
Network Working Group A. Doria (Ed.)
Internet-Draft ETRI
Intended status: Standards Track R. Haas (Ed.)
Expires: August 5, 2007 IBM
 J. Hadi Salim (Ed.)
 Znyx
 H. Khosravi (Ed.)
 Intel
 W. M. Wang (Ed.)
 Zhejiang Gongshang University
 March 2007

ForCES Protocol Specification
draft-ietf-forces-protocol-09.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 5, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Doria, et al. Expires August 5, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ForCES February 2007

Abstract

 This document specifies the Forwarding and Control Element Separation
 (ForCES) protocol. ForCES protocol is used for communications
 between Control Elements(CEs) and Forwarding Elements (FEs) in a
 ForCES Network Element (ForCES NE). This specification is intended
 to meet the ForCES protocol requirements defined in RFC3654. Besides
 the ForCES protocol messages, the specification also defines the
 framework, the mechanisms, and the Transport Mapping Layer (TML)
 requirements for ForCES protocol.

Doria, et al. Expires August 5, 2007 [Page 2]

https://datatracker.ietf.org/doc/html/rfc3654

Internet-Draft ForCES February 2007

Authors

 The participants in the ForCES Protocol Team, primary co-authors and
 co-editors, of this protocol specification, are:

 Ligang Dong (Zhejiang Gongshang University), Avri Doria (Lulea
 University of Technology), Ram Gopal (Nokia), Robert Haas (IBM),
 Jamal Hadi Salim (Znyx), Hormuzd M Khosravi (Intel), and Weiming Wang
 (Zhejiang Gongshang University).

Table of Contents

1. Terminology and Conventions 6
2. Introduction . 7
3. Definitions . 9
4. Overview . 12
4.1. Protocol Framework 12
4.1.1. The PL . 14
4.1.2. The TML . 15
4.1.3. The FEM/CEM Interface 15

4.2. ForCES Protocol Phases 16
4.2.1. Pre-association 17
4.2.2. Post-association 18

4.3. Protocol Mechanisms 20
4.3.1. Transactions, Atomicity, Execution and Responses . . 20
4.3.2. Scalability . 24
4.3.3. Heartbeat Mechanism 25
4.3.4. FE Object and FE Protocol LFBs 25

4.4. Protocol Scenarios 25
4.4.1. Association Setup State 26
4.4.2. Association Established state or Steady State 27
4.4.3. Transaction messaging 29

5. TML Requirements . 31
5.1. TML Parameterization 32

6. Message Encapsulation . 33
6.1. Common Header . 33
6.2. Type Length Value (TLV) Structuring 38
6.2.1. Nested TLVs . 39
6.2.2. Scope of the T in TLV 39

6.3. ILV . 39
6.4. Important Protocol encapsulations 40
6.4.1. Paths . 40
6.4.2. Keys . 41
6.4.3. DATA TLVs . 41
6.4.4. Addressing LFB entities 41

7. Protocol Construction . 43
7.1. Protocol Grammar . 43

Doria, et al. Expires August 5, 2007 [Page 3]

Internet-Draft ForCES February 2007

7.1.1. Protocol BNF . 43
7.1.2. Protocol Encoding Visualization 58

7.2. Core ForCES LFBs . 61
7.2.1. FE Protocol LFB 62
7.2.2. FE Object LFB . 65

7.3. Semantics of Message Direction 65
7.4. Association Messages 66
7.4.1. Association Setup Message 66
7.4.2. Association Setup Response Message 68
7.4.3. Association Teardown Message 69

7.5. Configuration Messages 70
7.5.1. Config Message 70
7.5.2. Config Response Message 72

7.6. Query Messages . 73
7.6.1. Query Message . 74
7.6.2. Query Response Message 75

7.7. Event Notification Message 76
7.8. Packet Redirect Message 78
7.9. Heartbeat Message . 80

8. High Availability Support 82
8.1. Relation with the FE Protocol 82
8.2. Responsibilities for HA 85

9. Security Considerations 87
9.1. No Security . 87
9.1.1. Endpoint Authentication 87
9.1.2. Message authentication 88

9.2. ForCES PL and TML security service 88
9.2.1. Endpoint authentication service 88
9.2.2. Message authentication service 88
9.2.3. Confidentiality service 88

10. Acknowledgments . 89
11. References . 90
11.1. Normative References 90
11.2. Informational References 90

Appendix A. IANA Considerations 91
A.1. Message Type Name Space 91
A.2. Operation Selection 92
A.3. Header Flags . 93
A.4. TLV Type Name Space 93
A.5. Result-TLV Result Values 93
A.6. Association Setup Response 94
A.7. Association Teardown Message 95

Appendix B. ForCES Protocol LFB schema 96
B.1. Capabilities . 101
B.2. Attributes . 102

Appendix C. Data Encoding Examples 103
Appendix D. Use Cases . 107

 Authors' Addresses . 123

Doria, et al. Expires August 5, 2007 [Page 4]

Internet-Draft ForCES February 2007

 Intellectual Property and Copyright Statements 125

Doria, et al. Expires August 5, 2007 [Page 5]

Internet-Draft ForCES February 2007

1. Terminology and Conventions

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT,
 RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted
 as described in BCP 14, RFC2119 [RFC2119].

Doria, et al. Expires August 5, 2007 [Page 6]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft ForCES February 2007

2. Introduction

 Forwarding and Control Element Separation (ForCES) defines an
 architectural framework and associated protocols to standardize
 information exchange between the control plane and the forwarding
 plane in a ForCES Network Element (ForCES NE). RFC 3654 has defined
 the ForCES requirements, and RFC 3746 has defined the ForCES
 framework. While there may be multiple protocols used within the
 overall ForCES architecture, the term "ForCES protocol" and
 "protocol" as used in this document refers to the protocol used to
 standardize the information exchange between Control Elements (CEs)
 and Forwarding Elements (FEs) only.

 The ForCES FE model [FE-MODEL] presents a formal way to define FE
 Logical Function Blocks (LFBs) using XML. LFB configuration
 attributes, capabilities, and associated events are defined when the
 LFB is formally created. The LFBs within the FE are accordingly
 controlled in a standardized way by the ForCES protocol.

 This document defines the ForCES protocol specifications. The ForCES
 protocol works in a master-slave mode in which FEs are slaves and CEs
 are masters. The protocol includes commands for transport of Logical
 Function Block(LFB) configuration information, association setup,
 status, and event notifications, etc.

 This specification does not define a transport mechanism for protocol
 messages. A discussion of service primitives that must be provided
 by the underlying transport interface will be discussed in a future
 document.

Section 3 provides a glossary of terminology used in the
 specification.

Section 4 provides an overview of the protocol, including a
 discussion on the protocol framework, descriptions of the Protocol
 Layer (PL) and a Transport Mapping Layer (TML), as well as of the
 ForCES protocol mechanisms. Section 4.4 describes several Protocol
 scenarios and includes message exchange descriptions.

 While this document does not define the TML, Section 5 details the
 services that a TML must provide (TML requirements).

 The ForCES protocol defines a common header for all protocol
 messages. The header is defined in Section 6.1, while the protocol
 messages are defined in Section 7.

Section 8 describes the protocol support for high availability
 mechanisms including redundancy and fail over.

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 7]

Internet-Draft ForCES February 2007

Section 9 defines the security mechanisms provided by the PL and TML.

Doria, et al. Expires August 5, 2007 [Page 8]

Internet-Draft ForCES February 2007

3. Definitions

 This document follows the terminology defined by the ForCES
 Requirements in [RFC3654] and by the ForCES framework in [RFC3746].
 The definitions below are repeated below for clarity.

 Addressable Entity (AE) - A physical device that is directly
 addressable given some interconnect technology. For example, on IP
 networks, it is a device which can be reached using an IP address;
 and on a switch fabric, it is a device which can be reached using a
 switch fabric port number.

 Control Element (CE) - A logical entity that implements the ForCES
 protocol and uses it to instruct one or more FEs on how to process
 packets. CEs handle functionality such as the execution of control
 and signaling protocols.

 CE Manager (CEM) - A logical entity responsible for generic CE
 management tasks. It is particularly used during the pre-association
 phase to determine with which FE(s) a CE should communicate. This
 process is called FE discovery and may involve the CE manager
 learning the capabilities of available FEs.

 Datapath - A conceptual path taken by packets within the forwarding
 plane inside an FE.

 Forwarding Element (FE) - A logical entity that implements the ForCES
 protocol. FEs use the underlying hardware to provide per-packet
 processing and handling as directed/controlled by one or more CEs via
 the ForCES protocol.

 FE Model - A model that describes the logical processing functions of
 an FE.

 FE Manager (FEM) - A logical entity responsible for generic FE
 management tasks. It is used during pre-association phase to
 determine with which CE(s) an FE should communicate. This process is
 called CE discovery and may involve the FE manager learning the
 capabilities of available CEs. An FE manager may use anything from a
 static configuration to a pre-association phase protocol (see below)
 to determine which CE(s) to use. Being a logical entity, an FE
 manager might be physically combined with any of the other logical
 entities such as FEs.

 ForCES Network Element (NE) - An entity composed of one or more CEs
 and one or more FEs. To entities outside an NE, the NE represents a
 single point of management. Similarly, an NE usually hides its
 internal organization from external entities.

https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 9]

Internet-Draft ForCES February 2007

 High Touch Capability - This term will be used to apply to the
 capabilities found in some forwarders to take action on the contents
 or headers of a packet based on content other than what is found in
 the IP header. Examples of these capabilities include NAT-PT,
 firewall, and L7 content recognition.

 Inter-FE Topology - See FE Topology.

