
ForCES Working Group Jamal Hadi Salim
Internet Draft Znyx Networks
 Hormuzd Khosravi
 Intel
 Andi Kleen
 Suse
 Alexey Kuznetsov
 INR/Swsoft
 September 2001

Netlink as an IP services protocol
draft-ietf-forces-netlink-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

1. Abstract

 This document describes Linux Netlink, which is used in Linux both
 as an inter-kernel messaging system as well as between kernel and

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

draft-forces-netlink-00.txt ^L[Page 1]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 user-space. The purpose of this document is intended as informa-
 tional in the context of prior art for the ForCES IETF working
 group. The focus of this document is to describe netlink from a
 context of a protocol between a Forwording Engine Component (FEC)
 and a Control Plane Component(CPC) that define an IP service.

 The document ignores the ability of netlink as a inter-kernel mes-
 saging system, as a an inter-process communication scheme (IPC) or
 its use in configuring other non-network as well as network but
 non-IP services (such as decnet etc).

2. Introduction

 The concept of IP Service control-forwarding separation was first
 introduced in the early 1980s by the BSD 4.4 routing sock-
 ets[stevens]. The focus at that time was a simple IP(v4) forward-
 ing service and how the CPC, either via a command line configura-
 tion tool or a dynamic route daemon, can control forwarding tables
 for that IPV4 forwarding service.

 The IP world has evolved considerably since those days. Linux
 netlink, when observed from a service provisioning point of view
 takes routing sockets one step further by breaking the barrier of
 focus around IPV4 forwarding. Since the 2.1 kernel, netlink has
 been providing the IP service abstraction to a few services other
 than the classical IPv4 forwarding.

 We first give some concept definitions and then describe how
 netlink fits in.

2.1. Some definitions

 A Control plane(CP) is an execution environment that may have sev-
 eral components which we refer to as CPCs. Each CPC provides con-
 trol for a different IP service being executed by a FE component.
 This means that there might be several CPCs on a physical CP if it
 is controlling several IP services. In essence, the cohesion
 between a CP component and a FE component is the service abstrac-
 tion.

 In the diagram below we show a simple FE<->CP setup to provide an
 example of the classical IPv4 service with an extension to do some
 basic QoS egress scheduling and how it fits in this described

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 2]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 model.

 Control Plane (CP)
 .------------------------------------
 | /^^^^^\ /^^^^^\ |
 | | | | COPS |-\ | |
 | | ospfd | | PEP | | |
 | | / ____/ | |
 /-----_____/ | | |
 | | | | | |
 | |_____________________|____|_________|
 | | | |
 **
 Forwarding ************* Netlink layer ************
 Engine (FE) ***
 .-------------|-----------|------------|---|-----------
 | IPv4 forwading | / |
 | FE Service / / |
 | Component / / |
 | ---------------/---------------/--------- |
 | | | / | |
 packet | | --------|-- ----|----- | packet
 in | | | IPV4 | | Egress | | out
 -->--->|------>|---->|Forwading |----->| QoS |--->| ---->|---->
 | | | | | Scheduler| | |
 | | ----------- ---------- | |
 | | | |
 | --------------------------------------- |
 | |

2.1.1. Control Plane Components (CPCs)

 Control plane components would encompass signalling protocols with
 diversity ranging from dynamic routing protocols such as OSPF
 [RFC2328] to tag distribution protocols such as CR-LDP [RFC3036].
 Classical Management protocols and activities also fall under this
 category. These include SNMP [RFC1157], COPS [RFC2748] or propri-
 etary CLI/GUI configuration mechanisms.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc2748

draft-forces-netlink-00.txt ^L[Page 3]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 The purpose of the control plane is to provide an execution envi-
 ronment for the above mentioned activities with the ultimate goal
 being to configure and manage the second NE component: the FE. The
 result of the configuration would define the way packets travesing
 the FE are treated.

 The CP components are traditionaly run in software since they tend
 to be very rich in syntax and are moving targets requiring ease of
 modification.

 In the above diagram, ospfd and COPS are distinct CPCs.

2.1.2. Forwarding Engine Components

 The FE is the entity of the NE that incoming packets (from the net-
 work into the NE) first encounter.

