irrelevant to the CE, the binding is
 simply expressed by using the same value at the consumer and
 producer LFBs.

 . Hence the metadata definition is not required to include value
 assignments. The only exception is when some special value(s)
 of the metadata must be reserved to convey special events.
 Even though these special cases must be defined with the
 metadata specification, their encoded values can be selected
 arbitrarily. For example, for the Prefix Lookup LFB example, a
 special value may be reserved to signal the NO-MATCH case, and
 the value of zero may be assigned for this purpose.

 Yang, et al. Expires September 2006 [Page 25]

 Internet Draft ForCES FE Model March 2006

 The second class of metadata is the enumerated type. An example is
 the "Color" metadata that is produced by a Meter LFB. As the name
 suggests, enumerated metadata has a relatively small number of
 possible values, each with a specific meaning. All possible cases
 must be enumerated when defining this class of metadata. Although a
 value encoding must be included in the specification, the actual
 values can be selected arbitrarily (e.g., <Red=0, Yellow=1, Green=2>
 and <Red=3, Yellow=2, Green 1> would be both valid encodings, what
 is important is that an encoding is specified).

 The value of the enumerated metadata may or may not be conveyed via
 the ForCES protocol between the CE and FE.

 The third class of metadata is the explicit type. This refers to
 cases where the metadata value is explicitly used by the consumer
 LFB to change some packet header fields. In other words, the value
 has a direct and explicit impact on some field and will be visible
 externally when the packet leaves the NE. Examples are: TTL
 increment given to a Header Modifier LFB, and DSCP value for a
 Remarker LFB. For explicit metadata, the value encoding MUST be
 explicitly provided in the metadata definition. The values cannot
 be selected arbitrarily and should conform to what is commonly
 expected. For example, a TTL increment metadata should be encoded
 as zero for the no increment case, one for the single increment
 case, etc. A DSCP metadata should use 0 to encode DSCP=0, 1 to
 encode DSCP=1, etc.

 3.2.5. LFB Events

 During operation, various conditions may occur that can be detected
 by LFBs. Examples range from link failure or restart to timer
 expiration in special purpose LFBs. The CE may wish to be notified
 of the occurrence of such events. The PL protocol provides for such
 notifications. The LFB definition includes the necessary
 declarations of events. The declarations include identifiers
 necessary for subscribing to events (so that the CE can indicate to
 the FE which events it wishes to receive) and to indicate in event
 notification messages which event is being reported.

 The declaration of an event defines a condition that an FE can
 detect, and may report. From a conceptual point of view, event
 processing is split into triggering (the detection of the condition)
 and reporting (the generation of the notification of the event.) In
 between these two conceptual points there is event filtering.
 Properties associated with the event in the LFB instance can define
 filtering conditions to suppress the reporting of that event. The
 model thus describes event processing as if events always occur, and
 filtering may suppress reporting. Implementations may function in

 this manner, or may have more complex logic that eliminates some

 Yang, et al. Expires September 2006 [Page 26]

 Internet Draft ForCES FE Model March 2006

 event processing if the reporting would be suppressed. Any
 implementation producing an effect equivalent to the model
 description is valid.

 3.2.6. LFB Element Properties

 LFBs are made up of elements, containing the information that the CE
 needs to see and / or change about the functioning of the LFB.
 These elements, as described in detail elsewhere, may be basic
 values, complex structures, or tables (containing values,
 structures, or tables.) Some of these elements are optional. Some
 elements may be readable or writeable at the discretion of the FE
 implementation. The CE needs to know these properties.
 Additionally, certain kinds of elements (arrays, aliases, and events
 as of this writing) have additional property information that the CE
 may need to read or write. This model defines the structure of the
 property information for all defined data types.

 The reports with events are designed to allow for the common,
 closely related information that the CE can be strongly expected to
 need to react to the event. It is not intended to carry information
 the CE already has, nor large volumes of information, nor
 information related in complex fashions.

 3.2.7. LFB Versioning

 LFB class versioning is a method to enable incremental evolution of
 LFB classes. In general, an FE is not allowed to contain an LFB
 instance for more than one version of a particular class.
 Inheritance (discussed next in Section 3.2.6) has special rules. If
 an FE datapath model containing an LFB instance of a particular
 class C also simultaneously contains an LFB instance of a class C'
 inherited from class C; C could have a different version than C'.

 LFB class versioning is supported by requiring a version string in
 the class definition. CEs may support multiple versions of a
 particular LFB class to provide backward compatibility, but FEs MUST
 NOT support more than one version of a particular class.

 3.2.8. LFB Inheritance

 LFB class inheritance is supported in the FE model as a method to
 define new LFB classes. This also allows FE vendors to add vendor-
 specific extensions to standardized LFBs. An LFB class
 specification MUST specify the base class and version number it
 inherits from (the default is the base LFB class). Multiple-
 inheritance is not allowed, however, to avoid unnecessary
 complexity.

 Yang, et al. Expires September 2006 [Page 27]

 Internet Draft ForCES FE Model March 2006

 Inheritance should be used only when there is significant reuse of
 the base LFB class definition. A separate LFB class should be
 defined if little or no reuse is possible between the derived and
 the base LFB class.

 An interesting issue related to class inheritance is backward
 compatibility between a descendant and an ancestor class. Consider
 the following hypothetical scenario where a standardized LFB class
 "L1" exists. Vendor A builds an FE that implements LFB "L1" and
 vendor B builds a CE that can recognize and operate on LFB "L1".
 Suppose that a new LFB class, "L2", is defined based on the existing
 "L1" class by extending its capabilities incrementally. Let us
 examine the FE backward compatibility issue by considering what
 would happen if vendor B upgrades its FE from "L1" to "L2" and
 vendor C's CE is not changed. The old L1-based CE can interoperate
 with the new L2-based FE if the derived LFB class "L2" is indeed
 backward compatible with the base class "L1".

 The reverse scenario is a much less problematic case, i.e., when CE
 vendor B upgrades to the new LFB class "L2", but the FE is not
 upgraded. Note that as long as the CE is capable of working with
 older LFB classes, this problem does not affect the model; hence we
 will use the term "backward compatibility" to refer to the first
 scenario concerning FE backward compatibility.

 Backward compatibility can be designed into the inheritance model by
 constraining LFB inheritance to require the derived class be a
 functional superset of the base class (i.e. the derived class can
 only add functions to the base class, but not remove functions).
 Additionally, the following mechanisms are required to support FE
 backward compatibility:

 1. When detecting an LFB instance of an LFB type that is unknown
 to the CE, the CE MUST be able to query the base class of such
 an LFB from the FE.
 2. The LFB instance on the FE SHOULD support a backward
 compatibility mode (meaning the LFB instance reverts itself
 back to the base class instance), and the CE SHOULD be able to
 configure the LFB to run in such a mode.

 3.3. FE Datapath Modeling

 Packets coming into the FE from ingress ports generally flow through
 multiple LFBs before leaving out of the egress ports. How an FE
 treats a packet depends on many factors, such as type of the packet
 (e.g., IPv4, IPv6 or MPLS), actual header values, time of arrival,
 etc. The result of LFB processing may have an impact on how the
 packet is to be treated in downstream LFBs. This differentiation of

 packet treatment downstream can be conceptualized as having

 Yang, et al. Expires September 2006 [Page 28]

 Internet Draft ForCES FE Model March 2006

 alternative datapaths in the FE. For example, the result of a 6-
 tuple classification performed by a classifier LFB could control
 which rate meter is applied to the packet by a rate meter LFB in a
 later stage in the datapath.

 LFB topology is a directed graph representation of the logical
 datapaths within an FE, with the nodes representing the LFB
 instances and the directed link depicting the packet flow direction
 from one LFB to the next. Section 3.3.1 discusses how the FE
 datapaths can be modeled as LFB topology; while Section 3.3.2
 focuses on issues related to LFB topology reconfiguration.

 3.3.1. Alternative Approaches for Modeling FE Datapaths

 There are two basic ways to express the differentiation in packet
 treatment within an FE, one represents the datapath directly and
 graphically (topological approach) and the other utilizes metadata
 (the encoded state approach).

 . Topological Approach

 Using this approach, differential packet treatment is expressed by
 splitting the LFB topology into alternative paths. In other
 words, if the result of an LFB operation controls how the packet
 is further processed, then such an LFB will have separate output
 ports, one for each alternative treatment, connected to separate
 sub-graphs, each expressing the respective treatment downstream.

 . Encoded State Approach

 An alternate way of expressing differential treatment is by using
 metadata. The result of the operation of an LFB can be encoded in
 a metadata, which is passed along with the packet to downstream
 LFBs. A downstream LFB, in turn, can use the metadata and its
 value (e.g., as an index into some table) to determine how to
 treat the packet.

 Theoretically, either approach could substitute for the other, so
 one could consider using a single pure approach to describe all
 datapaths in an FE. However, neither model by itself results in the
 best representation for all practically relevant cases. For a given
 FE with certain logical datapaths, applying the two different
 modeling approaches will result in very different looking LFB
 topology graphs. A model using only the topological approach may
 require a very large graph with many links or paths, and nodes
 (i.e., LFB instances) to express all alternative datapaths. On the
 other hand, a model using only the encoded state model would be
 restricted to a string of LFBs, which is not an intuitive way to
 describe different datapaths (such as MPLS and IPv4). Therefore, a

 Yang, et al. Expires September 2006 [Page 29]

 Internet Draft ForCES FE Model March 2006

 mix of these two approaches will likely be used for a practical
 model. In fact, as we illustrate below, the two approaches can be
 mixed even within the same LFB.

 Using a simple example of a classifier with N classification outputs
 followed by other LFBs, Figure 5(a) shows what the LFB topology
 looks like when using the pure topological approach. Each output
 from the classifier goes to one of the N LFBs where no metadata is
 needed. The topological approach is simple, straightforward and
 graphically intuitive. However, if N is large and the N nodes
 following the classifier (LFB#1, LFB#2, ..., LFB#N) all belong to
 the same LFB type (e.g., meter), but each has its own independent
 attributes, the encoded state approach gives a much simpler topology
 representation, as shown in Figure 5(b). The encoded state approach
 requires that a table of N rows of meter attributes is provided in
 the Meter node itself, with each row representing the attributes for
 one meter instance. A metadata M is also needed to pass along with
 the packet P from the classifier to the meter, so that the meter can
 use M as a look-up key (index) to find the corresponding row of the
 attributes that should be used for any particular packet P.

 What if those N nodes (LFB#1, LFB#2, ..., LFB#N) are not of the same
 type? For example, if LFB#1 is a queue while the rest are all
 meters, what is the best way to represent such datapaths? While it
 is still possible to use either the pure topological approach or the
 pure encoded state approach, the natural combination of the two
 appears to be the best option. Figure 5(c) depicts two different
 functional datapaths using the topological approach while leaving
 the N-1 meter instances distinguished by metadata only, as shown in
 Figure 5(c).
 +----------+
 P | LFB#1 |
 +--------->|(Attrib-1)|
 +-------------+ | +----------+
 | 1|------+ P +----------+
 | 2|---------------->| LFB#2 |
 | classifier 3| |(Attrib-2)|
 | ...|... +----------+
 | N|------+ ...
 +-------------+ | P +----------+
 +--------->| LFB#N |
 |(Attrib-N)|
 +----------+

 5(a) Using pure topological approach

 Yang, et al. Expires September 2006 [Page 30]

 Internet Draft ForCES FE Model March 2006

 +-------------+ +-------------+
 | 1| | Meter |
 | 2| (P, M) | (Attrib-1) |
 | 3|---------------->| (Attrib-2) |
 | ...| | ... |
 | N| | (Attrib-N) |
 +-------------+ +-------------+

 5(b) Using pure encoded state approach to represent the LFB
 topology in 5(a), if LFB#1, LFB#2, ..., and LFB#N are of the
 same type (e.g., meter).

 +-------------+
 +-------------+ (P, M) | queue |
 | 1|------------->| (Attrib-1) |
 | 2| +-------------+
 | 3| (P, M) +-------------+
 | ...|------------->| Meter |
 | N| | (Attrib-2) |
 +-------------+ | ... |
 | (Attrib-N) |
 +-------------+

 5(c) Using a combination of the two, if LFB#1, LFB#2, ..., and
 LFB#N are of different types (e.g., queue and meter).

 Figure 5. An example of how to model FE datapaths

 From this example, we demonstrate that each approach has a distinct
 advantage depending on the situation. Using the encoded state
 approach, fewer connections are typically needed between a fan-out
 node and its next LFB instances of the same type because each packet
 carries metadata the following nodes can interpret and hence invoke
 a different packet treatment. For those cases, a pure topological
 approach forces one to build elaborate graphs with many more
 connections and often results in an unwieldy graph. On the other
 hand, a topological approach is the most intuitive for representing
 functionally different datapaths.

 For complex topologies, a combination of the two is the most
 flexible. A general design guideline is provided to indicate which
 approach is best used for a particular situation. The topological
 approach should primarily be used when the packet datapath forks to
 distinct LFB classes (not just distinct parameterizations of the
 same LFB class), and when the fan-outs do not require changes, such
 as adding/removing LFB outputs, or require only very infrequent
 changes. Configuration information that needs to change frequently
 should be expressed by using the internal attributes of one or more

 LFBs (and hence using the encoded state approach).

 Yang, et al. Expires September 2006 [Page 31]

 Internet Draft ForCES FE Model March 2006

 +---+
 | |
 +----------+ V +----------+ +------+ |
 | | | | |if IP-in-IP| | |
 ---->| ingress |->+----->|classifier|---------->|Decap.|---->---+
 | ports | | |----+ | |
 +----------+ +----------+ |others+------+
 |
 V
 (a) The LFB topology with a logical loop

 +-------+ +-----------+ +------+ +-----------+
 | | | |if IP-in-IP | | | |
 --->|ingress|-->|classifier1|----------->|Decap.|-->+classifier2|->
 | ports | | |----+ | | | |
 +-------+ +-----------+ |others +------+ +-----------+
 |
 V
 The LFB topology without the loop utilizing two independent
 classifier instances.

 Figure 6. An LFB topology example.

 It is important to point out that the LFB topology described here is
 the logical topology, not the physical topology of how the FE
 hardware is actually laid out. Nevertheless, the actual
 implementation may still influence how the functionality is mapped
 to the LFB topology. Figure 6 shows one simple FE example. In this
 example, an IP-in-IP packet from an IPSec application like VPN may
 go to the classifier first and have the classification done based on
 the outer IP header; upon being classified as an IP-in-IP packet,
 the packet is then sent to a decapsulator to strip off the outer IP
 header, followed by a classifier again to perform classification on
 the inner IP header. If the same classifier hardware or software is
 used for both outer and inner IP header classification with the same
 set of filtering rules, a logical loop is naturally present in the
 LFB topology, as shown in Figure 6(a). However, if the
 classification is implemented by two different pieces of hardware or
 software with different filters (i.e., one set of filters for the
 outer IP header and another set for the inner IP header), then it is
 more natural to model them as two different instances of classifier
 LFB, as shown in Figure 6(b).

 To distinguish between multiple instances of the same LFB class,
 each LFB instance has its own LFB instance ID. One way to encode
 the LFB instance ID is to encode it as x.y where x is the LFB class
 ID and y is the instance ID within each LFB class.

 Yang, et al. Expires September 2006 [Page 32]

 Internet Draft ForCES FE Model March 2006

 3.3.2. Configuring the LFB Topology

 While there is little doubt that an individual LFB must be
 configurable, the configurability question is more complicated for
 LFB topology. Since the LFB topology is really the graphic
 representation of the datapaths within an FE, configuring the LFB
 topology means dynamically changing the datapaths, including
 changing the LFBs along the datapaths on an FE (e.g., creating,
 instantiating or deleting LFBs) and setting up or deleting
 interconnections between outputs of upstream LFBs to inputs of
 downstream LFBs.

 Why would the datapaths on an FE ever change dynamically? The
 datapaths on an FE are set up by the CE to provide certain data
 plane services (e.g., DiffServ, VPN, etc.) to the Network Element's
 (NE) customers. The purpose of reconfiguring the datapaths is to
 enable the CE to customize the services the NE is delivering at run
 time. The CE needs to change the datapaths when the service
 requirements change, such as adding a new customer or when an
 existing customer changes their service. However, note that not all
 datapath changes result in changes in the LFB topology graph.
 Changes in the graph are dependent on the approach used to map the
 datapaths into LFB topology. As discussed in 3.3.1, the topological
 approach and encoded state approach can result in very different
 looking LFB topologies for the same datapaths. In general, an LFB
 topology based on a pure topological approach is likely to
 experience more frequent topology reconfiguration than one based on
 an encoded state approach. However, even an LFB topology based
 entirely on an encoded state approach may have to change the
 topology at times, for example, to bypass some LFBs or insert new
 LFBs. Since a mix of these two approaches is used to model the
 datapaths, LFB topology reconfiguration is considered an important
 aspect of the FE model.

 We want to point out that allowing a configurable LFB topology in
 the FE model does not mandate that all FEs are required to have this
 capability. Even if an FE supports configurable LFB topology, the
 FE may impose limitations on what can actually be configured.
 Performance-optimized hardware implementations may have zero or very
 limited configurability, while FE implementations running on network
 processors may provide more flexibility and configurability. It is
 entirely up to the FE designers to decide whether or not the FE
 actually implements reconfiguration and if so, how much. Whether a
 simple runtime switch is used to enable or disable (i.e., bypass)
 certain LFBs, or more flexible software reconfiguration is used, is
 implementation detail internal to the FE and outside of the scope of
 FE model. In either case, the CE(s) MUST be able to learn the FE's
 configuration capabilities. Therefore, the FE model MUST provide a

 mechanism for describing the LFB topology configuration capabilities

 Yang, et al. Expires September 2006 [Page 33]

 Internet Draft ForCES FE Model March 2006

 of an FE. These capabilities may include (see Section 5 for full
 details):

 . Which LFB classes the FE can instantiate
 . Maximum number of instances of the same LFB class that can be
 created
 . Any topological limitations, For example:
 o The maximum number of instances of the same class or any
 class that can be created on any given branch of the graph
 o Ordering restrictions on LFBs (e.g., any instance of LFB
 class A must be always downstream of any instance of LFB
 class B).