 Intra-FE Topology - See LFB Topology.

 LFB (Logical Function Block) - The basic building block that is
 operated on by the ForCES protocol. The LFB is a well defined,
 logically separable functional block that resides in an FE and is
 controlled by the CE via ForCES protocol. The LFB may reside at the
 FE's datapath and process packets or may be purely an FE control or
 configuration entity that is operated on by the CE. Note that the
 LFB is a functionally accurate abstraction of the FE's processing
 capabilities, but not a hardware-accurate representation of the FE
 implementation.

 FE Topology - A representation of how the multiple FEs within a
 single NE are interconnected. Sometimes this is called inter-FE
 topology, to be distinguished from intra-FE topology (i.e., LFB
 topology).

 LFB (Logical Function Block) and LFB Instance - LFBs are categorized
 by LFB Classes. An LFB Instance represents an LFB Class (or Type)
 existence. There may be multiple instances of the same LFB Class (or
 Type) in an FE. An LFB Class is represented by an LFB Class ID, and
 an LFB Instance is represented by an LFB Instance ID. As a result,
 an LFB Class ID associated with an LFB Instance ID uniquely specifies
 an LFB existence.

 LFB Metadata - Metadata is used to communicate per-packet state from
 one LFB to another, but is not sent across the network. The FE model
 defines how such metadata is identified, produced and consumed by the
 LFBs. It defines the functionality but not how metadata is encoded
 within an implementation.

 LFB Attribute - Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 attributes. The LFB attributes include, for example, flags, single
 parameter arguments, complex arguments, and tables that the CE can
 read and/or write via the ForCES protocol (see below).

 LFB Topology - Representation of how the LFB instances are logically
 interconnected and placed along the datapath within one FE.
 Sometimes it is also called intra-FE topology, to be distinguished

Doria, et al. Expires August 5, 2007 [Page 10]

Internet-Draft ForCES February 2007

 from inter-FE topology.

 Pre-association Phase - The period of time during which an FE Manager
 (see below) and a CE Manager (see below) are determining which FE(s)
 and CE(s) should be part of the same network element.

 Post-association Phase - The period of time during which an FE knows
 which CE is to control it and vice versa. This includes the time
 during which the CE and FE are establishing communication with one
 another.

 ForCES Protocol - While there may be multiple protocols used within
 the overall ForCES architecture, the term "ForCES protocol" and
 "protocol" refer to the Fp reference point in the ForCES Framework in
 [RFC3746]. This protocol does not apply to CE-to-CE communication,
 FE-to-FE communication, or to communication between FE and CE
 managers. Basically, the ForCES protocol works in a master-slave
 mode in which FEs are slaves and CEs are masters. This document
 defines the specifications for this ForCES protocol.

 ForCES Protocol Layer (ForCES PL) - A layer in ForCES protocol
 architecture that defines the ForCES protocol messages, the protocol
 state transfer scheme, as well as the ForCES protocol architecture
 itself (including requirements of ForCES TML (see below).
 Specifications of ForCES PL are defined by this document.

 ForCES Protocol Transport Mapping Layer (ForCES TML) - A layer in
 ForCES protocol architecture that uses the capabilities of existing
 transport protocols to specifically address protocol message
 transportation issues, such as how the protocol messages are mapped
 to different transport media (like TCP, IP, ATM, Ethernet, etc), and
 how to achieve and implement reliability, multicast, ordering, etc.
 The ForCES TML specifications are detailed in separate ForCES
 documents, one for each TML.

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 11]

Internet-Draft ForCES February 2007

4. Overview

 The reader is referred to the Framework document [RFC3746], and in
 particular sections 3 and 4, for an architectural overview and an
 explanation of how the ForCES protocol fits in. There may be some
 content overlap between the framework document and this section in
 order to provide clarity. This document is authoritative on the
 protocol whereas [RFC3746] is authoritative on the architecture.

4.1. Protocol Framework

 Figure 1 below is reproduced from the Framework document for clarity.
 It shows a NE with two CEs and two FEs.

 | ForCES Network Element |
 -------------- Fc | -------------- -------------- |
 | CE Manager |---------+-| CE 1 |------| CE 2 | |
 -------------- | | | Fr | | |
 | | -------------- -------------- | | | |
 | Fl | | | Fp / |
 | | Fp| |----------| / |
 | | | |/ |
 | | | | |
 | | | Fp /|----| |
 | | | /--------/ | |
 -------------- Ff | -------------- -------------- |
 | FE Manager |---------+-| FE 1 | Fi | FE 2 | |
 -------------- | | |------| | |
 | -------------- -------------- |
 | | | | | | | | | |
 ----+--+--+--+----------+--+--+--+-----
 | | | | | | | |
 | | | | | | | |
 Fi/f Fi/f

 Fp: CE-FE interface
 Fi: FE-FE interface
 Fr: CE-CE interface
 Fc: Interface between the CE Manager and a CE
 Ff: Interface between the FE Manager and an FE
 Fl: Interface between the CE Manager and the FE Manager
 Fi/f: FE external interface

 Figure 1: ForCES Architectural Diagram

 The ForCES protocol domain is found in the Fp Reference Point. The
 Protocol Element configuration reference points, Fc and Ff also play

https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 12]

Internet-Draft ForCES February 2007

 a role in the booting up of the ForCES Protocol. The protocol
 element configuration (indicated by reference points Fc, Ff, and Fl
 in [RFC3746]) is out of scope of the ForCES protocol but is touched
 on in this document in discussion of FEM and CEM since it is an
 integral part of the protocol pre-association phase.

 Figure 2 below shows further breakdown of the Fp interface by example
 of an MPLS QoS enabled Network Element.

 | | | | | | |
 |OSPF |RIP |BGP |RSVP |LDP |. . . |
 | | | | | | |
 --- CE
 | ForCES Interface |

 ^ ^
 | |
 ForCES | |data
 control | |packets
 messages| |(e.g., routing packets)
 | |
 v v

 | ForCES Interface |
 --- FE
 | | | | | | |
 |LPM Fwd|Meter |Shaper |MPLS |Classi-|. . . |
 | | | | |fier | |

 Figure 2: Examples of CE and FE functions

 The ForCES Interface shown in Figure 2 constitutes two pieces: the PL
 and the TML.

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 13]

Internet-Draft ForCES February 2007

 This is depicted in Figure 3 below.

 +--
 | CE PL |
 +--
 | CE TML |
 +--
 ^
 |
 ForCES | (i.e ForCES data + control
 PL | packets)
 messages |
 over |
 specific |
 TML |
 encaps |
 and |
 transport |
 |
 v
 +--
 | FE TML |
 +--
 | FE PL |
 +--

 Figure 3: ForCES Interface

 The PL is in fact the ForCES protocol. Its semantics and message
 layout are defined in this document. The TML Layer is necessary to
 connect two ForCES PLs as shown in Figure 3 above. The TML is out of
 scope for this document but is within scope of ForCES. This document
 defines requirements the PL needs the TML to meet.

 Both the PL and the TML are standardized by the IETF. While only one
 PL is defined, different TMLs are expected to be standardized. To
 interoperate the TML at the CE and FE are expected to conform to the
 same definition.

 On transmit, the PL delivers its messages to the TML. The local TML
 delivers the message to the destination TML. On receive, the TML
 delivers the message to its destination PL.

4.1.1. The PL

 The PL is common to all implementations of ForCES and is standardized
 by the IETF as defined in this document. The PL is responsible for
 associating an FE or CE to an NE. It is also responsible for tearing

Doria, et al. Expires August 5, 2007 [Page 14]

Internet-Draft ForCES February 2007

 down such associations. An FE uses the PL to transmit various
 subscribed-to events to the CE PL as well as to respond to various
 status requests issued from the CE PL. The CE configures both the FE
 and associated LFBs' operational parameters using the PL. In
 addition the CE may send various requests to the FE to activate or
 deactivate it, reconfigure its HA parameterization, subscribe to
 specific events etc. More details can be found in Section 7.

4.1.2. The TML

 The TML transports the PL messages. The TML is where the issues of
 how to achieve transport level reliability, congestion control,
 multicast, ordering, etc. are handled. It is expected that more than
 one TML will be standardized. The various possible TMLs could vary
 their implementations based on the capabilities of underlying media
 and transport. However, since each TML is standardized,
 interoperability is guaranteed as long as both endpoints support the
 same TML. All ForCES Protocol Layer implementations MUST be portable
 across all TMLs, because all TMLs MUST have the top edge semantics
 defined in this document.

4.1.3. The FEM/CEM Interface

 The FEM and CEM components, although valuable in the setup and
 configurations of both the PL and TML, are out of scope of the ForCES
 protocol. The best way to think of them is as configurations/
 parameterizations for the PL and TML before they become active (or
 even at runtime based on implementation). In the simplest case, the
 FE or CE reads a static configuration file. RFC 3746 has a more
 detailed description on how the FEM and CEM could be used. The pre-
 association phase, where the CEM and FEM can be used, are described
 briefly in Section 4.2.1.

 An example of typical things the FEM/CEM could configure would be TML
 specific parameterizations such as:

 a. How the TML connection should happen (for example what IP
 addresses to use, transport modes etc);

 b. The ID for the FE or CE (which would also be issued during the
 pre-association phase).

 c. Security parameterization such as keys etc.

 d. Connection association parameters

 Example of connection association parameters this might be:

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 15]

Internet-Draft ForCES February 2007

 o simple parameters: send up to 3 association messages every 1
 second

 o complex parameters: send up to 4 association messages with
 increasing exponential timeout

4.2. ForCES Protocol Phases

 ForCES, in relation to NEs, involves two phases: the Pre-Association
 phase, where configuration/initialization/bootup of the TML and PL
 layer happens, and the association phase where the ForCES protocol
 operates to manipulate the parameters of the FEs.

