
Network Working Group A. Doria (Ed.)
Internet-Draft ETRI
Expires: September 24, 2006 R. Haas (Ed.)
 IBM
 J. Hadi Salim (Ed.)
 Znyx
 H. Khosravi (Ed.)
 Intel
 W. M. Wang (Ed.)
 Zhejiang Gongshang University
 March 23, 2006

ForCES Protocol Specification
draft-ietf-forces-protocol-08.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 24, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Doria (Ed.), et al. Expires September 24, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ForCES March 2006

Abstract

 This document specifies the Forwarding and Control Element Separation
 (ForCES) protocol. ForCES protocol is used for communications
 between Control Elements(CEs) and Forwarding Elements (FEs) in a
 ForCES Network Element (ForCES NE). This specification is intended
 to meet the ForCES protocol requirements defined in RFC3654. Besides
 the ForCES protocol messages, the specification also defines the
 framework, the mechanisms, and the Transport Mapping Layer (TML)
 requirements for ForCES protocol.

Authors

 The participants in the ForCES Protocol Team, primary co-authors and
 co-editors, of this protocol specification, are:

 Ligang Dong (Zhejiang Gongshang University), Avri Doria (ETRI), Ram
 Gopal (Nokia), Robert Haas (IBM), Jamal Hadi Salim (Znyx), Hormuzd M
 Khosravi (Intel), and Weiming Wang (Zhejiang Gongshang University).

https://datatracker.ietf.org/doc/html/rfc3654

Doria (Ed.), et al. Expires September 24, 2006 [Page 2]

Internet-Draft ForCES March 2006

Table of Contents

1. Terminology and Conventions 5
2. Introduction . 6
3. Definitions . 8
4. Overview . 11
4.1. Protocol Framework 11
4.1.1. The PL layer . 13
4.1.2. The TML layer . 14
4.1.3. The FEM/CEM Interface 14

4.2. ForCES Protocol Phases 15
4.2.1. Pre-association 16
4.2.2. Post-association 18

4.3. Protocol Mechanisms 19
4.3.1. Transactions, Atomicity, Execution and Responses . . 19
4.3.2. Scalability . 23
4.3.3. Heartbeat Mechanism 23
4.3.4. FE Object and FE protocol LFBs 24

5. TML Requirements . 25
5.1. TML Parameterization 26

6. Message encapsulation . 27
6.1. Common Header . 27
6.2. Type Length Value(TLV) Structuring 32
6.2.1. Nested TLVs . 32
6.2.2. Scope of the T in TLV 32

6.3. ILV . 32
7. Protocol Construction . 34
7.1. Protocol Grammar . 34
7.1.1. Protocol BNF . 34
7.1.2. Protocol Visualization 43

7.2. Core ForCES LFBs . 46
7.2.1. FE Protocol LFB 47
7.2.2. FE Object LFB . 50

7.3. Semantics of message Direction 50
7.4. Association Messages 50
7.4.1. Association Setup Message 50
7.4.2. Association Setup Response Message 52
7.4.3. Association Teardown Message 53

7.5. Configuration Messages 54
7.5.1. Config Message 54
7.5.2. Config Response Message 56

7.6. Query Messages . 57
7.6.1. Query Message . 58
7.6.2. Query Response Message 59

7.7. Event Notification Message 60
7.8. Packet Redirect Message 62
7.9. Heartbeat Message . 65
7.10. Operation Summary . 66

Doria (Ed.), et al. Expires September 24, 2006 [Page 3]

Internet-Draft ForCES March 2006

8. Protocol Scenarios . 69
8.1. Association Setup state 69
8.2. Association Established state or Steady State 70

9. High Availability Support 73
9.1. Responsibilities for HA 75

10. Security Considerations 77
10.1. No Security . 77
10.1.1. Endpoint Authentication 77
10.1.2. Message authentication 78

10.2. ForCES PL and TML security service 78
10.2.1. Endpoint authentication service 78
10.2.2. Message authentication service 78
10.2.3. Confidentiality service 79

11. Acknowledgments . 80
12. References . 81
12.1. Normative References 81
12.2. Informational References 81

Appendix A. IANA Considerations 82
A.1. Message Type Name Space 82
A.2. Operation Type . 83
A.3. Header Flags . 83
A.4. TLV Type Name Space 84
A.5. Result-TLV Result Values 84
A.6. LFB Class Id Name Space 85
A.7. Association Setup Response 86
A.8. Association Teardown Message 86
A.9. Configuration Request Result 87

Appendix B. ForCES Protocol LFB schema 88
B.1. Capabilities . 93
B.2. Attributes . 93

Appendix C. Data Encoding Examples 94
Appendix D. Use Cases . 98

 Authors' Addresses . 114
 Intellectual Property and Copyright Statements 116

Doria (Ed.), et al. Expires September 24, 2006 [Page 4]

Internet-Draft ForCES March 2006

1. Terminology and Conventions

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT,
 RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted
 as described in BCP 14, RFC 2119 [RFC2119].

Doria (Ed.), et al. Expires September 24, 2006 [Page 5]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft ForCES March 2006

2. Introduction

 Forwarding and Control Element Separation (ForCES) defines an
 architectural framework and associated protocols to standardize
 information exchange between the control plane and the forwarding
 plane in a ForCES Network Element (ForCES NE). RFC 3654 has defined
 the ForCES requirements, and RFC 3764 has defined the ForCES
 framework. While there may be multiple protocols used within the
 overall ForCES architecture, the term "ForCES protocol" and
 "protocol" as used in this document refers to the protocol used to
 standardize the information exchange between Control Elements(CEs)
 and Forwarding Elements(FEs) only. ForCES FE model [FE-MODEL]
 presents the capabilities, state and configuration of FEs within the
 context of the ForCES protocol, so that CEs can accordingly control
 the FEs in a standardizded way and by means of the ForCES protocol.

 This document defines the ForCES protocol specifications. The ForCES
 protocol works in a master-slave mode in which FEs are slaves and CEs
 are masters. Information exchanged between FEs and CEs makes
 extensive use of TLVs. The protocol includes commands for transport
 of LFB configuration information, association setup, status and event
 notifications, etc.

 This specification does not define a transport mechanism for protocol
 messages, but does include a discussion of service primitives that
 must be provided by the underlying transport interface.

Section 3 provides a glossary of terminology used in the
 specification.

Section 4 provides an overview of the protocol including a discussion
 on the protocol framework, descriptions of the Protocol Layer (PL)
 and a Transport Mapping Layer (TML), as well as of the ForCES
 protocol mechanisms.

 While this document does not define the TML, Section 5 details the
 services that a TML must provide (TML requirements).

 The ForCES protocol defines a common header for all protocol
 messages. The header is defined in Section 6.1, while the protocol
 messages are defined in Section 7.

Section 8 describes several Protocol Scenarios and includes message
 exchange descriptions.

Section 9 describes a mechanism in the protocol to support high
 availability mechanisms including redundancy and fail over.

Section 10 defines the security mechanisms provided by the PL and

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3764

Doria (Ed.), et al. Expires September 24, 2006 [Page 6]

Internet-Draft ForCES March 2006

 TML.

Doria (Ed.), et al. Expires September 24, 2006 [Page 7]

Internet-Draft ForCES March 2006

3. Definitions

 This document follows the terminology defined by the ForCES
 Requirements in [RFC3654] and by the ForCES framework in [RFC3746].
 The definitions below are repeated below for clarity.

 Addressable Entity (AE) - A physical device that is directly
 addressable given some interconnect technology. For example, on IP
 networks, it is a device which can be reached using an IP address;
 and on a switch fabric, it is a device which can be reached using a
 switch fabric port number.

 Forwarding Element (FE) - A logical entity that implements the ForCES
 protocol. FEs use the underlying hardware to provide per-packet
 processing and handling as directed/controlled by a CE via the ForCES
 protocol.

 Control Element (CE) - A logical entity that implements the ForCES
 protocol and uses it to instruct one or more FEs on how to process
 packets. CEs handle functionality such as the execution of control
 and signaling protocols.

 Pre-association Phase - The period of time during which an FE Manager
 (see below) and a CE Manager (see below) are determining which FE(s)
 and CE(s) should be part of the same network element.

 Post-association Phase - The period of time during which an FE knows
 which CE is to control it and vice versa. This includes the time
 during which the CE and FE are establishing communication with one
 another.

 FE Model - A model that describes the logical processing functions of
 an FE.

 FE Manager (FEM) - A logical entity responsible for generic FE
 management tasks. It is used during pre-association phase to
 determine with which CE(s) an FE should communicate. This process is
 called CE discovery and may involve the FE manager learning the
 capabilities of available CEs. An FE manager may use anything from a
 static configuration to a pre-association phase protocol (see below)
 to determine which CE(s) to use. Being a logical entity, an FE
 manager might be physically combined with any of the other logical
 entities such as FEs.

 CE Manager (CEM) - A logical entity responsible for generic CE
 management tasks. It is particularly used during the pre-association
 phase to determine with which FE(s) a CE should communicate. This
 process is called FE discovery and may involve the CE manager

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 8]

Internet-Draft ForCES March 2006

 learning the capabilities of available FEs.

 ForCES Network Element (NE) - An entity composed of one or more CEs
 and one or more FEs. To entities outside a NE, the NE represents a
 single point of management. Similarly, a NE usually hides its
 internal organization from external entities.

 High Touch Capability - This term will be used to apply to the
 capabilities found in some forwarders to take action on the contents
 or headers of a packet based on content other than what is found in
 the IP header. Examples of these capabilities include NAT-PT,
 firewall, and L7 content recognition.

 Datapath -- A conceptual path taken by packets within the forwarding
 plane inside an FE.

 LFB (Logical Function Block) -- The basic building block that is
 operated on by the ForCES protocol. The LFB is a well defined,
 logically separable functional block that resides in an FE and is
 controlled by the CE via ForCES protocol. The LFB may reside at the
 FE's datapath and process packets or may be purely an FE control or
 configuration entity that is operated on by the CE. Note that the
 LFB is a functionally accurate abstraction of the FE's processing
 capabilities, but not a hardware-accurate representation of the FE
 implementation.

 LFB (Logical Function Block) and LFB Instance -- LFBs are categorized
 by LFB Classes(or Types). An LFB Instance represents an LFB Class
 (or Type) existence. There may be multiple instances of the same LFB
 Class (or Type) in an FE. An LFB Class is represented by an LFB
 Class ID, and an LFB Instance is represented by an LFB Instance ID.
 As a result, an LFB Class ID associated with an LFB Instance ID
 uniquely specify an LFB existence.

 LFB Metadata -- Metadata is used to communicate per-packet state from
 one LFB to another, but is not sent across the network. The FE model
 defines how such metadata is identified, produced and consumed by the
 LFBs. It defines the functionality but not how metadata is encoded
 within an implementation.

 LFB Attribute -- Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 attributes. The LFB attributes include, for example, flags, single
 parameter arguments, complex arguments, and tables that the CE can
 read or/and write via the ForCES protocol (see below).

 LFB Topology -- Representation of how the LFB instances are logically
 interconnected and placed along the datapath within one FE.

Doria (Ed.), et al. Expires September 24, 2006 [Page 9]

Internet-Draft ForCES March 2006

 Sometimes it is also called intra-FE topology, to be distinguished
 from inter-FE topology.

 FE Topology -- A representation of how the multiple FEs within a
 single NE are interconnected. Sometimes this is called inter-FE
 topology, to be distinguished from intra-FE topology (i.e., LFB
 topology).

 Inter-FE Topology -- See FE Topology.

 Intra-FE Topology -- See LFB Topology.

 ForCES Protocol - While there may be multiple protocols used within
 the overall ForCES architecture, the term "ForCES protocol" and
 "protocol" refer to the Fp reference point in the ForCES Framework in
 [RFC3746]. This protocol does not apply to CE-to-CE communication,
 FE-to-FE communication, or to communication between FE and CE
 managers. Basically, the ForCES protocol works in a master-slave
 mode in which FEs are slaves and CEs are masters. This document
 defines the specifications for this ForCES protocol.

 ForCES Protocol Layer (ForCES PL) -- A layer in ForCES protocol
 architecture that defines the ForCES protocol messages, the protocol
 state transfer scheme, as well as the ForCES protocol architecture
 itself (including requirements of ForCES TML (see below)).
 Specifications of ForCES PL are defined by this document.

 ForCES Protocol Transport Mapping Layer (ForCES TML) -- A layer in
 ForCES protocol architecture that uses the capabilities of existing
 transport protocols to specifically address protocol message
 transportation issues, such as how the protocol messages are mapped
 to different transport media (like TCP, IP, ATM, Ethernet, etc), and
 how to achieve and implement reliability, multicast, ordering, etc.
 The ForCES TML specifications are detailed in separate ForCES
 documents, one for each TML.

https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 10]

Internet-Draft ForCES March 2006

4. Overview

 The reader is referred to the Framework document [RFC3746], and in
 particular sections 3 and 4, for an architectural overview and an
 explanation of how the ForCES protocol fits in. There may be some
 content overlap between the framework document and this section in
 order to provide clarity.

4.1. Protocol Framework

 Figure 1 below is reproduced from the Framework document for clarity.
 It shows a NE with two CEs and two FEs.

 | ForCES Network Element |
 -------------- Fc | -------------- -------------- |
 | CE Manager |---------+-| CE 1 |------| CE 2 | |
 -------------- | | | Fr | | |
 | | -------------- -------------- | | | |
 | Fl | | | Fp / |
 | | Fp| |----------| / |
 | | | |/ |
 | | | | |
 | | | Fp /|----| |
 | | | /--------/ | |
 -------------- Ff | -------------- -------------- |
 | FE Manager |---------+-| FE 1 | Fi | FE 2 | |
 -------------- | | |------| | |
 | -------------- -------------- |
 | | | | | | | | | |
 ----+--+--+--+----------+--+--+--+-----
 | | | | | | | |
 | | | | | | | |
 Fi/f Fi/f

 Fp: CE-FE interface
 Fi: FE-FE interface
 Fr: CE-CE interface
 Fc: Interface between the CE Manager and a CE
 Ff: Interface between the FE Manager and an FE
 Fl: Interface between the CE Manager and the FE Manager
 Fi/f: FE external interface

 Figure 1: ForCES Architectural Diagram

 The ForCES protocol domain is found in the Fp Reference Point. The
 Protocol Element configuration reference points, Fc and Ff also play
 a role in the booting up of the ForCES Protocol. The protocol

https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 11]

Internet-Draft ForCES March 2006

 element configuration (indicated by reference points Fc, Ff, and Fl)
 is out of scope of the ForCES protocol but is touched on in this
 document in discussion of FEM and CEM since it is an integral part of
 the protocol pre-association phase.

 Figure 2 below shows further breakdown of the Fp interface by example
 of an MPLS QoS enabled Network Element.

 | | | | | | |
 |OSPF |RIP |BGP |RSVP |LDP |. . . |
 | | | | | | |
 --- CE
 | ForCES Interface |

 ^ ^
 | |
 ForCES | |data
 control | |packets
 messages| |(e.g., routing packets)
 | |
 v v

 | ForCES Interface |
 --- FE
 | | | | | | |
 |LPM Fwd|Meter |Shaper |MPLS |Classi-|. . . |
 | | | | |fier | |

 Figure 2: Examples of CE and FE functions

 The ForCES Interface shown in Figure 2 constitutes two pieces: the PL
 layer and the TML layer.

Doria (Ed.), et al. Expires September 24, 2006 [Page 12]

Internet-Draft ForCES March 2006

 This is depicted in Figure 3 below.

 +--
 | CE PL layer |
 +--
 | CE TML layer |
 +--
 ^
 |
 ForCES | (i.e ForCES data + control
 PL | packets)
 messages |
 over |
 specific |
 TML |
 encaps |
 and |
 transport |
 |
 v
 +--
 | FE TML layer |
 +--
 | FE PL layer |
 +--

 Figure 3: ForCES Interface

 The PL layer is in fact the ForCES protocol. Its semantics and
 message layout are defined in this document. The TML Layer is
 necessary to connect two ForCES PL layers as shown in Figure 3 above.
 The TML is out of scope for this document but is within scope of
 ForCES. This document defines requirements the PL needs the TML to
 meet.

 Both the PL and the TML layers are standardized by the IETF. While
 only one PL layer is defined, different TMLs are expected to be
 standardized. To interoperate the TML layer at the CE and FE are
 expected to conform to the same definition.

 On transmit, the PL layer delivers its messages to the TML layer.
 The TML layer delivers the message to the destination TML layer(s).
 On receive, the TML delivers the message to its destination PL
 layer(s).

4.1.1. The PL layer

 The PL is common to all implementations of ForCES and is standardized

Doria (Ed.), et al. Expires September 24, 2006 [Page 13]

Internet-Draft ForCES March 2006

 by the IETF as defined in this document. The PL layer is responsible
 for associating an FE or CE to an NE. It is also responsible for
 tearing down such associations. An FE uses the PL layer to transmit
 various subscribed-to events to the CE PL layer as well as to respond
 to various status requests issued from the CE PL. The CE configures
 both the FE and associated LFBs' operational parameters using the PL
 layer. In addition the CE may send various requests to the FE to
 activate or deactivate it, reconfigure its HA parameterization,
 subscribe to specific events etc. More details can be found in

Section 7.

4.1.2. The TML layer

 The TML layer transports the PL layer messages. The TML is where the
 issues of how to achieve transport level reliability, congestion
 control, multicast, ordering, etc. are handled. It is expected more
 than one TML will be standardized. The various possible TMLs could
 vary their implementations based on the capabilities of underlying
 media and transport. However, since each TML is standardized,
 interoperability is guaranteed as long as both endpoints support the
 same TML. All ForCES Protocol Layer implementations MUST be portable
 across all TMLs, because all TMLs MUST have the top edge semantics
 defined in this document.