 Note that even when the CE is allowed to configure LFB topology for
 the FE, the CE is not expected to be able to interpret an arbitrary
 LFB topology and determine which specific service or application
 (e.g. VPN, DiffServ, etc.) is supported by the FE. However, once
 the CE understands the coarse capability of an FE, the CE MUST
 configure the LFB topology to implement the network service the NE
 is supposed to provide. Thus, the mapping the CE has to understand
 is from the high level NE service to a specific LFB topology, not
 the other way around. The CE is not expected to have the ultimate
 intelligence to translate any high level service policy into the
 configuration data for the FEs. However, it is conceivable that
 within a given network service domain, a certain amount of
 intelligence can be programmed into the CE to give the CE a general
 understanding of the LFBs involved to allow the translation from a
 high level service policy to the low level FE configuration to be
 done automatically. Note that this is considered an implementation
 issue internal to the control plane and outside the scope of the FE
 model. Therefore, it is not discussed any further in this draft.

 Yang, et al. Expires September 2006 [Page 34]

 Internet Draft ForCES FE Model March 2006

 +----------+ +-----------+
 ---->| Ingress |---->|classifier |--------------+
 | | |chip | |
 +----------+ +-----------+ |
 v
 +---+
 +--------+ | Network Processor |
 <----| Egress | | +------+ +------+ +-------+ |
 +--------+ | |Meter | |Marker| |Dropper| |
 ^ | +------+ +------+ +-------+ |
 | | |
 +----------+-------+ |
 | | |
 | +---------+ +---------+ +------+ +---------+ |
 | |Forwarder|<------|Scheduler|<--|Queue | |Counter | |
 | +---------+ +---------+ +------+ +---------+ |
 |--+

 (a) The Capability of the FE, reported to the CE

 +-----+ +-------+ +---+
 | A|--->|Queue1 |--------------------->| |
 ------>| | +-------+ | | +---+
 | | | | | | | | | |
 | | +-------+ +-------+ | | | |
 | B|--->|Meter1 |----->|Queue2 |------>| |->| |
 | | | | +-------+ | | | |
 | | | |--+ | | | |
 +-----+ +-------+ | +-------+ | | +---+
 classifier +-->|Dropper| | | IPv4
 +-------+ +---+ Fwd.
 Scheduler

 (b) One LFB topology as configured by the CE and
 accepted by the FE

 Yang, et al. Expires September 2006 [Page 35]

 Internet Draft ForCES FE Model March 2006

 Queue1
 +---+ +--+
 | A|------------------->| |--+
 +->| | | | |
 | | B|--+ +--+ +--+ +--+ | | | |
 | +---+ | | | | | |
 | Meter1 +->| |-->| | |
 | | | | | |
 | +--+ +--+ | Ipv4
 | Counter1 Dropper1 Queue2| +--+ Fwd.
 +---+ | +--+ +--->|A | +-+
 | A|---+ | |------>|B | | |
 ------>| B|------------------------------>| | +--->|C |->| |->
 | C|---+ +--+ | +->|D | | |
 | D|-+ | | | +--+ +-+
 +---+ | | +---+ Queue3| | Scheduler
 Classifier1 | | | A|------------> +--+ | |
 | +->| | | |--+ |
 | | B|--+ +--+ +-------->| | |
 | +---+ | | | | +--+ |
 | Meter2 +->| |-+ |
 | | | |
 | +--+ Queue4 |
 | Marker1 +--+ |
 +---------------------------->| |----+
 | |
 +--+
 (c) Another LFB topology as configured by the CE and
 accepted by the FE

 Figure 7. An example of configuring LFB topology.

 Figure 7 shows an example where a QoS-enabled router has several
 line cards that have a few ingress ports and egress ports, a
 specialized classification chip, a network processor containing
 codes for FE blocks like meter, marker, dropper, counter, queue,
 scheduler and Ipv4 forwarder. Some of the LFB topology is already
 fixed and has to remain static due to the physical layout of the
 line cards. For example, all of the ingress ports might be hard-
 wired into the classification chip so all packets flow from the
 ingress port into the classification engine. On the other hand, the
 LFBs on the network processor and their execution order are
 programmable. However, certain capacity limits and linkage
 constraints could exist between these LFBs. Examples of the capacity
 limits might be: 8 meters; 16 queues in one FE; the scheduler can
 handle at most up to 16 queues; etc. The linkage constraints might
 dictate that the classification engine may be followed by a meter,
 marker, dropper, counter, queue or IPv4 forwarder, but not a

 scheduler; queues can only be followed by a scheduler; a scheduler

 Yang, et al. Expires September 2006 [Page 36]

 Internet Draft ForCES FE Model March 2006

 must be followed by the IPv4 forwarder; the last LFB in the datapath
 before going into the egress ports must be the IPv4 forwarder, etc.

 Once the FE reports these capabilities and capacity limits to the
 CE, it is now up to the CE to translate the QoS policy into a
 desirable configuration for the FE. Figure 7(a) depicts the FE
 capability while 7(b) and 7(c) depict two different topologies that
 the CE may request the FE to configure. Note that both the ingress
 and egress are omitted in (b) and (c) to simplify the
 representation. The topology in 7(c) is considerably more complex
 than 7(b) but both are feasible within the FE capabilities, and so
 the FE should accept either configuration request from the CE.

 4. Model and Schema for LFB Classes

 The main goal of the FE model is to provide an abstract, generic,
 modular, implementation-independent representation of the FEs. This
 is facilitated using the concept of LFBs, which are instantiated
 from LFB classes. LFB classes and associated definitions will be
 provided in a collection of XML documents. The collection of these
 XML documents is called a LFB class library, and each document is
 called an LFB class library document (or library document, for
 short). Each of the library documents will conform to the schema
 presented in this section. The root element of the library document
 is the <LFBLibrary> element.

 It is not expected that library documents will be exchanged between
 FEs and CEs "over-the-wire". But the model will serve as an
 important reference for the design and development of the CEs
 (software) and FEs (mostly the software part). It will also serve
 as a design input when specifying the ForCES protocol elements for
 CE-FE communication.

 4.1. Namespace

 The LFBLibrary element and all of its sub-elements are defined in
 the following namespace:

http://ietf.org/forces/1.0/lfbmodel

 4.2. <LFBLibrary> Element

 The <LFBLibrary> element serves as a root element of all library
 documents. It contains one or more of the following main blocks:

 . <frameTypeDefs> for the frame declarations;
 . <dataTypeDefs> for defining common data types;
 . <metadataDefs> for defining metadata, and
 . <LFBClassDefs> for defining LFB classes.

http://ietf.org/forces/1.0/lfbmodel

 Yang, et al. Expires September 2006 [Page 37]

 Internet Draft ForCES FE Model March 2006

 Each block is optional, that is, one library document may contain
 only metadata definitions, another may contain only LFB class
 definitions, yet another may contain all of the above.

 In addition to the above main blocks, a library document can import
 other library documents if it needs to refer to definitions
 contained in the included document. This concept is similar to the
 "#include" directive in C. Importing is expressed by the <load>
 elements, which must precede all the above elements in the document.
 For unique referencing, each LFBLibrary instance document has a
 unique label defined in the "provide" attribute of the LFBLibrary
 element.

 The <LFBLibrary> element also includes an optional <description>
 element, which can be used to provide textual description about the
 library document.

 The following is a skeleton of a library document:

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 provides="this_library">

 <description>
 ...
 </description>

 <!-- Loading external libraries (optional) -->
 <load library="another_library"/>
 ...

 <!-- FRAME TYPE DEFINITIONS (optional) -->
 <frameTypeDefs>
 ...
 </frameTypeDefs>

 <!-- DATA TYPE DEFINITIONS (optional) -->
 <dataTypeDefs>
 ...
 </dataTypeDefs>

 <!-- METADATA DEFINITIONS (optional) -->
 <metadataDefs>
 ...

 Yang, et al. Expires September 2006 [Page 38]

 Internet Draft ForCES FE Model March 2006

 </metadataDefs>

 <! LFB CLASS DEFINITIONS (optional) -->
 <LFBCLassDefs>
 ...
 </LFBCLassDefs>
 </LFBLibrary>

 4.3. <load> Element

 This element is used to refer to another LFB library document.
 Similar to the "#include" directive in C, this makes the objects
 (metadata types, data types, etc.) defined in the referred library
 document available for referencing in the current document.

 The load element MUST contain the label of the library document to
 be included and may contain a URL to specify where the library can
 be retrieved. The load element can be repeated unlimited times.
 Three examples for the <load> elements:

 <load library="a_library"/>
 <load library="another_library" location="another_lib.xml"/>
 <load library="yetanother_library"
 location="http://www.petrimeat.com/forces/1.0/lfbmodel/lpm.xml"/>

 4.4. <frameDefs> Element for Frame Type Declarations

 Frame names are used in the LFB definition to define the types of
 frames the LFB expects at its input port(s) and emits at its output
 port(s). The <frameDefs> optional element in the library document
 contains one or more <frameDef> elements, each declaring one frame
 type.

 Each frame definition MUST contain a unique name (NMTOKEN) and a
 brief synopsis. In addition, an optional detailed description may
 be provided.

 Uniqueness of frame types MUST be ensured among frame types defined
 in the same library document and in all directly or indirectly
 included library documents.

 The following example defines two frame types:

 <frameDefs>
 <frameDef>
 <name>ipv4</name>
 <synopsis>IPv4 packet</synopsis>

 Yang, et al. Expires September 2006 [Page 39]

 Internet Draft ForCES FE Model March 2006

 <description>
 This frame type refers to an IPv4 packet.
 </description>
 </frameDef>
 <frameDef>
 <name>ipv6</name>
 <synopsis>IPv6 packet</synopsis>
 <description>
 This frame type refers to an IPv6 packet.
 </description>
 </frameDef>
 ...
 </frameDefs>

 4.5. <dataTypeDefs> Element for Data Type Definitions

 The (optional) <dataTypeDefs> element can be used to define commonly
 used data types. It contains one or more <dataTypeDef> elements,
 each defining a data type with a unique name. Such data types can be
 used in several places in the library documents, including:

 . Defining other data types
 . Defining attributes of LFB classes

 This is similar to the concept of having a common header file for
 shared data types.

 Each <dataTypeDef> element MUST contain a unique name (NMTOKEN), a
 brief synopsis, an optional longer description, and a type
 definition element. The name MUST be unique among all data types
 defined in the same library document and in any directly or
 indirectly included library documents. For example:

 <dataTypeDefs>
 <dataTypeDef>
 <name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 ... type definition ...
 </dataTypeDef>
 <dataTypeDef>
 <name>ipv4addr</name>
 <synopsis>IPv4 address</synopsis>
 ... type definition ...
 </dataTypeDef>
 ...
 </dataTypeDefs>

 Yang, et al. Expires September 2006 [Page 40]

 Internet Draft ForCES FE Model March 2006

 There are two kinds of data types: atomic and compound. Atomic data
 types are appropriate for single-value variables (e.g. integer,
 ASCII string, byte array).

 The following built-in atomic data types are provided, but
 additional atomic data types can be defined with the <typeRef> and
 <atomic> elements:

 <name> Meaning
 ---- -------
 char 8-bit signed integer
 uchar 8-bit unsigned integer
 int16 16-bit signed integer
 uint16 16-bit unsigned integer
 int32 32-bit signed integer
 uint32 32-bit unsigned integer
 int64 64-bit signed integer
 uint64 64-bit unisgned integer
 boolean A true / false value where
 0 = false, 1 = true
 string[N] ASCII null-terminated string with
 buffer of N characters (string max
 length is N-1)
 string ASCII null-terminated string without
 length limitation
 byte[N] A byte array of N bytes
 octetstring[N] A buffer of N octets, which may
 contain fewer than N octets. Hence
 the encoded value will always have
 a length.
 float16 16-bit floating point number
 float32 32-bit IEEE floating point number
 float64 64-bit IEEE floating point number

 These built-in data types can be readily used to define metadata or
 LFB attributes, but can also be used as building blocks when
 defining new data types. The boolean data type is defined here
 because it is so common, even though it can be built by sub-ranging
 the uchar data type.

 Compound data types can build on atomic data types and other
 compound data types. Compound data types can be defined in one of
 four ways. They may be defined as an array of elements of some
 compound or atomic data type. They may be a structure of named
 elements of compound or atomic data types (ala C structures). They

 Yang, et al. Expires September 2006 [Page 41]

 Internet Draft ForCES FE Model March 2006

 may be a union of named elements of compound or atomic data types
 (ala C unions). They may also be defined as augmentations
 (explained below in 4.5.6) of existing compound data types.

 Given that the FORCES protocol will be getting and setting attribute
 values, all atomic data types used here must be able to be conveyed
 in the FORCES protocol. Further, the FORCES protocol will need a
 mechanism to convey compound data types. However, the details of
 such representations are for the protocol document to define, not
 the model document.

 For the definition of the actual type in the <dataTypeDef> element,
 the following elements are available: <typeRef>, <atomic>, <array>,
 <struct>, and <union>.

 The predefined type alias is somewhere between the atomic and
 compound data types. It behaves like a structure, one element of
 which has special behavior. Given that the special behavior is tied
 to the other parts of the structure, the compound result is treated
 as a predefined construct.

 4.5.1. <typeRef> Element for Aliasing Existing Data Types

 The <typeRef> element refers to an existing data type by its name.
 The referred data type MUST be defined either in the same library
 document, or in one of the included library documents. If the
 referred data type is an atomic data type, the newly defined type
 will also be regarded as atomic. If the referred data type is a
 compound type, the new type will also be compound. Some usage
 examples follow:

 <dataTypeDef>
 <name>short</name>
 <synopsis>Alias to int16</synopsis>
 <typeRef>int16</typeRef>
 </dataTypeDef>
 <dataTypeDef>
 <name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 <typeRef>byte[6]</typeRef>
 </dataTypeDef>

 4.5.2. <atomic> Element for Deriving New Atomic Types

 The <atomic> element allows the definition of a new atomic type from
 an existing atomic type, applying range restrictions and/or
 providing special enumerated values. Note that the <atomic> element
 can only use atomic types as base types, and its result MUST be
 another atomic type.

 Yang, et al. Expires September 2006 [Page 42]

 Internet Draft ForCES FE Model March 2006

 For example, the following snippet defines a new "dscp" data type:

 <dataTypeDef>
 <name>dscp</name>
 <synopsis>Diffserv code point.</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <rangeRestriction>
 <allowedRange min="0" max="63"/>
 </rangeRestriction>
 <specialValues>
 <specialValue value="0">
 <name>DSCP-BE</name>
 <synopsis>Best Effort</synopsis>
 </specialValue>
 ...
 </specialValues>
 </atomic>
 </dataTypeDef>

 4.5.3. <array> Element to Define Arrays

 The <array> element can be used to create a new compound data type
 as an array of a compound or an atomic data type. The type of the
 array entry can be specified either by referring to an existing type
 (using the <typeRef> element) or defining an unnamed type inside the
 <array> element using any of the <atomic>, <array>, <struct>, or
 <union> elements.

 The array can be "fixed-size" or "variable-size", which is specified
 by the "type" attribute of the <array> element. The default is
 "variable-size". For variable size arrays, an optional "max-length"
 attribute specifies the maximum allowed length. This attribute
 should be used to encode semantic limitations, not implementation
 limitations. The latter should be handled by capability attributes
 of LFB classes, and should never be included in data type
 definitions. If the "max-length" attribute is not provided, the
 array is regarded as of unlimited-size.

 For fixed-size arrays, a "length" attribute MUST be provided that
 specifies the constant size of the array.

 The result of this construct MUST always be a compound type, even if
 the array has a fixed size of 1.

 Arrays MUST only be subscripted by integers, and will be presumed to
 start with index 0.

 Yang, et al. Expires September 2006 [Page 43]

 Internet Draft ForCES FE Model March 2006

 In addition to their subscripts, arrays may be declared to have
 content keys. Such a declaration has several effects:

 . Any declared key can be used in the ForCES protocol to select
 an element for operations (for details, see the protocol).

 . In any instance of the array, each declared key must be unique
 within that instance. No two elements of an array may have the
 same values on all the fields which make up a key.

 Each key is declared with a keyID for use in the protocol, where the
 unique key is formed by combining one or more specified key fields.
 To support the case where an array of an atomic type with unique
 values can be referenced by those values, the key field identifier
 may be "*" (i.e., the array entry is the key). If the value type of
 the array is a structure or an array, then the key is one or more
 fields, each identified by name. Since the field may be an element
 of the structure, the element of an element of a structure, or
 further nested, the field name is actually a concatenated sequence
 of part identifiers, separated by decimal points ("."). The syntax
 for key field identification is given following the array examples.

 The following example shows the definition of a fixed size array
 with a pre-defined data type as the array elements:

 <dataTypeDef>
 <name>dscp-mapping-table</name>
 <synopsis>
 A table of 64 DSCP values, used to re-map code space.
 </synopsis>
 <array type="fixed-size" length="64">
 <typeRef>dscp</typeRef>
 </array>
 </dataTypeDef>

 The following example defines a variable size array with an upper
 limit on its size:

 <dataTypeDef>
 <name>mac-alias-table</name>
 <synopsis>A table with up to 8 IEEE MAC addresses</synopsis>
 <array type="variable-size" max-length="8">
 <typeRef>ieeemacaddr</typeRef>
 </array>
 </dataTypeDef>

 The following example shows the definition of an array with a local
 (unnamed) type definition:

 Yang, et al. Expires September 2006 [Page 44]

 Internet Draft ForCES FE Model March 2006

 <dataTypeDef>
 <name>classification-table</name>
 <synopsis>
 A table of classification rules and result opcodes.
 </synopsis>
 <array type="variable-size">
 <struct>
 <element elementID="1">
 <name>rule</name>
 <synopsis>The rule to match</synopsis>
 <typeRef>classrule</typeRef>
 </element>
 <element elementID="2">
 <name>opcode</name>
 <synopsis>The result code</synopsis>
 <typeRef>opcode</typeRef>
 </element>
 </struct>
 </array>
 </dataTypeDef>

 In the above example, each entry of the array is a <struct> of two
 fields ("rule" and "opcode").