 FE assoiated CE configures transition to UP
 +---->--->---+ +--->---->---->---->------->----+
 | | | Y
 ^ Y | |
 | | | Y
 +---+-------+ +------+--+ +--------+
 |FE Pre- | | FE | | FE |
 |Association| | DOWN | CE configures DOWN | UP |
 |Phase | | State +<------<-----<------<-- + State |
 | | | | | |
 +-----------+ +---------+ +--------+
 ^ Y
 | |
 +-<---<------<-----<------<----<---------<------+
 FE loses association

 Figure 4: The FE State Machine

 In the mandated case, once associated, the FE can only be in one of
 two states, as indicated above. When the FE is in the DOWN state, it
 is not forwarding packets. When the FE is in the UP state it may be
 forwarding packets, depending on the configuration of its specific
 LFBs. The FE MAY also be in other states when it is capable of
 graceful restart and high availaibility. The extra transitions are
 explained in Section 8 and not discussed here so as to allow us to
 explain the basics with more clarity.

 The CE configures FE state transitions by means of the FE Object LFB,
 which is defined in [FE-MODEL] and also explained in Section 7.2.2.
 In the FE Object LFB, FE state is defined as an attribute of the LFB,
 and CE configuration of the FE state equals CE configuration of this
 attribute. Note that even in the FE DOWN state, the FE is
 associated.

Doria, et al. Expires August 5, 2007 [Page 16]

Internet-Draft ForCES February 2007

 The FE stays in the DOWN state until it is explicitly configured by
 the CE to transition to the UP state via an FE Object admin action.
 This must be done before configuring any other LFBs that affect
 packet forwarding. The typical setup will bring up the FE to the UP
 state on association.

 The FE transitions from the UP state to the DOWN state when it
 receives an FEObject Admin Down action. when it loses its association
 with the CE it may go into the pre-association phase depending on the
 programmed policy. For the FE to properly complete the transition to
 the DOWN state, it MUST stop Packet forwarding and this may impact
 multiple LFBS. How this is achieved is outside the scope of this
 specification.

4.2.1. Pre-association

 The ForCES interface is configured during the pre-association phase.
 In a simple setup, the configuration is static and is read from a
 saved configuration file. All the parameters for the association
 phase are well known after the pre-association phase is complete. A
 protocol such as DHCP may be used to retrieve the configuration
 parameters instead of reading them from a static configuration file.
 Note, this will still be considered static pre-association. Dynamic
 configuration may also happen using the Fc, Ff and Fl reference
 points (refer to [RFC3746]). Vendors may use their own proprietary
 service discovery protocol to pass the parameters. Essentially, only
 guidelines are provided here and the details are left to the
 implementation.

 The following are scenarios reproduced from the Framework Document to
 show a pre-association example.

 <----Ff ref pt---> <--Fc ref pt------->
 FE Manager FE CE Manager CE
 | | | |
 | | | |
 (security exchange) (security exchange)
 1|<------------>| authentication 1|<----------->|authentication
 | | | |
 (FE ID, attributes) (CE ID, attributes)
 2|<-------------| request 2|<------------|request
 | | | |
 3|------------->| response 3|------------>|response
 (corresponding CE ID) (corresponding FE ID)
 | | | |
 | | | |

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 17]

Internet-Draft ForCES February 2007

 Figure 5: Examples of a message exchange over the Ff and Fc reference
 points

 <-----------Fl ref pt--------------> |

 FE Manager FE CE Manager CE
 | | | |
 | | | |
 (security exchange) | |
 1|<------------------------------>| |
 | | | |
 (a list of CEs and their attributes) |
 2|<-------------------------------| |
 | | | |
 (a list of FEs and their attributes) |
 3|------------------------------->| |
 | | | |
 | | | |

 Figure 6: An example of a message exchange over the Fl reference
 point

 Before the transition to the association phase, the FEM will have
 established contact with a CEM component. Initialization of the
 ForCES interface will have completed, and authentication as well as
 capability discovery may be complete. Both the FE and CE would have
 the necessary information for connecting to each other for
 configuration, accounting, identification, and authentication
 purposes. To summarize, at the completion of this stage both sides
 have all the necessary protocol parameters such as timers, etc. The
 Fl reference point may continue to operate during the association
 phase and may be used to force a disassociation of an FE or CE.
 Because the pre-association phase is out of scope, these details are
 not discussed any further in this specification. The reader is
 referred to the framework document [RFC3746] for a slightly more
 detailed discussion.

4.2.2. Post-association

 In this phase, the FE and CE components communicate with each other
 using the ForCES protocol (PL over TML) as defined in this document.
 There are three sub-phases:

 o Association Setup Stage

 o Established Stage

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 18]

Internet-Draft ForCES February 2007

 o Association Lost Stage

4.2.2.1. Association Setup Stage

 The FE attempts to join the NE. The FE may be rejected or accepted.
 Once granted access into the NE, capabilities exchange happens with
 the CE querying the FE. Once the CE has the FE capability
 information, the CE can offer an initial configuration (possibly to
 restore state) and can query certain attributes within either an LFB
 or the FE itself.

 More details are provided in Section 4.4.

 On successful completion of this stage, the FE joins the NE and is
 moved to the Established Stage.

4.2.2.2. Established Stage

 In this stage, the FE is continuously updated or queried. The FE may
 also send asynchronous event notifications to the CE or synchronous
 heartbeat notifications if programmed to do so. This stage continues
 until a termination occurs, either due to loss of connectivity or due
 to a termination initiated by either the CE or the FE.

 Refer to the section on protocol scenarios, Section 4.4, for more
 details.

4.2.2.3. Association Lost Stage

 In this state, both or either the CE or FE declare the other side is
 no longer associated. The disconnection could be initiated by either
 party for administrative purposes but may also be driven by
 operational reasons such as loss of connectivity.

 A core LFB known as FE Protocol Object (FEPO) is defined (refer to
Appendix B and Section 7.2.1). FEPO defines various timers which can

 be used in conjunction with traffic sensitive heartbeat mechanism
 (Section 4.3.3) to detect loss of connectivity.

 The loss of connectivity between TMLs does not indicate a loss of
 association between respective PL layers. If the TML cannot repair
 the transport loss before the programmed FEPO timer thresholds
 associated with the FE is exceeded, then the association between the
 respective PL layers will be lost.

 FEPO defines several policies that can be programmed to define
 behavior upon a detected loss of association. The FEPO's programmed
 CE failover policy (refer to Section 8, Section 7.2.1, Section 4.3.3

Doria, et al. Expires August 5, 2007 [Page 19]

Internet-Draft ForCES February 2007

 and Appendix B) defines what takes place upon loss of association.

 For this version of the protocol (as defined in this document), the
 FE, upon re-association, MUST discard any state it has as invalid and
 retrieve new state. This approach is motivated by a desire for
 simplicity (as opposed to efficiency).

4.3. Protocol Mechanisms

 Various semantics are exposed to the protocol users via the PL header
 including: transaction capabilities, atomicity of transactions, two
 phase commits, batching/parallelization, high availability and
 failover as well as command pipelines.

 The EM (Execute Mode) flag, AT (Atomic Transaction) flag, and TP
 (Transaction Phase) flag as defined in the Common Header
 (Section 6.1) are relevant to these mechanisms.

4.3.1. Transactions, Atomicity, Execution and Responses

 In the master-slave relationship the CE instructs one or more FEs on
 how to execute operations and how to report the results.

 This section details the different modes of execution that a CE can
 order the FE(s) to perform, as defined in Section 4.3.1.1. It also
 describes the different modes a CE can ask the FE(s) to use for
 formatting the responses after processing the operations as
 requested. These modes relate to the transactional two phase
 commitment operations.

4.3.1.1. Execution

 There are 3 execution modes that can be requested for a batch of
 operations spanning one or more LFB selectors (refer to

Section 7.1.1.1.5) in one protocol message. The EM flag defined in
 the Common Header Section 6.1 selects the execution mode for a
 protocol message, as below:

 a. execute-all-or-none

 b. execute-until-failure

 c. continue-execute-on-failure

Doria, et al. Expires August 5, 2007 [Page 20]

Internet-Draft ForCES February 2007

4.3.1.1.1. execute-all-or-none

 When set to this mode of execution, independent operations in a
 message MAY be targeted at one or more LFB selectors within an FE.
 All these operations are executed serially and the FE MUST have no
 execution failure for any of the operations. If any operation fails
 to execute, then all the previous ones that have been executed prior
 to the failure will need to be undone. I.e., there is rollback for
 this mode of operation.

 Refer to Section 4.3.1.2.2 for how this mode is used in cases of
 transactions. In such a case, no operation is executed unless a
 commit is issued by the CE.

 Care should be taken on how this mode is used because a mis-
 configuration could result in traffic losses. To add certainty to
 the success of an operation, one should use this mode in a
 transactional operation as described in Section 4.3.1.2.2

4.3.1.1.2. continue-execute-on-failure

 If several independent operations are targeted at one or more LFB
 selectors, execution continues for all operations at the FE even if
 one or more operations fail.

4.3.1.1.3. execute-until-failure

 In this mode all operations are executed on the FE sequentially until
 the first failure. The rest of the operations are not executed but
 operations already completed are not undone. I.e., there is no
 rollback in this mode of operation.

4.3.1.2. Transaction and Atomicity

4.3.1.2.1. Transaction Definition

 A transaction is defined as a collection of one or more ForCES
 operations within one or more PL messages that MUST meet the ACIDity
 properties [ACID], defined as:

 Atomicity: In a transaction involving two or more discrete pieces
 of information, either all of the pieces are committed
 or none are.