 The FE's service specific component massages the packet to provide
 it with a treatment to achieve a IP service as defined by the con-
 trol plane components for that IP service. Different services will
 utilize different FEC. Service modules maybe chained to achieve a
 more complex service (as shown in the diagram). When built for
 providing a specific service, the FE service component will adhere
 to a Forwading Model.

 In the above diagram, the IPV4 FE component includes both the IPV4
 Forwarding service module as well as the Egress Scheduling service
 module. Another service might may add a policy forwarder between
 the IPV4 forwader and the QoS egress Scheduler. A simpler classi-
 cal service would have constituted only the IPV4 forwarder.

2.1.3. IP Services

 An IP Service is the treatment of an IP packet within the NE. This
 treatment is provided by a combination of both the CPC and FEC

 The time span of the service is from the moment when the packet
 arrives at the NE to the moment it departs. In essence an IP ser-
 vice in this context is a Per-Hop Behavior. A service control/sig-
 naling protocol/management-application (CP components running on
 NEs defining the end to end path) unifies the end to end view of
 the IP service. As noted above, these CP components then define the

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 4]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 behavior of the FE (and therefore the NE) to a described packet.

 A simple example of an IP service is the classical IPv4 Forwading.
 In this case, control components such as routing protocols(OSPF,
 RIP etc) and proprietary CLI/GUI configurations modify the FE's
 forwarding tables in order to offer the simple service of forward-
 ing packets to the next hop. Traditionally, NEs offering this sim-
 ple service are known as routers.

 Over the years it has become important to add aditional services to
 the routers to meet emerging requirements. More complex services
 extending classical forwarding were added and standardized. These
 newer services might go beyond the layer 3 contents of the packet
 header. However, the name "router", although a misnomer, is still
 used to describe these NEs. Services (which may look beyond the
 classical L3 headers) here include firewalling, Qos in Diffserv and
 RSVP, NATs, policy based routing etc. Newer control protocols or
 management activities are introduced with these new services.

 One extreme definition of a IP service is something a service
 provider would be able to charge for.

3. Netlink Architecture

 IP services components control is defined by using templates.

 The FEC and CPC participate to deliver the IP service by communi-
 cating using these templates. The FEC might continously get
 updates from the control plane component on how to operate the ser-
 vice (example for V4 forwarding route additions or deletions).

 The interaction between the FEC and the CPC, in the netlink con-
 text, would define a protocol. Netlink provides the mechanism for
 the CPC(residing in user space) and FEC(residing in kernel space)
 to define their own protocol definition. The FEC and CPC, using
 netlink mechanisms, may choose to define a reliable protocol
 between each other, for example. By default netlink provides an
 unreliable communication.

 Note that the FEC and CPC can both live in the same memory protec-
 tion domain and use the connect() system call to create a path to
 the peer and talk to each other. We will not discuss this further
 other than to say it is available as a mechanism. Through out this
 document we will refer interchangbly to the FEC to mean kernel-
 space and the CPC to mean user-space.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 5]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 Note: Netlink allows participation in IP services by both service
 components.

3.1. The message format

 There are three levels to a netlink message: The general netlink
 message header, the IP service specific template, the IP service
 specific data.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Netlink message header |
 | |
 +-+
 | |
 | IP Service Template |
 | |
 +-+
 | |
 | IP Service specific data in TLVs |
 | |
 +-+

3.2. Wire Model

 [In here we describe the pseudo-wire model that netlink uses inside
 the kernel]

3.3. Protocol Model

 This section expands on how netlink provides the mechanism for ser-
 vice oriented FEC and CPC interaction.

3.3.1. Service Addressing

 Access is provided by first connecting to the service on the FE.
 This is done by making a socket() system call to the PF_NETLINK

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 6]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 domain. Each FEC is identified by a protocol number. One may open
 either SOCK_RAW or SOCK_DGRAM type sockets although netlink doesnt
 distinguish the two. The socket connection provides the basis for
 the FE<->CP addressing.

 Connecting to a service is followed (at any point during the life
 of the connection) by issuing either a service specific command
 mostly for configuration purposes (from the CPC to the FEC) or sub-
 scribing/unsubscribing to service(s') events.