4.1.3. The FEM/CEM Interface

 The FEM and CEM components, although valuable in the setup and
 configurations of both the PL and TML layers, are out of scope of the
 ForCES protocol. The best way to think of them are as
 configurations/parameterizations for the PL and TML before they
 become active (or even at runtime based on implementation). In the
 simplest case, the FE or CE read a static configuration file. RFC

3746 has a more detailed descriptions on how the FEM and CEM could be
 used. The pre-association phase, where the CEM and FEM can be used,
 are described briefly in Section 4.2.1.

 An example of typical of things the FEM/CEM could configure would be
 TML specific parameterizations such as:

 a. how the TML connection should happen (for example what IP
 addresses to use, transport modes etc);

 b. Issuing the ID for the FE or CE would also be issued during the
 pre-association phase.

 c. Security parameterization such as keys etc.

https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 14]

Internet-Draft ForCES March 2006

 d. Connection association parameters

 Example of this might be:

 o simple parameters: send up to 3 association messages every 1
 second

 o or more complex parameters: send up to 4 association messages with
 increasing exponential timeout

4.2. ForCES Protocol Phases

 ForCES, in relation to NEs, involves two phases: the Pre-Association
 phase where configuration/initialization/bootup of the TML and PL
 layer happens, and the association phase where the ForCES protocol
 operates to manipulate the parameters of the FEs.

 FE start CE configures
 -------+ +--->---->---->---->------->----+
 | | Y
 Y | |
 | | Y
 +------+--+ +--------+
 | FE | | FE |
 | DOWN | | UP |
 | State | | State |
 | | | |
 +---------+ +--------+
 ^ Y
 | |
 +-<---<------<-----<------<----<---+
 CE configures or FE loses association

 Figure 4: The FE State Machine

 The FE can only be in one of two states as indicated above. When the
 FE is in the DOWN state, it is not forwarding packets. When the FE
 is in the UP state it may be forwarding packets depending on the
 configuration of its specific LFBs.

 CE configures FE states transitions by means of a so-called FEObject
 LFB, which is defined in [FE-MODEL] and also explained in Section

4.3.3 of this document. In FEObject LFB, FE state is defined as an
 attribute of the LFB, and CE configuration of the FE state equals CE
 configuration of this attribute. Note that even in the FE DOWN
 state, the FEObject LFB itself is active.

Doria (Ed.), et al. Expires September 24, 2006 [Page 15]

Internet-Draft ForCES March 2006

 On start up the FE is in the DOWN state unless it is explicitly
 configured by the CE to transition to the UP state via an FE Object
 admin action. This must be done before configuring any other LFBs
 that affect packet forwarding.

 The FE transitions from the UP state to the DOWN state when it
 receives a FEObject Admin Down action or when it loses its
 association with the CE. For the FE to properly complete the
 transition to the DOWN state, it MUST stop Packet forwarding and this
 may impact multiple LFBS. How this is achieved is outside the scope
 of this specification.

 Note: in the case of loss of association, the FE can also be
 configured to not go to the DOWN state.

 For the FE to properly complete the transition to the DOWN state it
 must stop packet forwarding and that this may affect multiple LFBs.
 How this is achieved is outside the scope of this specification.

4.2.1. Pre-association

 The ForCES interface is configured during the pre-association phase.
 In a simple setup, the configuration is static and is read from a
 saved configuration file. All the parameters for the association
 phase are well known after the pre-association phase is complete. A
 protocol such as DHCP may be used to retrieve the configuration
 parameters instead of reading them from a static configuration file.
 Note, this will still be considered static pre-association. Dynamic
 configuration may also happen using the Fc, Ff and Fl reference
 points. Vendors may use their own proprietary service discovery
 protocol to pass the parameters. Essentially only guidelines are
 provided here and the details are left to the implementation.

Doria (Ed.), et al. Expires September 24, 2006 [Page 16]

Internet-Draft ForCES March 2006

 The following are scenarios reproduced from the Framework Document to
 show a pre-association example.

 <----Ff ref pt---> <--Fc ref pt------->
 FE Manager FE CE Manager CE
 | | | |
 | | | |
 (security exchange) (security exchange)
 1|<------------>| authentication 1|<----------->|authentication
 | | | |
 (FE ID, attributes) (CE ID, attributes)
 2|<-------------| request 2|<------------|request
 | | | |
 3|------------->| response 3|------------>|response
 (corresponding CE ID) (corresponding FE ID)
 | | | |
 | | | |

 Figure 5: Examples of a message exchange over the Ff and Fc reference
 points

 <-----------Fl ref pt--------------> |

 FE Manager FE CE Manager CE
 | | | |
 | | | |
 (security exchange) | |
 1|<------------------------------>| |
 | | | |
 (a list of CEs and their attributes) |
 2|<-------------------------------| |
 | | | |
 (a list of FEs and their attributes) |
 3|------------------------------->| |
 | | | |
 | | | |

 Figure 6: An example of a message exchange over the Fl reference
 point

 Before the transition to the association phase, the FEM will have
 established contact with a CEM component. Initialization of the
 ForCES interface will have completed, and authentication as well as
 capability discovery may be complete. Both the FE and CE would have
 the necessary information for connecting to each other for
 configuration, accounting, identification and authentication

Doria (Ed.), et al. Expires September 24, 2006 [Page 17]

Internet-Draft ForCES March 2006

 purposes. To summarize, at the completion of this stage both sides
 have all the necessary protocol parameters such as timers, etc. The
 Fl reference point may continue to operate during the association
 phase and may be used to force a disassociation of an FE or CE.
 Because the pre-association phase is out of scope, these details are
 not discussed any further in this specification. The reader is
 referred to the framework document [RFC3746] for a slightly more
 detailed discussion.

4.2.2. Post-association

 In this phase, the FE and CE components communicate with each other
 using the ForCES protocol (PL over TML) as defined in this document.
 There are three sub-phases:

 o Association Setup stage

 o Established Stage

 o Association Lost stage

4.2.2.1. Association Setup stage

 The FE attempts to join the NE. The FE may be rejected or accepted.
 Once granted access into the NE, capabilities exchange happens with
 the CE querying the FE. Once the CE has the FE capability
 information, the CE can offer an initial configuration (possibly to
 restore state) and can query certain attributes within either an LFB
 or the FE itself.

 More details are provided in Section 8.

 On successful completion of this stage, the FE joins the NE and is
 moved to the Established State.

4.2.2.2. Association Established stage

 In this stage the FE is continuously updated or queried. The FE may
 also send asynchronous event notifications to the CE or synchronous
 heartbeat notifications if programmed to do so. This continues until
 a termination occurs because of loss of connectivity or is initiated
 by either the CE or the FE.

 Refer to section on protocol scenarios, Section 8, for more details.

4.2.2.3. Association Lost stage

 In this state, both or either the CE or FE declare the other side is

https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 18]

Internet-Draft ForCES March 2006

 no longer associated. The disconnection could be physically
 initiated by either party for administrative purposes but may also be
 driven by operational reasons such as loss of connectivity.

 It should be noted that loss of connectivity between TMLs is not
 necessarily indicative of loss of association between respective PL
 layers unless the programmed FE Protocol Object time limit is
 exceeded. In other words if the TML repairs the transport loss
 before then, the association would still be valid.

 When an association is lost between a CE and FE, the FE continues to
 operate as instructed by the CE via the CE failover policy (for
 further discussion refer to Section 9 and Appendix B).

 For this version of the protocol (as defined in this document), the
 FE, upon re-association, MUST discard any state it has as invalid and
 retrieve new state. This approach is motivated by a desire for
 simplicity (as opposed to efficiency).

4.3. Protocol Mechanisms

 Various semantics are exposed to the protocol users via the PL header
 including: transaction capabilities, atomicity of transactions, two
 phase commits, batching/parallelization, high availability and
 failover as well as command windows.

 The EM (Execute Mode) flag, AT (Atomic Transaction) flag, and TP
 (Transaction Phase) flag as defined in Common Header Section (Section

6.1) are relevant to these mechanisms.

4.3.1. Transactions, Atomicity, Execution and Responses

 In the master-slave relationship the CE instructs one or more FEs on
 how to execute operations and how to report the results.

 This section details the different modes of execution that a CE can
 order the FE(s) to perform as defined in Section 4.3.1.1. It also
 describes the different modes a CE can ask the FE(s) to use for
 formatting the responses after processing the operations as
 requested. These modes relate to the transactional two phase
 commitment operations.

4.3.1.1. Execution

 There are 3 execution modes that can be requested for a batch of
 operations spanning one or more LFB selectors in one protocol
 message. The EM flag defined in Common Header Section (Section 6.1)
 selects the execution mode for a protocol message, as below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 19]

Internet-Draft ForCES March 2006

 a. execute-all-or-none

 b. execute-until-failure

 c. continue-execute-on-failure

4.3.1.1.1. execute-all-or-none

 When set to this mode, independent operations in a message targeted
 at one or more LFB selectors will all be executed if no failure
 occurs for any of the operations. If there is any failure for any of
 the operations then none of the operations will be executed, i.e
 there is roll back for this mode of operation.

4.3.1.1.2. continue-execute-on-failure

 If several independent operations are targeted at one or more LFB
 selectors, execution continues for all operations at the FE even if
 one or more operations fail.

4.3.1.1.3. execute-until-failure

 In this mode all operations are executed on the FE sequentially until
 the first failure. The rest of the operations are not executed but
 operations already completed are not undone, i.e. there is no roll
 back in this mode of operation.

4.3.1.2. Transaction and Atomicity

4.3.1.2.1. Transaction Definition

 A transaction is defined as a collection of one or more ForCES
 operations within one or more PL messages that MUST meet the ACIDity
 properties[ACID], defined as:

 Atomicity: In a transaction involving two or more discrete pieces
 of information, either all of the pieces are committed
 or none are.

 Consistency: A transaction either creates a new and valid state of
 data, or, if any failure occurs, returns all data to the
 state it was in before the transaction was started.

 Isolation: A transaction in process and not yet committed must
 remain isolated from any other transaction.

Doria (Ed.), et al. Expires September 24, 2006 [Page 20]

Internet-Draft ForCES March 2006

 Committed data is saved by the system such that, even in
 the event of a failure and a system restart, the data is
 available in its correct state.

 There are cases where the CE knows exact memory and implementation
 details of the FE such as in the case of an FE-CE pair from the same
 vendor where the FE-CE pair is tightly coupled. In such a case, the
 transactional operations may be simplified further by extra
 computation at the CE. This view is not discussed further other than
 to mention that it is not disallowed.

 As defined above, a transaction is always atomic and MAY be

 a. Within an FE alone
 Example: updating multiple tables that are dependent on each
 other. If updating one fails, then any that were already updated
 must be undone.

 b. Distributed across the NE
 Example: updating table(s) that are inter-dependent across
 several FEs (such as L3 forwarding related tables).

4.3.1.2.2. Transaction protocol

 By use of the execute mode as defined in Section 4.3.1.1, the
 protocol has provided a mechanism for transactional operations within
 one stand-alone message. The 'execute-all-or-none' mode can meet the
 ACID requirements.

 For transactional operations of multiple messages within one FE or
 across FEs, a classical transactional protocol known as Two Phase
 Commit (2PC) [2PCREF] is supported by the protocol to achieve the
 transactional operations.

 The AT flag and the TP flag in Common Header (Section 6.1) are
 provided for 2PC based transactional operations spanning multiple
 messages.

 The AT flag, when set, indicates this message belongs to an Atomic
 Transaction. All messages for a transaction operation must have the
 AT flag set. If not set, it means the message is a stand-alone
 message and does not participate in any transaction operation that
 spans multiple messages.

 The TP flag indicates the Transaction Phase this message belongs to.
 There are four (4) possible phases for an transactional operation
 known as:

Doria (Ed.), et al. Expires September 24, 2006 [Page 21]

Internet-Draft ForCES March 2006

 SOT (Start of Transaction)

 MOT (Middle of Transaction)

 EOT (End of Transaction)

 ABT (Abort)

 A transaction operation is started with a message the TP flag is set
 to Start of Transaction (SOT). Multi-part messages, after the first
 one, are indicated by the Middle of Transaction flag (MOT). The last
 message is indicated by by EOT.

 Any failure notified by the FE causes the CE to execute an Abort
 Transaction (ABT) to all FEs involved in the transaction, rolling
 back all previously executed operations in the transaction.

 The transaction commitment phase is signaled from the CE to the FE
 by an End of Transaction (EOT) configuration message. The FE MUST
 respond to the CE's EOT message. If no response is received from
 the FE within a specified timeout, the transaction MUST be aborted
 by the CE.

 Note that a transactional operation is generically atomic, therefore
 it requires that the execute modes of all messages in a transaction
 operation should always be kept the same and be set to 'execute-all-
 or-none'. If the EM flag is set to other execute modes, it will
 result in a transaction failure.

 As noted above, a transaction may span multiple messages. It is up
 to the CE to keep track of the different outstanding messages making
 up a transaction. As an example, the correlator field could be used
 to mark transactions and a sequence field to label the different
 messages within the same atomic transaction, but this is out of scope
 and up to implementations.

4.3.1.2.3. Recovery

 Any of the participating FEs, or the CE, or the associations between
 them, may fail after the EOT response message has been sent by the FE
 but before it has received all the responses, e.g. if the EOT
 response never reaches the CE.

 In this protocol revision, for sake of simplicity as indicated in
Section 4.2.2.3, an FE losing an association would be required to get

 entirely new state from the newly associated CE upon a re-
 association. The decision on what an FE should do after a lost
 association is dictated by the CE Failover policy (refer to Section 9

Doria (Ed.), et al. Expires September 24, 2006 [Page 22]

Internet-Draft ForCES March 2006

 and Section 7.2).

4.3.2. Scalability

 It is desirable that the PL layer not become the bottleneck when
 larger bandwidth pipes become available. To pick a hypothetical
 example in today's terms, if a 100Gbps pipe is available and there is
 sufficient work then the PL layer should be able to take advantage of
 this and use all of the 100Gbps pipe. Two mechanisms have been
 provided to achieve this. The first one is batching and the second
 one is a command window.

 Batching is the ability to send multiple commands (such as Config) in
 one Protocol Data Unit (PDU). The size of the batch will be affected
 by, amongst other things, the path MTU. The commands may be part of
 the same transaction or may be part of unrelated transactions that
 are independent of each other.

 Command windowing allows for pipelining of independent transactions
 which do not affect each other. Each independent transaction could
 consist of one or more batches.

4.3.2.1. Batching

 There are several batching levels at different protocol hierarchies.

 o multiple PL PDUs can be aggregated under one TML message

 o multiple LFB classes and instances (as indicated in the LFB
 selector) can be addressed within one PL PDU

 o Multiple operations can be addressed to a single LFB class and
 instance

4.3.2.2. Command Pipelining

 The protocol allows any number of messages to be issued by the CE
 before the corresponding acknowledgments (if requested) have been
 returned by the FE. Hence pipelining is inherently supported by the
 protocol. Matching responses with requests messages can be done
 using the correlator field in the message header.

4.3.3. Heartbeat Mechanism

 Heartbeats (HB) between FEs and CEs are traffic sensitive. An HB is
 sent only if no PL traffic is sent between the CE and FE within a
 configured interval. This has the effect of reducing the amount of
 HB traffic in the case of busy PL periods.

Doria (Ed.), et al. Expires September 24, 2006 [Page 23]

Internet-Draft ForCES March 2006

 An HB can be sourced by either the CE or FE. When sourced by the CE,
 a response can be requested (similar to the ICMP ping protocol). The
 FE can only generate HBs in the case of being configured to do so by
 the CE. Refer to Section 7.2.1 and Section 7.9 for details.

4.3.4. FE Object and FE protocol LFBs

 All PL messages operate on LFB constructs as this provides more
 flexibility for future enhancements. This means that maintenance and
 configurability of FEs, NE, as well as the ForCES protocol itself
 must be expressed in terms of this LFB architecture. For this reason
 special LFBs are created to accommodate this need.

 In addition, this shows how the ForCES protocol itself can be
 controlled by the very same type of structures (LFBs) it uses to
 control functions such as IP forwarding, filtering, etc.

 To achieve this, the following specialized LFBs are introduced:

 o FE Protocol LFB which is used to control the ForCES protocol.

 o FE Object LFB which is used to controls attributes relative to the
 FE itself. Such attributes include FEState [FE-MODEL], vendor,
 etc.

 These LFBs are detailed in Section 7.2.

Doria (Ed.), et al. Expires September 24, 2006 [Page 24]

Internet-Draft ForCES March 2006

5. TML Requirements

 The requirements below are expected to be delivered by the TML. This
 text does not define how such mechanisms are delivered. As an
 example they could be defined to be delivered via hardware or between
 2 or more TML processes on different CEs or FEs in protocol level
 schemes.

 Each TML must describe how it contributes to achieving the listed
 ForCES requirements. If for any reason a TML does not provide a
 service listed below a justification needs to be provided.

 1. Reliability
 As defined by RFC 3654, section 6 #6.

 2. Security
 TML provides security services to the ForCES PL. TML layer
 should support the following security services and describe how
 they are achieved.

 * Endpoint authentication of FE and CE.

 * Message Authentication

 * Confidentiality service

 3. Congestion Control
 The congestion control scheme used needs to be defined. The
 congestion control mechanism defined by the TML should prevent
 the FE from being overloaded by the CE or the CE from being
 overwhelmed by traffic from the FE. Additionally, the
 circumstances under which notification is sent to the PL to
 notify it of congestion must be defined.

 4. Uni/multi/broadcast addressing/delivery if any
 If there is any mapping between PL and TML level Uni/Multi/
 Broadcast addressing it needs to be defined.

 5. HA decisions
 It is expected that availability of transport links is the TML's
 responsibility. However, on config basis, the PL layer may wish
 to participate in link failover schemes and therefore the TML
 must support this capability.
 Please refer to Section 9 for details.