 Consistency: A transaction either creates a new and valid state of
 data, or, if any failure occurs, returns all data to the
 state it was in before the transaction was started.

Doria, et al. Expires August 5, 2007 [Page 21]

Internet-Draft ForCES February 2007

 Isolation: A transaction in process and not yet committed must
 remain isolated from any other transaction.

 Durability: Committed data is saved by the system such that, even in
 the event of a failure and a system restart, the data is
 available in its correct state.

 There are cases where the CE knows exact memory and implementation
 details of the FE such as in the case of an FE-CE pair from the same
 vendor where the FE-CE pair is tightly coupled. In such a case, the
 transactional operations may be simplified further by extra
 computation at the CE. This view is not discussed further other than
 to mention that it is not disallowed.

 As defined above, a transaction is always atomic and MAY be

 a. Within an FE alone
 Example: updating multiple tables that are dependent on each
 other. If updating one fails, then any that were already updated
 must be undone.

 b. Distributed across the NE
 Example: updating table(s) that are inter-dependent across
 several FEs (such as L3 forwarding related tables).

4.3.1.2.2. Transaction protocol

 By use of the execute mode, as defined in Section 4.3.1.1, the
 protocol has provided a mechanism for transactional operations within
 one stand-alone message. The 'execute-all-or-none' mode can meet the
 ACID requirements.

 For transactional operations of multiple messages within one FE or
 across FEs, a classical transactional protocol known as Two Phase
 Commit (2PC) [2PCREF] is supported by the protocol to achieve the
 transactional operations.

 The AT flag and the TP flag in Common Header (Section 6.1) are
 provided for 2PC-based transactional operations spanning multiple
 messages.

 The COMMIT operation is specified to be used in the case of a final
 commit message.

 The AT flag, when set, indicates this message belongs to an Atomic
 Transaction. All messages for a transaction operation must have the
 AT flag set. If not set, it means the message is a stand-alone
 message and does not participate in any transaction operation that

Doria, et al. Expires August 5, 2007 [Page 22]

Internet-Draft ForCES February 2007

 spans multiple messages.

 The TP flag indicates the Transaction Phase this message belongs to.
 There are four (4) possible phases for an transactional operation
 known as:

 SOT (Start of Transaction)

 MOT (Middle of Transaction)

 EOT (End of Transaction)

 ABT (Abort)

 A transaction operation is started with a message the TP flag is set
 to Start of Transaction (SOT). Multi-part messages, after the first
 one, are indicated by the Middle of Transaction flag (MOT). All
 messages from the CE MUST set the AlwaysACK flag (Section 6) to
 solicit responses from the FE(s).

 Before the CE issues a commit (described further below) the FE
 only validates that the operation can be executed but does not
 execute it.

 Any failure notified by the FE causes the CE to execute an Abort
 Transaction (ABT) to all FEs involved in the transaction, rolling
 back any previously executed operations in the transaction (There
 must be none if a commit has not been issued).

 The transaction commitment phase is signaled from the CE to the FE
 by an End of Transaction (EOT) configuration message with a COMMIT
 operation. The FE MUST respond to the CE's EOT message. If no
 response is received from the FE within a specified timeout, the
 transaction MUST be aborted by the CE.

 Note that a transactional operation is generically atomic, therefore
 it requires that the execute modes of all messages in a transaction
 operation should always be kept the same and be set to 'execute-all-
 or-none'. If the EM flag is set to other execute modes, it will
 result in a transaction failure.

 As noted above, a transaction may span multiple messages. It is up
 to the CE to keep track of the different outstanding messages making
 up a transaction. As an example, the correlator field could be used
 to mark transactions and a sequence field to label the different
 messages within the same atomic transaction, but this is out of scope
 and up to implementations.

Doria, et al. Expires August 5, 2007 [Page 23]

Internet-Draft ForCES February 2007

 Figure 9 shows an example of how a successful two phase commit
 between a CE and an FE would look like.

4.3.1.2.3. Recovery

 Any of the participating FEs, or the CE, or the associations between
 them, may fail after the EOT response message has been sent by the FE
 but before the CE has received all the responses, e.g. if the EOT
 response never reaches the CE.

 In this protocol revision, for sake of simplicity as indicated in
Section 4.2.2.3, an FE losing an association would be required to get

 entirely new state from the newly associated CE upon a re-
 association. The decision on what an FE should do after a lost
 association is dictated by the CE Failover policy (refer to Section 8
 and Section 7.2).

4.3.2. Scalability

 It is desirable that the PL not become the bottleneck when larger
 bandwidth pipes become available. To pick a hypothetical example in
 today's terms, if a 100Gbps pipe is available and there is sufficient
 work then the PL should be able to take advantage of this and use all
 of the 100Gbps pipe. Two mechanisms have been provided to achieve
 this. The first one is batching and the second one is a command
 pipeline.

 Batching is the ability to send multiple commands (such as Config) in
 one Protocol Data Unit (PDU). The size of the batch will be affected
 by, amongst other things, the path MTU. The commands may be part of
 the same transaction or may be part of unrelated transactions that
 are independent of each other.

 Command pipelining allows for pipelining of independent transactions
 which do not affect each other. Each independent transaction could
 consist of one or more batches.

4.3.2.1. Batching

 There are several batching levels at different protocol hierarchies.

 o multiple PL PDUs can be aggregated under one TML message

 o multiple LFB classes and instances (as indicated in the LFB
 selector) can be addressed within one PL PDU

 o Multiple operations can be addressed to a single LFB class and
 instance

Doria, et al. Expires August 5, 2007 [Page 24]

Internet-Draft ForCES February 2007

4.3.2.2. Command Pipelining

 The protocol allows any number of messages to be issued by the CE
 before the corresponding acknowledgments (if requested) have been
 returned by the FE. Hence pipelining is inherently supported by the
 protocol. Matching responses with requests messages can be done
 using the correlator field in the message header.

4.3.3. Heartbeat Mechanism

 Heartbeats (HB) between FEs and CEs are traffic sensitive. An HB is
 sent only if no PL traffic is sent between the CE and FE within a
 configured interval. This has the effect of reducing the amount of
 HB traffic in the case of busy PL periods.

 An HB can be sourced by either the CE or FE. When sourced by the CE,
 a response can be requested (similar to the ICMP ping protocol). The
 FE can only generate HBs in the case of being configured to do so by
 the CE. Refer to Section 7.2.1 and Section 7.9 for details.

4.3.4. FE Object and FE Protocol LFBs

 All PL messages operate on LFB constructs, as this provides more
 flexibility for future enhancements. This means that maintenance and
 configurability of FEs, NE, as well as the ForCES protocol itself
 must be expressed in terms of this LFB architecture. For this reason
 special LFBs are created to accommodate this need.

 In addition, this shows how the ForCES protocol itself can be
 controlled by the very same type of structures (LFBs) it uses to
 control functions such as IP forwarding, filtering, etc.

 To achieve this, the following specialized LFBs are introduced:

 o FE Protocol LFB which is used to control the ForCES protocol.

 o FE Object LFB which is used to control attributes relative to the
 FE itself. Such attributes include FEState [FE-MODEL], vendor,
 etc.

 These LFBs are detailed in Section 7.2.

4.4. Protocol Scenarios

 This section provides a very high level description of sample message
 sequences between a CE and FE. For protocol message encoding refer
 to Section 6.1 and for the semantics of the protocol refer to

Section 4.3.

Doria, et al. Expires August 5, 2007 [Page 25]

Internet-Draft ForCES February 2007

4.4.1. Association Setup State

 The associations among CEs and FEs are initiated via Association
 setup message from the FE. If a setup request is granted by the CE,
 a successful setup response message is sent to the FE. If CEs and
 FEs are operating in an insecure environment then the security
 associations have to be established between them before any
 association messages can be exchanged. The TML will take care of
 establishing any security associations.

 This is typically followed by capability query, topology query, etc.
 When the FE is ready to start forwarding data traffic, it sends an FE
 UP Event message to the CE. When the CE is ready, it responds by
 enabling the FE by setting the FEStatus to Adminup (Refer to
 [FE-MODEL] for details). This indicates to the FE to start
 forwarding data traffic. At this point the association establishment
 is complete. These sequences of messages are illustrated in the
 Figure 7 below.

Doria, et al. Expires August 5, 2007 [Page 26]

Internet-Draft ForCES February 2007

 FE PL CE PL

 | |
 | Asso Setup Req |
 |---------------------->|
 | |
 | Asso Setup Resp |
 |<----------------------|
 | |
 | LFBx Query capability |
 |<----------------------|
 | |
 | LFBx Query Resp |
 |---------------------->|
 | |
 | FEO Query (Topology) |
 |<----------------------|
 | |
 | FEO Query Resp |
 |---------------------->|
 | |
 | FEO UP Event |
 |---------------------->|
 | |
 | Config FEO Adminup |
 |<----------------------|
 | |
 | FEO Config-Resp |
 |---------------------->|
 | |

 Figure 7: Message exchange between CE and FE to establish an NE
 association

 On successful completion of this state, the FE joins the NE.

4.4.2. Association Established state or Steady State

 In this state, the FE is continously updated or queried. The FE may
 also send asynchronous event notifications to the CE, synchronous
 heartbeat messages, or packet redirect message to the CE. This
 continues until a termination (or deactivation) is initiated by
 either the CE or FE. Figure 8 below, helps illustrate this state.