 The following example shows a table of IP Prefix information that
 can be accessed by a multi-field content key on the IP Address and
 prefix length. This means that in any instance of this table, no
 two entries can have the same IP address and prefix length.

 <dataTypeDef>
 <name>ipPrefixInfo_table</name>
 <synopsis>
 A table of information about known prefixes
 </synopsis>
 <array type="variable-size">
 <struct>
 <element elementID="1">
 <name>address-prefix</name>
 <synopsis>the prefix being described</synopsis>
 <typeRef>ipv4Prefix</typeRef>
 </element>
 <element elementID="2">
 <name>source</name>
 <synopsis>
 the protocol or process providing this information
 </synopsis>
 <typeRef>uint16</typeRef>
 </element>

 <element elementID="3">

 Yang, et al. Expires September 2006 [Page 45]

 Internet Draft ForCES FE Model March 2006

 <name>prefInfo</name>
 <synopsis>the information we care about</synopsis>
 <typeRef>hypothetical-info-type</typeRef>
 </element>
 </struct>
 <key keyID="1">
 <keyField> address-prefix.ipv4addr </keyField>
 <keyField> address-prefix.prefixlen </keyField>
 <keyField> source </keyField>
 </key>
 </array>
 </dataTypeDef>

 Note that the keyField elements could also have been simply address-
 prefix and source, since all of the fields of address-prefix are
 being used.

 4.5.3.1 Key Field References

 In order to use key declarations, one must refer to fields that are
 potentially nested inside other fields in the array. If there are
 nested arrays, one might even use an array element as a key (but
 great care would be needed to ensure uniqueness.)

 The key is the combination of the values of each field declared in a
 keyField element.

 Therefore, the value of a keyField element MUST be a concatenated
 Sequence of field identifiers, separated by a "." (period)
 character. Whitespace is permitted and ignored.

 A valid string for a single field identifier within a keyField
 depends upon the current context. Initially, in an array key
 declaration, the context is the type of the array. Progressively,
 the context is whatever type is selected by the field identifiers
 processed so far in the current key field declaration.

 When the current context is an array, (e.g., when declaring a key
 for an array whose content is an array) then the only valid value
 for the field identifier is an explicit number.

 When the current context is a structure, the valid values for the
 field identifiers are the names of the elements of the structure.
 In the special case of declaring a key for an array containing an
 atomic type, where that content is unique and is to be used as a
 key, the value "*" can be used as the single key field identifier.

 Yang, et al. Expires September 2006 [Page 46]

 Internet Draft ForCES FE Model March 2006

 4.5.4. <struct> Element to Define Structures

 A structure is comprised of a collection of data elements. Each
 data element has a data type (either an atomic type or an existing
 compound type) and is assigned a name unique within the scope of the
 compound data type being defined. These serve the same function as
 "struct" in C, etc.

 The actual type of the field can be defined by referring to an
 existing type (using the <typeDef> element), or can be a locally
 defined (unnamed) type created by any of the <atomic>, <array>,
 <struct>, or <union> elements.

 A structure definition is a series of element declarations. Each
 element carries an elementID for use by the ForCES protocol. In
 addition, the element contains the name, a synopsis, an optional
 description, an optional declaration that the element itself is
 optional, and the typeRef declaration that specifies the element
 type.

 For a dataTypeDef of a struct, the structure definition may be
 inherited from, and augment, a previously defined structured type.
 This is indicated by including the derivedFrom attribute on the
 struct declaration.

 The result of this construct MUST be a compound type, even when the
 <struct> contains only one field.

 An example:

 <dataTypeDef>
 <name>ipv4prefix</name>
 <synopsis>
 IPv4 prefix defined by an address and a prefix length
 </synopsis>
 <struct>
 <element elementID="1">
 <name>address</name>
 <synopsis>Address part</synopsis>
 <typeRef>ipv4addr</typeRef>
 </element>
 <element elementID="2">
 <name>prefixlen</name>
 <synopsis>Prefix length part</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <rangeRestriction>
 <allowedRange min="0" max="32"/>

 </rangeRestriction>

 Yang, et al. Expires September 2006 [Page 47]

 Internet Draft ForCES FE Model March 2006

 </atomic>
 </element>
 </struct>
 </dataTypeDef>

 4.5.5. <union> Element to Define Union Types

 Similar to the union declaration in C, this construct allows the
 definition of overlay types. Its format is identical to the
 <struct> element.

 The result of this construct MUST be a compound type, even when the
 union contains only one element.

 4.5.6 <alias> Element

 It is sometimes necessary to have an element in an LFB or structure
 refer to information in other LFBs. The <alias> declaration creates
 the constructs for this. The content of an <alias> element MUST be a
 named type. It can be a base type of a derived type. The actual
 value referenced by an alias is known as its target. When a GET or
 SET operation references the alias element, the value of the target
 is returned or replaced. Write access to an alias element is
 permitted if write access to both the alias and the target are
 permitted.

 The target of an <alias> element is determined by its properties.
 Like all elements, the properties MUST include the support / read /
 write permission for the alias. In addition, there are several
 fields in the properties which define the target of the alias.
 These fields are the ID of the LFB class of the target, the ID of
 the LFB instance of the target, and a sequence of integers
 representing the path within the target LFB instance to the target
 element. The type of the target element must match the declared
 type of the alias. Details of the alias property structure in in
 the section of this document on properties.

 Note that the read / write property of the alias refers to the
 value. The CE can only determine if it can write the target
 selection properties of the alias by attempting such a write
 operation. (Property elements do not themselves have properties.)

 4.5.6. Augmentations

 Compound types can also be defined as augmentations of existing
 compound types. If the existing compound type is a structure,
 augmentation may add new elements to the type. The type of an
 existing element can only be replaced with an augmentation derived
 from the current type, an existing element cannot be deleted. If

 Yang, et al. Expires September 2006 [Page 48]

 Internet Draft ForCES FE Model March 2006

 the existing compound type is an array, augmentation means
 augmentation of the array element type.

 One consequence of this is that augmentations are compatible with
 the compound type from which they are derived. As such,
 augmentations are useful in defining attributes for LFB subclasses
 with backward compatibility. In addition to adding new attributes
 to a class, the data type of an existing attribute may be replaced
 by an augmentation of that attribute, and still meet the
 compatibility rules for subclasses.

 For example, consider a simple base LFB class A that has only one
 attribute (attr1) of type X. One way to derive class A1 from A can
 be by simply adding a second attribute (of any type). Another way
 to derive a class A2 from A can be by replacing the original
 attribute (attr1) in A of type X with one of type Y, where Y is an
 augmentation of X. Both classes A1 and A2 are backward compatible
 with class A.

 The syntax for augmentations is to include a derivedFrom element in
 a structure definition, indicating what structure type is being
 augmented. Element names and element IDs within the augmentation
 must not be the same as those in the structure type being augmented.

 4.6. <metadataDefs> Element for Metadata Definitions

 The (optional) <metadataDefs> element in the library document
 contains one or more <metadataDef> elements. Each <metadataDef>
 element defines a metadata.

 Each <metadataDef> element MUST contain a unique name (NMTOKEN).
 Uniqueness is defined to be over all metadata defined in this
 library document and in all directly or indirectly included library
 documents. The <metadataDef> element MUST also contain a brief
 synopsis, the mandatory tag value to be used for this metadata, an
 optional detailed description, and a mandatory type definition
 information. Only atomic data types can be used as value types for
 metadata.

 Two forms of type definitions are allowed. The first form uses the
 <typeRef> element to refer to an existing atomic data type defined
 in the <dataTypeDefs> element of the same library document or in one
 of the included library documents. The usage of the <typeRef>
 element is identical to how it is used in the <dataTypeDef>
 elements, except here it can only refer to atomic types.
 The latter restriction is not yet enforced by the XML schema.

 Yang, et al. Expires September 2006 [Page 49]

 Internet Draft ForCES FE Model March 2006

 The second form is an explicit type definition using the <atomic>
 element. This element is used here in the same way as in the
 <dataTypeDef> elements.

 The following example shows both usages:

 <metadataDefs>
 <metadataDef>
 <name>NEXTHOPID</name>
 <synopsis>Refers to a Next Hop entry in NH LFB</synopsis>
 <metadataID>17</metaDataID>
 <typeRef>int32</typeRef>
 </metadataDef>
 <metadataDef>
 <name>CLASSID</name>
 <synopsis>
 Result of classification (0 means no match).
 </synopsis>
 <metadataID>21</metadataID>
 <atomic>
 <baseType>int32</baseType>
 <specialValues>
 <specialValue value="0">
 <name>NOMATCH</name>
 <synopsis>
 Classification didn t result in match.
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </metadataDef>
 </metadataDefs>

 4.7. <LFBClassDefs> Element for LFB Class Definitions

 The (optional) <LFBClassDefs> element can be used to define one or
 more LFB classes using <LFBClassDef> elements. Each <LFBClassDef>
 element MUST define an LFB class and include the following elements:

 . <name> provides the symbolic name of the LFB class. Example:
 "ipv4lpm"
 . <synopsis> provides a short synopsis of the LFB class. Example:
 "IPv4 Longest Prefix Match Lookup LFB"
 . <version> is the version indicator
 . <derivedFrom> is the inheritance indicator
 . <inputPorts> lists the input ports and their specifications
 . <outputPorts> lists the output ports and their specifications
 . <attributes> defines the operational attributes of the LFB

 . <capabilities> defines the capability attributes of the LFB

 Yang, et al. Expires September 2006 [Page 50]

 Internet Draft ForCES FE Model March 2006

 . <description> contains the operational specification of the LFB
 . The LFBClassID attribute of the LFBClassDef element defines the
 ID for this class. These must be globally unique.
 . <events> defines the events that can be generated by instances
 of this LFB.

 [EDITOR: LFB class names should be unique not only among classes
 defined in this document and in all included documents, but also
 unique across a large collection of libraries. Obviously some global
 control is needed to ensure such uniqueness. This subject requires
 further study. The uniqueness of the class IDs also requires further
 study.]

 Here is a skeleton of an example LFB class definition:

 <LFBClassDefs>
 <LFBClassDef LFBClassID="12345">
 <name>ipv4lpm</name>
 <synopsis>IPv4 Longest Prefix Match Lookup LFB</synopsis>
 <version>1.0</version>
 <derivedFrom>baseclass</derivedFrom>

 <inputPorts>
 ...
 </inputPorts>

 <outputPorts>
 ...
 </outputPorts>

 <attributes>
 ...
 </attributes>

 <capabilities>
 ...
 </capabilities>

 <description>
 This LFB represents the IPv4 longest prefix match lookup
 operation.
 The modeled behavior is as follows:
 Blah-blah-blah.
 </description>

 </LFBClassDef>
 ...
 </LFBClassDefs>

 Yang, et al. Expires September 2006 [Page 51]

 Internet Draft ForCES FE Model March 2006

 The individual attributes and capabilities will have elementIDs for
 use by the ForCES protocol. These parallel the elementIDs used in
 structs, and are used the same way. Attribute and capability
 elementIDs must be unique within the LFB class definition.

 Note that the <name>, <synopsis>, and <version> elements are
 required, all other elements are optional in <LFBClassDef>. However,
 when they are present, they must occur in the above order.

 4.7.1. <derivedFrom> Element to Express LFB Inheritance

 The optional <derivedFrom> element can be used to indicate that this
 class is a derivative of some other class. The content of this
 element MUST be the unique name (<name>) of another LFB class. The
 referred LFB class MUST be defined in the same library document or
 in one of the included library documents.

 [EDITOR: The <derivedFrom> element will likely need to specify the
 version of the ancestor, which is not included in the schema yet.
 The process and rules of class derivation are still being studied.]

 It is assumed that the derived class is backwards compatible with
 the base class.

 4.7.2. <inputPorts> Element to Define LFB Inputs

 The optional <inputPorts> element is used to define input ports. An
 LFB class may have zero, one, or more inputs. If the LFB class has
 no input ports, the <inputPorts> element MUST be omitted. The
 <inputPorts> element can contain one or more <inputPort> elements,
 one for each port or port-group. We assume that most LFBs will have
 exactly one input. Multiple inputs with the same input type are
 modeled as one input group. Input groups are defined the same way
 as input ports by the <inputPort> element, differentiated only by an
 optional "group" attribute.

 Multiple inputs with different input types should be avoided if
 possible (see discussion in Section 3.2.1). Some special LFBs will
 have no inputs at all. For example, a packet generator LFB does not
 need an input.

 Single input ports and input port groups are both defined by the
 <inputPort> element; they are differentiated by only an optional
 "group" attribute.

 The <inputPort> element MUST contain the following elements:

 Yang, et al. Expires September 2006 [Page 52]

 Internet Draft ForCES FE Model March 2006

 . <name> provides the symbolic name of the input. Example: "in".
 Note that this symbolic name must be unique only within the scope
 of the LFB class.
 . <synopsis> contains a brief description of the input. Example:
 "Normal packet input".
 . <expectation> lists all allowed frame formats. Example: {"ipv4"
 and "ipv6"}. Note that this list should refer to names specified
 in the <frameDefs> element of the same library document or in any
 included library documents. The <expectation> element can also
 provide a list of required metadata. Example: {"classid",
 "vifid"}. This list should refer to names of metadata defined in
 the <metadataDefs> element in the same library document or in any
 included library documents. For each metadata, it must be
 specified whether the metadata is required or optional. For each
 optional metadata, a default value must be specified, which is
 used by the LFB if the metadata is not provided with a packet.

 In addition, the optional "group" attribute of the <inputPort>
 element can specify if the port can behave as a port group, i.e., it
 is allowed to be instantiated. This is indicated by a "yes" value
 (the default value is "no").

 An example <inputPorts> element, defining two input ports, the
 second one being an input port group:

 <inputPorts>
 <inputPort>
 <name>in</name>
 <synopsis>Normal input</synopsis>
 <expectation>
 <frameExpected>
 <ref>ipv4</ref>
 <ref>ipv6</ref>
 </frameExpected>
 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 <inputPort group="yes">
 ... another input port ...
 </inputPort>
 </inputPorts>

 For each <inputPort>, the frame type expectations are defined by the
 <frameExpected> element using one or more <ref> elements (see

 example above). When multiple frame types are listed, it means that

 Yang, et al. Expires September 2006 [Page 53]

 Internet Draft ForCES FE Model March 2006

 "one of these" frame types is expected. A packet of any other frame
 type is regarded as incompatible with this input port of the LFB
 class. The above example list two frames as expected frame types:
 "ipv4" and "ipv6".

 Metadata expectations are specified by the <metadataExpected>
 element. In its simplest form, this element can contain a list of
 <ref> elements, each referring to a metadata. When multiple
 instances of metadata are listed by <ref> elements, it means that
 "all of these" metadata must be received with each packet (except
 metadata that are marked as "optional" by the "dependency" attribute
 of the corresponding <ref> element). For a metadata that is
 specified "optional", a default value MUST be provided using the
 "defaultValue" attribute. The above example lists three metadata as
 expected metadata, two of which are mandatory ("classid" and
 "vifid"), and one being optional ("vrfid").

 [EDITOR: How to express default values for byte[N] atomic types is
 yet to be defined.]

 The schema also allows for more complex definitions of metadata
 expectations. For example, using the <one-of> element, a list of
 metadata can be specified to express that at least one of the
 specified metadata must be present with any packet. For example:

 <metadataExpected>
 <one-of>
 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 The above example specifies that either the "prefixmask" or the
 "prefixlen" metadata must be provided with any packet.

 The two forms can also be combined, as it is shown in the following
 example:

 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 <one-of>
 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 Yang, et al. Expires September 2006 [Page 54]

 Internet Draft ForCES FE Model March 2006

 Although the schema is constructed to allow even more complex
 definitions of metadata expectations, we do not discuss those here.

 4.7.3. <outputPorts> Element to Define LFB Outputs

 The optional <outputPorts> element is used to define output ports.
 An LFB class may have zero, one, or more outputs. If the LFB class
 has no output ports, the <outputPorts> element MUST be omitted. The
 <outputPorts> element can contain one or more <outputPort> elements,
 one for each port or port-group. If there are multiple outputs with
 the same output type, we model them as an output port group. Some
 special LFBs may have no outputs at all (e.g., Dropper).

 Single output ports and output port groups are both defined by the
 <outputPort> element; they are differentiated by only an optional
 "group" attribute.

 The <outputPort> element MUST contain the following elements:

 . <name> provides the symbolic name of the output. Example: "out".
 Note that the symbolic name must be unique only within the scope
 of the LFB class.
 . <synopsis> contains a brief description of the output port.
 Example: "Normal packet output".
 . <product> lists the allowed frame formats. Example: {"ipv4",
 "ipv6"}. Note that this list should refer to symbols specified in
 the <frameDefs> element in the same library document or in any
 included library documents. The <product> element may also
 contain the list of emitted (generated) metadata. Example:
 {"classid", "color"}. This list should refer to names of metadata
 specified in the <metadataDefs> element in the same library
 document or in any included library documents. For each generated
 metadata, it should be specified whether the metadata is always
 generated or generated only in certain conditions. This
 information is important when assessing compatibility between
 LFBs.

 In addition, the optional "group" attribute of the <outputPort>
 element can specify if the port can behave as a port group, i.e., it
 is allowed to be instantiated. This is indicated by a "yes" value
 (the default value is "no").