 6. Encapsulations used.
 Different types of TMLs will encapsulate the PL messages on
 different types of headers. The TML needs to specify the

https://datatracker.ietf.org/doc/html/rfc3654#section-6

Doria (Ed.), et al. Expires September 24, 2006 [Page 25]

Internet-Draft ForCES March 2006

 encapsulation used.

 7. Prioritization
 It is expected that the TML will be able to handle up to 8
 priority levels needed by the PL layer and will provide
 preferential treatment.
 While the TML needs to define how this is achieved, it should be
 noted that the requirement for supporting up to 8 priority levels
 does not mean that the underlying TML MUST be capable of
 providing up to 8 actual priority levels. In the event that the
 underlying TML layer does not have support for 8 priority levels,
 the supported priority levels should be divided between the
 available TML priority levels. For example, if the TML only
 supports 2 priority levels, the 0-3 could go in one TML priority
 level, while 4-7 could go in the other.

 8. Protection against DoS attacks
 As described in the Requirements RFC 3654, section 6

5.1. TML Parameterization

 It is expected that it should be possible to use a configuration
 reference point, such as the FEM or the CEM, to configure the TML.

 Some of the configured parameters may include:

 o PL ID

 o Connection Type and associated data. For example if a TML uses
 IP/TCP/UDP then parameters such as TCP and UDP ports, IP addresses
 need to be configured.

 o Number of transport connections

 o Connection Capability, such as bandwidth, etc.

 o Allowed/Supported Connection QoS policy (or Congestion Control
 Policy)

https://datatracker.ietf.org/doc/html/rfc3654#section-6

Doria (Ed.), et al. Expires September 24, 2006 [Page 26]

Internet-Draft ForCES March 2006

6. Message encapsulation

 All PL layer PDUs start with a common header [Section 6.1] followed
 by a one or more TLVs [Section 6.2] which may nest other TLVs
 [Section 6.2.1]. All fields are in network byte order.

6.1. Common Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |version| rsvd | Message Type | Length |
 +-+
 | Source ID |
 +-+
 | Destination ID |
 +-+
 | Correlator |
 | |
 +-+
 | Flags |
 +-+

 Figure 7: Common Header

 The message is 32 bit aligned.

 Version (4 bit):
 Version number. Current version is 1.

 rsvd (4 bit):
 Unused at this point. A receiver should not interpret this
 field. Senders MUST set it to zero and receivers MUST ignore
 this field.

 Message Type (8 bits):
 Commands are defined in Section 7.

 Length (16 bits):
 length of header + the rest of the message in DWORDS (4 byte
 increments).

 Source ID (32 bit):

Doria (Ed.), et al. Expires September 24, 2006 [Page 27]

Internet-Draft ForCES March 2006

 Dest ID (32 bit):

 * Each of the source and Dest IDs are 32 bit IDs which are
 unique NE-wide and which recognize the termination points of
 a ForCES PL message.

 * IDs allow multi/broad/unicast addressing with the following
 approach:

 a. A split address space is used to distinguish FEs from
 CEs. Even though in a large NE there are typically two
 or more orders of magnitude more FEs than CEs, the
 address space is split uniformly for simplicity.

 b. The address space allows up to 2^30 (over a billion) CEs
 and the same amount of FEs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |TS | sub-ID |
 +-+

 Figure 8: ForCES ID Format

 c. The 2 most significant bits called Type Switch (TS) are
 used to split the ID space as follows:

 TS Corresponding ID range Assignment
 -- ---------------------- ----------
 0b00 0x00000000 to 0x3FFFFFFF FE IDs (2^30)
 0b01 0x40000000 to 0x7FFFFFFF CE IDs (2^30)
 0b10 0x80000000 to 0xBFFFFFFF reserved
 0b11 0xC0000000 to 0xFFFFFFEF multicast IDs (2^30 - 16)
 0b11 0xFFFFFFF0 to 0xFFFFFFFC reserved
 0b11 0xFFFFFFFD all CEs broadcast
 0b11 0xFFFFFFFE all FEs broadcast
 0b11 0xFFFFFFFF all FEs and CEs (NE) broadcast

 Figure 9: Type Switch ID Space

 * Multicast or broadcast IDs are used to group endpoints (such
 as CEs and FES). As an example one could group FEs in some
 functional group, by assigning a multicast ID. Likewise,
 subgroups of CEs that act, for instance, in a back-up mode
 may be assigned a multicast ID to hide them from the FE.

Doria (Ed.), et al. Expires September 24, 2006 [Page 28]

Internet-Draft ForCES March 2006

 * This document does not discuss how a particular multicast ID
 is associated to a given group though it could be done via
 configuration process. The list of IDs an FE owns or is part
 of are listed on the FE Object LFB.

 Correlator (64 bits)
 This field is set by the CE to correlate ForCES Request Messages
 with the corresponding Response messages from the FE.
 Essentially it is a cookie. The Correlator is handled
 transparently by the FE, i.e. for a particular Request message
 the FE MUST assign the same correlator value in the corresponding
 Response message. In the case where the message from the CE does
 not elicit a response, this field may not be useful.

 The Correlator field could be used in many implementations
 specific ways by the CE. For example, the CE could split the
 Correlator into a 32-bit transactional identifier and 32-bit
 message sequence identifier. Another example a 64 bit pointer to
 a context block. All such implementation specific use of the
 Correlator is outside the scope of this specification.

 Flags(32 bits):
 Identified so far:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | | | | | | | |
 |ACK| Pri |Rsr |EM |A|TP | Reserved |
 | | | vd. | |T| | |
 +-+

 Figure 10: Header Flags

 - ACK: ACK indicator(2 bit)
 The ACK indicator flag is only used by the CE when sending a
 Config Message(Section 7.5.1) or a HB message (Section 7.9)
 to indicate to the message receiver whether or not a response
 is required by the sender. Note that for all other messages
 than the Config Message or the HB Message this flag MUST be
 ignored.

 The flag values are defined as below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 29]

Internet-Draft ForCES March 2006

 'NoACK' (0b00) - to indicate that the message receiver
 MUST not to send any response message back to this
 message sender.

 'SuccessACK'(0b01) - to indicate the message receiver
 MUST send a response message back only when the message
 has been successfully processed by the receiver.

 'FailureACK'(0b10) - to indicate the message receiver
 MUST send a response message back only when there is was
 failure by the receiver in processing (executing) the
 message. In other words, if the message can be processed
 successfully, the sender will not expect any response
 from the receiver.

 'AlwaysACK' (0b11) - to indicate the message receiver
 MUST send a response message.

 Note that in above definitions, the term success implies a
 complete execution without any failure of the message.
 Anything else than a complete successful execution is defined
 as a failure for the message processing. As a result, for
 the execution modes (defined in Section 4.3.1.1) like
 execute-all-or-none, execute-until-failure, and continue-
 execute-on-failure, if any single operation among several
 operations in the same message fails, it will be treated as a
 failure and result in a response if the ACK indicator has
 been set to 'FailureACK' or 'AlwaysACK'.

 Also note that, other than in Config and HB Messages,
 requirements for responses of messages are all given in a
 default way rather than by ACK flags. The default
 requirements of these messages and the expected responses are
 summarized below. Detailed descriptions can be found in the
 individual message definitions:

 + Association Setup Message always expects a response.

 + Association Teardown Message, and Packet Redirect
 Message, never expect responses.

 + Query Message always expects a response.

 + Response messages never expect further responses.

Doria (Ed.), et al. Expires September 24, 2006 [Page 30]

Internet-Draft ForCES March 2006

 - Pri: Priority (3 bits)
 ForCES protocol defines 8 different levels of priority (0-7).
 The priority level can be used to distinguish between
 different protocol message types as well as between the same
 message type. For example, the REDIRECT PACKET message could
 have different priorities to distinguish between Routing
 protocols packets and ARP packets being redirected from FE to
 CE. The Normal priority level is 1.

 - EM: Execution mode (2 bits)
 There are 3 execution modes refer to Section 4.3.1.1 for
 details.

 Reserved..................... (0b00)

 `execute-all-or-none` (0b01)

 `execute-until-failure` (0b10)

 `continue-execute-on-failure` (0b11)

 - AT Atomic Transaction (1 bit)
 This flag indicates if the message is stand-alone message or
 one of multiple messages that belongs to 2PC transaction
 operations. See Section 4.3.1.2.2 for details.

 Stand-alone message (0b0)

 2PC transaction message (0b1)

 - TP: Transaction phase (2 bits)
 A message from the CE to the FE within a transaction could be
 indicative of the different phases the transaction is in.
 Refer to Section 4.3.1.2.2 for details.

 SOT (start of transaction) (0b00)

 MOT (Middle of transaction) (0b01)

 EOT (end of transaction)(0b10)

 ABT (abort)(0b11)

Doria (Ed.), et al. Expires September 24, 2006 [Page 31]

Internet-Draft ForCES March 2006

6.2. Type Length Value(TLV) Structuring

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV Type | variable TLV Length |
 +-+
 | Value (Data of size TLV length) |
 ~ ~
 ~ ~
 +-+

 Figure 11: TLV Representation

 TLV Type (16):
 The TLV type field is two octets, and indicates the
 type of data encapsulated within the TLV.

 TLV Length (16):
 The TLV Length field is two octets, and indicates
 the length of this TLV including the TLV Type, TLV
 Length, and the TLV data in octets.

 TLV Value (variable):
 The TLV Value field carries the data. For
 extensibility, the TLV value may in fact be a TLV.
 TLVs must be 32 bit aligned.

6.2.1. Nested TLVs

 TLV values can be other TLVs. This provides the benefits of protocol
 flexibility (being able to add new extensions by introducing new TLVs
 when needed). The nesting feature also allows for an conceptual
 optimization with the XML LFB definitions to binary PL representation
 (represented by nested TLVs).

6.2.2. Scope of the T in TLV

 The "Type" values in the TLV are global in scope. This means that
 wherever TLVs occur in the PDU, a specific Type value refers to the
 same Type of TLV. This is a design choice that was made to ease
 debugging of the protocol.

6.3. ILV

 A slight variation of the TLV known as the ILV. This sets the type

Doria (Ed.), et al. Expires September 24, 2006 [Page 32]

Internet-Draft ForCES March 2006

 ("T") to be a 32-bit local index that refers to a ForCES element ID.
 The Length part of the ILV is fixed at 32 bits.

 +-+
 | Identifier |
 +-+
 | Length |
 +-+
 | Value |
 . .
 +-+

 Figure 12: ILV Representation

 It should be noted that the "I" values are of local scope and are
 defined by the data declarations from the LFB definition. Refer to

Section 7.1.1.1.8 for discussions on usage of ILVs.

Doria (Ed.), et al. Expires September 24, 2006 [Page 33]

Internet-Draft ForCES March 2006

7. Protocol Construction

7.1. Protocol Grammar

 The protocol construction is formally defined using a BNF-like syntax
 to describe the structure of the PDU layout. This is matched to a
 precise binary format later in the document.

 Since the protocol is very flexible and hierarchical in nature, it is
 easier at times to see the visualization layout. This is provided in

Section 7.1.2

7.1.1. Protocol BNF

 The format used is based on RFC 2234. The terminals of this grammar
 are flags, IDcount, IDs, KEYID, and encoded data, described after the
 grammar.

 1. A TLV will have the word "-TLV" suffix at the end of its name

 2. An ILV will have the word "-ILV" suffix at the end of its name

 3. / is used to separate alternatives

 4. parenthesized elements are treated as a single item

 5. * before an item indicates 0 or more repetitions

 6. 1* before an item indicates 1 or more repetitions

 7. [] around an item indicates that it is optional (equal to *1)

 The BNF of the PL level PDU is as follows:

https://datatracker.ietf.org/doc/html/rfc2234

Doria (Ed.), et al. Expires September 24, 2006 [Page 34]

Internet-Draft ForCES March 2006

 PL level PDU := MAINHDR [MAIN-TLV]
 MAIN-TLV := [LFBselect-TLV] / [REDIRECT-TLV] /
 [ASResult-TLV] / [ASTreason-TLV]
 LFBselect-TLV := LFBCLASSID LFBInstance OPER-TLV
 OPER-TLV := 1*PATH-DATA-TLV
 PATH-DATA-TLV := PATH [DATA]
 PATH := flags IDcount IDs [SELECTOR]
 SELECTOR := KEYINFO-TLV
 DATA := FULLDATA-TLV / SPARSEDATA-TLV / RESULT-TLV /
 1*PATH-DATA-TLV
 KEYINFO-TLV := KEYID FULLDATA-TLV
 SPARSEDATA-TLV := encoded data that may have optionally
 appearing elements
 FULLDATA-TLV := encoded data element which may nest
 further FULLDATA-TLVs
 RESULT-TLV := Holds result code and optional FULLDATA-TLV

 Figure 13: BNF of PL level PDU

 o MAINHDR defines a message type, Target FE/CE ID etc. The MAINHDR
 also defines the content. As an example the content of a "config"
 message would be different from an "association" message.

 o MAIN-TLV is one of several TLVs that could follow the Mainheader.
 The appearance of these TLVs is message type specific.

 o LFBCLASSID is a 32 bit unique identifier per LFB class defined at
 class Definition time.

 o LFBInstance is a 32 bit unique instance identifier of an LFB class

 o OPER-TLV uses the Type field in the TLV to uniquely identify the
 type of operation i.e one of {SET, GET, DEL,etc.} depending on the
 message type.

 o PATH-DATA-TLV identifies the exact element targeted and may have
 zero or more paths associated with it. The last PATH-DATA-TLV in
 the case of nesting of paths via the DATA construct in the case of
 SET requests and GET response is terminated by encoded data or
 response in the form of either FULLDATA-TLV or SPARSEDATA-TLV or
 RESULT-TLV.

 o PATH provides the path to the data being referenced.

 * flags (16 bits) are used to further refine the operation to be
 applied on the Path. More on these later.

Doria (Ed.), et al. Expires September 24, 2006 [Page 35]

Internet-Draft ForCES March 2006

 * IDcount(16 bit): count of 32 bit IDs

 * IDs: zero or more 32bit IDs (whose count is given by IDcount)
 defining the main path. Depending on the flags, IDs could be
 field IDs only or a mix of field and dynamic IDs. Zero is used
 for the special case of using the entirety of the containing
 context as the result of the path.

 o SELECTOR is an optional construct that further defines the PATH.
 Currently, the only defined selector is the KEYINFO-TLV, used for
 selecting an array entry by the value of a key field. The
 presence of a SELECTOR is correct only when the flags also
 indicate its presence. A mismatch is a protocol format error.

 o A KEYINFO TLV contains information used in content keying.

 * A KeyID is used in a KEYINFO TLV. It indicates which key for
 the current array is being used as the content key for array
 entry selection.

 * The key's data is the data to look for in the array, in the
 fields identified by the key field. The information is encoded
 according to the rules for the contents of a FULLDATA-TLV, and
 represent the field or fields which make up the key identified
 by the KEYID.

 o DATA may contain a FULLDATA-TLV, SPARSEDATA-TLV, a RESULT-TLV or 1
 or more further PATH-DATA selection. FULLDATA and SPARSEDATA are
 only allowed on SET requests, or on responses which return content
 information (GET-RESPONSE for example). PATH-DATA may be included
 to extend the path on any request.

 * Note: Nested PATH-DATA TLVs are supported as an efficiency
 measure to permit common subexpression extraction.

 * FULLDATA and SPARSEDATA contain "the data" whose path has been
 selected by the PATH. Refer to Section 7.1.1.1 for details.

 o RESULT contains the indication of whether the individual SET
 succeeded. If there is an indication for verbose response, then
 SET-RESPONSE will also contain the FULLDATA TLV showing the data
 that was set. RESULT-TLV is included on the assumption that
 individual parts of a SET request can succeed or fail separately.

 In summary this approach has the following characteristic:

 o There can be one or more LFB Class + InstanceId combination
 targeted in a message (batch)

Doria (Ed.), et al. Expires September 24, 2006 [Page 36]

Internet-Draft ForCES March 2006

 o There can one or more operations on an addressed LFB classid+
 instanceid combination (batch)

 o There can be one or more path targets per operation (batch)

 o Paths may have zero or more data values associated (flexibility
 and operation specific)

 It should be noted that the above is optimized for the case of a
 single classid+instance targeting. To target multiple instances
 within the same class, multiple LFBselect are needed.

7.1.1.1. Discussion on Grammar

 In the case of FULLDATA encoding, data is packed in such a way that a
 receiver of such data with knowledge of the path can correlate what
 it means by inferring in the LFB definition. This is an optimization
 that helps reducing the amount of description for the data in the
 protocol.

 In other words:

 It is assumed that the type of the data can be inferred by the
 context in which data is used. Hence, data will not include its type
 information. The basis for the inference is typically the LFB class
 id and the path.

 It is expected that a substantial number of operations in ForCES will
 need to reference optional data within larger structures. For this
 reason, the SPARSEDATA encoding is introduced to make it easier to
 encapsulate optionally appearing data elements.

7.1.1.1.1. Data Packing Rules

 The scheme for encoding data used in this doc adheres to the
 following rules:

 o The Value ("V" of TLV) of FULLDATA TLV will contain the data being
 transported. This data will be as was described in the LFB
 definition.

 o Variable sized data within a FULLDATA TLV will be encapsulated
 inside another FULLDATA TLV inside the V of the outer TLV. For
 example of such a setup refer to Appendix D and Appendix C.

 o In the case of FULLDATA TLVs:

Doria (Ed.), et al. Expires September 24, 2006 [Page 37]

Internet-Draft ForCES March 2006

 * When a table is referred to in the PATH (ids) of a PATH-DATA-
 TLV, then the FULLDATA's "V" will contain that table's row
 content prefixed by its 32 bit index/subscript. OTOH, when
 PATH flags are 00, the PATH may contain an index pointing to a
 row in table; in such a case, the FULLDATA's "V" will only
 contain the content with the index in order to avoid ambiguity.