3.3.1.1. Sample Service Hierachy

 In the diagram below we show a simple IP service, foo, and the
 interaction it has between CP and FE components for the service.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 7]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 CP
 [--.
 | .-----. |
 | | \ . --------. | | | |
 | | CLI | / \ |
 | | | | CP protocol\ |
 | | /->> --. | component | <-. |
 | __ _/ | | For | | |
 | | | IP service | ^ |
 | Y | foo | | |
 | | ____________/ ^ |
 | Y 1,4,6,8,9 / ^ 2,5,10 | 3,7 |
 --------------- Y------------/---|----------|-----------
 | ^ | ^
 |*********|****|**********|**********
 ************* Netlink layer ************
 |*********|****|**********|**********
 FE | | ^ ^
 .-------- Y-----------Y----|--------- |----.
 | | / |
 | Y / |
 | . --------^-------. / |
 | |FE component/module|/ |
 | | for IP Service | |
 --->---|------>---| foo |----->-----|------>--
 | ------------------- |
 | |
 | |
 --

 The control plane protocol for IP service foo does the following to
 connect to its FE counterpart. The steps below are also numbered
 above in the diagram.

1) Connect to IP service foo through a socket connect. A typical con-
 nection would be via a call to: socket(AF_NETLINK, SOCK_RAW,
 NETLINK_FOO)

2) Bind to listen to specific async events for service foo

3) Bind to listen to specific async FE events

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 8]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

3.3.2. Netlink message header

 Netlink messages consist of a byte stream with one or multiple
 Netlink headers and associated payload. (For multipart messages the
 first and all following headers have the NLM_F_MULTI netlink header
 flag set, except for the last header which has the netlink header
 type NLMSG_DONE.)

 The netlink message header is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Length |
 +-+
 | Type | Flags |
 +-+
 | Sequence Number |
 +-+
 | Process PID |
 +-+

 The fields in the header are:

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 9]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 Length: 32 bits
 The length of the message in bytes including the header.

 Type: 16 bits
 This field describes the message content.
 It can be one of the standard message types:
 NLMSG_NOOP message is ignored in the current implementation
 NLMSG_ERROR the message signals an error and the payload
 contains a nlmsgerr structure. This can be looked
 at as a NACK and typically it is from FEC to CPC.
 NLMSG_DONE message terminates a multipart message

 Individual IP Services specify more message types, for e.g.,
 NETLINK_ROUTE Service specifies several types such as RTM_NEWLINK,
 RTM_DELLINK, RTM_GETLINK, RTM_NEWADDR, RTM_DELADDR, RTM_NEWROUTE,
 RTM_DELROUTE, etc.

 Flags: 16 bits
 The standard flag bits used in netlink are
 NLM_F_REQUEST Must be set on all request messages (typically
 from user space to kernel space)
 NLM_F_MULTI Indicates the message is part of a multipart
message
 terminated by NLMSG_DONE
 NLM_F_ACK Request for an acknowledgment on success.
Typical
 direction of request is from user space to
kernel space.
 NLM_F_ECHO Echo this request. Typical direction of
request is from
 user space to kernel space.

 Additional flag bits for GET requests on config information in the
FEC.
 NLM_F_ROOT Return the complete table instead of a single
entry.
 NLM_F_MATCH Return all matching criteria passed in message
content
 NLM_F_ATOMIC Return an atomic snapshot of the table being
referenced.
 NLM_F_DUMP Return all that matches in the table. This is a
shortcut
 having both NLM_F_ROOT and NLM_F_MATCH flags
set.

 Additional flag bits for NEW requests
 NLM_F_REPLACE Replace existing matching config object with

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

this
 request.
 NLM_F_EXCL Don't replace the config object if it already
exists.
 NLM_F_CREATE Create config object if it doesn't already
exist.
 NLM_F_APPEND Add to the end of the object list.

 For those familiar with BSDish use of such operations in route
 sockets, the equivalent translations are:

draft-forces-netlink-00.txt ^L[Page 10]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 BSD ADD operation equates to NLM_F_CREATE or-ed with NLM_F_EXCL

 BSD CHANGE operation equates to NLM_F_REPLACE

 BSD Check operation equates to NLM_F_EXCL

 BSD APPEND equaivalent is actually mapped to NLM_F_CREATE

 Sequence Number: 32 bits
 The sequence number of the message.

 Process PID: 32 bits
 The PID of the process sending the message. The PID is used by the
 kernel to multiplex to the correct sockets. A PID of zero is used
 when sending messages to user space from the kernel.