 The following example specifies two output ports, the second being
 an output port group:

 <outputPorts>
 <outputPort>
 <name>out</name>
 <synopsis>Normal output</synopsis>

 Yang, et al. Expires September 2006 [Page 55]

 Internet Draft ForCES FE Model March 2006

 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref>nhid</ref>
 <ref>nhtabid</ref>
 </metadataProduced>
 </product>
 </outputPort>
 <outputPort group="yes">
 <name>exc</name>
 <synopsis>Exception output port group</synopsis>
 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref availability="conditional">errorid</ref>
 </metadataProduced>
 </product>
 </outputPort>
 </outputPorts>

 The types of frames and metadata the port produces are defined
 inside the <product> element in each <outputPort>. Within the
 <product> element, the list of frame types the port produces is
 listed in the <frameProduced> element. When more than one frame is
 listed, it means that "one of" these frames will be produced.

 The list of metadata that is produced with each packet is listed in
 the optional <metadataProduced> element of the <product>. In its
 simplest form, this element can contain a list of <ref> elements,
 each referring to a metadata type. The meaning of such a list is
 that "all of" these metadata are provided with each packet, except
 those that are listed with the optional "availability" attribute set
 to "conditional". Similar to the <metadataExpected> element of the
 <inputPort>, the <metadataProduced> element supports more complex
 forms, which we do not discuss here further.

 4.7.4. <attributes> Element to Define LFB Operational Attributes

 Operational parameters of the LFBs that must be visible to the CEs
 are conceptualized in the model as the LFB attributes. These
 include, for example, flags, single parameter arguments, complex
 arguments, and tables. Note that the attributes here refer to only

 those operational parameters of the LFBs that must be visible to the

 Yang, et al. Expires September 2006 [Page 56]

 Internet Draft ForCES FE Model March 2006

 CEs. Other variables that are internal to LFB implementation are
 not regarded as LFB attributes and hence are not covered.

 Some examples for LFB attributes are:

 . Configurable flags and switches selecting between operational
 modes of the LFB
 . Number of inputs or outputs in a port group
 . Metadata CONSUME vs.PROPAGATE mode selector
 . Various configurable lookup tables, including interface tables,
 prefix tables, classification tables, DSCP mapping tables, MAC
 address tables, etc.
 . Packet and byte counters
 . Various event counters
 . Number of current inputs or outputs for each input or output
 group

 There may be various access permission restrictions on what the CE
 can do with an LFB attribute. The following categories may be
 supported:

 . No-access attributes. This is useful when multiple access
 modes may be defined for a given attribute to allow some
 flexibility for different implementations.
 . Read-only attributes.
 . Read-write attributes.
 . Write-only attributes. This could be any configurable data for
 which read capability is not provided to the CEs. (e.g., the
 security key information)
 . Read-reset attributes. The CE can read and reset this
 resource, but cannot set it to an arbitrary value. Example:
 Counters.
 . Firing-only attributes. A write attempt to this resource will
 trigger some specific actions in the LFB, but the actual value
 written is ignored.

 The LFB class may define more than one possible access mode for a
 given attribute (for example, "write-only" and "read-write"), in
 which case it is left to the actual implementation to pick one of
 the modes. In such cases, a corresponding capability attribute must
 inform the CE about the access mode the actual LFB instance supports
 (see next subsection on capability attributes).

 The attributes of the LFB class are listed in the <attributes>
 element. Each attribute is defined by an <attribute> element. An
 <attribute> element MUST contain the following elements:

 Yang, et al. Expires September 2006 [Page 57]

 Internet Draft ForCES FE Model March 2006

 . <name> defines the name of the attribute. This name must be
 unique among the attributes of the LFB class. Example:
 "version".
 . <synopsis> should provide a brief description of the purpose of
 the attribute.
 . <optional/> indicates that this attribute is optional.
 . The data type of the attribute can be defined either via a
 reference to a predefined data type or providing a local
 definition of the type. The former is provided by using the
 <typeRef> element, which must refer to the unique name of an
 existing data type defined in the <dataTypeDefs> element in the
 same library document or in any of the included library
 documents. When the data type is defined locally (unnamed
 type), one of the following elements can be used: <atomic>,
 <array>, <struct>, and <union>. Their usage is identical to how
 they are used inside <dataTypeDef> elements (see Section 4.5).
 . The optional <defaultValue> element can specify a default value
 for the attribute, which is applied when the LFB is initialized
 or reset. [EDITOR: A convention to define default values for
 compound data types and byte[N] atomic types is yet to be
 defined.]

 The attribute element also MUST have an elementID attribute, which
 is a numeric value used by the ForCES protocol.

 In addition to the above elements, the <attribute> element includes
 an optional "access" attribute, which can take any of the following
 values or even a list of these values: "read-only", "read-write",
 "write-only", "read-reset", and "trigger-only". The default access
 mode is "read-write".

 Whether optional elements are supported, and whether elements
 defined as read-write can actually be written can be determined for
 a given LFB instance by the CE by reading the property information
 of that element.

 The following example defines two attributes for an LFB:

 <attributes>
 <attribute access="read-only" elementID= 1 >
 <name>foo</name>
 <synopsis>number of things</synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute access="read-write write-only" elementID= 2 >
 <name>bar</name>
 <synopsis>number of this other thing</synopsis>
 <atomic>

 <baseType>uint32</baseType>

 Yang, et al. Expires September 2006 [Page 58]

 Internet Draft ForCES FE Model March 2006

 <rangeRestriction>
 <allowedRange min="10" max="2000"/>
 </rangeRestriction>
 </atomic>
 <defaultValue>10</defaultValue>
 </attribute>
 </attributes>

 The first attribute ("foo") is a read-only 32-bit unsigned integer,
 defined by referring to the built-in "uint32" atomic type. The
 second attribute ("bar") is also an integer, but uses the <atomic>
 element to provide additional range restrictions. This attribute has
 two possible access modes, "read-write" or "write-only". A default
 value of 10 is provided.

 Note that not all attributes are likely to exist at all times in a
 particular implementation. While the capabilities will frequently
 indicate this non-existence, CEs may attempt to reference non-
 existent or non-permitted attributes anyway. The FORCES protocol
 mechanisms should include appropriate error indicators for this
 case.

 The mechanism defined above for non-supported attributes can also
 apply to attempts to reference non-existent array elements or to set
 read-only elements.

 4.7.5. <capabilities> Element to Define LFB Capability Attributes

 The LFB class specification provides some flexibility for the FE
 implementation regarding how the LFB class is implemented. For
 example, the instance may have some limitations that are not
 inherent from the class definition, but rather the result of some
 implementation limitations. For example, an array attribute may be
 defined in the class definition as "unlimited" size, but the
 physical implementation may impose a hard limit on the size of the
 array.

 Such capability related information is expressed by the capability
 attributes of the LFB class. The capability attributes are always
 read-only attributes, and they are listed in a separate
 <capabilities> element in the <LFBClassDef>. The <capabilities>
 element contains one or more <capability> elements, each defining
 one capability attribute. The format of the <capability> element is
 almost the same as the <attribute> element, it differs in two
 aspects: it lacks the access mode attribute (because it is always
 read-only), and it lacks the <defaultValue> element (because default
 value is not applicable to read-only attributes).

 Some examples of capability attributes follow:

 Yang, et al. Expires September 2006 [Page 59]

 Internet Draft ForCES FE Model March 2006

 . The version of the LFB class that this LFB instance complies
 with;
 . Supported optional features of the LFB class;
 . Maximum number of configurable outputs for an output group;
 . Metadata pass-through limitations of the LFB;
 . Maximum size of configurable attribute tables;
 . Additional range restriction on operational attributes;
 . Supported access modes of certain attributes (if the access
 mode of an operational attribute is specified as a list of two
 or mode modes).

 The following example lists two capability attributes:

 <capabilities>
 <capability elementID="3">
 <name>version</name>
 <synopsis>
 LFB class version this instance is compliant with.
 </synopsis>
 <typeRef>version</typeRef>
 </capability>
 <capability elementID="4">
 <name>limitBar</name>
 <synopsis>
 Maximum value of the "bar" attribute.
 </synopsis>
 <typeRef>uint16</typeRef>
 </capability>
 </capabilities>

 4.7.6. <events> Element for LFB Notification Generation

 The <events> element contains the information about the occurrences
 for which instances of this LFB class can generate notifications to
 the CE.

 The <events> definition needs a baseID attributevalue, which is
 normally <events baseID= number >. The value of the baseID is the
 starting element for the path which identifies events. It must not
 be the same as the elementID of any top level attribute or
 capability of the LFB class. In derived LFBs (i.e. ones with a
 <derivedFrom> element) where the parent LFB class has an events
 declaration, the baseID must not be present. Instead, the value
 from the parent class is used.

 [editors note: There is an open issue with regard to how baseID is
 used for an LFBclass and another class derived from it. Currently,

 the derived class does not declare a baseID. It may make sense to

 Yang, et al. Expires September 2006 [Page 60]

 Internet Draft ForCES FE Model March 2006

 instead to require the baseID attribute and require that it have the
 same value as the parent class events baseID. Both choices
 (omission or inclusion of baseID in derived classes) leave room for
 errors not covered by the XML Schema.]

 The <events> element contains 0 or more <event> elements, each of
 which declares a single event. The <event> element has an eventID
 attribute giving the unique ID of the event. The element will
 include:

 . <eventTarget> element indicating which LFB field is tested to
 generate the event;
 . condition element indicating what condition on the field will
 generate the event from a list of defined conditions;
 . <eventReports> element indicating what values are to be
 reported in the notification of the event.

 4.7.6.1 <eventTarget> Element

 The <eventTarget> element contains information identifying a field
 in the LFB. Specifically, the <target> element contains one or more
 <eventField> or <eventSubscript> elements. These elements represent
 the textual equivalent of a path select component of the LFB. The
 <eventField> element contains the name of an element in the LFB or
 struct. The first element in a <target> MUST be an <eventField>
 element and MUST name a field in the LFB. The following element
 MUST identify a valid field within the containing context. If an
 <eventField> identifies an array, and is not the last element in the
 target, then the next element MUST be an <eventSubscript>.
 <eventSubscript> elements MUST occur only after <eventField> names
 that identifies an array. An <eventSubscript> may contain a numeric
 value to indicate that this event applies to a specific element of
 the array. More commonly, the event is being defined across all
 elements of the array. In that case, <eventSubscript> will contain
 a name. The name in an <eventSubscript> element is not a field
 name. It is a variable name for use in the <report> elements of
 this LFB definition. This name MUST be distinct from any field name
 that can validly occur in the <eventReport> clause. Hence it SHOULD
 be distinct from any field name used in the LFB or in structures
 used within the LFB.

 The <eventTarget> provides additional components for the path used
 to reference the event. The path will be the baseID for events,
 followed by the ID for the specific event, followed by a value for
 each <eventSubscript> element in the <eventTarget>. This will
 identify a specific occurrence of the event. So, for example, it
 will appear in the event notification LFB. It is also used for the
 SET-PROPERTY operation to subscribe to a specific event. A SET-

 PROPERTY of the subscription property (but not of any other

 Yang, et al. Expires September 2006 [Page 61]

 Internet Draft ForCES FE Model March 2006

 writeable properties) may be sent by the CE with any prefix of the
 path of the event. So, for an event defined on a table, a SET-
 PROPERTY with a path of the baseID and the eventID will subscribe
 the CE to all occurrences of that event on any element of the table.
 This is particularly useful for the <eventCreated/> and
 <eventDestroyed/> conditions. Events using those conditions will
 generally be defined with a field / subscript sequence that
 identifies an array and ends with an <eventSubscript> element.
 Thus, the event notification will indicate which array entry has
 been created or destroyed. A typical subscriber will subscribe for
 the array, as opposed to a specific element in an array, so it will
 use a shorter path.

 Thus, if there is an LFB with an event baseID of 7, and a specific
 event with an event ID of 8, then one can subscribe to the event by
 referencing the properties of the LFB element with path 7.8. If the
 event target has no subscripts (for example, it is a simple
 attribute of the LFB) then one can also reference the event
 threshold and filtering properties via the properties on element
 7.8. If the event target is defined as an element of an array, then
 the target definition will include an <eventSubscript> element. In
 that case, one can subscribe to the event for the entire array by
 referencing the properties of 7.8. One can also subscribe to a
 specific element, x, of the array by referencing the subscription
 property of 7.8.x and also access the threshold and filtering
 properties of 7.8.x. If the event is targeting an element of an
 array within an array, then there will be two (or conceivably more)
 <eventSubscript> elements in the target. If so, for the case of two
 elements, one would reference the properties of 7.8.x.y to get to
 the threshold and filtering properties of an individual event.

 [Editors note: As currently defined, threshold and filtering can
 only be applied to individual elements, not entire arrays. Should
 this be changed to allow application to an array? If so, we would
 add the complication of having it potentially set differently on the
 element and the array as a whole.]

 4.7.6.2 <events> Element Conditions

 The condition element represents a condition that triggers a
 notification. The list of conditions is:

 . <eventCreated/> the target must be an array, ending with a
 subscript indication. The event is generated when an entry in
 the array is created. This occurs even if the entry is created
 by CE direction.
 . <eventDeleted/> the target must be an array, ending with a
 subscript indication. The event is generated when an entry in

 Yang, et al. Expires September 2006 [Page 62]

 Internet Draft ForCES FE Model March 2006

 the array is destroyed. This occurs even if the entry is
 destroyed by CE direction.
 . <eventChanged/> the event is generated whenever the target
 element changes in any way. For binary attributes such as
 up/down, this reflects a change in state. It can also be used
 with numeric attributes, in which case any change in value
 results in a detected trigger.
 . <eventGreaterThan/> the event is generated whenever the target
 element becomes greater than the threshold. The threshold is
 an event property.
 . <eventLessThan/> the event is generated whenever the target
 element becomes less than the threshold. The threshold is an
 event property.

 As described in the Event Properties section, event items have
 properties associated with them. These properties include the
 subscription information (indicating whether the CE wishes the FE to
 generate event reports for the event at all, thresholds for events
 related to level crossing, and filtering conditions that may reduce
 the set of event notifications generated by the FE. Details of the
 filtering conditions that can be applied are given in that section.
 The filtering conditions allow the FE to suppress floods of events
 that could result from oscillation around a condition value. For FEs
 that do not wish to support filtering, the filter properties can
 either be read only or not supported.

 4.7.6.3 <eventReports> Element

 The <eventReports> element of an <event> describes the information
 to be delivered by the FE along with the notification of the
 occurrence of the event. The <reports> element contains one or more
 <eventReport> elements. Each <report> element identifies a piece of
 data from the LFB to be reported. The notification carries that
 data as if the collection of <eventReport> elements had been defined
 in a structure. Each <eventReport> element thus MUST identify a
 field in the LFB. The syntax is exactly the same as used in the
 <eventTarget> element, using <eventField> and <eventSubscript>
 elements. <eventSubcripts> may contain integers. If they contain
 names, they MUST be names from <eventSubscript> elements of the
 <eventTarget>. The selection for the report will use the value for
 the subscript that identifies that specific element triggering the
 event. This can be used to reference the structure / field causing
 the event, or to reference related information in parallel tables.
 This event reporting structure is designed to allow the LFB designer
 to specify information that is likely not known a priori by the CE
 and is likely needed by the CE to process the event. While the
 structure allows for pointing at large blocks of information (full
 arrays or complex structures) this is not recommended. Also, the

 variable reference / subscripting in reporting only captures a small

 Yang, et al. Expires September 2006 [Page 63]

 Internet Draft ForCES FE Model March 2006

 portion of the kinds of related information. Chaining through index
 fields stored in a table, for example, is not supported. In
 general, the <eventReports> mechanism is an optimization for cases
 that have been found to be common, saving the CE from having to
 query for information it needs to understand the event. It does not
 represent all possible information needs.

 If any elements referenced by the eventReport are optional, then the
 report MUST support optional elements. Any components which do not
 exist are not reported.

 4.7.7. <description> Element for LFB Operational Specification

 The <description> element of the <LFBClass> provides unstructured
 text (in XML sense) to verbally describe what the LFB does.

 4.8.Properties

 Elements of LFBs have properties which are important to the CE. The
 most important property is the existence / readability /
 writeability of the element. Depending up the type of the element,
 other information may be of importance.

 The model provides the definition of the structure of property
 information. There is a base class of property information. For
 the array, alias, and event elements there are subclasses of
 property information providing additional fields. This information
 is accessed by the CE (and updated where applicable) via the PL
 protocol. While some property information is writeable, there is no
 mechanism currently provided for checking the properties of a
 property element. Writeability can only be checked by attempting to
 modify the value.

4.8.1 Basic Properties

 The basic property definition, along with the scalar for
 accessibility is below. Note that this access permission
 information is generally read-only.

 <dataTypeDef>
 <name>accessPermissionValues</name>
 <synopsis>
 The possible values of attribute access permission
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>None</name>

 Yang, et al. Expires September 2006 [Page 64]

 Internet Draft ForCES FE Model March 2006

 <synopsis>Access is prohibited</synopsis>
 </specialValue>
 <specialValue value="1">
 <name> Read-Only </name>
 <synopsis>Access is read only</synopsis>
 </specialValue>
 <specialValue value="2">
 <name>Write-Only</name>
 <synopsis>
 The attribute may be written, but not read
 </synopsis>
 </specialValue>
 <specialValue value="3">
 <name>Read-Write</name>
 <synopsis>
 The attribute may be read or written
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>baseElementProperties</name>
 <synopsis>basic properties, accessibility</synopsis>
 <struct>
 <element elementID="1">
 <name>accessibility</name>
 <synopsis>
 does the element exist, and
 can it be read or written
 </synopsis>
 <typeRef>accessPermissionValues</typeRef>
 </element>
 </struct>
 </dataTypeDef>

 4.8.2 Array Properties

 The properties for an array add a number of important pieces of
 information. These properties are also read-only.