7.1.1.1.2. Path Flags

 The following flags are currently defined:

 o SELECTOR Bit: F_SELKEY indicates that a KEY Selector is present
 following this path information, and should be considered in
 evaluating the path.

 o FIND-EMPTY Bit: This must not be set if the F_SEL_KEY bit is set.
 This must only be used on a create operation. If set, this
 indicates that although the path identifies an array, the SET
 operation should be applied to the first unused element in the
 array. The result of the operation will not have this flag set,
 and will have the assigned index in the path.

 Example: For a given LFB class, the path 2.5 might select an
 array in a structure. If one wanted to set element 6 in this
 array, then the path 2.5.6 would define that element. However
 if one wanted to create an element in the first empty spot in
 the array, the CE would then send the TLV with the FIND-EMPTY
 bit set with the path set to 2.5.

7.1.1.1.3. Relation of operational flags with global message flags

 Global flags, such as the execution mode and the atomicity indicators
 defined in the header, apply to all operations in a message. Global
 flags provide semantics that are orthogonal to those provided by the
 operational flags, such as the flags defined in Path Data. The scope
 of operational flags is restricted to the operation.

7.1.1.1.4. Content Path Selection

 The KEYINFO TLV describes the KEY as well as associated KEY data.
 KEYs, used for content searches, are restricted and described in the
 LFB definition.

7.1.1.1.5. LFB select TLV

 The LFB select TLV is an instance of TLV defined in Section 6.2. The
 definition is as below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 38]

Internet-Draft ForCES March 2006

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = LFBselect | Length |
 +-+
 | LFB Class ID |
 +-+
 | LFB Instance ID |
 +-+
 | Operation TLV |
 . .
 +-+
 ~ ... ~
 +-+
 | Operation TLV |
 . .
 +-+

 Figure 14: PL PDU layout

 Type:
 The type of the TLV is "LFBselect"

 Length:
 Length of the TLV including the T and L fields, in octets.

 LFB Class ID:
 This field uniquely recognizes the LFB class/type.

 LFB Instance ID:
 This field uniquely identifies the LFB instance.

 Operation TLV:
 It describes an operation nested in the LFB select TLV. Note
 that usually there SHOULD be at least one Operation TLV present
 for an LFB select TLV, but for the Association Setup Message
 defined in Section 7.4.1. the Operation TLV is optional. In this
 case there might not be an Operation TLV followed in the LFB
 select TLV.

7.1.1.1.6. Operation TLV

 The Operation TLV is an instance of TLV defined in Section 6.2. It
 is assumed that specific operations are identified by the Type code
 of the TLV. Definitions for individual Types of operation TLVs are
 in corresponding message description sections followed.

 SET and GET Requests do not have result information (they are

Doria (Ed.), et al. Expires September 24, 2006 [Page 39]

Internet-Draft ForCES March 2006

 requests). SET and GET Responses have result information. SET and
 GET Responses use SET-RESPONSE and GET-RESPONSE operation TLVs.

 For a GET response, individual GETs which succeed will have FULLDATA
 TLVs added to the leaf paths to carry the requested data. For GET
 elements that fail, instead of the FULLDATA TLV there will be a
 RESULT TLV.

 For a SET response, each FULLDATA or or SPARSEDATA TLV in the
 original request will be replaced with a RESULT TLV in the response.
 If the request was for Ack-fail, then only those items which failed
 will appear in the response. If the request was for ack-all, then
 all elements of the request will appear in the response with RESULT
 TLVs.

 Note that if a SET request with a structure in a FULLDATA is issued,
 and some field in the structure is invalid, the FE will not attempt
 to indicate which field was invalid, but rather will indicate that
 the operation failed. Note further that if there are multiple errors
 in a single leaf path-data / FULLDATA, the FE can select which error
 it chooses to return. So if a FULLDATA for a SET of a structure
 attempts to write one field which is read only, and attempts to set
 another field to an invalid value, the FE can return whatever error
 it likes.

 A SET operation on a variable length element with a length of 0 for
 the item is not the same as deleting it. If the CE wishes to delete
 then the DEL operation should be used whether the path refers to an
 array element or an optional structure element.

7.1.1.1.7. Result TLV

 The RESULT TLV is an instance of TLV defined in Section 6.2. The
 definition is as below:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = RESULT | Length |
 +-+
 | Result Value | Reserved |
 +-+

 Figure 15: Result TLV

 The defined Result Values are

Doria (Ed.), et al. Expires September 24, 2006 [Page 40]

Internet-Draft ForCES March 2006

 0x00 = Success

 0x01 = Unspecified error with header.

 0x02 = Header length field does not match actual packet length.

 0x03 = Unresolvable mismatch in versions.

 0x04 = Destination PID is invalid for the message receiver.

 0x05 = LFB Class ID is not known by receiver.

 0x06 = LFB Class ID is known by receiver but not currently in use.

 0x07 = LFB Class ID is known but the specified instance of that
 class does not exist.

 0x08 = The specified path is impossible.

 0x09 = The specified path is possible but the element does not exist
 (e.g., attempt to modify a table row that has not been created).

 0x0A = The specified object exists but it cannot exist for the
 operation to succeed (e.g., attempt to add an existing LFB
 instance or array subscript).

 0x0B = The specified object does not exist but it must exist for the
 operation to succeed (e.g., attempt to delete an non-existing
 LFB instance or array subscript).

 0x0C = Attempt to modify a read-only value.

 0x0D = Attempt to create an array with an unallowed subscript.

 0x0E = Attempt to set a parameter to a value outside of its
 allowable range.

 0x0D = Attempt to write contents larger than the target object space
 (i.e., exceeding a buffer).

 0x10 = Any other error with data parameters.

 0x11 = Message type is not acceptable.

 0x12 = Message flags are not acceptable for the given message type.

Doria (Ed.), et al. Expires September 24, 2006 [Page 41]

Internet-Draft ForCES March 2006

 0x13 = A TLV is not acceptable for the given message type.

 0x14 = Unspecified error while handling an event.

 0x15 = Attempt to perform a valid ForCES operation that is
 unsupported by the message receiver.

 0x16 = A memory error occurred while processing a message (no error
 detected in the message itself)

 0x17 = An unspecified error occured while processing a message (no
 error detected in the message itself).

 others = Reserved

 0xFF = unspecified error (for when the FE can not decide what went
 wrong)

7.1.1.1.8. DATA TLV

 A FULLDATA TLV has "T"= FULLDATA, and a 16bit Length followed by the
 data value/contents. Likewise, a SPARSEDATA TLV has "T" =
 SPARSEDATA, a 16bit Length followed by the data value/contents. In
 the case of the SPARSEDATA each element in the Value part of the TLV
 will be further encapsulated in an ILV. Rules:

 1. Both ILVs and TLVs MUST 32 bit aligned. Any padding bits used
 for the alignment MUST be zero on transmission and MUST be
 ignored upon reception.

 2. FULLDATA TLV may be used at a particular path only if every
 element at that path level is present. This requirement holds
 whether the fields are fixed or variable length, mandatory or
 optional.

 * If a FULLDATA TLV is used, the encoder MUST layout data for
 each element in the same order in which the data was defined
 in the LFB specification. This ensures the decoder is
 guaranteed to retrieve the data.

 * In the case of a SPARSEDATA, it does not need to be ordered
 since the "I" in the ILV uniquely identifies the element.

 3. Inside a FULLDATA TLV

 * The values for atomic, fixed-length fields are given without
 any TLV or ILV encapsulation.

Doria (Ed.), et al. Expires September 24, 2006 [Page 42]

Internet-Draft ForCES March 2006

 * The values for atomic, variable-length fields are given inside
 FULLDATA TLVs.

 4. Inside a SPARSE TLV

 * the values for atomic fields may be given with ILVs (32-bit
 index, 32-bit length)

 5. Any of the FULLDATA TLVs can contain an ILV but an ILV cannot
 contain a FULLDATA. This is because it is hard to disambiguate
 ILV since an I is 32 bit and a T is 16 bit.

 6. A FULLDATA can also contain a FULLDATA for variable sized
 elements. The decoding disambiguation is assumed from rule #3
 above.

7.1.1.1.9. SET and GET Relationship

 It is expected that a GET-RESPONSE would satisfy the following:

 o it would have exactly the same path definitions as those sent in
 the GET. The only difference being a GET-RESPONSE will contain
 FULLDATA TLVs.

 o it should be possible to take the same GET-RESPONSE and convert it
 to a SET-REPLACE successfully by merely changing the T in the
 operational TLV.

 o There are exceptions to this rule:

 1. When a KEY selector is used with a path in a GET operation,
 that selector is not returned in the GET-RESPONSE; instead the
 cooked result is returned. Refer to the examples using KEYS
 to see this.

 2. When dumping a whole table in a GET, the GET-RESPONSE that
 merely edits the T to be SET will end up overwriting the
 table.

7.1.2. Protocol Visualization

 The figure below shows a general layout of the PL PDU. A main header
 is followed by one or more LFB selections each of which may contain
 one or more operation.

Doria (Ed.), et al. Expires September 24, 2006 [Page 43]

Internet-Draft ForCES March 2006

 main hdr (Config in this case)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID
 | |
 | |
 | +-- LFBInstance
 | |
 | +-- T = SET-CREATE
 | | |
 | | +-- // one or more path targets
 | | // with their data here to be added
 | |
 | +-- T = DEL
 | . |
 | . +-- // one or more path targets to be deleted
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID
 | |
 | |
 | +-- LFBInstance
 | |
 | + -- T= SET-REPLACE
 | |
 | |
 | + -- T= DEL
 | |
 | + -- T= SET-REPLACE
 |
 |
 +--- T = LFBselect
 |
 +-- LFBCLASSID
 |
 +-- LFBInstance
 .
 .
 .

 Figure 16: PL PDU logical layout

Doria (Ed.), et al. Expires September 24, 2006 [Page 44]

Internet-Draft ForCES March 2006

 The figure below shows an example general layout of the operation
 within a targeted LFB selection. The idea is to show the different
 nesting levels a path could take to get to the target path.

 T = SET-CREATE
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | + -- T = KEYINFO
 | | + -- KEY_ID
 | | + -- KEY_DATA
 | |
 | + -- T = FULLDATA
 | + -- data
 |
 |
 T = SET-REPLACE
 | |
 | +- T = Path-data
 | | |
 | | + -- flags
 | | + -- IDCount
 | | + -- IDs
 | | |
 | | + -- T = FULLDATA
 | | + -- data
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs

Doria (Ed.), et al. Expires September 24, 2006 [Page 45]

Internet-Draft ForCES March 2006

 | |
 | + -- T = FULLDATA
 | + -- data
 T = DEL
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 + -- T = KEYINFO
 | + -- KEY_ID
 | + -- KEY_DATA
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs

 Figure 17: Sample operation layout

7.2. Core ForCES LFBs

 There are two LFBs that are used to control the operation of the
 ForCES protocol and to interact with FEs and CEs:

 o FE Protocol LFB

 o FE Object LFB

 Although these LFBs have the same form and interface as other LFBs,
 they are special in many respects: they have fixed well-known LFB
 Class and Instance IDs. They are statically defined (no dynamic
 instantiation allowed) and their status cannot be changed by the
 protocol: any operation to change the state of such LFBs (for

Doria (Ed.), et al. Expires September 24, 2006 [Page 46]

Internet-Draft ForCES March 2006

 instance, in order to disable the LFB) must result in an error.
 Moreover, these LFBs must exist before the first ForCES message can
 be sent or received. All attributes in these LFBs must have pre-
 defined default values. Finally, these LFBs do not have input or
 output ports and do not integrate into the intra-FE LFB topology.

7.2.1. FE Protocol LFB

 The FE Protocol LFB is a logical entity in each FE that is used to
 control the ForCES protocol. The FE Protocol LFB Class ID is
 assigned the value 0x1. The FE Protocol LFB Instance ID is assigned
 the value 0x1. There MUST be one and only one instance of the FE
 Protocol LFB in an FE. The values of the attributes in the FE
 Protocol LFB have pre-defined default values that are specified here.
 Unless explicit changes are made to these values using Config
 messages from the CE, these default values MUST be used for correct
 operation of the protocol.

 The formal definition of the FE Protocol LFB can be found in
Appendix B.

 The FE Protocol LFB consists of the following elements:

 o FE Protocol capabilities (read-only):

 * Supported ForCES protocol version(s) by the FE

 * Any TML capability description(s)

 o FE Protocol attributes (can be read and set):

 * Current version of the ForCES protocol

 * FE unicast ID

 * FE multicast ID(s) list - this is a list of multicast IDs that
 the FE belongs to. These IDs are configured by the CE.

 * CE heartbeat policy - This policy, along with the parameter 'CE
 Heartbeat Dead Interval (CE HDI)' as described below defines
 the operating parameters for the FE to check the CE liveness.
 The policy values with meanings are listed as below:

 0 (default) - This policy specifies that the CE will send a
 Heartbeat Message to the FE(s) whenever the CE reaches a
 time interval within which no other PL messages were sent
 from the CE to the FE(s); refer to Section 4.3.3 for

Doria (Ed.), et al. Expires September 24, 2006 [Page 47]

Internet-Draft ForCES March 2006

 details. The CE HDI attribute as described below is tied to
 this policy. If the FE has not received any PL messages
 within a CE HDI period it declares the connectivity lost.
 The CE independently chooses the time interval for sending
 the Heartbeat messages to FE(s) - care must be exercised to
 ensure the CE->FE HB interval is smaller than the assigned
 CE HDI.

 CE HDI SHOULD be at least 3 times as long as the HB
 interval. Shorter rates MAY be appropriate in
 implementations working across a reliable internal
 interface.

 1 - The CE will not generate any HB messages. This actually
 means CE does not want the FE to check the CE liveness.

 Others - reserved.

 * CE Heartbeat Dead Interval (CE HDI) - The time interval the FE
 uses to check the CE liveness. If FE has not received any
 messages from CE within this time interval, FE deduces lost
 connectivity which implies that the CE is dead or the
 association to the CE is lost. Default value 30 s.

 * FE heartbeat policy - This policy, along with the parameter 'FE
 Heartbeat Interval (FE HI)', defines the operating parameters
 for how the FE should behave so that the CE can deduce its
 liveness. The policy values and the meanings are:

 0(default) - The FE should not generate any Heartbeat
 messages. In this scenario, the CE is responsible for
 checking FE liveness by setting the PL header ACK flag of
 the message it sends to AlwaysACK. The FE responds to CE
 whenever CE sends such Heartbeat Request Message. Refer to

Section 7.9 and Section 4.3.3 for details.

 1 - This policy specifies that FE must actively send a
 Heartbeat Message if it reaches the time interval assigned
 by the FE HI as long as no other messages were sent from FE
 to CE during that interval as described in Section 4.3.3.

 Others - Reserved.

 * FE Heartbeat Interval (FE HI) - The time interval the FE should
 use to send HB as long as no other messages were sent from FE
 to CE during that interval as described in Section 4.3.3. The
 default value for an FE HI is 500ms.

Doria (Ed.), et al. Expires September 24, 2006 [Page 48]

Internet-Draft ForCES March 2006

 * Primary CEID - The CEID that the FE is associated with.

 * Backup CEs - The list of backup CEs an FE is associated with.
 Refer to Section 9 for details.

 * FE restart policy - This specifies the behavior of the FE
 during an FE restart. The restart may be from an FE failure or
 other reasons that have made FE down and then need to restart.
 The values are defined as below:

 0(default)- just restart the FE from scratch. In this case,
 the FE should start from the pre-association phase.

 1 - restart the FE from an intermediate state. In this
 case, the FE decides from which state it restarts. For
 example, if the FE is able to retain enough information of
 pre-association phase after some failure, it then has the
 ability to start from the post-association phase in this
 case.

 Others - Reserved

 * CE failover policy - This specifies the behavior of the FE
 during a CE failure and restart time interval, or when the FE
 loses the CE association. It should be noted that this policy
 in the case of HA only takes effect after total failure to
 connect to a new CE. A timeout parameter, the CE Timeout
 Interval (CE TI) is associated with this attribute. Values of
 this policy are defined as below:

 0(default) - The FE should continue running and do what it
 can even without an associated CE. This basically requires
 that the FE support CE Graceful restart. Note that if the
 CE still has not been restarted or hasn't been associated
 back to the FE, after the CE TI has expired, the FE will go
 operationally down.

 1 - FE should go down to stop functioning immediately.

 2 - FE should go inactive to temporarily stop functioning.
 If the CE still has not been restarted after a time interval
 of specified by the CE TI, the FE will go down completely.

 Others - Reserved

 * CE Timeout Interval (CE TI) - The time interval associated with
 the CE failover policy case '0' and '2'. The default value is
 set to 300 seconds. Note that it is advisable to set the CE TI

Doria (Ed.), et al. Expires September 24, 2006 [Page 49]

Internet-Draft ForCES March 2006

 value much higher than the CE Heartbeat Dead Interval (CE HDI)
 since the effect of expiring this parameter is devastating to
 the operation of the FE.

7.2.2. FE Object LFB

 The FE Object LFB is a logical entity in each FE and contains
 attributes relative to the FE itself, and not to the operation of the
 ForCES protocol.

 The formal definition of the FE Object LFB can be found in [FE-
 MODEL]. The model captures the high level properties of the FE that
 the CE needs to know to begin working with the FE. The class ID for
 this LFB Class is also assigned in [FE-MODEL]. The singular instance
 of this class will always exist, and will always have instance ID 1
 within its class. It is common, although not mandatory, for a CE to
 fetch much of the attribute and capability information from this LFB
 instance when the CE begins controlling the operation of the FE.

7.3. Semantics of message Direction

 Recall: The PL protocol provides a master(CE)-Slave(FE) relationship.
 The LFBs reside at the FE and are controlled by CE.

 When messages go from the CE, the LFB Selector (Class and instance)
 refers to the destination LFB selection which resides in the FE.

 When messages go from the FE->CE, the LFB Selector (Class and
 instance) refers to the source LFB selection which resides in the FE.