Doria, et al. Expires August 5, 2007 [Page 27]

Internet-Draft ForCES February 2007

 FE PL CE PL

 | |
 | Heart Beat |
 |<---------------------------->|
 | |
 | Heart Beat |
 |----------------------------->|
 | |
 | Config-set LFBy (Event sub.) |
 |<-----------------------------|
 | |
 | Config Resp LFBy |
 |----------------------------->|
 | |
 | Config-set LFBx Attr |
 |<-----------------------------|
 | |
 | Config Resp LFBx |
 |----------------------------->|
 | |
 |Config-Query LFBz (Stats) |
 |<--------------------------- -|
 | |
 | Query Resp LFBz |
 |----------------------------->|
 | |
 | FE Event Report |
 |----------------------------->|
 | |
 | Config-Del LFBx Attr |
 |<-----------------------------|
 | |
 | Config Resp LFBx |
 |----------------------------->|
 | |
 | Packet Redirect LFBx |
 |----------------------------->|
 | |
 | Heart Beat |
 |<-----------------------------|
 . .
 . .
 | |

 Figure 8: Message exchange between CE and FE during steady-state
 communication

Doria, et al. Expires August 5, 2007 [Page 28]

Internet-Draft ForCES February 2007

 Note that the sequence of messages shown in the figure serve only as
 examples and the message exchange sequences could be different from
 what is shown in the figure. Also, note that the protocol scenarios
 described in this section do not include all the different message
 exchanges that would take place during failover. That is described
 in the HA section (Section 8) .

4.4.3. Transaction messaging

 This section illustrates the message sequence of a successful 2PC
 between one CE and an FE. The case of the multiple FEs is left as an
 exercise for the reader

 FE PL CE PL

 | |
 | (1) Config, SOT,AT, EM=All-or-None, OP= SET/DEL,etc |
 |<---|
 | |
 | (2) ACKnowledge |
 |--->|
 | |
 | (3) Config, MOT,AT, EM=All-or-None, OP= SET/DEL,etc |
 |<---|
 | |
 | (4) ACKnowledge |
 |--->|
 | |
 | (5) Config, MOT,AT, EM=All-or-None, OP= SET/DEL,etc |
 |<---|
 | |
 | (6) ACKnowledge |
 |--->|
 . .
 . .
 . .
 . .
 | |
 | (N) Config, EOT,AT, EM=All-or-None, OP= COMMIT |
 |<---|
 | |
 | (N+1)Config-response, ACKnowledge, COMMIT-RESPONSE |
 |--->|

 Figure 9: Example of a two phase commit

Doria, et al. Expires August 5, 2007 [Page 29]

Internet-Draft ForCES February 2007

 The flow of for a 2PC message sequence is described with more clarity
 in section Section 4.3.1.2.2. For the scenario illustrated above:

 o In step #1, the CE issues a Config message with an operation of
 choice like a DEL or SET. The transactional flag are set to
 indicate a Start of Transaction (SOT), Atomic Transaction (AT),
 execute-all-or-none.

 o The FE validates that it can execute the request successfully and
 then issues an acknowledgment back to the the CE in step #2.

 o In step #3, the same sort of construct as in step #1 is repeated
 by the CE with the transaction flag changed to Middle of
 Transaction(MOT).

 o The FE validates that it can execute the request successfully and
 then issues an acknowledgment back to the the CE in step #4.

 o The CE-FE exchange continues in the same manner until all the
 operations and their parameters are transferred to the FE. This
 happens in step #(N-1).

 o In step #N, the CE issues a commit. A commit is a config message
 with an operation of type COMMIT. The transactional flags are set
 to End of Transaction (EOT). Essentially, this is an "empty"
 message asking the FE to execute all the operations it has
 gathered since the beginning of the transaction (message #1).

 o The FE at this point executes the full transaction. It then
 issues an acknowledgment back to the the CE in step #(N+1) which
 contains a COMMIT-RESPONSE.

Doria, et al. Expires August 5, 2007 [Page 30]

Internet-Draft ForCES February 2007

5. TML Requirements

 The requirements below are expected to be delivered by the TML. This
 text does not define how such mechanisms are delivered. As an
 example they could be defined to be delivered via hardware or between
 2 or more TML processes on different CEs or FEs in protocol level
 schemes.

 Each TML must describe how it contributes to achieving the listed
 ForCES requirements. If for any reason a TML does not provide a
 service listed below a justification needs to be provided.

 1. Reliability
 As defined by RFC 3654, section 6 #6.

 2. Security
 TML provides security services to the ForCES PL. A TML layer
 should support the following security services and describe how
 they are achieved.

 * Endpoint authentication of FE and CE

 * Message authentication

 * Confidentiality service

 3. Congestion control
 The congestion control scheme used needs to be defined. The
 congestion control mechanism defined by the TML should prevent
 the FE from being overloaded by the CE or the CE from being
 overwhelmed by traffic from the FE. Additionally, the
 circumstances under which notification is sent to the PL to
 notify it of congestion must be defined.

 4. Uni/multi/broadcast addressing/delivery, if any
 If there is any mapping between PL and TML level uni/multi/
 broadcast addressing it needs to be defined.

 5. HA decisions
 It is expected that availability of transport links is the TML's
 responsibility. However, based upon its configuration, the PL
 may wish to participate in link failover schemes and therefore
 the TML must support this capability.
 Please refer to Section 8 for details.

 6. Encapsulations used
 Different types of TMLs will encapsulate the PL messages on
 different types of headers. The TML needs to specify the

https://datatracker.ietf.org/doc/html/rfc3654#section-6

Doria, et al. Expires August 5, 2007 [Page 31]

Internet-Draft ForCES February 2007

 encapsulation used.

 7. Prioritization
 It is expected that the TML will be able to handle up to 8
 priority levels needed by the PL and will provide preferential
 treatment.
 While the TML needs to define how this is achieved, it should be
 noted that the requirement for supporting up to 8 priority levels
 does not mean that the underlying TML MUST be capable of
 providing up to 8 actual priority levels. In the event that the
 underlying TML layer does not have support for 8 priority levels,
 the supported priority levels should be divided between the
 available TML priority levels. For example, if the TML only
 supports 2 priority levels, the 0-3 could go in one TML priority
 level, while 4-7 could go in the other.

 8. Protection against DoS attacks
 As described in RFC 3654, section 6

5.1. TML Parameterization

 It is expected that it should be possible to use a configuration
 reference point, such as the FEM or the CEM, to configure the TML.

 Some of the configured parameters may include:

 o PL ID

 o Connection Type and associated data. For example if a TML uses
 IP/TCP/UDP, then parameters such as TCP and UDP port and IP
 addresses need to be configured.

 o Number of transport connections

 o Connection capability, such as bandwidth, etc.

 o Allowed/supported connection QoS policy (or congestion control
 policy)

https://datatracker.ietf.org/doc/html/rfc3654#section-6

Doria, et al. Expires August 5, 2007 [Page 32]

Internet-Draft ForCES February 2007

6. Message Encapsulation

 All PL PDUs start with a common header [Section 6.1] followed by a
 one or more TLVs [Section 6.2] which may nest other TLVs
 [Section 6.2.1]. All fields are in network byte order.

6.1. Common Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |version| rsvd | Message Type | Length |
 +-+
 | Source ID |
 +-+
 | Destination ID |
 +-+
 | Correlator |
 | |
 +-+
 | Flags |
 +-+

 Figure 10: Common Header

 The message is 32 bit aligned.

 Version (4 bit):
 Version number. Current version is 1.

 rsvd (4 bit):
 Unused at this point. A receiver should not interpret this
 field. Senders MUST set it to zero and receivers MUST ignore
 this field.

 Message Type (8 bits):
 Commands are defined in Section 7.

 Length (16 bits):
 length of header + the rest of the message in DWORDS (4 byte
 increments).

 Source ID (32 bit):

Doria, et al. Expires August 5, 2007 [Page 33]

Internet-Draft ForCES February 2007

 Dest ID (32 bit):

 * Each of the source and destination IDs are 32 bit IDs which
 are unique NE-wide and which identify the termination points
 of a ForCES PL message.

 * IDs allow multi/broad/unicast addressing with the following
 approach:

 a. A split address space is used to distinguish FEs from
 CEs. Even though in a large NE there are typically two
 or more orders of magnitude more FEs than CEs, the
 address space is split uniformly for simplicity.

 b. The address space allows up to 2^30 (over a billion) CEs
 and the same amount of FEs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |TS | sub-ID |
 +-+

 Figure 11: ForCES ID Format

 c. The 2 most significant bits called Type Switch (TS) are
 used to split the ID space as follows:

 TS Corresponding ID range Assignment
 -- ---------------------- ----------
 0b00 0x00000000 to 0x3FFFFFFF FE IDs (2^30)
 0b01 0x40000000 to 0x7FFFFFFF CE IDs (2^30)
 0b10 0x80000000 to 0xBFFFFFFF reserved
 0b11 0xC0000000 to 0xFFFFFFEF multicast IDs (2^30 - 16)
 0b11 0xFFFFFFF0 to 0xFFFFFFFC reserved
 0b11 0xFFFFFFFD all CEs broadcast
 0b11 0xFFFFFFFE all FEs broadcast
 0b11 0xFFFFFFFF all FEs and CEs (NE) broadcast

 Figure 12: Type Switch ID Space

 * Multicast or broadcast IDs are used to group endpoints (such
 as CEs and FES). As an example one could group FEs in some
 functional group, by assigning a multicast ID. Likewise,
 subgroups of CEs that act, for instance, in a back-up mode

Doria, et al. Expires August 5, 2007 [Page 34]

Internet-Draft ForCES February 2007

 may be assigned a multicast ID to hide them from the FE.

 + Multicast IDs can be used for both source or destination
 IDs.