 <dataTypeDef>
 <name>arrayElementProperties</name>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <element elementID= 2 >
 <name>entryCount</name>

 <synopsis>the number of entries in the array</synopsis>

 Yang, et al. Expires September 2006 [Page 65]

 Internet Draft ForCES FE Model March 2006

 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 3 >
 <name>highestUsedSubscript</name>
 <synopsis>the last used subscript in the array</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 4 >
 <name>firstUnusedSubscript</name>
 <synopsis>
 The subscript of the first unused array element
 </synopsis>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 </dataTypeDef>

 4.8.3 Event Properties

 The properties for an event add three (usually) writeable fields.
 One is the subscription field. 0 means no notification is
 generated. Any non-zero value (typically 1 is used) means that a
 notification is generated. The hysteresis field is used to suppress
 generation of notifications for oscillations around a condition
 value, and is described in the text for events. The threshold field
 is used for the <eventGreaterThan/> and <eventLessThan/> conditions.
 It indicates the value to compare the event target against. Using
 the properties allows the CE to set the level of interest. FEs
 which do not supporting setting the threshold for events will make
 this field read-only.

 <dataTypeDef>
 <name>eventElementProperties</name>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <element elementID= 2 >
 <name>registration</name>
 <synopsis>
 has the CE registered to be notified of this event
 </synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 3 >
 <name>threshold</name>
 <synopsis> comparison value for level crossing events
 </synopsis>
 </optional
 <typeRef>uint32</typeRef>

 </element>

 Yang, et al. Expires September 2006 [Page 66]

 Internet Draft ForCES FE Model March 2006

 <element elementID= 4 >
 <name>eventHysteresis</name>
 <synopsis> region to suppress event recurrence notices
 </synopsis>
 </optional>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 5 >
 <name>eventCount</name>
 <synopsis> number of occurrences to suppress
 </synopsis>
 </optional>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 6 >
 <name>eventHysteresis</name>
 <synopsis> time interval in ms between notifications
 </synopsis>
 </optional>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 <dataTypeDef>

 4.8.3.1 Common Event Filtering

 The event properties have values for controlling several filter
 conditions. Support of these conditions is optional, but all
 conditions SHOULD be supported. Events which are reliably known not
 to be subject to rapid occurrence or other concerns may not support
 all filter conditions.

 Currently, three different filter condition variables are defined.
 These are eventCount, eventInterval, and eventHysteris. Setting the
 condition variables to 0 (their default value) means that the
 condition is not checked.

 Conceptually, when an event is triggered, all configured conditions
 are checked. If no filter conditions are triggered, or if any
 trigger conditions are met, the event notification is generated. If
 there are filter conditions, and no condition is met, then no event
 notification is generated. Event filter conditions have reset
 behavior when an event notification is generated. If any condition
 is passed, and the notification is generated, the the notification
 reset behavior is performed on all conditions, even those which had
 not passed. This provides a clean definition of the interaction of
 the various event conditions.

 Yang, et al. Expires September 2006 [Page 67]

 Internet Draft ForCES FE Model March 2006

 An example of the interaction of conditions is an event with an
 eventCount property set to 5 and an eventInterval property set to
 500 milliseconds. Suppose that a burst of occurrences of this event
 is detected by the FE. The first occurrence will cause a
 notification to be sent to the CE. Then, if four more occurrences
 are detected rapidly (less than 0.5 seconds) they will not result in
 notifications. If two more occurrences are detected, then the
 second of those will result in a notification. Alternatively, if
 more than 500 miliseconds has passed since the notification and an
 occurrence is detected, that will result in a notification. In
 either case, the count and time interval suppression is reset no
 matter which condition actually caused the notification.

 4.8.3.2 Event Hysteresis Filtering

 Events with numeric conditions can have hysteresis filters applied
 to them. The hystersis level is defined by a property of the event.
 This allows the FE to notify the CE of the hysteresis applied, and
 if it chooses, the FE can allow the CE to modify the hysteresis.
 This applies to <eventChanged/> for a numeric field, and to
 <eventGreaterThan/> and <eventLessThan/>. The content of a
 <variance> element is a numeric value. When supporting hysteresis,
 the FE MUST track the value of the element and make sure that the
 condition has become untrue by at least the hysteresis from the
 event property. To be specific, if the hysteresis is V, then

 . For a <eventChanged/> condition, if the last notification was
 for value X, then the <changed/> notification MUST NOT be
 generated until the value reaches X +/- V.
 . For a <eventGreaterThan/> condition with threshold T, once the
 event has been generated at least once it MUST NOT be generated
 again until the field first becomes less than or equal to T
 V, and then exceeds T.
 . For a <eventLessThan/> condition with threshold T, once the
 event has been generate at least once it MUST NOT be generated
 again until the field first becomes greater than or equal to T
 + V, and then becomes less than T.

 4.8.3.3 Event Count Filtering

 Events may have a count filtering condition. This property, if set
 to a non-zero value, indicates the number of occurrences of the event
 that should be considered redundant and not result in a notification.
 Thus, if this property is set to 1, and no other conditions apply,
 then every other detected occurrence of the event will result in a
 notification. This particular meaning is chosen so that the value 1
 has a distinct meaning from the value 0.

 Yang, et al. Expires September 2006 [Page 68]

 Internet Draft ForCES FE Model March 2006

 A conceptual implementation (not required) for this might be an
 internal suppression counter. Whenever an event is triggered, the
 counter is checked. If the counter is 0, a notification is
 generated. Whether a notification is generated or not, the counter
 is incremented. If the counter exceeds the configured value, it is
 reset to 0. In this conceptual implementation the reset behavior
 when a notification is generated can be thought of as setting the
 counter to 1.

 [Editor s note: a better description of the conceptual algorithm is
 sought.]

 4.8.3.4 Event Time Filtering

 Events may have a time filtering condition. This property
 represents the minimum time interval (in the absence of some other
 filtering condition being passed) between generating notifications of
 detected events. This condition MUST only be passed if the time
 since the last notification of the event is longer than the
 configured interval in milliseconds.

 Conceptually, this can be thought of as a stored timestamp which is
 compared with the detection time, or as a timer that is running that
 resets a suppression flag. In either case, if a notification is
 generated due to passing any condition then the time interval
 detection MUST be restarted.

 4.8.4 Alias Properties

 The properties for an alias add three (usually) writeable fields.
 These combine to identify the target element the subject alias
 refers to.

 <dataTypeDef>
 <name>aliasElementProperties</name>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <element elementID= 2 >
 <name>targetLFBClass</name>
 <synopsis>the class ID of the alias target</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 3 >
 <name>targetLFBInstance</name>
 <synopsis>the instand ID of the alias target</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID= 4 >

 <name>targetElementPath</name>

 Yang, et al. Expires September 2006 [Page 69]

 Internet Draft ForCES FE Model March 2006

 <synopsis>
 the path to the element target
 each 4 octets is read as one path element,
 using the path construction in the PL protocol.
 </synopsis>
 <typeRef>octetstring[128]</typeRef>
 </element>
 </struct>
 </dataTypeDef>

 4.9. XML Schema for LFB Class Library Documents

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:lfb="http://ietf.org/forces/1.0/lfbmodel"
 targetNamespace="http://ietf.org/forces/1.0/lfbmodel"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema for Defining LFB Classes and associated types (frames,
 data types for LFB attributes, and metadata).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="synopsis" type="xsd:string"/>
 <!-- Document root element: LFBLibrary -->
 <xsd:element name="LFBLibrary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="load" type="loadType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="frameDefs" type="frameDefsType"
 minOccurs="0"/>
 <xsd:element name="dataTypeDefs" type="dataTypeDefsType"
 minOccurs="0"/>
 <xsd:element name="metadataDefs" type="metadataDefsType"
 minOccurs="0"/>
 <xsd:element name="LFBClassDefs" type="LFBClassDefsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="provides" type="xsd:Name" use="required"/>
 </xsd:complexType>
 <!-- Uniqueness constraints -->
 <xsd:key name="frame">
 <xsd:selector xpath="lfb:frameDefs/lfb:frameDef"/>

 <xsd:field xpath="lfb:name"/>

 Yang, et al. Expires September 2006 [Page 70]

 Internet Draft ForCES FE Model March 2006

 </xsd:key>
 <xsd:key name="dataType">
 <xsd:selector xpath="lfb:dataTypeDefs/lfb:dataTypeDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="metadataDef">
 <xsd:selector xpath="lfb:metadataDefs/lfb:metadataDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="LFBClassDef">
 <xsd:selector xpath="lfb:LFBClassDefs/lfb:LFBClassDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 </xsd:element>
 <xsd:complexType name="loadType">
 <xsd:attribute name="library" type="xsd:Name" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="frameDefsType">
 <xsd:sequence>
 <xsd:element name="frameDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="dataTypeDefsType">
 <xsd:sequence>
 <xsd:element name="dataTypeDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Predefined (built-in) atomic data-types are:
 char, uchar, int16, uint16, int32, uint32, int64, uint64,

 string[N], string, byte[N], boolean, octetstring[N]

 Yang, et al. Expires September 2006 [Page 71]

 Internet Draft ForCES FE Model March 2006

 float16, float32, float64
 -->
 <xsd:group name="typeDeclarationGroup">
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 <xsd:element name="array" type="arrayType"/>
 <xsd:element name="struct" type="structType"/>
 <xsd:element name="union" type="structType"/>
 <xsd:element name="alias" type="typeRefNMTOKEN"/>
 </xsd:choice>
 </xsd:group>
 <xsd:simpleType name="typeRefNMTOKEN">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\c+"/>
 <xsd:pattern value="string\[\d+\]"/>
 <xsd:pattern value="byte\[\d+\]"/>
 <xsd:pattern value="octetstring\[\d+\]"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="atomicType">
 <xsd:sequence>
 <xsd:element name="baseType" type="typeRefNMTOKEN"/>
 <xsd:element name="rangeRestriction"
 type="rangeRestrictionType" minOccurs="0"/>
 <xsd:element name="specialValues" type="specialValuesType"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rangeRestrictionType">
 <xsd:sequence>
 <xsd:element name="allowedRange" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="min" type="xsd:integer"
 use="required"/>
 <xsd:attribute name="max" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="specialValuesType">
 <xsd:sequence>
 <xsd:element name="specialValue" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>

 </xsd:sequence>

 Yang, et al. Expires September 2006 [Page 72]

 Internet Draft ForCES FE Model March 2006

 <xsd:attribute name="value" type="xsd:token"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="arrayType">
 <xsd:sequence>
 <xsd:group ref="typeDeclarationGroup"/>
 <xsd:element name="contentKey" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="contentKeyField" maxOccurs="unbounded"
 type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="contentKeyID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 <!--declare keys to have unique IDs -->
 <xsd:key name="contentKeyID">
 <xsd:selector xpath="lfb:contentKey"/>
 <xsd:field xpath="@contentKeyID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="type" use="optional"
 default="variable-size">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fixed-size"/>
 <xsd:enumeration value="variable-size"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="length" type="xsd:integer" use="optional"/>
 <xsd:attribute name="maxLength" type="xsd:integer"
 use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="structType">
 <xsd:sequence>
 <xsd:element name="derivedFrom" type="typeRefNMTOKEN"
 minOccurs="0"/>
 <xsd:element name="element" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="optional" minOccurs="0"/>

 <xsd:group ref="typeDeclarationGroup"/>

 Yang, et al. Expires September 2006 [Page 73]

 Internet Draft ForCES FE Model March 2006

 </xsd:sequence>
 <xsd:attribute name="elementID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 <!-- key declaration to make elementIDs unique in a struct
 -->
 <xsd:key name="structElementID">
 <xsd:selector xpath="lfb:element"/>
 <xsd:field xpath="@elementID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataDefsType">
 <xsd:sequence>
 <xsd:element name="metadataDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="metadataID" type="xsd:integer"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="LFBClassDefsType">
 <xsd:sequence>
 <xsd:element name="LFBClassDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="version" type="versionType"/>
 <xsd:element name="derivedFrom" type="xsd:NMTOKEN"
 minOccurs="0"/>
 <xsd:element name="inputPorts" type="inputPortsType"
 minOccurs="0"/>
 <xsd:element name="outputPorts" type="outputPortsType"
 minOccurs="0"/>
 <xsd:element name="attributes" type="LFBAttributesType"
 minOccurs="0"/>
 <xsd:element name="capabilities"

 type="LFBCapabilitiesType" minOccurs="0"/>

 Yang, et al. Expires September 2006 [Page 74]

 Internet Draft ForCES FE Model March 2006

 <xsd:element name="events"
 type="eventsType" minOccurs="0"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="LFBClassID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 <!-- Key constraint to ensure unique attribute names within
 a class:
 -->
 <xsd:key name="attributes">
 <xsd:selector xpath="lfb:attributes/lfb:attribute"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="capabilities">
 <xsd:selector xpath="lfb:capabilities/lfb:capability"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <!-- does the above ensure that attributes and capabilities
 have different names?
 If so, the following is the elementID constraint
 -->
 <xsd:key name="attributeIDs">
 <xsd:selector xpath="lfb:attributes/lfb:attribute"/>
 <xsd:field xpath="@elementID"/>
 </xsd:key>
 <xsd:key name="capabilityIDs">
 <xsd:selector xpath="lfb:attributes/lfb:capability"/>
 <xsd:field xpath="@elementID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="versionType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:pattern value="[1-9][0-9]*\.([1-9][0-9]*|0)"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="inputPortsType">
 <xsd:sequence>
 <xsd:element name="inputPort" type="inputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="inputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>

 <xsd:element name="expectation" type="portExpectationType"/>

 Yang, et al. Expires September 2006 [Page 75]

 Internet Draft ForCES FE Model March 2006

 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="booleanType" use="optional"
 default="no"/>
 </xsd:complexType>
 <xsd:complexType name="portExpectationType">
 <xsd:sequence>
 <xsd:element name="frameExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type -->
 <xsd:element name="ref" type="xsd:string"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of"
 type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataInputChoiceType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataInputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="dependency" use="optional"
 default="required">

 <xsd:simpleType>

 Yang, et al. Expires September 2006 [Page 76]

 Internet Draft ForCES FE Model March 2006

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="defaultValue" type="xsd:token"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="outputPortsType">
 <xsd:sequence>
 <xsd:element name="outputPort" type="outputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="outputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="product" type="portProductType"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="booleanType" use="optional"
 default="no"/>
 </xsd:complexType>
 <xsd:complexType name="portProductType">
 <xsd:sequence>
 <xsd:element name="frameProduced">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type
 -->
 <xsd:element name="ref" type="xsd:NMTOKEN"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataProduced" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata
 -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of"
 type="metadataOutputChoiceType"/>
 </xsd:choice>

 </xsd:complexType>

 Yang, et al. Expires September 2006 [Page 77]

 Internet Draft ForCES FE Model March 2006

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputChoiceType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataOutputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="availability" use="optional"
 default="unconditional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unconditional"/>
 <xsd:enumeration value="conditional"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="LFBAttributesType">
 <xsd:sequence>
 <xsd:element name="attribute" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="optional" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 <xsd:element name="defaultValue" type="xsd:token"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="access" use="optional"
 default="read-write">

 <xsd:simpleType>

 Yang, et al. Expires September 2006 [Page 78]

 Internet Draft ForCES FE Model March 2006

 <xsd:list itemType="accessModeType"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="elementID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="accessModeType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="read-only"/>
 <xsd:enumeration value="read-write"/>
 <xsd:enumeration value="write-only"/>
 <xsd:enumeration value="read-reset"/>
 <xsd:enumeration value="trigger-only"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="LFBCapabilitiesType">
 <xsd:sequence>
 <xsd:element name="capability" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="optional" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 <xsd:attribute name="elementID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="eventsType">
 <xsd:sequence>
 <xsd:element name="event" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="eventTarget" type="eventPathType"/>
 <xsd:element ref="eventCondition"/>
 <xsd:element name="eventReports" type="eventReportsType"
 minOccurs="0"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>

 <xsd:attribute name="eventID" use="required"

 Yang, et al. Expires September 2006 [Page 79]

 Internet Draft ForCES FE Model March 2006

 type="xsd:integer"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="baseID" type="xsd:integer"
 use="optional"/>

 </xsd:complexType>
 <!-- the substitution group for the event conditions -->
 <xsd:element name="eventCondition" abstract="true"/>
 <xsd:element name="eventCreated"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventDeleted"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventChanged"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventGreaterThan"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventLessThan"
 substitutionGroup="eventCondition"/>
 <xsd:complexType name="eventPathType">
 <xsd:sequence>
 <xsd:element ref="eventPathPart" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- the substitution group for the event path parts -->
 <xsd:element name="eventPathPart" type="xsd:string"
 abstract="true"/>
 <xsd:element name="eventField" type="xsd:string"
 substitutionGroup="eventPathPart"/>
 <xsd:element name="eventSubscript" type="xsd:string"
 substitutionGroup="eventPathPart"/>
 <xsd:complexType name="eventReportsType">
 <xsd:sequence>
 <xsd:element name="eventReport" type="eventPathType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="booleanType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>

 Yang, et al. Expires September 2006 [Page 80]

 Internet Draft ForCES FE Model March 2006

 5. FE Attributes and Capabilities

 A ForCES forwarding element handles traffic on behalf of a ForCES
 control element. While the standards will describe the protocol and
 mechanisms for this control, different implementations and different
 instances will have different capabilities. The CE MUST be able to
 determine what each instance it is responsible for is actually
 capable of doing. As stated previously, this is an approximation.
 The CE is expected to be prepared to cope with errors in requests
 and variations in detail not captured by the capabilities
 information about an FE.

 In addition to its capabilities, an FE will have attribute
 information that can be used in understanding and controlling the
 forwarding operations. Some of the attributes will be read only,
 while others will also be writeable.

 In order to make the FE attribute information easily accessible, the
 information will be stored in an LFB. This LFB will have a class,
 FEObject. The LFBClassID for this class is 1. Only one instance of
 this class will ever be present, and the instance ID of that
 instance in the protocol is 1. Thus, by referencing the elements of
 class:1, instance:1 a CE can get all the information about the FE.
 For model completeness, this LFB Class is described in this section.

 There will also be an FEProtocol LFB Class. LFBClassID 2 is
 reserved for that class. There will be only one instance of that
 class as well. Details of that class are defined in the ForCES
 protocol document.