7.4. Association Messages

 The ForCES Association messages are used to establish and teardown
 associations between FEs and CEs.

7.4.1. Association Setup Message

 This message is sent by the FE to the CE to setup a ForCES
 association between them.

 Message transfer direction:
 FE to CE

 Message Header:
 The Message Type in the header is set MessageType=
 'AssociationSetup'. The ACK flag in the header MUST be ignored,
 and the association setup message always expects to get a response

Doria (Ed.), et al. Expires September 24, 2006 [Page 50]

Internet-Draft ForCES March 2006

 from the message receiver (CE) whether the setup is successful or
 not. The Correlator field in the header is set, so that FE can
 correlate the response coming back from CE correctly. The Src ID
 (FE ID) may be set to O in the header which means that the FE
 would like the CE to assign an FE ID for the FE in the setup
 response message.

 Message body:
 The association setup message body optionally consists of one or
 more LFB select TLV as described in Section 7.1.1.1.5. The
 association setup message only operates toward the FE Object and
 FE Protocol LFBs, therefore, the LFB class ID in the LFB select
 TLV only points to these two kinds of LFBs.

 The Operation TLV in the LFB select TLV is defined as a 'REPORT'
 operation. More than one attribute may be announced in this
 message using REPORT operation to let the FE declare its
 configuration parameters in an unsolicited manner. These may
 contain attributes like the Heart Beat Interval parameter, etc.
 The Operation TLV for event notification is is defined below.

 Operation TLV for Association Setup:

 +-+
 | Type = REPORT | Length |
 +-+
 | PATH-DATA-TLV for REPORT |
 +-+

 Figure 18: Operation TLV

 Type:
 Only one operation type is defined for the association setup
 message:

 Type = "REPORT" --- this type of operation is for FE to
 report something to CE.

 PATH-DATA-TLV for REPORT:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for REPORT operation MAY contain
 FULLDATA-TLV(s) but SHALL NOT contain any RESULT-TLV in the data
 format. The RESULT-TLV is defined in Section 7.1.1.1.7 and the
 FULLDATA-TLV is defined in Section 7.1.1.1.8.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 51]

Internet-Draft ForCES March 2006

 main hdr (eg type = Association setup)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID = FE object
 | |
 | |
 | +-- LFBInstance = 0x1
 | |
 +--- T = LFBselect
 |
 +-- LFBCLASSID = FE Protocol object
 |
 |
 +-- LFBInstance = 0x1
 |
 +-- Path-data to one or more attributes
 including suggested HB parameters

 Figure 19: PDU Format

7.4.2. Association Setup Response Message

 This message is sent by the CE to the FE in response to the Setup
 message. It indicates to the FE whether the setup is successful or
 not, i.e. whether an association is established.

 Message transfer direction:
 CE to FE

 Message Header:
 The Message Type in the header is set MessageType=
 'AssociationSetupResponse'. The ACK flag in the header MUST be
 ignored, and the setup response message never expects to get any
 more responses from the message receiver (FE). The Correlator
 field in the header MUST be the same as that of the corresponding
 association setup message, so that the association setup message
 sender can correlate the response correctly. The Dst ID in the
 header will be set to some FE ID value assigned by the CE if the
 FE had requested that in the setup message (by SrcID = 0).

 Message body:
 The association setup response message body only consists of one
 TLV, the Association Result TLV, the format of which is as
 follows:

Doria (Ed.), et al. Expires September 24, 2006 [Page 52]

Internet-Draft ForCES March 2006

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = ASRresult | Length |
 +-+
 | Association Setup Result |
 +-+

 Figure 20: Message Body

 Type (16 bits):
 The type of the TLV is "ASRresult".

 Length (16 bits):
 Length of the TLV including the T and L fields, in octets.

 Association Setup Result (32 bits):
 This indicates whether the setup msg was successful or whether
 the FE request was rejected by the CE. the defined values are:

 0 = success

 1 = FE ID invalid

 2 = too many associations

 3 = permission denied

7.4.3. Association Teardown Message

 This message can be sent by the FE or CE to any ForCES element to end
 its ForCES association with that element.

 Message transfer direction:
 CE to FE, or FE to CE (or CE to CE)

 Message Header:
 The Message Type in the header is set MessageType=
 "AssociationTeardown". The ACK flag MUST be ignored The
 correlator field in the header MUST be set to zero and MUST be
 ignored by the receiver.

 Message Body:
 The association teardown message body only consists of one TLV,
 the Association Teardown Reason TLV, the format of which is as
 follows:

Doria (Ed.), et al. Expires September 24, 2006 [Page 53]

Internet-Draft ForCES March 2006

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = ASTreason | Length |
 +-+
 | Teardown Reason |
 +-+

 Figure 21: ASTreason TLV

 Type (16 bits):
 The type of the TLV is "ASTreason".

 Length (16 bits):
 Length of the TLV including the T and L fields, in octets.

 Teardown Reason (32 bits):
 This indicates the reason why the association is being
 terminated. Several reason codes are defined as follows.

 0 - normal teardown by administrator

 1 - error - loss of heartbeats

 2 - error - out of bandwidth

 3 - error - out of memory

 4 - error - application crash

 255 - error - other or unspecified

7.5. Configuration Messages

 The ForCES Configuration messages are used by CE to configure the FEs
 in a ForCES NE and report the results back to the CE.

7.5.1. Config Message

 This message is sent by the CE to the FE to configure LFB attributes
 in the FE. This message is also used by the CE to subscribe/
 unsubscribe to LFB events.

 As usual, a config message is composed of a common header followed by
 a message body that consists of one or more TLV data format.
 Detailed description of the message is as below.

Doria (Ed.), et al. Expires September 24, 2006 [Page 54]

Internet-Draft ForCES March 2006

 Message transfer direction:
 CE to FE

 Message Header:
 The Message Type in the header is set MessageType= 'Config'. The
 ACK flag in the header can be set to any value defined in

Section 6.1, to indicate whether or not a response from FE is
 expected by the message (the flag is set to 'NoACK' or
 'AlwaysACK'), or to indicate under which conditions a response is
 generated (the flag is set to 'SuccessACK' or 'FailureACK'). The
 default behavior for the ACK flag is set to always expect a full
 response from FE. This happens when the ACK flag is not set to
 any defined value. The correlator field in the message header
 MUST be set if a response is expected, so that CE can correlate
 the response correctly. The correlator field can be ignored if
 no response is expected.

 Message body:
 The config message body MUST consist of at least one LFB select
 TLV as described in Section 7.1.1.1.5. The Operation TLV in the
 LFB select TLV is defined below.

 Operation TLV for Config:

 +-+
 | Type | Length |
 +-+
 | PATH-DATA-TLV |
 +-+

 Figure 22: Operation TLV for Config

 Type:
 The operation type for config message. two types of operations
 for the config message are defined:

 Type = "SET" --- this operation is to set LFB attributes

 Type = "DEL" --- this operation to delete some LFB
 attributes

 PATH-DATA-TLV:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for SET
 operation is, it MUST contain either a FULLDATA or SPARSEDATA
 TLV(s), but MUST NOT contain any RESULT-TLV. The restriction on
 the use of PATH-DATA-TLV for DEL operation is it MAY contain

Doria (Ed.), et al. Expires September 24, 2006 [Page 55]

Internet-Draft ForCES March 2006

 FULLDATA or SPARSEDATA TLV(s), but MUST NOT contain any RESULT-
 TLV. The RESULT-TLV is defined in Section 7.1.1.1.7 and FULLDATA
 and SPARSEDATA TLVs is defined in Section 7.1.1.1.8.

 *Note: For Event subscription, the events will be defined by the
 individual LFBs.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

 main hdr (eg type = config)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID = target LFB class
 | |
 | |
 | +-- LFBInstance = target LFB instance
 | |
 | |
 | +-- T = operation { SET }
 | | |
 | | +-- // one or more path targets
 | | // associated with FULL or SPARSEDATA TLV(s)
 | |
 | +-- T = operation { DEL }
 | | |
 | | +-- // one or more path targets

 Figure 23: PDU Format

7.5.2. Config Response Message

 This message is sent by the FE to the CE in response to the Config
 message. It indicates whether the Config was successful or not on
 the FE and also gives a detailed response regarding the configuration
 result of each attribute.

 Message transfer direction:
 FE to CE

 Message Header:
 The Message Type in the header is set MessageType= 'Config
 Response'. The ACK flag in the header is always ignored, and the
 config response message never expects to get any further response

Doria (Ed.), et al. Expires September 24, 2006 [Page 56]

Internet-Draft ForCES March 2006

 from the message receiver (CE). The Correlator field in the
 header MUST keep the same as that of the config message to be
 responded, so that the config message sender can correlate the
 response with the original message correctly.

 Message body:
 The config message body MUST consist of at least one LFB select
 TLV as described in Section 7.1.1.1.5. The Operation TLV in the
 LFB select TLV is defined below.

 Operation TLV for Config Response:

 +-+
 | Type | Length |
 +-+
 | PATH-DATA-TLV |
 +-+

 Figure 24: Operation TLV for Config Response

 Type:
 The operation type for config response message. Two types of
 operations for the config response message are defined:

 Type = "SET-RESPONSE" --- this operation is for the
 response of SET operation of LFB attributes

 Type = "DEL-RESPONSE" --- this operation is for the
 response of the DELETE operation of LFB attributes

 PATH-DATA-TLV:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for SET-
 RESPONSE operation is it MUST contain RESULT-TLV(s). The
 restriction on the use of PATH-DATA-TLV for DEL-RESPONSE
 operation is it also MUST contain RESULT-TLV(s). The RESULT-TLV
 is defined in Section 7.1.1.1.7.

7.6. Query Messages

 The ForCES query messages are used by the CE to query LFBs in the FE
 for informations like LFB attributes, capabilities, statistics, etc.
 Query Messages include the Query Message and the Query Response
 Message.

Doria (Ed.), et al. Expires September 24, 2006 [Page 57]

Internet-Draft ForCES March 2006

7.6.1. Query Message

 A query message is composed of a common header and a message body
 that consists of one or more TLV data format. Detailed description
 of the message is as below.

 Message transfer direction:
 from CE to FE.

 Message Header:
 The Message Type in the header is set to MessageType= 'Query'.
 The ACK flag in the header is always ignored, and a full response
 for a query message is always expected. The Correlator field in
 the header is set, so that CE can locate the response back from
 FE correctly.

 Message body:
 The query message body MUST consist of at least one LFB select
 TLV as described in Section 7.1.1.1.5. The Operation TLV in the
 LFB select TLV is defined below.

 Operation TLV for Query:

 +-+
 | Type = GET | Length |
 +-+
 | PATH-DATA-TLV for GET |
 +-+

 Figure 25: TLV for Query

 Type:
 The operation type for query. One operation type is defined:

 Type = "GET" --- this operation is to request to get LFB
 attributes.

 PATH-DATA-TLV for GET:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for GET
 operation is it MUST NOT contain any SPARSEDATA or FULLDATA TLV
 and RESULT-TLV in the data format.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 58]

Internet-Draft ForCES March 2006

 main hdr (type = Query)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID = target LFB class
 | |
 | |
 | +-- LFBInstance = target LFB instance
 | |
 | |
 | +-- T = operation { GET }
 | | |
 | | +-- // one or more path targets
 | |
 | +-- T = operation { GET }
 | | |
 | | +-- // one or more path targets
 | |

 Figure 26: PDU Format

7.6.2. Query Response Message

 When receiving a query message, the receiver should process the
 message and come up with a query result. The receiver sends the
 query result back to the message sender by use of the Query Response
 Message. The query result can be the information being queried if
 the query operation is successful, or can also be error codes if the
 query operation fails, indicating the reasons for the failure.

 A query response message is also composed of a common header and a
 message body consists of one or more TLVs describing the query
 result. Detailed description of the message is as below.

 Message transfer direction:
 from FE to CE.

 Message Header:
 The Message Type in the header is set to MessageType=
 'QueryResponse'. The ACK flag in the header is ignored. As a
 response itself, the message does not expect a further response
 anymore. The Correlator field in the header MUST be the same as
 that of the associated query, so that the query message sender
 can keep track of the response.

Doria (Ed.), et al. Expires September 24, 2006 [Page 59]

Internet-Draft ForCES March 2006

 Message body:
 The query response message body MUST consist of at least one LFB
 select TLV as described in Section 7.1.1.1.5. The Operation TLV
 in the LFB select TLV is defined below.

 Operation TLV for Query Response:

 +-+
 | Type = GET-RESPONSE | Length |
 +-+
 | PATH-DATA-TLV for GET-RESPONSE |
 +-+

 Figure 27: TLV for Query Response

 Type:
 The operation type for query response. One operation type is
 defined:

 Type = "GET-RESPONSE" --- this operation is to response to
 get operation of LFB attributes.

 PATH-DATA-TLV for GET-RESPONSE:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for GET-RESPONSE operation MAY
 contain SPARSEDATA TLV, FULLDATA TLV and/or RESULT-TLV(s) in the
 data encoding. The RESULT-TLV is defined in Section 7.1.1.1.7
 and the SPARSEDATA and FULLDATA TLVs are defined in

Section 7.1.1.1.8.

7.7. Event Notification Message

 Event Notification Message is used by FE to asynchronously notify CE
 of events that happen in the FE.

 All events that can be generated in an FE are subscribable by CE. A
 config message is used by CE to subscribe/unsubscribe for an event in
 FE. To subscribe to an event is usually by specifying to the path of
 such an event as described by FE-Model and defined by LFB library.

 As usual, an Event Notification Message is composed of a common
 header and a message body that consists of one or more TLV data
 format. Detailed description of the message is as below.

Doria (Ed.), et al. Expires September 24, 2006 [Page 60]

Internet-Draft ForCES March 2006

 Message Transfer Direction:
 FE to CE

 Message Header:
 The Message Type in the message header is set to
 MessageType = 'EventNotification'. The ACK flag in the header
 MUST be ignored by the CE, and the event notification message does
 not expect any response from the receiver. The Correlator field
 in the header is also ignored because the response is not
 expected.

 Message Body:
 The event notification message body MUST consist of at least one
 LFB select TLV as described in Section 7.1.1.1.5. The Operation
 TLV in the LFB select TLV is defined below.

 Operation TLV for Event Notification:

 +-+
 | Type = REPORT | Length |
 +-+
 | PATH-DATA-TLV for REPORT |
 +-+

 Figure 28: TLV for Event Notification

 Type:
 Only one operation type is defined for the event notification
 message:

 Type = "REPORT" --- this type of operation is for FE to
 report something to CE.

 PATH-DATA-TLV for REPORT:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section(Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for REPORT operation MAY contain
 FULLDATA or SPARSEDATA TLV(s) but MUST NOT contain any RESULT-TLV
 in the data format.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

Doria (Ed.), et al. Expires September 24, 2006 [Page 61]

Internet-Draft ForCES March 2006

 main hdr (type = Event Notification)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID = target LFB class
 | |
 | |
 | +-- LFBInstance = target LFB instance
 | |
 | |
 | +-- T = operation { REPORT }
 | | |
 | | +-- // one or more path targets
 | | // associated with FULL/SPARSE DATA TLV(s)
 | +-- T = operation { REPORT }
 | | |
 | | +-- // one or more path targets
 | | // associated with FULL/SPARSE DATA TLV(s)

 Figure 29: PDU Format

7.8. Packet Redirect Message

 Packet redirect message is used to transfer data packets between CE
 and FE. Usually these data packets are IP packets, though they may
 sometimes be associated with some metadata generated by other LFBs in
 the model. They may also occasionally be other protocol packets,
 which usually happens when CE and FE are jointly implementing some
 high-touch operations. Packets redirected from FE to CE are the data
 packets that come from forwarding plane, and usually are the data
 packets that need high-touch operations in CE,or packets for which
 the IP destination address is the NE. Packets redirected from CE to
 FE are the data packets that come from the CE and that the CE decides
 to put into forwarding plane, i.e. an FE.

 Supplying such a redirect path between CE and FE actually leads to a
 possibility of this path being DoS attacked. Attackers may
 maliciously try to send huge spurious packets that will be redirected
 by FE to CE, resulting in the redirect path becoming congested.
 ForCES protocol and the TML layer will jointly supply approaches to
 prevent such DoS attack. To define a specific 'Packet Redirect
 Message' makes TML and CE able to distinguish the redirect messages
 from other ForCES protocol messages.

 By properly configuring related LFBs in FE, a packet can also be
 mirrored to CE instead of purely redirected to CE, i.e., the packet

Doria (Ed.), et al. Expires September 24, 2006 [Page 62]

Internet-Draft ForCES March 2006

 is duplicated and one is redirected to CE and the other continues its
 way in the LFB topology.

 The Packet Redirect Message data format is formated as follows:

 Message Direction:
 CE to FE or FE to CE

 Message Header:
 The Message Type in the header is set to MessageType=
 'PacketRedirect'. The ACK flags in the header MUST be ignored,
 and no response is expected by this message. The correlator field
 is also ignored because no response is expected.

 Message Body:
 Consists of (at least) one or more than one TLV that describes
 packet redirection. The TLV is specifically a Redirect TLV (with
 the TLV Type="Redirect"). Detailed data format of a Redirect TLV
 for packet redirect message is as below:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = Redirect | Length |
 +-+
 | LFB Class ID |
 +-+
 | LFB Instance ID |
 +-+
 | Meta Data TLV |
 . .
 +-+
 | Redirect Data TLV |
 . .
 +-+

 Figure 30: Redirect_Data TLV

 LFB class ID:
 There are only two possible LFB classes here, the 'RedirectSink'
 LFB or the 'RedirectSource' LFB[FE-MODEL]. If the message is from
 FE to CE, the LFB class should be 'RedirectSink'. If the message
 is from CE to FE, the LFB class should be 'RedirectSource'.

 Instance ID:
 Instance ID for the 'RedirectSink' LFB or 'RedirectSource' LFB.