 + Broadcast IDs can be used only for destination IDs.

 * This document does not discuss how a particular multicast ID
 is associated to a given group though it could be done via
 configuration process. The list of IDs an FE owns or is part
 of are listed on the FE Object LFB.

 Correlator (64 bits)
 This field is set by the CE to correlate ForCES Request Messages
 with the corresponding Response messages from the FE.
 Essentially it is a cookie. The correlator is handled
 transparently by the FE, i.e., for a particular Request message
 the FE MUST assign the same correlator value in the corresponding
 Response message. In the case where the message from the CE does
 not elicit a response, this field may not be useful.

 The correlator field could be used in many implementations
 specific ways by the CE. For example, the CE could split the
 correlator into a 32-bit transactional identifier and 32-bit
 message sequence identifier. Another example is a 64-bit pointer
 to a context block. All such implementation specific use of the
 correlator is outside the scope of this specification.

 Whenever the correlator field is not relevant, because no message
 is expected, the correlator field is set to 0.

 Flags(32 bits):
 Identified so far:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | | | | | | | |
 |ACK| Pri |Rsr |EM |A|TP | Reserved |
 | | | vd. | |T| | |
 +-+

 Figure 13: Header Flags

Doria, et al. Expires August 5, 2007 [Page 35]

Internet-Draft ForCES February 2007

 - ACK: ACK indicator (2 bit)
 The ACK indicator flag is only used by the CE when sending a
 Config Message (Section 7.5.1) or a HB message (Section 7.9)
 to indicate to the message receiver whether or not a response
 is required by the sender. Note that for all other messages
 than the Config Message or the HB Message this flag MUST be
 ignored.

 The flag values are defined as below:

 'NoACK' (0b00) - to indicate that the message receiver
 MUST not to send any response message back to this
 message sender.

 'SuccessACK'(0b01) - to indicate the message receiver
 MUST send a response message back only when the message
 has been successfully processed by the receiver.

 'FailureACK'(0b10) - to indicate the message receiver
 MUST send a response message back only when there is
 failure by the receiver in processing (executing) the
 message. In other words, if the message can be processed
 successfully, the sender will not expect any response
 from the receiver.

 'AlwaysACK' (0b11) - to indicate the message receiver
 MUST send a response message.

 Note that in above definitions, the term success implies a
 complete execution without any failure of the message.
 Anything else than a complete successful execution is defined
 as a failure for the message processing. As a result, for
 the execution modes (defined in Section 4.3.1.1) like
 execute-all-or-none, execute-until-failure, and continue-
 execute-on-failure, if any single operation among several
 operations in the same message fails, it will be treated as a
 failure and result in a response if the ACK indicator has
 been set to 'FailureACK' or 'AlwaysACK'.

 Also note that, other than in Config and HB Messages,
 requirements for responses of messages are all given in a
 default way rather than by ACK flags. The default
 requirements of these messages and the expected responses are
 summarized below. Detailed descriptions can be found in the
 individual message definitions:

Doria, et al. Expires August 5, 2007 [Page 36]

Internet-Draft ForCES February 2007

 + Association Setup Message always expects a response.

 + Association Teardown Message, and Packet Redirect
 Message, never expect responses.

 + Query Message always expects a response.

 + Response message never expects further responses.

 - Pri: Priority (3 bits)
 ForCES protocol defines 8 different levels of priority (0-7).
 The priority level can be used to distinguish between
 different protocol message types as well as between the same
 message type. The higher the priority value, the more
 important the PDU is. For example, the REDIRECT packet
 message could have different priorities to distinguish
 between routing protocols packets and ARP packets being
 redirected from FE to CE. The Normal priority level is 1.
 The different priorities imply messages could be re-ordered;
 however, re-ordering is undesirable when it comes to a set of
 messages within a transaction and caution should be exercised
 to avoid this from happening.

 - EM: Execution Mode (2 bits)
 There are 3 execution modes refer to Section 4.3.1.1 for
 details.

 Reserved..................... (0b00)

 `execute-all-or-none` (0b01)

 `execute-until-failure` (0b10)

 `continue-execute-on-failure` (0b11)

 - AT: Atomic Transaction (1 bit)
 This flag indicates if the message is stand-alone message or
 one of multiple messages that belongs to 2PC transaction
 operations. See Section 4.3.1.2.2 for details.

 Stand-alone message (0b0)

 2PC transaction message (0b1)

Doria, et al. Expires August 5, 2007 [Page 37]

Internet-Draft ForCES February 2007

 - TP: Transaction Phase (2 bits)
 A message from the CE to the FE within a transaction could be
 indicative of the different phases the transaction is in.
 Refer to Section 4.3.1.2.2 for details.

 SOT (start of transaction) (0b00)

 MOT (Middle of transaction) (0b01)

 EOT (end of transaction)(0b10)

 ABT (abort)(0b11)

6.2. Type Length Value (TLV) Structuring

 TLVs are extensively used by the ForCES protocol. TLVs have some
 very nice properties which make them a good candidate for encoding
 the XML definitions of the LFB class model. These are:

 o Providing for binary type-value encoding that is close to the XML
 string tag-value scheme.

 o Allowing for fast generalized binary-parsing functions.

 o Allowing for forward and backward tag compatibility. This is
 equivalent to the XML approach i.e old applications can ignore new
 TLVs and newer applications can ignore older TLVs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV Type | TLV Length |
 +-+
 | Value (Essentially the TLV Data) |
 ~ ~
 ~ ~
 +-+

 Figure 14: TLV Representation

Doria, et al. Expires August 5, 2007 [Page 38]

Internet-Draft ForCES February 2007

 TLV Type (16):
 The TLV type field is two octets, and semantically
 indicates the type of data encapsulated within the
 TLV.

 TLV Length (16):
 The TLV length field is two octets, and includes the
 length of the TLV type (2 octets), TLV Length (2
 octets), and the length of the TLV data found in the
 value field, in octets. Note that this length is
 the actual length of the value, before any padding
 for alignment is added.

 TLV Value (variable):
 The TLV value field carries the data. For
 extensibility, the TLV value may in fact be a TLV.
 Padding is required when the length is not a
 multiple of 32 bits, and is the minimum number of
 bytes required to bring the TLV to a multiple of 32
 bits. The length of the value before padding is
 indicated by the TLV Length field. Note: The value
 field could be empty which implies the minimal
 length a TLV could be is 4 (length of "T" field and
 length of "L" field).

6.2.1. Nested TLVs

 TLV values can be other TLVs. This provides the benefits of protocol
 flexibility (being able to add new extensions by introducing new TLVs
 when needed). The nesting feature also allows for a conceptual
 optimization with the XML LFB definitions to binary PL representation
 (represented by nested TLVs).

6.2.2. Scope of the T in TLV

 The "Type" values in the TLV are global in scope. This means that
 wherever TLVs occur in the PDU, a specific Type value refers to the
 same Type of TLV. This is a design choice that was made to ease
 debugging of the protocol.

6.3. ILV

 A slight variation of the TLV known as the ILV. This sets the type
 ("T") to be a 32-bit local index that refers to a ForCES element ID.
 (refer to Section 6.4.1). The Length part of the ILV is fixed at 32
 bits.

Doria, et al. Expires August 5, 2007 [Page 39]

Internet-Draft ForCES February 2007

 +-+
 | Identifier |
 +-+
 | Length |
 +-+
 | Value |
 . .
 +-+

 Figure 15: ILV Representation

 It should be noted that the "I" values are of local scope and are
 defined by the data declarations from the LFB definition. Refer to

Section 7.1.1.1.8 for discussions on usage of ILVs.

6.4. Important Protocol encapsulations

 In this section, we review a few encapsulation concepts that are used
 by the ForCES protocol for its operations.

 We briefly re-introduce two concepts, Paths and Keys, from the model
 draft [FE-MODEL] in order to provide context. The reader is refered
 to [FE-MODEL] for a lot of the finer details.

 For readability reasons, we introduce the encapsulation schemes that
 are used to carry content in a protocol message, namely FULLDATA,
 SPARSEDATA, and RESULT TLVs.

6.4.1. Paths

 The model draft [FE-MODEL] defines an XML-based language that allows
 for a formal definition of LFBs. This is similar to the relationship
 between ASN.1 and SNMP MIB definition (MIB being analogous to the LFB
 and ASN.1 being analogous to the XML model language). Any entity
 that the CE configures on an FE MUST be formally defined in an LFB.
 These entities could be scalars (e.g., a 32-bit IPv4 address) or
 vectors (such as a nexthop table). Each entity within the LFB is
 given a numeric 32-bit identifier known as an "element id". This
 scheme allows the attribute to be "addressed" in a protocol
 construct.

 These addressable entities could be hierachical (e.g., a table column
 or a cell within a table row). In order to address hierachical data,
 the concept of a path is introduced by the model [FE-MODEL]. A path
 is a series of 32-bit element IDs which are typically presented in a
 dot-notation (e.g., 1.2.3.4). The protocol grammar (Section 7.1)
 formally defines how paths are used to reference data that is being
 encapsulated within a protocol message.

Doria, et al. Expires August 5, 2007 [Page 40]

Internet-Draft ForCES February 2007

6.4.2. Keys

 The model draft [FE-MODEL] defines two ways to address table rows.
 The standard/common mechanism is to allow table rows to be referenced
 by a 32-bit index. The secondary mechanism is via Keys which allow
 for content addressing. An example key is a multi-field content key
 that uses the IP address and prefix length to uniquely reference an
 IPv4 routing table row. In essence, while the common scheme to
 address a table row is via its table index, a table row's path could
 be derived from a key. The KEYINFO TLV (Section 7.1) is used to
 carry the data that is used to do the lookup.