 5.1. XML for FEObject Class definition

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://ietf.org/forces/1.0/lfbmodel.xsd"
 provides="FEObject">
 <! xmlns and schemaLocation need to be fixed -->
 <dataTypeDefs>
 <dataTypeDef>
 <name>LFBAdjacencyLimitType</name>
 <synopsis>Describing the Adjacent LFB</synopsis>
 <struct>
 <element elementID="1">
 <name>NeighborLFB</name>
 <synopsis>ID for that LFB Class</synopsis>
 <typeRef>uint32</typeRef>
 </element>

 <element elementID="2">

 Yang, et al. Expires September 2006 [Page 81]

 Internet Draft ForCES FE Model March 2006

 <name>ViaPorts</name>
 <synopsis>
 the ports on which we can connect
 </synopsis>
 <array type="variable-size">
 <typeRef>string</typeRef>
 </array>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>PortGroupLimitType</name>
 <synopsis>
 Limits on the number of ports in a given group
 </synopsis>
 <struct>
 <element elementID="1">
 <name>PortGroupName</name>
 <synopsis>Group Name</synopsis>
 <typeRef>string</typeRef>
 </element>
 <element elementID="2">
 <name>MinPortCount</name>
 <synopsis>Minimum Port Count</synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="3">
 <name>MaxPortCount</name>
 <synopsis>Max Port Count</synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>SupportedLFBType</name>
 <synopsis>table entry for supported LFB</synopsis>
 <struct>
 <element elementID="1">
 <name>LFBName</name>
 <synopsis>
 The name of a supported LFB Class
 </synopsis>
 <typeRef>string</typeRef>
 </element>
 <element elementID="2">
 <name>LFBClassID</name>

 <synopsis>the id of a supported LFB Class</synopsis>

 Yang, et al. Expires September 2006 [Page 82]

 Internet Draft ForCES FE Model March 2006

 <typeRef>uint32</typeRef>
 </element>
 <element elementID="3">
 <name>LFBOccurrenceLimit</name>
 <synopsis>
 the upper limit of instances of LFBs of this class
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </element>
 <!-- For each port group, how many ports can exist
 -->
 <element elementID="4">
 <name>PortGroupLimits</name>
 <synopsis>Table of Port Group Limits</synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>PortGroupLimitType</typeRef>
 </array>
 </element>
 <!-- for the named LFB Class, the LFB Classes it may follow -->
 <element elementID="5">
 <name>CanOccurAfters</name>
 <synopsis>
 List of LFB Classes that this LFB class can follow
 </synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>LFBAdjacencyLimitType</typeRef>
 </array>
 </element>
 <!-- for the named LFB Class, the LFB Classes that may follow it
 -->
 <element elementID="6">
 <name>CanOccurBefores</name>
 <synopsis>
 List of LFB Classes that can follow this LFB class
 </synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>LFBAdjacencyLimitType</typeRef>
 </array>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>FEStatusValues</name>
 <synopsis>The possible values of status</synopsis>

 <atomic>

 Yang, et al. Expires September 2006 [Page 83]

 Internet Draft ForCES FE Model March 2006

 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>AdminDisable</name>
 <synopsis>
 FE is administratively disabled
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>OperDisable</name>
 <synopsis>FE is operatively disabled</synopsis>
 </specialValue>
 <specialValue value="2">
 <name>OperEnable</name>
 <synopsis>FE is operating</synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 <dataTypeDef>
 <name>FEConfiguredNeighborType</name>
 <synopsis>Details of the FE's Neighbor</synopsis>
 <struct>
 <element elementID="1">
 <name>NeighborID</name>
 <synopsis>Neighbors FEID</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="2">
 <name>InterfaceToNeighbor</name>
 <synopsis>
 FE's interface that connects to this neighbor
 </synopsis>
 <optional/>
 <typeRef>string</typeRef>
 </element>
 <element elementID="3">
 <name>NeighborNetworkAddress</name>
 <synopsis>
 The network layer address of the neighbor.
 Presumably, the network type can be
 determined from the interface information.
 </synopsis>
 <typeRef>octetsting[16]</typeRef>
 </element>
 <element elementID="4">
 <name>NeighborMACAddress</name>
 <synopsis>

 The media access control address of the neighbor.

 Yang, et al. Expires September 2006 [Page 84]

 Internet Draft ForCES FE Model March 2006

 Again, it is presumed the type can be determined
 from the interface information.
 </synopsis>
 <typeRef>octetstring[8]</typeRef>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>LFBSelectorType</name>
 <synopsis>
 Unique identification of an LFB class-instance
 </synopsis>
 <struct>
 <element elementID="1">
 <name>LFBClassID</name>
 <synopsis>LFB Class Identifier</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="2">
 <name>LFBInstanceID</name>
 <synopsis>LFB Instance ID</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>LFBLinkType</name>
 <synopsis>
 Link between two LFB instances of topology
 </synopsis>
 <struct>
 <element elementID="1">
 <name>FromLFBID</name>
 <synopsis>LFB src</synopsis>
 <typeRef>LFBSelectorType</typeRef>
 </element>
 <element elementID="2">
 <name>FromPortGroup</name>
 <synopsis>src port group</synopsis>
 <typeRef>string</typeRef>
 </element>
 <element elementID="3">
 <name>FromPortIndex</name>
 <synopsis>src port index</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="4">
 <name>ToLFBID</name>

 <synopsis>dst LFBID</synopsis>

 Yang, et al. Expires September 2006 [Page 85]

 Internet Draft ForCES FE Model March 2006

 <typeRef>LFBSelectorType</typeRef>
 </element>
 <element elementID="5">
 <name>ToPortGroup</name>
 <synopsis>dst port group</synopsis>
 <typeRef>string</typeRef>
 </element>
 <element elementID="6">
 <name>ToPortIndex</name>
 <synopsis>dst port index</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 </dataTypeDef>
 </dataTypeDefs>
 <LFBClassDefs>
 <LFBClassDef LFBClassID="1">
 <name>FEObject</name>
 <synopsis>Core LFB: FE Object</synopsis>
 <version>1.0</version>
 <attributes>
 <attribute access="read-write" elementID="1">
 <name>LFBTopology</name>
 <synopsis>the table of known Topologies</synopsis>
 <array type="variable-size">
 <typeRef>LFBLinkType</typeRef>
 </array>
 </attribute>
 <attribute access="read-write" elementID="2">
 <name>LFBSelectors</name>
 <synopsis>
 table of known active LFB classes and
 instances
 </synopsis>
 <array type="variable-size">
 <typeRef>LFBSelectorType</typeRef>
 </array>
 </attribute>
 <attribute access="read-write" elementID="3">
 <name>FEName</name>
 <synopsis>name of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </attribute>
 <attribute access="read-write" elementID="4">
 <name>FEID</name>
 <synopsis>ID of this FE</synopsis>
 <typeRef>uint32</typeRef>
 </attribute>

 <attribute access="read-only" elementID="5">

 Yang, et al. Expires September 2006 [Page 86]

 Internet Draft ForCES FE Model March 2006

 <name>FEVendor</name>
 <synopsis>vendor of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </attribute>
 <attribute access="read-only" elementID="6">
 <name>FEModel</name>
 <synopsis>model of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </attribute>
 <attribute access="read-only" elementID="7">
 <name>FEState</name>
 <synopsis>model of this FE</synopsis>
 <typeRef>FEStatusValues</typeRef>
 </attribute>
 <attribute access="read-write" elementID="8">
 <name>FENeighbors</name>
 <synopsis>table of known neighbors</synopsis>
 <array type="variable-size">
 <typeRef>FEConfiguredNeighborType</typeRef>
 </array>
 </attribute>
 </attributes>
 <capabilities>
 <capability elementID="30">
 <name>ModifiableLFBTopology</name>
 <synopsis>
 Whether Modifiable LFB is supported
 </synopsis>
 <optional/>
 <typeRef>boolean</typeRef>
 </capability>
 <capability elementID="31">
 <name>SupportedLFBs</name>
 <synopsis>List of all supported LFBs</synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>SupportedLFBType</typeRef>
 </array>
 </capability>
 </capabilities>
 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

 5.2. FE Capabilities

 The FE Capability information is contained in the capabilities
 element of the class definition. As described elsewhere, capability

 information is always considered to be read-only.

 Yang, et al. Expires September 2006 [Page 87]

 Internet Draft ForCES FE Model March 2006

 The currently defined capabilities are ModifiableLFBTopology and
 SupportedLFBs. Information as to which attributes of the FE LFB are
 supported is accessed by the properties information for those
 elements.

 5.2.1. ModifiableLFBTopology

 This element has a boolean value that indicates whether the LFB
 topology of the FE may be changed by the CE. If the element is
 absent, the default value is assumed to be true, and the CE presumes
 the LFB topology may be changed. If the value is present and set to
 false, the LFB topology of the FE is fixed. If the topology is
 fixed, the LFBs supported clause may be omitted, and the list of
 supported LFBs is inferred by the CE from the LFB topology
 information. If the list of supported LFBs is provided when
 ModifiableLFBTopology is false, the CanOccurBefore and CanOccurAfter
 information should be omitted.

 5.2.2. SupportedLFBs and SupportedLFBType

 One capability that the FE should include is the list of supported
 LFB classes. The SupportedLFBs element, is an array that contains
 the information about each supported LFB Class. The array structure
 type is defined as the SupportedLFBType dataTypeDef.

 Each occurrence of the SupportedLFBs array element describes an LFB
 class that the FE supports. In addition to indicating that the FE
 supports the class, FEs with modifiable LFB topology should include
 information about how LFBs of the specified class may be connected
 to other LFBs. This information should describe which LFB classes
 the specified LFB class may succeed or precede in the LFB topology.
 The FE should include information as to which port groups may be
 connected to the given adjacent LFB class. If port group
 information is omitted, it is assumed that all port groups may be
 used.

 5.2.2.1. LFBName

 This element has as its value the name of the LFB being described.

 5.2.2.2. LFBOccurrenceLimit

 This element, if present, indicates the largest number of instances
 of this LFB class the FE can support. For FEs that do not have the
 capability to create or destroy LFB instances, this can either be
 omitted or be the same as the number of LFB instances of this class
 contained in the LFB list attribute.

 Yang, et al. Expires September 2006 [Page 88]

 Internet Draft ForCES FE Model March 2006

 5.2.2.3. PortGroupLimits and PortGroupLimitType

 The PortGroupLimits element is an array of information about the
 port groups supported by the LFB class. The structure of the port
 group limit information is defined by the PortGroupLimitType
 dataTypeDef.

 Each PortGroupLimits array element contains information describing a
 single port group of the LFB class. Each array element contains the
 name of the port group in the PortGroupName element, the fewest
 number of ports that can exist in the group in the MinPortCount
 element, and the largest number of ports that can exist in the group
 in the MaxPortCount element.

 5.2.2.4.CanOccurAfters and LFBAdjacencyLimitType

 The CanOccurAfters element is an array that contains the list of
 LFBs the described class can occur after. The array elements are
 defined in the LFBAdjacencyLimitType dataTypeDef.

 The array elements describe a permissible positioning of the
 described LFB class, referred to here as the SupportedLFB.
 Specifically, each array element names an LFB that can topologically
 precede that LFB class. That is, the SupportedLFB can have an input
 port connected to an output port of an LFB that appears in the
 CanOccurAfters array. The LFB class that the SupportedLFB can
 follow is identified by the NeighborLFB element of the
 LFBAdjacencyLimitType array element. If this neighbor can only be
 connected to a specific set of input port groups, then the viaPort
 element is included. This element occurs once for each input port
 group of the SupportedLFB that can be connected to an output port of
 the NeighborLFB.

 [e.g., Within a SupportedLFBs element, each array element of the
 CanOccurAfters array must have a unique NeighborLFB, and within each
 array element each viaPort must represent a distinct and valid input
 port group of the SupportedLFB. The LFB Class definition schema
 does not yet support uniqueness declarations]

 5.2.2.5. CanOccurBefores and LFBAdjacencyLimitType

 The CanOccurBefores array holds the information about which LFB
 classes can follow the described class. Structurally this element
 parallels CanOccurAfters, and uses the same type definition for the
 array element.

 The array elements list those LFB classes that the SupportedLFB may
 precede in the topology. In this element, the

 Yang, et al. Expires September 2006 [Page 89]

 Internet Draft ForCES FE Model March 2006

 viaPort element of the array value represents the output port group
 of the SupportedLFB that may be connected to the NeighborLFB. As
 with CanOccurAfters, viaPort may occur multiple times if multiple
 output ports may legitimately connect to the given NeighborLFB
 class.

 [And a similar set of uniqueness constraints apply to the
 CanOccurBefore clauses, even though an LFB may occur both in
 CanOccurAfter and CanOccurBefore.]

 5.2.2.6. LFBClassCapabilities

 This element contains capability information about the subject LFB
 class whose structure and semantics are defined by the LFB class
 definition.

 [Note: Important Omissions]

 However, this element does not appear in the definition, because the
 author can not figure out how to write it.

 5.3. FEAttributes

 The attributes element is included if the class definition contains
 the attributes of the FE that are not considered "capabilities".
 Some of these attributes are writeable, and some are read-only,
 which should be indicated by the capability information.

 [Editors note - At the moment, the set of attributes is woefully
 incomplete.]

 5.3.1. FEStatus

 This attribute carries the overall state of the FE. For now, it is
 restricted to the strings AdminDisable, OperDisable and OperEnable.

 5.3.2. LFBSelectors and LFBSelectorType

 The LFBSelectors element is an array of information about the LFBs
 currently accessible via ForCES in the FE. The structure of the LFB
 information is defined by the LFBSelectorType.

 Each entry in the array describes a single LFB instance in the FE.
 The array element contains the numeric class ID of the class of the
 LFB instance and the numeric instance ID for this instance.

 Yang, et al. Expires September 2006 [Page 90]

 Internet Draft ForCES FE Model March 2006

 5.3.3. LFBTopology and LFBLinkType

 The optional LFBTopology element contains information about each
 inter-LFB link inside the FE, where each link is described in an
 LFBLinkType element. The LFBLinkType element contains sufficient
 information to identify precisely the end points of a link. The
 FromLFBID and ToLFBID fields specify the LFB instances at each end
 of the link, and must reference LFBs in the LFB instance table. The
 FromPortGroup and ToPortGroup must identify output and input port
 groups defined in the LFB classes of the LFB instances identified by
 FromLFBID and ToLFBID. The FromPortIndex and ToPortIndex fields
 select the elements from the port groups that this link connects.
 All links are uniquely identified by the FromLFBID, FromPortGroup,
 and FromPortIndex fields. Multiple links may have the same ToLFBID,
 ToPortGroup, and ToPortIndex as this model supports fan in of inter-
 LFB links but not fan out.

 5.3.4. FENeighbors an FEConfiguredNeighborType

 The FENeighbors element is an array of information about manually
 configured adjacencies between this FE and other FEs. The content
 of the array is defined by the FEConfiguredNeighborType element.

 This array is intended to capture information that may be configured
 on the FE and is needed by the CE, where one array entry corresponds
 to each configured neighbor. Note that this array is not intended
 to represent the results of any discovery protocols, as those will
 have their own LFBs.

 Similarly, the MAC address information in the table is intended to
 be used in situations where neighbors are configured by MAC address.
 Resolution of network layer to MAC address information should be
 captured in ARP LFBs and not duplicated in this table. Note that
 the same neighbor may be reached through multiple interfaces or at
 multiple addresses. There is no uniqueness requirement of any sort
 on occurrences of the FENeighbors element.

 Information about the intended forms of exchange with a given
 neighbor is not captured here, only the adjacency information is
 included.

 5.3.4.1.NeighborID

 This is the ID in some space meaningful to the CE for the neighbor.
 If this table remains, we probably should add an FEID from the same
 space as an attribute of the FE.

 Yang, et al. Expires September 2006 [Page 91]

 Internet Draft ForCES FE Model March 2006

 5.3.4.2.NeighborInterface

 This identifies the interface through which the neighbor is reached.

 [Editors note: As the port structures become better defined, the
 type for this should be filled in with the types necessary to
 reference the various possible neighbor interfaces, include physical
 interfaces, logical tunnels, virtual circuits, etc.]

 5.3.4.3. NeighborNetworkAddress

 Neighbor configuration is frequently done on the basis of a network
 layer address. For neighbors configured in that fashion, this is
 where that address is stored.

 5.3.4.4.NeighborMacAddress

 Neighbors are sometimes configured using MAC level addresses
 (Ethernet MAC address, circuit identifiers, etc.) If such addresses
 are used to configure the adjacency, then that information is stored
 here. Note that over some ports such as physical point to point
 links or virtual circuits considered as individual interfaces, there
 is no need for either form of address.

 6. Satisfying the Requirements on FE Model

 This section describes how the proposed FE model meets the
 requirements outlined in Section 5 of RFC 3654 [1]. The
 requirements can be separated into general requirements (Sections 5,
 5.1 - 5.4) and the specification of the minimal set of logical
 functions that the FE model must support (Section 5.5).

 The general requirement on the FE model is that it be able to
 express the logical packet processing capability of the FE, through
 both a capability and a state model. In addition, the FE model is
 expected to allow flexible implementations and be extensible to
 allow defining new logical functions.

 A major component of the proposed FE model is the Logical Function
 Block (LFB) model. Each distinct logical function in an FE is
 modeled as an LFB. Operational parameters of the LFB that must be
 visible to the CE are conceptualized as LFB attributes. These
 attributes express the capability of the FE and support flexible
 implementations by allowing an FE to specify which optional features
 are supported. The attributes also indicate whether they are
 configurable by the CE for an LFB class. Configurable attributes
 provide the CE some flexibility in specifying the behavior of an
 LFB. When multiple LFBs belonging to the same LFB class are
 instantiated on an FE, each of those LFBs could be configured with

https://datatracker.ietf.org/doc/html/rfc3654#section-5

 Yang, et al. Expires September 2006 [Page 92]

 Internet Draft ForCES FE Model March 2006

 different attribute settings. By querying the settings of the
 attributes for an instantiated LFB, the CE can determine the state
 of that LFB.