Doria (Ed.), et al. Expires September 24, 2006 [Page 63]

Internet-Draft ForCES March 2006

 Meta Data TLV:
 This is a TLV that specifies meta-data associated with followed
 redirected data. The TLV is as follows:

 +-+
 | Type = META-DATA | Length |
 +-+
 | Meta Data ILV |
 . .
 +-+
 ~ ... ~
 +-+
 | Meta Data ILV |
 . .
 +-+

 Figure 31: Redirected_Data TLV

 Meta Data ILV:
 This is an Identifier-Length-Value format that is used to describe
 one meta data. The ILV has the format as:

 +-+
 | Meta Data ID |
 +-+
 | Length |
 +-+
 | Meta Data Value |
 . .
 +-+

 Figure 32: Meta Data ILV

 Where, Meta Data ID is an identifier for the meta data, which is
 statically assigned by the LFB definition. This actually implies
 a Meta Data ID transcoding mechanism may be necessary if a
 metadata traverses several LFBs while these LFBs define the
 metadata with different Meta Data IDs.

 Usually there are two meta data that are necessary for CE-FE
 redirect operation. One is the redirected data type (e.g., IP
 packet, TCP packet, or UDP Packet). For an FE->CE redirect
 operation, redirected packet type meta data is usually a meta data
 specified by a Classifier LFB that filter out redirected packets
 from packet stream and sends the packets to Redirect Sink LFB.
 For an CE->FE redirect operation, the redirected packet type meta
 data is usually directly generated by CE.

Doria (Ed.), et al. Expires September 24, 2006 [Page 64]

Internet-Draft ForCES March 2006

 Another meta data that should be associated with redirected data
 is the port number in a redirect LFB. For a RedirectSink LFB, the
 port number meta data tells CE from which port in the lFB the
 redirected data come. For a RedirectSource LFB, via the meta
 data, CE tells FE which port in the LFB the redirected data should
 go out.

 Redirect Data TLV
 This is a TLV describing one packet of data to be directed via the
 redirect operation. The TLV format is as follows:

 +-+
 | Type = REDIRECTDATA | Length |
 +-+
 | Redirected Data |
 . .
 +-+

 Figure 33: Redirect Data TLV

 Redirected Data:
 This field presents the whole packet that is to be redirected.
 The packet should be 32bits aligned.

7.9. Heartbeat Message

 The Heartbeat (HB) Message is used for one ForCES element (FE or CE)
 to asynchronously notify one or more other ForCES elements in the
 same ForCES NE on its liveness.

 A Heartbeat Message is sent by a ForCES element periodically. The
 parameterization and policy definition for heartbeats for an FE is
 managed as attributes of the FE protocol LFB, and can be set by CE
 via a config message. The Heartbeat message is a little different
 from other protocol messages in that it is only composed of a common
 header, with the message body left empty. Detailed description of
 the message is as below.

 Message Transfer Direction:
 FE to CE, or CE to FE

 Message Header:
 The Message Type in the message header is set to MessageType =
 'Heartbeat'. Section 4.3.3 describes the HB mechanisms used.
 The ACK flag in the header MUST be set to either 'NoACK' or
 'AlwaysACK' when the HB is sent.

Doria (Ed.), et al. Expires September 24, 2006 [Page 65]

Internet-Draft ForCES March 2006

 * When set to 'NoACK', the HB is not soliciting for a response.

 * When set to 'AlwaysACK', the HB Message sender is always
 expecting a response from its receiver. According the HB
 policies defined in Section 7.2.1, only the CE can send such
 a HB message to query FE liveness. For simplicity and
 because of the minimal nature of the HB message, the response
 to a HB message is another HB message, i.e. no specific HB
 response message is defined. Whenever an FE receives a HB
 message marked with 'AlwaysACK' from the CE, the FE MUST send
 a HB message back immediately. The HB message sent by the FE
 in response to the 'AlwasyACK' MUST modify the source and
 destination IDs so that the ID of the FE is the source ID and
 the CEID of the sender is the destination ID, and MUST change
 the ACK information to 'NoACK'. A CE MUST NOT respond to an
 HB message with 'AlwasyACK' set.

 The correlator field in the HB message header SHOULD be set
 accordingly when a response is expected so that a receiver can
 correlate the response correctly. The correlator field MAY be
 ignored if no response is expected.

 Message Body:
 The message body is empty for the Heartbeat Message.

7.10. Operation Summary

 The following table summarizes the TLVs that compose messages, and
 the applicabiity of operation TLVs to the messages.

Doria (Ed.), et al. Expires September 24, 2006 [Page 66]

Internet-Draft ForCES March 2006

 +---------------------------+-----------+---------------------------+
 | Messages | TLVs | Operations |
 +---------------------------+-----------+---------------------------+
Association Setup	LFBselect	REPORT
Association Setup	ASRresult	None
Response		
Association Teardown	ASTreason	None
Config	LFBselect	SET, DEL
Config Response	LFBselect	SET-RESPONSE,
		DEL-RESPONSE
Query	LFBselect	GET
Query Response	LFBselect	GET-RESPONSE
Event Notification	LFBselect	REPORT
Packet Redirect	Redirect	None
Heartbeat	None	None
 +---------------------------+-----------+---------------------------+

 The following table summarises the applicability of the FULL/SPARSE
 DATA TLV and the RESULT TLV to the Operation TLVs.

Doria (Ed.), et al. Expires September 24, 2006 [Page 67]

Internet-Draft ForCES March 2006

 +--------------+--------------+----------------+------------+
 | Operations | FULLDATA TLV | SPARSEDATA TLV | RESULT TLV |
 +--------------+--------------+----------------+------------+
 | SET | MAY | MAY | MUST NOT |
 | | | | |
 | SET-RESPONSE | MAY | MUST NOT | MUST |
 | | | | |
 | DEL | MAY | MAY | MUST NOT |
 | | | | |
 | DEL-RESPONSE | MAY | MUST NOT | MUST |
 | | | | |
 | GET | MUST NOT | MUST NOT | MUST NOT |
 | | | | |
 | GET-RESPONSE | MUST | MUST NOT | MAY |
 | | | | |
 | REPORT | MAY | MUST NOT | MUST NOT |
 +--------------+--------------+----------------+------------+

Doria (Ed.), et al. Expires September 24, 2006 [Page 68]

Internet-Draft ForCES March 2006

8. Protocol Scenarios

8.1. Association Setup state

 The associations among CEs and FEs are initiated via Association
 setup message from the FE. If a setup request is granted by the CE,
 a successful setup response message is sent to the FE. If CEs and
 FEs are operating in an insecure environment then the security
 associations have to be established between them before any
 association messages can be exchanged. The TML will take care of
 establishing any security associations.

 This is typically followed by capability query, topology query, etc.
 When the FE is ready to start forwarding data traffic, it sends an FE
 UP Event message to the CE. When the CE is ready, it repsonds by
 enabling the FE by setting the FEStatus to Adminup [Refer to [FE-
 MODEL] for details]. This indicates to the FE to start forwarding
 data traffic. At this point the association establishment is
 complete. These sequences of messages are illustrated in the Figure
 below.

Doria (Ed.), et al. Expires September 24, 2006 [Page 69]

Internet-Draft ForCES March 2006

 FE PL CE PL

 | |
 | Asso Setup Req |
 |---------------------->|
 | |
 | Asso Setup Resp |
 |<----------------------|
 | |
 | LFBx Query capability |
 |<----------------------|
 | |
 | LFBx Query Resp |
 |---------------------->|
 | |
 | FEO Query (Topology) |
 |<----------------------|
 | |
 | FEO Query Resp |
 |---------------------->|
 | |
 | Config FEO Adminup |
 |<----------------------|
 | |
 | FEO Config-Resp |
 |---------------------->|
 | |
 | FEO UP Event |
 |---------------------->|
 | |

 Figure 34: Message exchange between CE and FE to establish an NE
 association

 On successful completion of this state, the FE joins the NE.

8.2. Association Established state or Steady State

 In this state the FE is continously updated or queried. The FE may
 also send asynchronous event notifications to the CE or synchronous
 heartbeat messages. This continues until a termination (or
 deactivation) is initiated by either the CE or FE. The figure below
 helps illustrate this state.

Doria (Ed.), et al. Expires September 24, 2006 [Page 70]

Internet-Draft ForCES March 2006

 FE PL CE PL

 | |
 | Heart Beat |
 |<---------------------------->|
 | |
 | Heart Beat |
 |----------------------------->|
 | |
 | Config-set LFBy (Event sub.) |
 |<-----------------------------|
 | |
 | Config Resp LFBy |
 |----------------------------->|
 | |
 | Config-set LFBx Attr |
 |<-----------------------------|
 | |
 | Config Resp LFBx |
 |----------------------------->|
 | |
 |Config-Query LFBz (Stats) |
 |<--------------------------- -|
 | |
 | Query Resp LFBz |
 |----------------------------->|
 | |
 | FE Event Report |
 |----------------------------->|
 | |
 | Config-Del LFBx Attr |
 |<-----------------------------|
 | |
 | Config Resp LFBx |
 |----------------------------->|
 | |
 | Packet Redirect LFBx |
 |----------------------------->|
 | |
 | Heart Beat |
 |<-----------------------------|
 . .
 . .
 | |

 Figure 35: Message exchange between CE and FE during steady-state
 communication

Doria (Ed.), et al. Expires September 24, 2006 [Page 71]

Internet-Draft ForCES March 2006

 Note that the sequence of messages shown in the figure serve only as
 examples and the messages exchange sequences could be different from
 what is shown in the figure. Also, note that the protocol scenarios
 described in this section do not include all the different message
 exchanges which would take place during failover. That is described
 in the HA section 8.

Doria (Ed.), et al. Expires September 24, 2006 [Page 72]

Internet-Draft ForCES March 2006

9. High Availability Support

 The ForCES protocol provides mechanisms for CE redundancy and
 failover, in order to support High Availability as defined in
 [RFC3654]. FE redundancy and FE to FE interaction is currently out
 of scope of this draft. There can be multiple redundant CEs and FEs
 in a ForCES NE. However, at any one time only one Primary CE can
 control the FEs though there can be multiple secondary CEs. The FE
 and the CE PL are aware of the primary and secondary CEs. This
 information (primary, secondary CEs) is configured in the FE and in
 the CE PLs during pre-association by the FEM and the CEM
 respectively. Only the primary CE sends Control messages to the FEs.

 Two HA modes are defined in the ForCES protocol, Report Primary Mode
 and Report All Mode. The Report Primary Mode is the default mode of
 the protocol, in which the FEs only associate with one CE (primary)
 at a time. The Report All mode is for future study and not part of
 the current protocol version. In this mode, the FE would establish
 association with multiple CEs (primary and secondary) and report
 events, packets, Heart Beats to all the CEs. However, only the
 primary CE would configure/control the FE in this mode as well. This
 would help with keeping state between CEs synchronized, although it
 would not guarantee synchronization.

 The HA Modes are configured during Association setup phase, though
 currently only Report Primary Mode can be configured. A CE-to-CE
 synchronization protocol would be needed to support fast failover as
 well as address some of the corner cases, however this will not be
 defined by the ForCES protocol as it is out of scope for this
 specification.

 During a communication failure between the FE and CE (which is caused
 due to CE or link reasons, i.e. not FE related), either the TML on
 the FE will trigger the FE PL regarding this failure or it will be
 detected using the HB messages between FEs and CEs. The
 communication failure, regardless of how it is detected, MUST be
 considered as a loss of association between the CE and corresponding
 FE. In the Report Primary mode, as there should be no other existing
 CE-FE associations, the FE PL MUST at this point establish
 association with the secondary CE. Once the process has started, if
 the original primary CE comes alive and starts sending commands
 message to the FE, the FE MUST ignore those messages. If the
 original CE begins a new association phase with the FE then the FE
 MUST send an Association Setup Response message with Result = 2
 indicating that there are too many associations. It will be up to
 CE-CE communications, out of scope for this specification, to
 determine what what, if any changes should be made to FE

https://datatracker.ietf.org/doc/html/rfc3654

Doria (Ed.), et al. Expires September 24, 2006 [Page 73]

Internet-Draft ForCES March 2006

 configuration following the recovery process.

 An explicit message (Config message setting Primary CE attribute in
 ForCES Protocol object) from the primary CE, can also be used to
 change the Primary CE for an FE during normal protocol operation.

 Also note that the FEs in a ForCES NE could also use a multicast
 CEID, i.e. they are associated with a group of CEs (this assumes the
 use of a CE-CE synchronization protocol, which is out of scope for
 this specification). In this case the loss of association would mean
 that communication with the entire multicast group of CEs has been
 lost. The mechanisms described above will apply for this case as
 well during the loss of association. If, however, the secondary CE
 was also using the multicast CEID that was lost, then the FE will
 need to form a new association using a different CEID. If the
 capability exists, the FE MAY first attempt to form a new association
 with original primary CE using a different non multicast CEID.

 These two scenarios, Report Primary (default), Report Primary
 (currently unsupported), are illustrated in the Figure 36 and
 Figure 37 below.

 FE CE Primary CE Secondary
 | | |
 | Asso Estb,Caps exchg | |
 1 |<--------------------->| |
 | | |
 | All msgs | |
 2 |<--------------------->| |
 | | |
 | | |
 | FAILURE |
 | |
 | Asso Estb,Caps exchange |
 3 |<-->|
 | |
 | Event Report (pri CE down) |
 4 |--->|
 | |
 | All Msgs |
 5 |<-->|

 Figure 36: CE Failover for Report Primary Mode

Doria (Ed.), et al. Expires September 24, 2006 [Page 74]

Internet-Draft ForCES March 2006

 FE CE Primary CE Secondary
 | | |
 | Asso Estb,Caps exchg | |
 1 |<--------------------->| |
 | | |
 | Asso Estb,Caps|exchange |
 2 |<----------------------|------------------->|
 | | |
 | All msgs | |
 3 |<--------------------->| |
 | | |
 | packet redirection,|events, HBs |
 4 |-----------------------|------------------->|
 | | |
 | FAILURE |
 | |
 | Event Report (pri CE down) |
 5 |--->|
 | |
 | All Msgs |
 6 |<-->|

 Figure 37: CE Failover for Report All mode

9.1. Responsibilities for HA

 TML level - Transport level:

 1. The TML controls logical connection availability and failover.

 2. The TML also controls peer HA management.

 At this level, control of all lower layers, for example transport
 level (such as IP addresses, MAC addresses etc) and associated links
 going down are the role of the TML.

 PL Level:
 For all other functionality including configuring the HA behavior
 during setup, the CEIDs are used to identify primary, secondary CEs,
 protocol Messages used to report CE failure (Event Report), Heartbeat
 messages used to detect association failure, messages to change
 primary CE (config - move), and other HA related operations described
 before are the PL responsibility.

 To put the two together, if a path to a primary CE is down, the TML
 would take care of failing over to a backup path, if one is
 available. If the CE is totally unreachable then the PL would be

Doria (Ed.), et al. Expires September 24, 2006 [Page 75]

Internet-Draft ForCES March 2006

 informed and it will take the appropriate actions described before.

Doria (Ed.), et al. Expires September 24, 2006 [Page 76]

Internet-Draft ForCES March 2006

10. Security Considerations

 ForCES architecture identifies several levels of security in
 [RFC3746]. ForCES PL uses security services provided by the ForCES
 TML layer. TML layer provides security services such as endpoint
 authentication service, message authentication service and
 confidentiality service. Endpoint authentication service is invoked
 at the time of pre-association connection establishment phase and
 message authentication is performed whenever FE or CE receives a
 packet from its peer.

 The following are the general security mechanisms that needs to be in
 place for ForCES PL layer.

 o Security mechanisms are session controlled - that is, once the
 security is turned ON depending upon the chosen security level (No
 Security, Authentication only, Confidentiality), it will be in
 effect for the entire duration of the session.

 o Operator should configure the same security policies for both
 primary and backup FE's and CE's (if available). This will ensure
 uniform operations, and to avoid unnecessary complexity in policy
 configuration.

 o ForCES PL endpoints SHOULD pre-established connections with both
 primary and backup CE's. This will reduce the security messages
 and enable rapid switchover operations for HA.

10.1. No Security

 When "No security" is chosen for ForCES protocol communication, both
 endpoint authentication and message authentication service needs to
 be performed by ForCES PL layer. Both these mechanism are weak and
 does not involve cryptographic operation. Operator can choose "No
 security" level when the ForCES protocol endpoints are within a
 single box.

 In order to have interoperable and uniform implementation across
 various security levels, each CE and FE endpoint MUST implement this
 level. The operations that are being performed for "No security"
 level is required even if lower TML security services are being used.

10.1.1. Endpoint Authentication

 Each CE and FE PL layer maintains set of associations list as part of
 configuration. This is done via CEM and FEM interfaces. FE MUST
 connect to only those CE's that are configured via FEM similarly, a
 CE should accept the connection and establish associations for the

https://datatracker.ietf.org/doc/html/rfc3746

Doria (Ed.), et al. Expires September 24, 2006 [Page 77]

Internet-Draft ForCES March 2006

 FE's which are configured via CEM. CE should validate the FE
 identifier before accepting the connection during the pre-association
 phase.

10.1.2. Message authentication

 When CE or FE generates initiates a message, the receiving endpoint
 MUST validate the initiator of the message by checking the common
 header CE or FE identifiers. This will ensure proper protocol
 functioning. This extra processing step is recommend even if the
 underlying TLM layer security services.

10.2. ForCES PL and TML security service

 This section is applicable if operator wishes to use the TML security
 services. ForCES TML layer MUST support one or more security service
 such as endpoint authentication service, message authentication
 service, confidentiality service as part of TML security layer
 functions. It is the responsibility of the operator to select
 appropriate security service and configure security policies
 accordingly. The details of such configuration is outside the scope
 of ForCES PL and is depending upon the type of transport protocol,
 nature of connection.

 All these configurations should be done prior to starting the CE and
 FE.