3.3.2.1. Mechanisms for creating protocols

 One could create a reliable protocol between an FEC and a CPC by
 using the combination of sequence numbers, ACKs and retransmit
 timers. Both sequence numbers and sequence numbers are provided by
 netlink. Timers are provided by Linux.

 One could create a heartbeat protocol between the FEC and CPC by
 using the ECHO flags.

3.3.2.2. The ACK netlink message

 This message is actually used to denote both an ACK and a NACK.
 Typically the direction is from kernel to user space (in response
 to an ACK request message that is sent). However, user space should
 be able to send ACKs back to kernel space when requested. This is
 IP service specific.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 11]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Netlink message header |
 | type = NLMSG_ERROR |
 +-+
 | error code |
 +-+
 | OLD Netlink message header |
 +-+

 Error code: integer (typically 32 bits)

 Error code of zero indicates that the message is an ACK response.
 An ACK response message contains the original netlink message
 header that can be used to compare against (sent sequence numbers
 etc).

 A non-zero error message is equivalent to a Negative ACK (NACK).
 In such a situation, the netlink data that was sent down to the
 kernel is returned appended to the original netlink message header.
 An error code printable via the perror() is also set (not in the
 message header, rather in the executing environment state vari-
 able).

3.3.3. FE services' templates

 These are services that are offered by the system for general use
 by other services. They include ability to configure and listen to
 changes in resource management. IP address management, link events
 etc fit here. We separate them into this section here for logical
 purposes despite the fact that they are accessed via the
 NETLINK_ROUTE FEC. The reason that they exist within NETLINK_ROUTE
 is due to historical cruft based on the fact that BSD 4.4 rather
 narrowly focussed Route Sockets implemented them as part of the
 IPV4 forwarding sockets.

3.3.3.1.

Network Interface Service Module

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 12]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 This service provides the ability to create, remove or get informa-
 tion about a specific network interface. The Interface service
 message template is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Family | Padding | Device Type |
 +-+
 | Interface Index |
 +-+
 | Device Flags |
 +-+
 | Change Mask |
 +-+

 Descriptions of the headers to be added.

3.3.3.2. IP Address Service module

This service provides the ability to add, remove or receive information
about an IP address associated with an interface. The Address provi-
sioning service message template is shown below.

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Family | Length | Flags | Scope |
 +-+
 | Interface Index |
 +-+

 Descriptions of the headers to be added.

4. Sample Protocol for The foo IP service

 Our proverbial IP service "foo" is used again to demonstrate how
 one can deploy a simple IP service control using netlink.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 13]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 These steps are continued from the "Sample Service Hierachy" sec-
 tion.

4) query for current config of FE component

5) receive response to 4) via channel on 3)

6) query for current state of IP service foo

7) receive response to 6) via channel on 2)

9) register the protocol specific packets you would like the FE to
 forward to you

10) send specific service foo commands and receive responses for them
 if needed

4.1. Interacting with other IP services

 The last diagram shows another control component configuring the
 same service. In this case, it is a proprietary Command Line Inter-
 face. The CLI (may or) may not be using the netlink protocol to
 communicate to the foo component. If the CLI should issue commands
 that will affect the policy of the FEC for service "foo" then, then
 the "foo" CPC is notified. It could then make algorithmic decisions
 based on this input (example if a policy that foo installed was
 deleted, there might be need to propagate this to all the peers of
 service "foo").

5. Currently Defined netlink IP services

 Although there are many other IP services defined which are using
 netlink, we will only mention those integrated into the kernel
 today (kernel version 2.4.6). These are:

NETLINK_ROUTE,NETLINK_FIREWALL,NETLINK_ARPD,NETLINK_ROUTE6,NETLINK_IP6_FW
 NETLINK_TAPBASE,NETLINK_SKIP,NETLINK_USERSOCK.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 14]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

5.1. IP Service NETLINK_ROUTE

 This service allows CPCs to modify the IPv4 routing table in the
 Forwarding Engine. It can also be used by CPCs to receive routing
 updates.

5.1.1. Network Route Service Module

This service provides the ability to create, remove or receive informa-
tion about a network route. The service message template is shown
below.

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Family | Src length | Dest length | TOS |
 +-+
 | Table ID | Protocol | Scope | Type |
 +-+
 | Flags |
 +-+

 Descriptions of the headers to be added.