 Instantiated LFBs are interconnected in a directed graph that
 describes the ordering of the functions within an FE. This directed
 graph is described by the topology model. The combination of the
 attributes of the instantiated LFBs and the topology describe the
 packet processing functions available on the FE (current state).

 Another key component of the FE model is the FE attributes. The FE
 attributes are used mainly to describe the capabilities of the FE,
 but they also convey information about the FE state.

 The FE model also includes a definition of the minimal set of LFBs
 that is required by Section 5.5 of RFC 3564[1]. The sections that
 follow provide more detail on the specifics of each of those LFBs.
 Note that the details of the LFBs are contained in a separate LFB
 Class Library document. [EDITOR - need to add a reference to that
 document].

 6.1. Port Functions

 The FE model can be used to define a Port LFB class and its
 technology-specific subclasses to map the physical port of the
 device to the LFB model with both static and configurable
 attributes. The static attributes model the type of port, link
 speed, etc. The configurable attributes model the addressing,
 administrative status, etc.

 6.2. Forwarding Functions

 Because forwarding function is one of the most common and important
 functions in the forwarding plane, it requires special attention in
 modeling to allow design flexibility, implementation efficiency,
 modeling accuracy and configuration simplicity. Toward that end, it
 is recommended that the core forwarding function being modeled by
 the combination of two LFBs -- Longest Prefix Match (LPM) classifier
 LFB and Next Hop LFB. Special header writer LFB is also needed to
 take care of TTL decrement and checksum etc.

 6.3. QoS Functions

 The LFB class library includes descriptions of the Meter, Queue,
 Scheduler, Counter and Dropper LFBs to support the QoS functions in
 the forwarding path. The FE model can also be used to define other
 useful QoS functions as needed. These LFBs allow the CE to
 manipulate the attributes to model IntServ or DiffServ functions.

https://datatracker.ietf.org/doc/html/rfc3564#section-5.5

 Yang, et al. Expires September 2006 [Page 93]

 Internet Draft ForCES FE Model March 2006

 6.4. Generic Filtering Functions

 Various combinations of Classifier, Redirector, Meter and Dropper
 LFBs can be used to model a complex set of filtering functions.

 6.5. Vendor Specific Functions

 New LFB classes can be defined according to the LFB model as
 described in Section 4 to support vendor specific functions. A new
 LFB class can also be derived from an existing LFB class through
 inheritance.

 6.6.High-Touch Functions

 High-touch functions are those that take action on the contents or
 headers of a packet based on content other than what is found in the
 IP header. Examples of such functions include NAT, ALG, firewall,
 tunneling and L7 content recognition. It is not practical to
 include all possible high-touch functions in the initial LFB library
 due to the number and complexity. However, the flexibility of the
 LFB model and the power of interconnection in LFB topology should
 make it possible to model any high-touch functions.

 6.7. Security Functions

 Security functions are not included in the initial LFB class
 library. However, the FE model is flexible and powerful enough to
 model the types of encryption and/or decryption functions that an FE
 supports and the associated attributes for such functions.

 The IP Security Policy (IPSP) Working Group in the IETF has started
 work in defining the IPSec Policy Information Base [8]. We will try
 to reuse as much of the work as possible.

 6.8. Off-loaded Functions

 In addition to the packet processing functions typically found on
 the FEs, some logical functions may also be executed asynchronously
 by some FEs, as directed by a finite-state machine and triggered not
 only by packet events, but by timer events as well. Examples of
 such functions include; finite-state machine execution required by
 TCP termination or OSPF Hello processing off-loaded from the CE. By
 defining LFBs for such functions, the FE model is capable of
 expressing these asynchronous functions to allow the CE to take
 advantage of such off-loaded functions on the FEs.

 Yang, et al. Expires September 2006 [Page 94]

 Internet Draft ForCES FE Model March 2006

 6.9. IPFLOW/PSAMP Functions

RFC 3917 [9] defines an architecture for IP traffic flow monitoring,
 measuring and exporting. The LFB model supports statistics
 collection on the LFB by including statistical attributes (Section

4.7.4) in the LFB class definitions; in addition, special statistics
 collection LFBs such as meter LFBs and counter LFBs can also be used
 to support accounting functions in the FE.

 [10] describes a framework to define a standard set of capabilities
 for network elements to sample subsets of packets by statistical and
 other methods. Time event generation, filter LFB, and counter/meter
 LFB are the elements needed to support packet filtering and sampling
 functions -- these elements can all be supported in the FE model.

 7. Using the FE model in the ForCES Protocol

 The actual model of the forwarding plane in a given NE is something
 the CE must learn and control by communicating with the FEs (or by
 other means). Most of this communication will happen in the post-
 association phase using the ForCES protocol. The following types of
 information must be exchanged between CEs and FEs via the ForCES
 protocol:

 1) FE topology query;
 2) FE capability declaration;
 3) LFB topology (per FE) and configuration capabilities query;
 4) LFB capability declaration;
 5) State query of LFB attributes;
 6) Manipulation of LFB attributes;
 7) LFB topology reconfiguration.

 Items 1) through 5) are query exchanges, where the main flow of
 information is from the FEs to the CEs. Items 1) through 4) are
 typically queried by the CE(s) in the beginning of the post-
 association (PA) phase, though they may be repeatedly queried at any
 time in the PA phase. Item 5) (state query) will be used at the
 beginning of the PA phase, and often frequently during the PA phase
 (especially for the query of statistical counters).

 Items 6) and 7) are "command" types of exchanges, where the main
 flow of information is from the CEs to the FEs. Messages in Item 6)
 (the LFB re-configuration commands) are expected to be used
 frequently. Item 7) (LFB topology re-configuration) is needed only
 if dynamic LFB topologies are supported by the FEs and it is
 expected to be used infrequently.

 Among the seven types of payload information the ForCES protocol
 carries between CEs and FEs, the FE model covers all of them except

https://datatracker.ietf.org/doc/html/rfc3917

 Yang, et al. Expires September 2006 [Page 95]

 Internet Draft ForCES FE Model March 2006

 item 1), which concerns the inter-FE topology. The FE model focuses
 on the LFB and LFB topology within a single FE. Since the
 information related to item 1) requires global knowledge about all
 of the FEs and their inter-connection with each other, this exchange
 is part of the ForCES base protocol instead of the FE model.

 The relationship between the FE model and the seven post-association
 messages are visualized in Figure 9:

 +--------+
 -->| CE |
 /----\ . +--------+
 ____/ FE Model . ^ |
 | |................ (1),2 | | 6, 7
 | | (off-line) . 3, 4, 5 | |
 ____/ . | v
 . +--------+
 e.g. RFCs -->| FE |
 +--------+

 Figure 9. Relationship between the FE model and the ForCES protocol
 messages, where (1) is part of the ForCES base protocol, and the
 rest are defined by the FE model.

 The actual encoding of these messages is defined by the ForCES
 protocol and beyond the scope of the FE model. Their discussion is
 nevertheless important here for the following reasons:

 . These PA model components have considerable impact on the FE
 model. For example, some of the above information can be
 represented as attributes of the LFBs, in which case such
 attributes must be defined in the LFB classes.
 . The understanding of the type of information that must be
 exchanged between the FEs and CEs can help to select the
 appropriate protocol format and the actual encoding method
 (such as XML, TLVs).
 . Understanding the frequency of these types of messages should
 influence the selection of the protocol format (efficiency
 considerations).

 An important part of the FE model is the port the FE uses for its
 message exchanges to and from the CE. In the case that a dedicated
 port is used for CE-FE communication, we propose to use a special
 port LFB, called the CE-FE Port LFB (a subclass of the general Port
 LFB in Section 6.1), to model this dedicated CE-FE port. The CE-FE
 Port LFB acts as both a source and sink for the traffic from and to
 the CE. Sometimes the CE-FE traffic does not have its own dedicated
 port, instead the data fabric is shared for the data plane traffic

 and the CE-FE traffic. A special processing LFB can be used to

 Yang, et al. Expires September 2006 [Page 96]

 Internet Draft ForCES FE Model March 2006

 model the ForCES packet encapsulation and decapsulation in such
 cases.

 The remaining sub-sections of this section address each of the seven
 message types.

 7.1. FE Topology Query

 An FE may contain zero, one or more external ingress ports.
 Similarly, an FE may contain zero, one or more external egress
 ports. In other words, not every FE has to contain any external
 ingress or egress interfaces. For example, Figure 10 shows two
 cascading FEs. FE #1 contains one external ingress interface but no
 external egress interface, while FE #2 contains one external egress
 interface but no ingress interface. It is possible to connect these
 two FEs together via their internal interfaces to achieve the
 complete ingress-to-egress packet processing function. This provides
 the flexibility to spread the functions across multiple FEs and
 interconnect them together later for certain applications.

 While the inter-FE communication protocol is out of scope for
 ForCES, it is up to the CE to query and understand how multiple FEs
 are inter-connected to perform a complete ingress-egress packet
 processing function, such as the one described in Figure 10. The
 inter-FE topology information may be provided by FEs, may be hard-
 coded into CE, or may be provided by some other entity (e.g., a bus
 manager) independent of the FEs. So while the ForCES protocol
 supports FE topology query from FEs, it is optional for the CE to
 use it, assuming the CE has other means to gather such topology
 information.

 +---+
 | +---------+ +------------+ +---------+ |
 input| | | | | | output |
 ---+->| Ingress |-->|Header |-->|IPv4 |---------+--->+
 | | port | |Decompressor| |Forwarder| FE | |
 | +---------+ +------------+ +---------+ #1 | |
 +---+ V
 |
 +-----------------------<-----------------------------+
 |
 | +--+
 V | +------------+ +----------+ |
 | input | | | | output |
 +->--+->|Header |-->| Egress |---------+-->
 | |Compressor | | port | FE |
 | +------------+ +----------+ #2 |
 +--+

 Yang, et al. Expires September 2006 [Page 97]

 Internet Draft ForCES FE Model March 2006

 Figure 10. An example of two FEs connected together.

 Once the inter-FE topology is discovered by the CE after this query,
 it is assumed that the inter-FE topology remains static. However,
 it is possible that an FE may go down during the NE operation, or a
 board may be inserted and a new FE activated, so the inter-FE
 topology will be affected. It is up to the ForCES protocol to
 provide a mechanism for the CE to detect such events and deal with
 the change in FE topology. FE topology is outside the scope of the
 FE model.

 7.2. FE Capability Declarations

 FEs will have many types of limitations. Some of the limitations
 must be expressed to the CEs as part of the capability model. The
 CEs must be able to query these capabilities on a per-FE basis.
 Examples:

 . Metadata passing capabilities of the FE. Understanding these
 capabilities will help the CE to evaluate the feasibility of
 LFB topologies, and hence to determine the availability of
 certain services.
 . Global resource query limitations (applicable to all LFBs of
 the FE).
 . LFB supported by the FE.
 . LFB class instantiation limit.
 . LFB topological limitations (linkage constraint, ordering etc.)

 7.3. LFB Topology and Topology Configurability Query

 The ForCES protocol must provide the means for the CEs to discover
 the current set of LFB instances in an FE and the interconnections
 between the LFBs within the FE. In addition, sufficient information
 should be available to determine whether the FE supports any CE-
 initiated (dynamic) changes to the LFB topology, and if so,
 determine the allowed topologies. Topology configurability can also
 be considered as part of the FE capability query as described in

Section 9.3.

 7.4. LFB Capability Declarations

 LFB class specifications define a generic set of capabilities.
 When an LFB instance is implemented (instantiated) on a vendor's FE,
 some additional limitations may be introduced. Note that we discuss
 only those limitations that are within the flexibility of the LFB
 class specification. That is, the LFB instance will remain
 compliant with the LFB class specification despite these
 limitations. For example, certain features of an LFB class may be
 optional, in which case it must be possible for the CE to determine

 Yang, et al. Expires September 2006 [Page 98]

 Internet Draft ForCES FE Model March 2006

 if an optional feature is supported by a given LFB instance or not.
 Also, the LFB class definitions will probably contain very few
 quantitative limits (e.g., size of tables), since these limits are
 typically imposed by the implementation. Therefore, quantitative
 limitations should always be expressed by capability arguments.

 LFB instances in the model of a particular FE implementation will
 possess limitations on the capabilities defined in the corresponding
 LFB class. The LFB class specifications must define a set of
 capability arguments, and the CE must be able to query the actual
 capabilities of the LFB instance via querying the value of such
 arguments. The capability query will typically happen when the LFB
 is first detected by the CE. Capabilities need not be re-queried in
 case of static limitations. In some cases, however, some
 capabilities may change in time (e.g., as a result of
 adding/removing other LFBs, or configuring certain attributes of
 some other LFB when the LFBs share physical resources), in which
 case additional mechanisms must be implemented to inform the CE
 about the changes.

 The following two broad types of limitations will exist:

 . Qualitative restrictions. For example, a standardized multi-
 field classifier LFB class may define a large number of
 classification fields, but a given FE may support only a subset
 of those fields.
 . Quantitative restrictions, such as the maximum size of tables,
 etc.

 The capability parameters that can be queried on a given LFB class
 will be part of the LFB class specification. The capability
 parameters should be regarded as special attributes of the LFB. The
 actual values of these arguments may be, therefore, obtained using
 the same attribute query mechanisms as used for other LFB
 attributes.

 Capability attributes will typically be read-only arguments, but in
 certain cases they may be configurable. For example, the size of a
 lookup table may be limited by the hardware (read-only), in other
 cases it may be configurable (read-write, within some hard limits).

 Assuming that capabilities will not change frequently, the
 efficiency of the protocol/schema/encoding is of secondary concern.

 7.5. State Query of LFB Attributes

 This feature must be provided by all FEs. The ForCES protocol and
 the data schema/encoding conveyed by the protocol must together

 Yang, et al. Expires September 2006 [Page 99]

 Internet Draft ForCES FE Model March 2006

 satisfy the following requirements to facilitate state query of the
 LFB attributes:

 . Must permit FE selection. This is primarily to refer to a
 single FE, but referring to a group of (or all) FEs may
 optional be supported.
 . Must permit LFB instance selection. This is primarily to refer
 to a single LFB instance of an FE, but optionally addressing of
 a group of LFBs (or all) may be supported.
 . Must support addressing of individual attribute of an LFB.
 . Must provide efficient encoding and decoding of the addressing
 info and the configured data.
 . Must provide efficient data transmission of the attribute state
 over the wire (to minimize communication load on the CE-FE
 link).

 7.6. LFB Attribute Manipulation

 This is a place-holder for all operations that the CE will use to
 populate, manipulate, and delete attributes of the LFB instances on
 the FEs. These operations allow the CE to configure an individual
 LFB instance.

 The same set of requirements as described in Section 9.5 for
 attribute query applies here for attribute manipulation as well.

 Support for various levels of feedback from the FE to the CE (e.g.,
 request received, configuration completed), as well as multi-
 attribute configuration transactions with atomic commit and
 rollback, may be necessary in some circumstances.

 (Editor's note: It remains an open issue as to whether or not other
 methods are needed in addition to "get attribute" and "set
 attribute" (such as multi-attribute transactions). If the answer to
 that question is yes, it is not clear whether such methods should be
 supported by the FE model itself or the ForCES protocol.)

 7.7. LFB Topology Re-configuration

 Operations that will be needed to reconfigure LFB topology:
 . Create a new instance of a given LFB class on a given FE.
 . Connect a given output of LFB x to the given input of LFB y.
 . Disconnect: remove a link between a given output of an LFB and
 a given input of another LFB.
 . Delete a given LFB (automatically removing all interconnects
 to/from the LFB).

 8. Example

 Yang, et al. Expires September 2006 [Page 100]

 Internet Draft ForCES FE Model March 2006

 This section contains an example LFB definition. While some
 properties of LFBs are shown by the FE Object LFB, this endeavors to
 show how a data plain LFB might be build. This example is a
 fictional case of an interface supporting a coarse WDM optical
 interface carry Frame Relay traffic. The statistical information
 (including error statistics) is omitted.)