 When certificates-based authentication is being used at TML layer,
 the certificate can use ForCES specific naming structure as
 certificate names and accordingly the security policies can be
 configured at CE and FE.

10.2.1. Endpoint authentication service

 When TML security services are enabled. ForCES TML layer performs
 endpoint authentication. Security association is established between
 CE and FE and is transparent to the ForCES PL layer.

 It is recommended that an FE, after establishing the connection with
 the primary CE, should establish the security association with the
 backup CE (if available). During the switchover operation CE's
 security state associated with each SA's are not transferred. SA
 between primary CE and FE and backup CE and FE are treated as two
 separate SA's.

10.2.2. Message authentication service

 This is TML specific operation and is transparent to ForCES PL layer.

Doria (Ed.), et al. Expires September 24, 2006 [Page 78]

Internet-Draft ForCES March 2006

 For details refer to Section 5.

10.2.3. Confidentiality service

 This is TML specific operation and is transparent to ForCES PL layer.
 For details refer to Section 5.

Doria (Ed.), et al. Expires September 24, 2006 [Page 79]

Internet-Draft ForCES March 2006

11. Acknowledgments

 The authors of this draft would like to acknowledge and thank the
 ForCES Working Group and especially the following: Furquan Ansari,
 Alex Audu, Steven Blake, Shuchi Chawla Alan DeKok, Ellen M.
 Deleganes, Xiaoyi Guo, Yunfei Guo, Evangelos Haleplidis, Joel M.
 Halpern (who should probably be listed among the authors), Zsolt
 Haraszti, Fenggen Jia, John C. Lin, Alistair Munro, Jeff Pickering,
 T. Sridhlar, Guangming Wang, Chaoping Wu, and Lily L. Yang, for their
 contributions. We would also like to thank David Putzolu, and
 Patrick Droz for their comments and suggestions on the protocol and
 for their infinite patience.

 The editors have used the xml2rfc [RFC2629] tools in creating this
 document and are very grateful for the existence and quality of these
 tools.

https://datatracker.ietf.org/doc/html/rfc2629

Doria (Ed.), et al. Expires September 24, 2006 [Page 80]

Internet-Draft ForCES March 2006

12. References

12.1. Normative References

 [FE-MODEL]
 Yang, L., Halpern, J., Gopal, R., DeKok, A., Haraszti, Z.,
 and S. Blake, "ForCES Forwarding Element Model",
 Feb. 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC3654] Khosravi, H. and T. Anderson, "Requirements for Separation
 of IP Control and Forwarding", RFC 3654, November 2003.

 [RFC3746] Yang, L., Dantu, R., Anderson, T., and R. Gopal,
 "Forwarding and Control Element Separation (ForCES)
 Framework", RFC 3746, April 2004.

12.2. Informational References

 [2PCREF] Gray, J., "Notes on database operating systems. In
 Operating Systems: An Advanced Course. Lecture Notes in
 Computer Science, Vol. 60, pp. 394-481, Springer-Verlag",
 1978.

 [ACID] Haerder, T. and A. Reuter, "Principles of Transaction-
 Orientated Database Recovery", 1983.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc2629

Doria (Ed.), et al. Expires September 24, 2006 [Page 81]

Internet-Draft ForCES March 2006

Appendix A. IANA Considerations

 Following the policies outlined in "Guidelines for Writing an IANA
 Considerations Section in RFCs" (RFC 2434 [RFC2434]), the following
 name spaces are defined in ForCES.

 o Message Type Name Space Section 7.1.1

 o Operation Type Name Space Section 7.1.1.1.6

 o Header Flags Section 6.1

 o TLV Type Section 7.1.1

 o TLV Result Values Section 7.1.1.1.7

 o LFB Class ID Section 7.1.1.1.5

 o Result: Association Setup Response Section 7.4.2

 o Reason: Association Teardown Message Section 7.4.3

 o Configuration Request: Operation Result Section 7.5.1

A.1. Message Type Name Space

 The Message Type is an 8 bit value. The following is the guideline
 for defining the Message Type namespace

 Message Types 0x00 - 0x0F
 Message Types in this range are part of the base ForCES Protocol.
 Message Types in this range are allocated through an IETF
 consensus action. [RFC2434]
 Values assigned by this specification:

 0x00 Reserved
 0x01 AssociationSetup
 0x02 AssociationTeardown
 0x03 Config
 0x04 Query
 0x05 EventNotification
 0x06 PacketRedirect
 0x07 - 0x0E Reserved
 0x0F Hearbeat
 0x11 AssociationSetupRepsonse
 0x12 Reserved
 0x13 ConfigRepsonse
 0x14 QueryResponse

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 82]

Internet-Draft ForCES March 2006

 Message Types 0x20 - 0x7F
 Message Types in this range are Specification Required [RFC2434]
 Message Types using this range must be documented in an RFC or
 other permanent and readily available references.

 Message Types 0x80 - 0xFF
 Message Types in this range are reserved for vendor private
 extensions and are the responsibility of individual vendors. IANA
 management of this range of the Message Type Name Space is
 unnecessary.

A.2. Operation Type

 The Operation Type name space is 16 bits long. The following is the
 guideline for managing the Operation Type Name Space.

 Operation Type 0x0000-0x00FF
 Operation Types in this range are allocated through an IETF
 consensus process. [RFC2434].
 Values assigned by this specification:

 0x0000 Reserved
 0x0001 SET
 0x0002 SET-RESPONSE
 0x0003 DEL
 0x0004 DEL-RESPONSE
 0x0005 GET
 0x0006 GET-RESPONSE
 0x0007 REPORT

 Operation Type 0x0100-0x7FFF
 Operation Types using this range must be documented in an RFC or
 other permanent and readily available references. [RFC2434].

 Operation Type 0x8000-0xFFFF
 Operation Types in this range are reserved for vendor private
 extensions and are the responsibility of individual vendors. IANA
 management of this range of the Operation Type Name Space is
 unnecessary.

A.3. Header Flags

 The Header flag field is 32 bits long Header flags are part of the
 ForCES base protocol. Header flags are allocated through an IETF
 consensus action [RFC2434].

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 83]

Internet-Draft ForCES March 2006

A.4. TLV Type Name Space

 The TLV Type name space is 16 bits long. The following is the
 guideline for managing the TLV Type Name Space.

 TLV Type 0x0000-0x00FF
 TLV Types in this range are allocated through an IETF consensus
 process. [RFC2434].
 Values assigned by this specification:

 0x0000 Reserved
 0x0001 MAIN_TLV
 0x0002 REDIRECT-TLV
 0x0010 ASResult-TLV
 0x0011 ASTreason-TLV
 0x1000 LFBselect-TLV
 0x0101 OPER-TLV
 0x0110 PATH-DATA-TLV
 0x0111 KEYINFO-TLV
 0x0112 FULLDATA-TLV
 0x0113 SPARSEDATA-TLV
 0x0114 RESULT-TLV

 TLV Type 0x0200-0x7FFF
 TLV Types using this range must be documented in an RFC or other
 permanent and readily available references. [RFC2434].

 TLV Type 0x8000-0xFFFF
 TLV Types in this range are reserved for vendor private extensions
 and are the responsibility of individual vendors. IANA management
 of this range of the TLV Type Name Space is unnecessary.

A.5. Result-TLV Result Values

 The RESULT-TLV RTesult Value is an 8 bit value.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 84]

Internet-Draft ForCES March 2006

 0x00 SUCCESS
 0x01 INVALID_HEADER
 0x02 LENGTH_MISMATCH
 0x03 VERSION_MISMATCH
 0x04 INVALID_DESTINATION_PID
 0x05 LFB_UNKNOWN
 0x06 LFB_NOT_FOUND
 0x07 LFB_INSTANCE_ID_NOT_FOUND
 0x08 INVALID_PATH
 0x09 ELEMENT_DOES_NOT_EXIST
 0x0A EXISTS
 0x0B NOT_FOUND
 0x0C READ_ONLY
 0x0D INVALID_ARRAY_CREATION
 0x0E VALUE_OUT_OF_RANGE
 0x0F CONTENTS_TOO_LONG
 0x10 INVALID_PARAMETERS
 0x11 INVALID_MESSAGE_TYPE
 0x12 INVALID_FLAGS
 0x13 INVALID_TLV
 0x14 EVENT_ERROR
 0x15 NOT_SUPPORTED
 0x16 MEMORY_ERROR
 0x17 INTERNAL_ERROR
 0x18-0xFE Reserved
 0xFF UNSPECIFIED_ERROR

 All values not assigned in this specification are designated as
 Assignment by Expert review.

A.6. LFB Class Id Name Space

 The LFB Class ID name space is 32 bits long. The following is the
 guideline for managing the LFB Class Id Name Space.

 LFB Class ID 0x00000000-0x0000FFFF
 LFB Class IDs in this range are allocated through an IETF
 consensus process. [RFC2434].
 Values assigned by this specification:

 0x00000000 Reserved
 0x00000001 FE Protocol LFB
 0x00000002 FE Object LFB

https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 85]

Internet-Draft ForCES March 2006

 LFB Class ID 0x00010000-0x7FFFFFFF
 LFB Class IDs in this range are Specification Required [RFC2434]
 LFB Class ID using this range must be documented in an RFC or
 other permanent and readily available references. [RFC2434].

 LFB Class Id 0x80000000-0xFFFFFFFFF
 LFB Class IDs in this range are reserved for vendor private
 extensions and are the responsibility of individual vendors. IANA
 management of this range of the LFB Class ID Space is unnecessary.

A.7. Association Setup Response

 The Association Setup Response name space is 16 bits long. The
 following is the guideline for managing the Association Setup
 Response Name Space.

 Association Setup Response 0x0000-0x00FF
 Association Setup Responses in this range are allocated through an
 IETF consensus process. [RFC2434].
 Values assigned by this specification:

 0x0000 Success
 0x0001 FE ID Invalid
 0x0002 Too many associations
 0x0003 Permission Denied

 Association Setup Response 0x0100-0x0FFF
 Association Setup Responses in this range are Specification
 Required [RFC2434] Values using this range must be documented in
 an RFC or other permanent and readily available references.
 [RFC2434].

 Association Setup Response 0x80000000-0xFFFFFFFFF
 Association Setup Responses in this range are reserved for vendor
 private extensions and are the responsibility of individual
 vendors. IANA management of this range of the Association Setup
 Responses Name Space is unnecessary.

A.8. Association Teardown Message

 The Association Teardown Message name space is 32 bits long. The
 following is the guideline for managing the Association Teardown
 Message Name Space.

 Association Teardown Message 0x00000000-0x0000FFFF
 Association Teardown Messages in this range are allocated through
 an IETF consensus process. [RFC2434].
 Values assigned by this specification:

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 86]

Internet-Draft ForCES March 2006

 0x00000000 Normal - Teardown by Administrator
 0x00000001 Error - Out of Memory
 0x00000002 Error - Application Crash
 0x000000FF Error - Unspecified

 Association Teardown Message 0x00010000-0x7FFFFFFF
 Association Teardown Messages in this range are Specification
 Required [RFC2434] Association Teardown Messages using this range
 must be documented in an RFC or other permanent and readily
 available references. [RFC2434].

 LFB Class Id 0x80000000-0xFFFFFFFFF
 Association Teardown Messages in this range are reserved for
 vendor private extensions and are the responsibility of individual
 vendors. IANA management of this range of the Association
 Teardown Message Name Space is unnecessary.

A.9. Configuration Request Result

 The Configuration Request name space is 32 bits long. The following
 is the guideline for managing the Configuration Request Name Space.

 Configuration Request 0x0000-0x00FF
 Configuration Requests in this range are allocated through an IETF
 consensus process. [RFC2434].
 Values assigned by this specification:

 0x0000 Success
 0x0001 FE ID Invalid
 0x0003 Permission Denied

 Configuration Request 0x0100-0x7FFF
 Configuration Requests in this range are Specification Required
 [RFC2434] Configuration Requests using this range must be
 documented in an RFC or other permanent and readily available
 references. [RFC2434].

 0x8000-0xFFFF
 Configuration Requests in this range are reserved for vendor
 private extensions and are the responsibility of individual
 vendors. IANA management of this range of the Configuration
 Request Name Space is unnecessary.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria (Ed.), et al. Expires September 24, 2006 [Page 87]

Internet-Draft ForCES March 2006

Appendix B. ForCES Protocol LFB schema

 The schema described below conforms to the LFB schema described in
 ForCES Model draft[FE-MODEL]

 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://ietf.org/forces/1.0/lfbmodel
 file:/home/hadi/xmlj1/lfbmodel.xsd" provides="FEPO">
 <!-- XXX -->
 <dataTypeDefs>
 <dataTypeDef>
 <name>CEHBPolicyValues</name>
 <synopsis>
 The possible values of CE heartbeat policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>CEHBPolicy0</name>
 <synopsis>
 The CE heartbeat policy 0, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>CEHBPolicy1</name>
 <synopsis>
 The CE heartbeat policy 1, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>FEHBPolicyValues</name>
 <synopsis>
 The possible values of FE heartbeat policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>FEHBPolicy0</name>

Doria (Ed.), et al. Expires September 24, 2006 [Page 88]

Internet-Draft ForCES March 2006

 <synopsis>
 The FE heartbeat policy 0, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>FEHBPolicy1</name>
 <synopsis>
 The FE heartbeat policy 1, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>FERestartPolicyValues</name>
 <synopsis>
 The possible values of FE restart policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>FERestartPolicy0</name>
 <synopsis>
 The FE restart policy 0, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>FERestartPolicy1</name>
 <synopsis>
 The FE restart policy 1, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>CEFailoverPolicyValues</name>
 <synopsis>
 The possible values of CE failover policy
 </synopsis>
 <atomic>

Doria (Ed.), et al. Expires September 24, 2006 [Page 89]

Internet-Draft ForCES March 2006

 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>CEFailoverPolicy0</name>
 <synopsis>
 The CE failover policy 0, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>CEFailoverPolicy1</name>
 <synopsis>
 The CE failover policy 1, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 <specialValue value="2">
 <name>CEFailoverPolicy2</name>
 <synopsis>
 The CE failover policy 2, refer to
 <xref target="FPL_sum" /> for details
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 </dataTypeDefs>

 <LFBClassDefs>
 <LFBClassDef LFBClassID="2">
 <name>FEPO</name>
 <id>1</id>
 <synopsis>
 The FE Protocol Object
 </synopsis>
 <version>1.0</version>
 <derivedFrom>baseclass</derivedFrom>

 <attributes>
 <attribute elementID="1" access="read-only">
 <name>CurrentRunningVersion</name>
 <synopsis>Currently running ForCES version</synopsis>
 <typeRef>u8</typeRef>
 </attribute>
 <attribute elementID="2" access="read-only">
 <name>FEID</name>
 <synopsis>Unicast FEID</synopsis>
 <typeRef>uint32</typeRef>

Doria (Ed.), et al. Expires September 24, 2006 [Page 90]

Internet-Draft ForCES March 2006

 </attribute>
 <attribute elementID="3" access="read-write">
 <name>MulticastFEIDs</name>
 <synopsis>
 the table of all multicast IDs
 </synopsis>
 <array type="variable-size">
 <typeRef>uint32</typeRef>
 </array>
 </attribute>
 <attribute elementID="4" access="read-write">
 <name>CEHBPolicy</name>
 <synopsis>
 The CE Heartbeat Policy
 </synopsis>
 <typeRef>CEHBPolicyValues</typeRef>
 </attribute>
 <attribute elementID="5" access="read-write">
 <name>CEHDI</name>
 <synopsis>
 The CE Heartbeat Dead Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="6" access="read-write">
 <name>FEHBPolicy</name>
 <synopsis>
 The FE Heartbeat Policy
 </synopsis>
 <typeRef>FEHBPolicyValues</typeRef>
 </attribute>
 <attribute elementID="7" access="read-write">
 <name>FEHI</name>
 <synopsis>
 The FE Heartbeat Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="8" access="read-write">
 <name>CEID</name>
 <synopsis>
 The Primary CE this FE is associated with
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="9" access="read-write">
 <name>BackupCEs</name>
 <synopsis>

Doria (Ed.), et al. Expires September 24, 2006 [Page 91]

Internet-Draft ForCES March 2006

 The table of all backup CEs other than the primary
 </synopsis>
 <array type="variable-size">
 <typeRef>uint32</typeRef>
 </array>
 </attribute>
 <attribute elementID="10" access="read-write">
 <name>FERestartPolicy</name>
 <synopsis>
 The FE Restart Policy
 </synopsis>
 <typeRef>FERestartPolicyValues</typeRef>
 </attribute>

 <attribute elementID="11" access="read-write">
 <name>CEFailoverPolicy</name>
 <synopsis>
 The CE Failover Policy
 </synopsis>
 <typeRef>CEFailoverPolicyValues</typeRef>
 </attribute>

 <attribute elementID="12" access="read-write">
 <name>CETI</name>
 <synopsis>
 The CE Timeout Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 </attributes>
 <capabilities>
 <capability elementID="30" access="read-only">
 <name>SupportableVersions</name>
 <synopsis>
 the table of ForCES versions that FE supports
 </synopsis>
 <array type="variable-size">
 <typeRef>u8</typeRef>
 </array>
 </capability>
 </capabilities>
 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

Doria (Ed.), et al. Expires September 24, 2006 [Page 92]

Internet-Draft ForCES March 2006

B.1. Capabilities

 At the moment only the SupportableVersions capability is owned by
 this LFB.

 Supportable Versions enumerates all ForCES versions that an FE
 supports.

B.2. Attributes

 All Attributes are explained in Section 7.2.1.

Doria (Ed.), et al. Expires September 24, 2006 [Page 93]

Internet-Draft ForCES March 2006

Appendix C. Data Encoding Examples

 In this section a few examples of data encoding are discussed. these
 example, however, do not show any padding.