6.4.3. DATA TLVs

 Data from or to the FE is carried in two types of TLVs: FULLDATA TLV
 and SPARSEDATA TLV. Responses on operations executed by the FE are
 carried in RESULT TLVs.

 In FULLDATA TLV, the data is encoded in such a way that a receiver of
 such data, by virtue of being armed with knowledge of the path and
 the LFB definition, can infer or correlate the TLV "Value" contents.
 This is essentially an optimization that helps reduce the amount of
 description required for the transported data in the protocol
 grammar. Refer to Appendix C for an example of FULLDATA TLVs.

 A number of operations in ForCES will need to reference optional data
 within larger structures. The SPARSEDATA TLV encoding is provided to
 make it easier to encapsulate optionally appearing data elements.
 Refer to Appendix C for an example of SPARSEDATA TLV.

 RESULT TLVs carry responses back from the FE based on a config issued
 by the CE. Refer to Appendix C for examples of RESULT TLVs and

Section 7.1.1.1.7 for layout.

6.4.4. Addressing LFB entities

Section 6.4.1 and Section 6.4.2 discuss how to target an entity
 within an LFB. However, the addressing mechanism used requires that
 an LFB type and instance is selected first. The LFB Selector is used
 to select an LFB type and instance being targeted. The protocol
 grammar (Section 7.1) goes into more details; for our purpose, we
 illustrate this concept using Figure 16 below. More examples of
 layouts can be found reading further into the text (Example:
 Figure 21).

Doria, et al. Expires August 5, 2007 [Page 41]

Internet-Draft ForCES February 2007

 main hdr (Message type: example "config")
 |
 |
 |
 +- T = LFBselect
 |
 +-- LFBCLASSID (unique per LFB defined)
 |
 |
 +-- LFBInstance (runtime configuration)
 |
 +-- T = An operation TLV describes what we do to an entity
 | //Refer to the OPERSELECT values enumerated below
 | //the TLVs that can be used for operations
 |
 |
 +--+-- one or more path encodings to target an entity
 | // Refer to the discussion on keys and paths
 |
 |
 +-- The associated data, if any, for the entity
 // Refer to discussion on FULL/SPARSE DATA TLVs

 Figure 16: Entity Addressing

Doria, et al. Expires August 5, 2007 [Page 42]

Internet-Draft ForCES February 2007

7. Protocol Construction

7.1. Protocol Grammar

 The protocol construction is formally defined using a BNF-like syntax
 to describe the structure of the PDU layout. This is matched to a
 precise binary format later in the document.

 Since the protocol is very flexible and hierarchical in nature, it is
 easier at times to see the visualization layout. This is provided in

Section 7.1.2

7.1.1. Protocol BNF

 The format used is based on [RFC2234]. The terminals of this grammar
 are flags, IDcount, IDs, KEYID, and encoded data, described after the
 grammar.

 1. A TLV will have the word "-TLV" suffix at the end of its name

 2. An ILV will have the word "-ILV" suffix at the end of its name

 3. / is used to separate alternatives

 4. parenthesized elements are treated as a single item

 5. * before an item indicates 0 or more repetitions

 6. 1* before an item indicates 1 or more repetitions

 7. [] around an item indicates that it is optional (equal to 1*)

 The BNF of the PL level PDU is as follows:

https://datatracker.ietf.org/doc/html/rfc2234

Doria, et al. Expires August 5, 2007 [Page 43]

Internet-Draft ForCES February 2007

 PL level PDU := MAINHDR MAINSELECT
 MAINHDR := The PL PDU header defined in section "Common Header"
 MAINSELECT := ASSOCIATION / ASSOCIATION-RESP / ASSOCIATION-TEAR /
 CONFIG / CONFIG-RESP / QUERY / QUERY-RESP /
 EVENT / REDIRECT / HEARTBEAT
 ASSOCIATION := LFBselect-TLV
 ASSOCIATION-RESP := ASResult-TLV
 ASSOCIATION-TEAR := ASTreason-TLV
 CONFIG := 1*[LFBselect-TLV]
 CONFIG-RESP := 1*[LFBselect-TLV]
 QUERY := LFBselect-TLV
 QUERY-RESP := LFBselect-TLV
 EVENT := LFBselect-TLV
 REDIRECT := REDIRECT-TLV
 HEARTBEAT := empty message as described in section "Heartbeat Message"
 LFBselect-TLV := LFBCLASSID LFBInstance 1*OPERSELECT
 LFBCLASSID := the LFB Class ID
 LFBInstance := the instance of the LFB class
 ASResult-TLV := carries the Association Setup result code
 ASTreason-TLV := carries the Association Teardown reason
 OPERSELECT := 1*PATH-DATA-TLV
 PATH-DATA-TLV := PATH [DATA]
 PATH := flags IDcount IDs [SELECTOR]
 SELECTOR := KEYINFO-TLV
 DATA := FULLDATA-TLV / SPARSEDATA-TLV / RESULT-TLV /
 1*PATH-DATA-TLV
 KEYINFO-TLV := Keyid FULLDATA-TLV
 FULLDATA-TLV := encoded data element which may nest
 further FULLDATA-TLVs
 SPARSEDATA-TLV := encoded data that may have optionally
 appearing elements
 RESULT-TLV := Holds result code and optional FULLDATA-TLV

 Figure 17: BNF of PL level PDU

 o MAINHDR defines a message type, Target FE/CE ID etc. The MAINHDR
 also defines the content. As an example the content of a "config"
 message would be different from an "association" message. The
 table below illustrates the different message types.

Doria, et al. Expires August 5, 2007 [Page 44]

Internet-Draft ForCES February 2007

 +----------------------------+--------------+---------------+
 | Message Name | Numeric Type | Reference |
 +----------------------------+--------------+---------------+
 | Association Setup | 0x1 | Section 7.4.1 |
 | | | |
 | Association Setup Response | 0x11 | Section 7.4.2 |
 | | | |
 | Association Teardown | 0x02 | Section 7.4.3 |
 | | | |
 | Config | 0x03 | Section 7.5.1 |
 | | | |
 | Config Response | 0x13 | Section 7.5.2 |
 | | | |
 | Query | 0x04 | Section 7.6.1 |
 | | | |
 | Query Response | 0x14 | Section 7.6.2 |
 | | | |
 | Event Notification | 0x05 | Section 7.7 |
 | | | |
 | Packet Redirect | 0x06 | Section 7.8 |
 | | | |
 | Heartbeat | 0x0F | Section 7.9 |
 +----------------------------+--------------+---------------+

 Table 1

 o MAINSELECT is a place holder to select one of several TLVs that
 could follow the common header. The appearance of these TLVs is
 message type specific and is demonstrated in the table below.

Doria, et al. Expires August 5, 2007 [Page 45]

Internet-Draft ForCES February 2007

 +----------------+------------+-------------------------------------+
 | Message | MAINSELECT | OPERSELECT |
 +----------------+------------+-------------------------------------+
Association	LFBselect	REPORT
Setup		
Association	ASRresult	None
Setup Response		
Association	ASTreason	None
Teardown		
Config	LFBselect	SET, DEL, COMMIT, SET-PROPERTY
Config	LFBselect	SET-RESPONSE, DEL-RESPONSE,
Response		SET-PROPERTY-RESPONSE,
		COMMIT-RESPONSE
Query	LFBselect	GET, GET-PROPERTY
Query Response	LFBselect	GET-RESPONSE, GET-PROPERTY-RESPONSE
Event	LFBselect	REPORT
Notification		
Packet	Redirect	None
Redirect		
Heartbeat	None	None
 +----------------+------------+-------------------------------------+

 Table 2

 o When an LFB class is defined, it is assigned a unique value as an
 identifier. LFBCLASSID contains such an identifier.

 o LFBInstance is the identifier of a particular instance of an LFB
 class.

 o OPERSELECT is a place holder in the grammar to select the TLV to
 uniquely identify the type of operation.

 o LFBselect is a TLV that is used by some messages as shown in the
 grammar above. Table 2 illustrates what each message type could
 have in terms of MAINSELECT and OPERSELECT restrictions.

 o PATH-DATA-TLV identifies the exact element targeted and may have
 zero or more paths associated with it. The last PATH-DATA-TLV in

Doria, et al. Expires August 5, 2007 [Page 46]

Internet-Draft ForCES February 2007

 the case of nesting of paths via the DATA construct in the case of
 SET, SET-PROPERTY requests and GET-RESPONSE/GET-PROPERTY-RESPONSE
 is terminated by encoded data or response in the form of either
 FULLDATA-TLV or SPARSEDATA-TLV or RESULT-TLV.

 o PATH provides the path to the data being referenced.

 * flags (16 bits) are used to further refine the operation to be
 applied on the Path. More on these later.

 * IDcount(16 bit): count of 32 bit IDs

 * IDs: zero or more 32bit IDs (whose count is given by IDcount)
 defining the main path. Depending on the flags, IDs could be
 field IDs only or a mix of field and dynamic IDs. Zero is used
 for the special case of using the entirety of the containing
 context as the result of the path.

 o SELECTOR is an optional construct that further defines the PATH.
 Currently, the only defined selector is the KEYINFO-TLV, used for
 selecting an array entry by the value of a key field. The
 presence of a SELECTOR is correct only when the flags also
 indicate its presence. A mismatch is a protocol format error.

 o A KEYINFO TLV contains information used in content keying.

 * A KeyID is used in a KEYINFO TLV. It indicates which key for
 the current array is being used as the content key for array
 entry selection.