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://ietf.org/forces/1.0/lfbmodel"
 provides="LaserFrameLFB">
 <frameDefs>
 <frameDef>
 <name>FRFrame</name>
 <synopsis>
 A frame relay frame, with DLCI without
 stuffing)
 </synopsis>
 </frameDef>
 <frameDef>
 <name>IPFrame</name>
 <synopsis>An IP Packet</synopsis>
 </frameDef>
 </frameDefs>
 <dataTypeDefs>
 <dataTypeDef>
 <name>frequencyInformationType</name>
 <synopsis>
 Information about a single CWDM frequency
 </synopsis>
 <struct>
 <element elementID="1">
 <name>LaserFrequency</name>
 <synopsis>encoded frequency(channel)</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="2">
 <name>FrequencyState</name>
 <synopsis>state of this frequency</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </element>
 <element elementID="3">
 <name>LaserPower</name>
 <synopsis>current observed power</synopsis>
 <typeRef>uint32</typeRef>
 </element>

 <element elementID="4">

 Yang, et al. Expires September 2006 [Page 101]

 Internet Draft ForCES FE Model March 2006

 <name>FrameRelayCircuits</name>
 <synopsis>
 Information about circuits on this Frequency
 </synopsis>
 <array>
 <typeRef>frameCircuitsType</typeRef>
 </array>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>frameCircuitsType</name>
 <synopsis>
 Information about a single Frame Relay circuit
 </synopsis>
 <struct>
 <element elementID="1">
 <name>DLCI</name>
 <synopsis>DLCI of the circuit</synopsis>
 <typeRef>uint32</typeRef>
 </element>
 <element elementID="2">
 <name>CircuitStatus</name>
 <synopsis>state of the circuit</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </element>
 <element elementID="3">
 <name>isLMI</name>
 <synopsis>is this the LMI circuit</synopsis>
 <typeRef>boolean</typeRef>
 </element>
 <element elementID="4">
 <name>associatedPort</name>
 <synopsis>
 which input / output port is associated
 with this circuit
 </synopsis>
 <typeRef>uint32</typeRef>
 </element>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>PortStatusValues</name>
 <synopsis>
 The possible values of status. Used for both
 administrative and operation status
 </synopsis>
 <atomic>

 <baseType>uchar</baseType>

 Yang, et al. Expires September 2006 [Page 102]

 Internet Draft ForCES FE Model March 2006

 <specialValues>
 <specialValue value="0">
 <name>Disabled </name>
 <synopsis>the component is disabled</synopsis>
 </specialValue>
 <specialValue value="1">
 <name>Enable</name>
 <synopsis>FE is operatively disabled</synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 </dataTypeDefs>
 <metadataDefs>
 <metadataDef>
 <name>DLCI</name>
 <synopsis>The DLCI the frame arrived on</synopsis>
 <metadataID>12</metadataID>
 <typeRef>uint32</typeRef>
 </metadataDef>
 <metadataDef>
 <name>LaserChannel</name>
 <synopsis>The index of the laser channel</synopsis>
 <metadataID>34</metadataID>
 <typeRef>uint32</typeRef>
 </metadataDef>
 </metadataDefs>
 <LFBClassDefs>
 <LFBClassDef LFBClassID="-255">
 <name>FrameLaserLFB</name>
 <synopsis>Fictional LFB for Demonstartions</synopsis>
 <version>1.0</version>
 <inputPorts>
 <inputPort group="yes">
 <name>LMIfromFE</name>
 <synopsis>
 Ports for LMI traffic, for transmission
 </synopsis>
 <expectation>
 <frameExpected>
 <ref>FRFrame</ref>
 </frameExpected>
 <metadataExpected>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataExpected>
 </expectation>
 </inputPort>

 <inputPort>

 Yang, et al. Expires September 2006 [Page 103]

 Internet Draft ForCES FE Model March 2006

 <name>DatafromFE</name>
 <synopsis>
 Ports for data to be sent on circuits
 </synopsis>
 <expectation>
 <frameExpected>
 <ref>IPFrame</ref>
 </frameExpected>
 <metadataExpected>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 </inputPorts>
 <outputPorts>
 <outputPort group="yes">
 <name>LMItoFE</name>
 <synopsis>
 Ports for LMI traffic for processing
 </synopsis>
 <product>
 <frameProduced>
 <ref>FRFrame</ref>
 </frameProduced>
 <metadataProduced>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataProduced>
 </product>
 </outputPort>
 <outputPort group="yes">
 <name>DatatoFE</name>
 <synopsis>
 Ports for Data traffic for processing
 </synopsis>
 <product>
 <frameProduced>
 <ref>IPFrame</ref>
 </frameProduced>
 <metadataProduced>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataProduced>
 </product>
 </outputPort>
 </outputPorts>
 <attributes>

 <attribute access="read-write" elementID="1">

 Yang, et al. Expires September 2006 [Page 104]

 Internet Draft ForCES FE Model March 2006

 <name>AdminPortState</name>
 <synopsis>is this port allowed to function</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </attribute>
 <attribute access="read-write" elementID="2">
 <name>FrequencyInformation</name>
 <synopsis>
 table of information per CWDM frequency
 </synopsis>
 <array type="variable-size">
 <typeRef>frequencyInformationType</typeRef>
 </array>
 </attribute>
 </attributes>
 <capabilities>
 <capability elementID="31">
 <name>OperationalState</name>
 <synopsis>
 whether the port over all is operational
 </synopsis>
 <typeRef>PortStatusValues</typeRef>
 </capability>
 <capability elementID="32">
 <name>MaximumFrequencies</name>
 <synopsis>
 how many laser frequencies are there
 </synopsis>
 <typeRef>uint16</typeRef>
 </capability>
 <capability elementID="33">
 <name>MaxTotalCircuits</name>
 <synopsis>
 Total supportable Frame Relay Circuits, across
 all laser frequencies
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </capability>
 </capabilities>
 <events baseID="61">
 <event eventID="1">
 <name>FrequencyState</name>
 <synopsis>
 The state of a frequency has changed
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>

 <eventField>FrequencyState</eventField>

 Yang, et al. Expires September 2006 [Page 105]

 Internet Draft ForCES FE Model March 2006

 </eventTarget>
 <eventChanged/>
 <eventReports>
 <!-- report the new state -->
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrequencyState</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="2">
 <name>CreatedFrequency</name>
 <synopsis>A new frequency has appeared</synopsis>
 <eventTarget>
 <eventField>FrequencyInformation></eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 </eventTarget>
 <eventCreated/>
 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserFrequency</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="3">
 <name>DeletedFrequency</name>
 <synopsis>
 A frequency Table entry has been deleted
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 </eventTarget>
 <eventDeleted/>
 </event>
 <event eventID="4">
 <name>PowerProblem</name>
 <synopsis>
 there are problems with the laser power level
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserPower</eventField>
 </eventTarget>

 <eventLessThan/>

 Yang, et al. Expires September 2006 [Page 106]

 Internet Draft ForCES FE Model March 2006

 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserPower</eventField>
 </eventReport>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserFrequency</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="5">
 <name>FrameCircuitChanged</name>
 <synopsis>
 the state of an Fr circuit on a frequency
 has changed
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>
 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>CircuitStatus</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>
 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>CircuitStatus</eventField>
 </eventReport>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>
 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>DLCI</eventField>
 </eventReport>
 </eventReports>
 </event>
 </events>
 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

 Yang, et al. Expires September 2006 [Page 107]

 Internet Draft ForCES FE Model March 2006

 8.1.Data Handling

 This LFB is designed to handle data packets coming in from or going
 out to the external world. It is not a full port, and it lacks many
 useful statistics. But it serves to show many of the relevant
 behaviors.

 Packets arriving without error from the physical interface come in
 on a Frame Relay DLCI on a laser channel. These two values are used
 by the LFB too look up the handling for the packet. If the handling
 indicates that the packet is LMI, then the output index is used to
 select an LFB port from the LMItoFE port group. The packet is sent
 as a full Frame Relay frame (without any bit or byte stuffing) on
 the selected port. The laser channel and DLCI are sent as meta-
 data, even though the DLCI is also still in the packet.

 Good packets that arrive and are not LMI and have a frame relay type
 indicator of IP are sent as IP packets on the port in the DatatoFE
 port group, using the same index field from the table based on the
 laser channel and DLCI. The channel and DLCI are attached as meta-
 data for other use (classifiers, for example.)

 The current definition does not specify what to do if the Frame
 Relay type information is not IP.

 Packets arriving on input ports arrive with the Lasesr Channel and
 Frame Relay DLCI as meta-data. As such, a single input port could
 have been used. With the structure that is defined (which parallels
 the output structure), the selection of channel and DLCI could be
 restricted by the arriving input port group (LMI vs data) and port
 index. As an alternative LFB design, the structures could require a
 1-1 relationship between DLCI and LFB port, in which case no meta-
 data would be needed. This would however be quite complex and
 noisy. The intermediate level of structure here allows parallelism
 between input and output, without requiring excessive ports.

 8.1.1. Setting up a DLCI

 When a CE chooses to establish a DLCI on a specific laser channel,
 it sends a SET request directed to this LFB. The request might look
 like

 T = SET-OPERATION
 T = PATH-DATA
 Path: flags = first-avail, length = 4, path = 2, channel, 4
 DataRaw: DLCI, Enable(1), false, out-idx

 Which would esbalish the DLCI as enabled, with traffic going to a
 specific element of the output port group DatatoFE. (The CE would

 Yang, et al. Expires September 2006 [Page 108]

 Internet Draft ForCES FE Model March 2006

 ensure that output port is connected to the right place before
 issuing this request.

 The response to the operation would include the actual index
 assigned to this Frame Relay circuit. This table is structured to
 use separate internal indices and DLCIs. An alternative design
 could have used the DLCI as index, trading off complexities.

 One could also imagine that the FE has an LMI LFB. Such an LFB
 would be connected to the LMItoFE and LMIfromFE port groups. It
 would process LMI information. It might be the LFBs job to set up
 the frame relay circuits. The LMI LFB would have an alias entry
 that points to the Frame Relay circuits table it manages, so that it
 can manipulate those entities.

 8.1.2. Error Handling

 The LFB will receive invalid packets over the wire. Many of these
 will simply result in incrementing counters. The LFB designer might
 also specify some error rate measures. This puts more work on the
 FE, but allows for more meaningful alarms.

 There may be some error conditions that should cause parts of the
 packet to be sent to the CE. The error itself is not something that
 can cause an event in the LFB. There are two ways this can be
 handled.

 One way is to define a specific field to count the error, and a
 field in the LFB to hold the required portion of the packet. The
 field could be defined to hold the portion of the packet from the
 most recent error. One could then define an event that occurs
 whenever the error count changes, and declare that reporting the
 event includes the LFB field with the packet portion. For rare but
 extremely critical errors, this is an effective solution. It
 ensures reliable delivery of the notification. And it allows the CE
 to control if it wants the notification. (Use of the event variance
 property would suppress multiple notifications. It would suppress
 them even if they were many hours apart, so the CE is unlikely to
 use that.)

 Another approach is for the LFB to have a port that connects to a
 redirect sink. The LFB would attach the laser channel, the DLCI,
 and the error indication as meta-data, and ship the packet to the
 CE.

 Other aspects of error handling are discussed under events below.

 8.2. LFB Attributes

 Yang, et al. Expires September 2006 [Page 109]

 Internet Draft ForCES FE Model March 2006

 This LFB is defined to have two top level attributes. One reflects
 the administrative state of the LFB. This allows the CE to disable
 the LFB completely.

 The other attribute is the table of information about the laser
 channels. It is a variable sized array. Each array entry contains
 an identifier for what laser frequency this entry is associated
 with, whether that frequency is operational, the power of the laser
 at that frequency, and a table of information about frame relay
 circuits on this frequency. There is no administrative status since
 a CE can disable an entry simply by removing it. (Frequency and
 laser power of a non-operational channel are not particularly
 useful. Knowledge about what frequencies can be supported would be
 a table in the capabilities section.)

 The Frame Relay circuit information contains the DLCI, the
 operational circuit status, whether this circuit is to be treated as
 carrying LMI information, and which port in the output port group of
 the LFB traffic is to be sent to. As mentioned above, the circuit
 index could, in some designs, be combined with the DLCI.

 8.3. Capabilities

 The capability information for this LFB includes whether the
 underlying interface is operational, how many frequencies are
 supported, and how many total circuits, across all channels, are
 permitted. The maximum number for a given laser channel can be
 determined from the properties of the FrameRelayCircuits table. A
 GET-Properties on path 2.channel.4 will give the CE the properties
 of the array which include the number of entries used, the first
 available entry, and the maximum number of entries permitted.

 8.4. Events

 This LFB is defined to be able to generate several events that the
 CE may be interested in. There are events to report changes in
 operational state of frequencies, and the creation and deletion of
 frequency entries. There is an event for changes in status of
 individual frame relay circuits. So an event notification of
 61.5.3.11 would indicate that there had been a circuit status change
 on subscript 11 of the circuit table in subscript 3 of the frequency
 table. The event report would include the new status of the circuit
 and the DLCI of the circuit. Arguably, the DLCI is redundant, since
 the CE presumably knows the DLCI based on the circuit index. It is
 included here to show including two pieces of information in an
 event report.

 As described above, the event declaration defines the event target,

 the event condition, and the event report content. The event

 Yang, et al. Expires September 2006 [Page 110]

 Internet Draft ForCES FE Model March 2006

 properties indicate whether the CE is subscribed to the event, the
 specific threshold for the event, and any filter conditions for the
 event.

 Another event shown is a laser power problem. This event is
 generated whenever the laser falls below the specified threshold.
 Thus, a CE can register for the event of laser power loss on all
 circuits. It would do this by:

 T = SET-Properties
 Path-TLV: flags=0, length = 2, path = 61.4
 Path-TLV: flags = property-field, length = 1, path = 2
 Content = 1 (register)
 Path-TLV: flags = property-field, length = 1, path = 3
 Content = 15 (threshold)

 This would set the registration for the event on all entries in the
 table. It would also set the threshold for the event, causing
 reporting if the power falls below 15. (Presumably, the CE knows
 what the scale is for power, and has chosen 15 as a meaningful
 problem level.)

 If a laser oscillates in power near the 15 mark, one could get a lot
 of notifications. (If it flips back and forth between 9 and 10,
 each flip down will generate an event.) Suppose that the CE decides
 to suppress this oscillation somewhat on laser channel 5. It can do
 this by setting the variance property on that event. The request
 would look like:

 T = SET-Properties
 Path-TLV: flags=0, length = 3, path = 61.4.5
 Path-TLV: flags = property-field, length = 1, path = 4
 Content = 2 (hysteresis)

 Setting the hysteresis to 2 suppress a lot of spurious
 notifications. When the level first falls below 10, a notification
 is generated. If the power level increases to 10 or 11, and then
 falls back below 10, an event will not be generated. The power has
 to recover to at least 12 and fall back below 10 to generate another
 event. Once common cause of this form of osciallation is when the
 actual value is right near the border. If it is really 9.5, tiny
 changes might flip it back and forth between 9 and 10. A variance
 level of 1 will suppress this sort of condition. Many other events
 have osciallations that are somewhat wider, so larger variance
 settings can be used with those.

 9. Acknowledgments

 Yang, et al. Expires September 2006 [Page 111]

 Internet Draft ForCES FE Model March 2006

 Many of the colleagues in our companies and participants in the
 ForCES mailing list have provided invaluable input into this work.

 10. Security Considerations

 The FE model describes the representation and organization of data
 sets and attributes in the FEs. The ForCES framework document [2]
 provides a comprehensive security analysis for the overall ForCES
 architecture. For example, the ForCES protocol entities must be
 authenticated per the ForCES requirements before they can access the
 information elements described in this document via ForCES. Access
 to the information contained in the FE model is accomplished via the
 ForCES protocol, which will be defined in separate documents, and
 thus the security issues will be addressed there.

 11. Normative References

 [1] Khosravi, H. et al., "Requirements for Separation of IP Control
 and Forwarding", RFC 3654, November 2003.

 [2] Yang, L. et al., "Forwarding and Control Element Separation
 (ForCES) Framework", RFC 3746, April 2004.

 12. Informative References

 [3] Bernet, Y. et al., "An Informal Management Model for Diffserv
 Routers", RFC 3290, May 2002.

 [4] Chan, K. et al., "Differentiated Services Quality of Service
 Policy Information Base", RFC 3317, March 2003.

 [5] Sahita, R. et al., "Framework Policy Information Base", RFC
3318, March 2003.

 [6] Moore, B. et al., "Information Model for Describing Network
 Device QoS Datapath Mechanisms", RFC 3670, January 2004.

 [7] Snir, Y. et al., "Policy Framework QoS Information Model", RFC
3644, Nov 2003.

 [8] Li, M. et al., "IPsec Policy Information Base", work in
 progress, April 2004, <draft-ietf-ipsp-ipsecpib-10.txt>.

 [9] Quittek, J. et Al., "Requirements for IP Flow Information
 Export", RFC 3917, October 2004.

 Yang, et al. Expires September 2006 [Page 112]

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc3290
https://datatracker.ietf.org/doc/html/rfc3317
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/rfc3318
https://datatracker.ietf.org/doc/html/rfc3670
https://datatracker.ietf.org/doc/html/rfc3644
https://datatracker.ietf.org/doc/html/rfc3644
https://datatracker.ietf.org/doc/html/draft-ietf-ipsp-ipsecpib-10.txt
https://datatracker.ietf.org/doc/html/rfc3917

 Internet Draft ForCES FE Model March 2006

 [10] Duffield, N., "A Framework for Packet Selection and Reporting",
 work in progress, January 2005, <draft-ietf-psamp-framework-10.txt>.

 [11] Pras, A. and Schoenwaelder, J., RFC 3444 "On the Difference
 between Information Models and Data Models", January 2003.

 13. Authors' Addresses

 L. Lily Yang
 Intel Corp.
 Mail Stop: JF3-206
 2111 NE 25th Avenue
 Hillsboro, OR 97124, USA
 Phone: +1 503 264 8813
 Email: lily.l.yang@intel.com

 Joel M. Halpern
 Megisto Systems, Inc.
 20251 Century Blvd.
 Germantown, MD 20874-1162, USA
 Phone: +1 301 444-1783
 Email: jhalpern@megisto.com

 Ram Gopal
 Nokia Research Center
 5, Wayside Road,
 Burlington, MA 01803, USA
 Phone: +1 781 993 3685
 Email: ram.gopal@nokia.com

 Alan DeKok
 Infoblox, Inc.
 475 Potrero Ave,
 Sunnyvale CA 94085
 Phone:
 Email: alan.dekok@infoblox.com

 Zsolt Haraszti
 Clovis Solutions
 1310 Redwood Way, Suite B
 Petaluma, CA 94954
 Phone: 707-796-7110
 Email: zsolt@clovissolutions.com

https://datatracker.ietf.org/doc/html/draft-ietf-psamp-framework-10.txt
https://datatracker.ietf.org/doc/html/rfc3444

 Yang, et al. Expires September 2006 [Page 113]

 Internet Draft ForCES FE Model March 2006

 Ellen Deleganes
 Intel Corp.
 Mail Stop: CO5-156
 15400 NW Greenbrier Parkway
 Beaverton, OR 97006
 Phone: +1 503 677-4996
 Email: ellen.m.deleganes@intel.com

 14. Intellectual Property Right

 The authors are not aware of any intellectual property right issues
 pertaining to this document.

 15. IANA consideration

 A namespace is needed to uniquely identify the LFB type in the LFB
 class library.

 Frame type supported on input and output of LFB must also be
 uniquely identified.

 A set of metadata supported by the LFB model must also be uniquely
 identified with names or IDs.

 16. Copyright Statement

 "Copyright (C) The Internet Society (2006). This document is
 subject to the rights, licenses and restrictions contained in BCP

78, and except as set forth therein, the authors retain all their
 rights."

 "This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78

 Yang, et al. Expires September 2006 [Page 114]