 ==========
 Example 1:
 ==========

 Structure with three fixed-lengthof, mandatory fields.

 struct S {
 uint16 a
 uint16 b
 uint16 c
 }

 (a) Describing all fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 Note: Even though there are non-optional elements in structure S,
 since one can uniquely identify elements, one can selectively send
 element of structure S (eg in the case of an update from CE to FE).

 (c) Describing all fields using a FULLDATA TLV

 Path-Data TLV
 Path to an instance of S ...
 FULLDATA TLV
 valueof(a)
 valueof(b)
 valueof(c)

Doria (Ed.), et al. Expires September 24, 2006 [Page 94]

Internet-Draft ForCES March 2006

 ==========
 Example 2:
 ==========

 Structure with three fixed-lengthof fields, one mandatory, two
 optional.

 struct T {
 uint16 a
 uint16 b (optional)
 uint16 c (optional)
 }

 This example is identical to Example 1, as illustrated below.

 (a) Describing all fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 (c) Describing all fields using a FULLDATA TLV

 Path-Data TLV
 Path to an instance of S ...
 FULLDATA TLV
 valueof(a)
 valueof(b)
 valueof(c)

 Note: FULLDATA TLV _cannot_ be used unless all fields are being
 described.

 ==========
 Example 3:
 ==========

Doria (Ed.), et al. Expires September 24, 2006 [Page 95]

Internet-Draft ForCES March 2006

 Structure with a mix of fixed-lengthof and variable-lengthof fields,
 some mandatory, some optional.

 struct U {
 uint16 a
 string b (optional)
 uint16 c (optional)
 }

 (a) Describing all fields using SPARSEDATA

 Path to an instance of U ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields using SPARSEDATA

 Path to an instance of U ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 (c) Describing all fields using FULLDATA TLV

 Path to an instance of U ...
 FULLDATA TLV
 valueof(a)
 FULLDATA TLV
 valueof(b)
 valueof(c)

 Note: The variable-length field requires the addition of a FULLDATA
 TLV within the outer FULLDATA TLV as in the case of element b above.

 ==========
 Example 4:
 ==========

 Structure containing an array of another structure type.

 struct V {
 uint32 x
 uint32 y
 struct U z[]
 }

Doria (Ed.), et al. Expires September 24, 2006 [Page 96]

Internet-Draft ForCES March 2006

 (a) Encoding using SPARSEDATA, with two instances of z[], also
 described with SPARSEDATA, assuming only the 10th and 15th subscript
 of z[] are encoded.

 path to instance of V ...
 SPARSEDATA TLV
 ElementIDof(x), lengthof(x), valueof(x)
 ElementIDof(y), lengthof(y), valueof(y)
 ElementIDof(z), lengthof(all below)
 ElementID = 10 (i.e index 10 from z[]), lengthof(all below)
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementID = 15 (index 15 from z[]), lengthof(all below)
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 Note the holes in the elements of z (10 followed by 15). Also note
 the gap in index 15 with only elements a and c appearing but not b.

Doria (Ed.), et al. Expires September 24, 2006 [Page 97]

Internet-Draft ForCES March 2006

Appendix D. Use Cases

 Assume LFB with following attributes for the following use cases.

 foo1, type u32, ID = 1

 foo2, type u32, ID = 2

 table1: type array, ID = 3
 elements are:
 t1, type u32, ID = 1
 t2, type u32, ID = 2 // index into table 2
 KEY: nhkey, ID = 1, V = t2

 table2: type array, ID = 4
 elements are:
 j1, type u32, ID = 1
 j2, type u32, ID = 2
 KEY: akey, ID = 1, V = { j1,j2 }

 table3: type array, ID = 5
 elements are:
 someid, type u32, ID = 1
 name, type string variable sized, ID = 2

 table4: type array, ID = 6
 elements are:
 j1, type u32, ID = 1
 j2, type u32, ID = 2
 j3, type u32, ID = 3
 j4, type u32, ID = 4
 KEY: mykey, ID = 1, V = { j1}

 table5: type array, ID = 7
 elements are:
 p1, type u32, ID = 1
 p2, type array, ID = 2, array elements of type-X

 Type-X:
 x1, ID 1, type u32
 x2, ID2 , type u32
 KEY: tkey, ID = 1, V = { x1}

 All examples will show an attribute suffixed with "v" or "val" to

Doria (Ed.), et al. Expires September 24, 2006 [Page 98]

Internet-Draft ForCES March 2006

 indicate the value of the referenced attribute. example for attribute
 foo2, foo1v or foo1value will indicate the value of foo1. In the
 case where F_SEL** are missing (bits equal to 00) then the flags will
 not show any selection.

 All the examples only show use of FULLDATA for data encoding;
 although SPARSEDATA would make more sense in certain occasions, the
 emphasis is on showing the message layout. Refer to Appendix C for
 examples that show usage of both FULLDATA and SPARSEDATA.

 1. To get foo1

 OPER = GET-TLV
 Path-data TLV: IDCount = 1, IDs = 1
 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags=0, IDCount = 1, IDs = 1
 FULLDATA-TLV L = 4+4, V = foo1v

 2. To set foo2 to 10

 OPER = SET-REPLACE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV: L = 4+4, V=10

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV

 3. To dump table2

 OPER = GET-TLV
 Path-data-TLV:
 IDCount = 1, IDs = 4
 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA=TLV: L = XXX, V=
 a series of: index, j1value, j2value entries
 representing the entire table

Doria (Ed.), et al. Expires September 24, 2006 [Page 99]

Internet-Draft ForCES March 2006

 Note: One should be able to take a GET-RESPONSE-TLV and convert
 it to a SET-REPLACE-TLV. If the result in the above example
 is sent back in a SET-REPLACE-TLV, (instead of a GET-
 RESPONSE_TLV) then the entire contents of the table will be
 replaced at that point.

 4. Multiple operations Example. To create entry 0-5 of table2
 (Error conditions are ignored)

 OPER = SET-CREATE-TLV
 Path-data-TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV containing j1, j2 value for entry 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA-TLV containing j1, j2 value for entry 1
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV containing j1, j2 value for entry 2
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA-TLV containing j1, j2 value for entry 3
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA-TLV containing j1, j2 value for entry 4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 FULLDATA-TLV containing j1, j2 value for entry 5

Doria (Ed.), et al. Expires September 24, 2006 [Page 100]

Internet-Draft ForCES March 2006

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 RESULT-TLV

 5. Block operations (with holes) example. Replace entry 0,2 of
 table2

 OPER = SET-REPLACE-TLV
 Path-data TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV containing j1, j2 value for entry 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV containing j1, j2 value for entry 2

 Result:
 OPER = SET-REPLACE-TLV
 Path-data TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV

Doria (Ed.), et al. Expires September 24, 2006 [Page 101]

Internet-Draft ForCES March 2006

 6. Getting rows example. Get first entry of table2.

 OPER = GET-TLV
 Path-data TLV:
 IDCount = 2, IDs=4.0

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 IDCount = 2, IDs=4.0
 FULLDATA TLV, Length = XXX, V =
 j1value,j2value entry

 7. Get entry 0-5 of table2.

Doria (Ed.), et al. Expires September 24, 2006 [Page 102]

Internet-Draft ForCES March 2006

 OPER = GET-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV containing j1value j2value
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA-TLV containing j1value j2value
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV containing j1value j2value
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA-TLV containing j1value j2value
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA-TLV containing j1value j2value
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 FULLDATA-TLV containing j1value j2value

 8. Create a row in table2, index 5.

Doria (Ed.), et al. Expires September 24, 2006 [Page 103]

Internet-Draft ForCES March 2006

 OPER = SET-CREATE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 2, IDs=4.5
 FULLDATA TLV, Length = XXX
 j1value,j2value

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=4.5
 RESULT-TLV

 9. An example of "create and give me an index" Assuming one asked
 for verbose response back in the main message header.

 OPER = SET-CREATE-TLV
 Path-data -TLV:
 flags = FIND-EMPTY, IDCount = 1, IDs=4
 FULLDATA TLV, Length = XXX
 j1value,j2value

 Result
 If 7 were the first unused entry in the table:
 OPER = SET-RESPONSE
 Path-data TLV:
 flags = 0, IDCount = 2, IDs=4.7
 RESULT-TLV indicating success, and
 FULLDATA-TLV, Length = XXX j1value,j2value

 10. Dump contents of table1.

 OPER = GET-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=3

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs=3
 FULLDATA TLV, Length = XXXX
 (depending on size of table1)
 index, t1value, t2value
 index, t1value, t2value
 .

Doria (Ed.), et al. Expires September 24, 2006 [Page 104]

Internet-Draft ForCES March 2006

 .
 .

 11. Using Keys. Get row entry from table4 where j1=100. Recall, j1
 is a defined key for this table and its keyid is 1.

 OPER = GET-TLV
 Path-data-TLV:
 flags = F_SELKEY IDCount = 1, IDs=6
 KEYINFO-TLV = KEYID=1, KEY_DATA=100

 Result:
 If j1=100 was at index 10
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=6.10
 FULLDATA TLV, Length = XXXX
 j1value,j2value, j3value, j4value

 12. Delete row with KEY match (j1=100, j2=200) in table 2. Note
 that the j1,j2 pair are a defined key for the table 2.

 OPER = DEL-TLV
 Path-data TLV:
 flags = F_SELKEY IDCount = 1, IDs=4
 KEYINFO TLV: {KEYID =1 KEY_DATA=100,200}

 Result:
 If (j1=100, j2=200) was at entry 15:
 OPER = DELETE-RESPONSE-TLV
 Path-data TLV:
 flags = 0 IDCount = 2, IDs=4.15
 RESULT-TLV (with FULLDATA if verbose)

 13. Dump contents of table3. It should be noted that this table has
 a column with element name that is variable sized. The purpose
 of this use case is to show how such an element is to be
 encoded.

Doria (Ed.), et al. Expires September 24, 2006 [Page 105]

Internet-Draft ForCES March 2006

 OPER = GET-TLV
 Path-data-TLV:
 flags = 0 IDCount = 1, IDs=5

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 flags = 0 IDCount = 1, IDs=5
 FULLDATA TLV, Length = XXXX
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = namev
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = namev
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = namev
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = namev
 .
 .
 .

 14. Multiple atomic operations.

 Note 1: This emulates adding a new nexthop entry and then
 atomically updating the L3 entries pointing to an old NH to
 point to a new one. The assumption is both tables are in the
 same LFB

 Note2: Main header has atomic flag set and the request is for
 verbose/full results back; Two operations on the LFB
 instance, both are SET operations.

Doria (Ed.), et al. Expires September 24, 2006 [Page 106]

Internet-Draft ForCES March 2006

 //Operation 1: Add a new entry to table2 index #20.
 OPER = SET-CREATE-TLV
 Path-TLV:
 flags = 0, IDCount = 2, IDs=4.20
 FULLDATA TLV, V= j1value,j2value

 // Operation 2: Update table1 entry which
 // was pointing with t2 = 10 to now point to 20
 OPER = SET-REPLACE-TLV
 Path-data-TLV:
 flags = F_SELKEY, IDCount = 1, IDs=3
 KEYINFO = KEYID=1 KEY_DATA=10
 Path-data-TLV
 flags = 0 IDCount = 1, IDs=2
 FULLDATA TLV, V= 20

 Result:
 //first operation, SET
 OPER = SET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 3, IDs=4.20
 RESULT-TLV code = success
 FULLDATA TLV, V = j1value,j2value
 // second opertion SET - assuming entry 16 was updated
 OPER = SET-RESPONSE-TLV
 Path-data TLV
 flags = 0 IDCount = 2, IDs=3.16
 Path-Data TLV
 flags = 0 IDCount = 1, IDs = 2
 SET-RESULT-TLV code = success
 FULLDATA TLV, Length = XXXX v=20
 // second opertion SET
 OPER = SET-RESPONSE-TLV
 Path-data TLV
 flags = 0 IDCount = 1, IDs=3
 KEYINFO = KEYID=1 KEY_DATA=10
 Path-Data TLV
 flags = 0 IDCount = 1, IDs = 2
 SET-RESULT-TLV code = success
 FULLDATA TLV, Length = XXXX v=20

 15. Selective setting. On table 4 -- for indices 1, 3, 5, 7, and 9.
 Replace j1 to 100, j2 to 200, j3 to 300. Leave j4 as is.

 PER = SET-REPLACE-TLV
 Path-data TLV

Doria (Ed.), et al. Expires September 24, 2006 [Page 107]

Internet-Draft ForCES March 2006

 flags = 0, IDCount = 1, IDs = 6
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 5
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 7
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 9
 Path-data TLV

Doria (Ed.), et al. Expires September 24, 2006 [Page 108]

Internet-Draft ForCES March 2006

 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}

 Non-verbose response mode shown:

 OPER = SET-RESPONSE-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 6
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 5
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV

Doria (Ed.), et al. Expires September 24, 2006 [Page 109]

Internet-Draft ForCES March 2006

 Path-data TLV
 flags = 0, IDCount = 1, IDs = 7
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 9
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV

 16. Manipulation of table of table examples. Get x1 from table10
 row with index 4, inside table5 entry 10

 operation = GET-TLV
 Path-data-TLV
 flags = 0 IDCount = 5, IDs=7.10.2.4.1

 Results:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 5, IDs=7.10.2.4.1
 FULLDATA TLV: L=XXXX, V = {x1 value}

 17. From table5's row 10 table10, get X2s based on on the value of
 x1 equaling 10 (recall x1 is KeyID 1)

Doria (Ed.), et al. Expires September 24, 2006 [Page 110]

Internet-Draft ForCES March 2006

 operation = GET-TLV
 Path-data-TLV
 flag = F_SELKEY, IDCount=3, IDS = 7.10.2
 KEYINFO TLV, KEYID = 1, KEYDATA = 10
 Path-data TLV
 IDCount = 1, IDS = 2 //select x2

 Results:
 If x1=10 was at entry 11:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flag = 0, IDCount=5, IDS = 7.10.2.11
 Path-data TLV
 flags = 0 IDCount = 1, IDS = 2
 FULLDATA TLV: L=XXXX, V = {x2 value}

 18. Further example of manipulating a table of tables

 Consider table 6 which is defined as:
 table6: type array, ID = 8
 elements are:
 p1, type u32, ID = 1
 p2, type array, ID = 2, array elements of type type-A

 type-A:
 a1, type u32, ID 1,
 a2, type array ID2 ,array elements of type type-B

 type-B:
 b1, type u32, ID 1
 b2, type u32, ID 2

 If for example one wanted to set by replacing:
 table6.10.p1 to 111
 table6.10.p2.20.a1 to 222
 table6.10.p2.20.a2.30.b1 to 333

 in one message and one operation.

 There are two ways to do this:
 a) using nesting
 b) using a flat path data

Doria (Ed.), et al. Expires September 24, 2006 [Page 111]

Internet-Draft ForCES March 2006

 A. Method using nesting
 in one message with a single operation

 operation = SET-REPLACE-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=6.10
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 FULLDATA TLV: L=XXXX,
 V = {111}
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=2.20
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 FULLDATA TLV: L=XXXX,
 V = {222}
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=2.30.1
 FULLDATA TLV: L=XXXX,
 V = {333}
 Result:
 operation = SET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=6.10
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 RESULT-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=2.20
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=2.30.1
 RESULT-TLV

Doria (Ed.), et al. Expires September 24, 2006 [Page 112]

Internet-Draft ForCES March 2006

 B. Method using a flat path data in
 one message with a single operation

 operation = SET-REPLACE-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=6.10.1
 FULLDATA TLV: L=XXXX,
 V = {111}
 Path-data TLV :
 flags = 0, IDCount = 5, IDs=6.10.1.20.1
 FULLDATA TLV: L=XXXX,
 V = {222}
 Path-data TLV :
 flags = 0, IDCount = 7, IDs=6.10.1.20.1.30.1
 FULLDATA TLV: L=XXXX,
 V = {333}
 Result:
 operation = SET-REPLACE-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=6.10.1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 5, IDs=6.10.1.20.1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 7, IDs=6.10.1.20.1.30.1
 RESULT-TLV

 19. Get a whole LFB (all its attributes, etc.).

 For example: at startup a CE might well want the entire FE
 OBJECT LFB. So, in a request targeted at class 1, instance
 1, one might find:

 operation = GET-TLV
 Path-data-TLV
 flags = 0 IDCount = 0

 result:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 0
 FULLDATA encoding of the FE Object LFB

Doria (Ed.), et al. Expires September 24, 2006 [Page 113]

Internet-Draft ForCES March 2006

Authors' Addresses

 Ligang Dong
 Zhejiang Gongshang University
 149 Jiaogong Road
 Hangzhou 310035
 P.R.China

 Phone: +86-571-88071024
 Email: donglg@mail.zjgsu.edu.cn

 Avri Doria
 ETRI
 Lulea University of Technology
 Lulea
 Sweden

 Phone: +46 73 277 1788
 Email: avri@acm.org

 Ram Gopal
 Nokia
 5, Wayside Road
 Burlington, MA 310035
 USA

 Phone: +1-781-993-3685
 Email: ram.gopal@nokia.com

 Robert Haas
 IBM
 Saumerstrasse 4
 8803 Ruschlikon
 Switzerland

 Phone:
 Email: rha@zurich.ibm.com

Doria (Ed.), et al. Expires September 24, 2006 [Page 114]

Internet-Draft ForCES March 2006

 Jamal Hadi Salim
 Znyx
 Ottawa, Ontario
 Canada

 Phone:
 Email: hadi@znyx.com

 Hormuzd M Khosravi
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124
 USA

 Phone: +1 503 264 0334
 Email: hormuzd.m.khosravi@intel.com

 Weiming Wang
 Zhejiang Gongshang University
 149 Jiaogong Road
 Hangzhou 310035
 P.R.China

 Phone: +86-571-88057712
 Email: wmwang@mail.zjgsu.edu.cn

Doria (Ed.), et al. Expires September 24, 2006 [Page 115]

Internet-Draft ForCES March 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Doria (Ed.), et al. Expires September 24, 2006 [Page 116]