5.1.2. Neighbour Setup Service Module

 This service provides the ability to add, remove or receive infor-
 mation about a neighbour table entry (e.g. an ARP entry). The ser-
 vice message template is shown below.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 15]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Family | Padding | Padding |
 +-+
 | Interface Index |
 +-+
 | State | Flags | Type |
 +-+

5.1.3. Traffic Control Service

This service provides the ability to add, remove or get a queueing dis-
cipline. The service message template is shown below.

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 1 2 3
 +-+
 | Family | Padding | Padding |
 +-+
 | Interface Index |
 +-+
 | Qdisc handle |
 +-+
 | Parent Qdisc |
 +-+
 | TCM Info |
 +-+

5.2. IP Service NETLINK_FIREWALL

 This service allows CPCs to receive packets sent by the IPv4 fire-
 wall module in the FE.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 16]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

5.3. IP Service NETLINK_ARPD

 This service is used by CPCs for managing the ARP table in FE.

5.4. IP Service NETLINK_ROUTE6

 This service allows CPCs to modify the IPv6 routing table in the
 FE. It can also be used by CPCs to receive routing updates.

5.5. IP Service NETLINK_IP6_FW

 This service allows CPCs to receive packets that failed the IPv6
 firewall checks by that module in the FE.

5.6. IP Service NETLINK_TAPBASE

 This service allows CPCs to simulate an ethernet driver belonging
 to the FE.

 //are the instances of the ethertap device. Ethertap //is a
 pseudo network tunnel device that allows an //ethernet driver to
 be simulated from user space.

5.7. IP Service NETLINK_SKIP

 This service is reserved for ENskip (?).

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

draft-forces-netlink-00.txt ^L[Page 17]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

5.8. IP Service NETLINK_USERSOCK

 This service is reserved for future Control Plane to FE protocols.

6. Security Considerations

 Netlink lives in a trusted environment of a single host separated
 by kernel and user space. Linux capabilities ensures that only
 someone with CAP_NET_ADMIN capability (typically root user) is
 allowed to open sockets.

7. References

 [RFC1633] R. Braden, D. Clark, and S. Shenker, "Integrated
 Services in the Internet Architecture: an Overview", RFC 1633,
 ISI, MIT, and PARC, June 1994.

 [RFC1812] F. Baker, "Requirements for IP Version 4
 Routers", RFC 1812, June 1995.

 [RFC2475] M. Carlson, W. Weiss, S. Blake, Z. Wang, D.
 Black, and E. Davies, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

 [RFC2748] J. Boyle, R. Cohen, D. Durham, S. Herzog, R.
 Rajan, A. Sastry, "The COPS (Common Open Policy Service) Pro-
 tocol", RFC 2748, January 2000.

 [RFC2328] J. Moy, "OSPF Version 2", RFC 2328, April 1998.

 [RFC1157] J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin,
 "Simple Network Management Protocol (SNMP)", RFC 1157, May
 1990.

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt
https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2748
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc1157

draft-forces-netlink-00.txt ^L[Page 18]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

jhs_hk_ak_ak draft-forces-netlink-00.txt

 [RFC3036] L. Andersson, P. Doolan, N. Feldman, A. Fredette,
 B. Thomas "LDP Specification", RFC 3036, January 2001.

 [stevens] G.R Wright, W. Richard Stevens. "TCP/IP Illus-
 trated Volume 2, Chapter 20", June 1995

8. Acknowledgements

1) Andi Kleen for man pages on netlink and rtnetlink.

2) Alexey Kuznetsov is credited for extending netlink to the IP ser-
 vice delivery model. The original netlink character device was
 written by Alan Cox.

9. Author's Address:

 Jamal Hadi Salim
 Znyx Networks
 Ottawa, Ontario
 Canada
 hadi@znyx.com

 Hormuzd M Khosravi
 Intel
 2111 N.E. 25th Avenue JF3-206
 Hillsboro OR 97124-5961
 1 503 264 0334
 hormuzd.m.khosravi@intel.com

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt
https://datatracker.ietf.org/doc/html/rfc3036

draft-forces-netlink-00.txt ^L[Page 19]

https://datatracker.ietf.org/doc/html/draft-forces-netlink-00.txt