 * The key's data is the data to look for in the array, in the
 fields identified by the key field. The information is encoded
 according to the rules for the contents of a FULLDATA-TLV, and
 represent the field or fields which make up the key identified
 by the KEYID.

 o DATA may contain a FULLDATA-TLV, SPARSEDATA-TLV, a RESULT-TLV or 1
 or more further PATH-DATA selection. FULLDATA and SPARSEDATA are
 only allowed on SET or SET-PROPERTY requests, or on responses
 which return content information (GET-RESPONSE for example).
 PATH-DATA may be included to extend the path on any request.

 * Note: Nested PATH-DATA TLVs are supported as an efficiency
 measure to permit common subexpression extraction.

 * FULLDATA and SPARSEDATA contain "the data" whose path has been
 selected by the PATH. Refer to Section 7.1.1.1 for details.

Doria, et al. Expires August 5, 2007 [Page 47]

Internet-Draft ForCES February 2007

 * The following table summarizes the applicability and
 restrictions of the FULL/SPARSEDATA TLV and the RESULT TLV to
 the OPERSELECTs.

 +-----------------------+-------------+----------------+------------+
 | OPERSELECT | FULLDATA | SPARSEDATA TLV | RESULT TLV |
 | | TLV | | |
 +-----------------------+-------------+----------------+------------+
SET	MAY	MAY	MUST NOT
SET-PROPERTY	MAY	MAY	MUST NOT
SET-RESPONSE	MAY	MUST NOT	MUST
SET-PROPERTY-RESPONSE	MAY	MAY	MUST NOT
DEL	MAY	MAY	MUST NOT
DEL-RESPONSE	MAY	MUST NOT	MUST
GET	MUST NOT	MUST NOT	MUST NOT
GET-PROPERTY	MUST NOT	MUST NOT	MUST NOT
GET-RESPONSE	MUST	MUST NOT	MAY
GET-PROPERTY-RESPONSE	MUST	MUST NOT	MAY
REPORT	MAY	MUST NOT	MUST NOT
COMMIT	MUST NOT	MUST NOT	MUST NOT
COMMIT-RESPONSE	MUST NOT	MUST NOT	MAY
 +-----------------------+-------------+----------------+------------+

 Table 3

 o RESULT contains the indication of whether the individual SET or
 SET-PROPERTY succeeded. If there is a request for verbose
 response, then SET-RESPONSE or SET-PROPERTY-RESPONSE will also
 contain the FULLDATA TLV showing the data that was set. RESULT-
 TLV is included on the assumption that individual parts of a SET
 request can succeed or fail separately.

 In summary this approach has the following characteristic:

Doria, et al. Expires August 5, 2007 [Page 48]

Internet-Draft ForCES February 2007

 o There can be one or more LFB class ID and instance ID combination
 targeted in a message (batch)

 o There can one or more operations on an addressed LFB class ID/
 instance ID combination (batch)

 o There can be one or more path targets per operation (batch)

 o Paths may have zero or more data values associated (flexibility
 and operation specific)

 It should be noted that the above is optimized for the case of a
 single LFB class ID and instance ID targeting. To target multiple
 instances within the same class, multiple LFBselects are needed.

7.1.1.1. Discussion on encoding

Section 6.4.3 discusses the two types of DATA encodings (FULLDATA and
 SPARSEDATA TLV) and the justifications for their existence. In this
 section we explain how they are encoded.

7.1.1.1.1. Data Packing Rules

 The scheme for encoding data used in this doc adheres to the
 following rules:

 o The Value ("V" of TLV) of FULLDATA TLV will contain the data being
 transported. This data will be as was described in the LFB
 definition.

 o Variable sized data within a FULLDATA TLV will be encapsulated
 inside another FULLDATA TLV inside the V of the outer TLV. For
 example of such a setup refer to Appendix C and Appendix D

 o In the case of FULLDATA TLVs:

 * When a table is referred to in the PATH (IDs) of a PATH-DATA-
 TLV, then the FULLDATA's "V" will contain that table's row
 content prefixed by its 32 bit index/subscript. On the other
 hand, when PATH flags are 00, the PATH may contain an index
 pointing to a row in table; in such a case, the FULLDATA's "V"
 will only contain the content with the index in order to avoid
 ambiguity.

Doria, et al. Expires August 5, 2007 [Page 49]

Internet-Draft ForCES February 2007

7.1.1.1.2. Path Flags

 The following flags are currently defined:

 o SELECTOR Bit: F_SELKEY indicates that a KEY Selector is present
 following this path information, and should be considered in
 evaluating the path.

 o FIND-EMPTY Bit: This must not be set if the F_SEL_KEY bit is set.
 This must only be used on a create operation. If set, this
 indicates that although the path identifies an array, the SET
 operation should be applied to the first unused element in the
 array. The result of the operation will not have this flag set,
 and will have the assigned index in the path.

 Example: For a given LFB class, the path 2.5 might select an
 array in a structure. If one wanted to set element 6 in this
 array, then the path 2.5.6 would define that element. However
 if one wanted to create an element in the first empty spot in
 the array, the CE would then send the TLV with the FIND-EMPTY
 bit set with the path set to 2.5. Essentially,this is an
 optimization so as to not require the CE to fully track all the
 tables.

7.1.1.1.3. Relation of operational flags with global message flags

 Global flags, such as the execution mode and the atomicity indicators
 defined in the header, apply to all operations in a message. Global
 flags provide semantics that are orthogonal to those provided by the
 operational flags, such as the flags defined in Path Data. The scope
 of operational flags is restricted to the operation.

7.1.1.1.4. Content Path Selection

 The KEYINFO TLV describes the KEY as well as associated KEY data.
 KEYs, used for content searches, are restricted and described in the
 LFB definition.

7.1.1.1.5. LFBselect-TLV

 The LFBselect TLV is an instance of a TLV as defined in Section 6.2.
 The definition is as below:

Doria, et al. Expires August 5, 2007 [Page 50]

Internet-Draft ForCES February 2007

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = LFBselect | Length |
 +-+
 | LFB Class ID |
 +-+
 | LFB Instance ID |
 +-+
 | OPERSELECT |
 . .
 +-+
 ~ ... ~
 +-+
 | OPERSELECT |
 . .
 +-+

 Figure 18: PL PDU layout

 Type:
 The type of the TLV is "LFBselect"

 Length:
 Length of the TLV including the T and L fields, in octets.

 LFB Class ID:
 This field uniquely recognizes the LFB class/type.

 LFB Instance ID:
 This field uniquely identifies the LFB instance.

 OPERSELECT:
 It describes an operation nested in the LFBselect TLV. Note that
 usually there SHOULD be at least one OPERSELECT present for an
 LFB select TLV, but for the Association Setup Message defined in

Section 7.4.1. the OPERSELECT is optional.

7.1.1.1.6. OPERSELECT

 The OPERSELECT is a place holder in the grammar for TLVs that define
 operations. The different types are defined in Table 4, below.

Doria, et al. Expires August 5, 2007 [Page 51]

Internet-Draft ForCES February 2007

 +-----------------------+--------+----------------------------------+
 | OPERSELECT | TLV | Comments |
 | | "Type" | |
 +-----------------------+--------+----------------------------------+
SET	0x0001	From CE to FE. Used to create
		or add or update attributes
SET-PROPERTY	0x0002	From CE to FE. Used to create
		or add or update attributes
SET-RESPONSE	0x0003	From FE to CE. Used to carry
		response of a SET
SET-PROPERTY-RESPONSE	0x0004	From FE to CE. Used to carry
		response of a SET-PROPERTY
DEL	0x0005	From CE to FE. Used to delete
		or remove an attribute
DEL-RESPONSE	0x0006	From FE to CE. Used to carry
		response of a DEL
GET	0x0007	From CE to FE. Used to retrieve
		an attribute
GET-PROPERTY	0x0008	From CE to FE. Used to retrieve
		an attribute property
GET-RESPONSE	0x0009	From FE to CE. Used to carry
		response of a GET
GET-PROPERTY-RESPONSE	0x000A	From FE to CE. Used to carry
		response of a GET-PROPERTY
REPORT	0x000B	From FE to CE. Used to carry an
		asynchronous event
COMMIT	0x000C	From CE to FE. Used to issue a
		commit in a 2PC transaction
COMMIT-RESPONSE	0x000D	From an FE to CE. Used to
		confirm a commit in a 2PC
		transaction
 +-----------------------+--------+----------------------------------+

 Table 4

 Different messages define OPERSELECT are valid and how they are used

Doria, et al. Expires August 5, 2007 [Page 52]

Internet-Draft ForCES February 2007

 (refer to Table 2 and Table 3).

 SET, SET-PROPERTY, and GET/GET-PROPERTY requests are issued by the CE
 and do not carry RESULT TLVs. On the other hand, SET-RESPONSE, SET-
 PROPERTY-RESPONSE and GET-RESPONSE/GET-PROPERTY-RESPONSE carry RESULT
 TLVs.

 A GET-RESPONSE in response to a successful GET will have FULLDATA
 TLVs added to the leaf paths to carry the requested data. For GET
 operations that fail, instead of the FULLDATA TLV there will be a
 RESULT TLV.

 For a SET-RESPONSE/SET-PROPERTY-RESPONSE, each FULLDATA or SPARSEDATA
 TLV in the original request will be replaced with a RESULT TLV in the
 response. If the request set the FailureACK flag, then only those
 items which failed will appear in the response. If the request was
 for AlwaysACK, then all elements of the request will appear in the
 response with RESULT TLVs.

 Note that if a SET/SET-PROPERTY request with a structure in a
 FULLDATA is issued, and some field in the structure is invalid, the
 FE will not attempt to indicate which field was invalid, but rather
 will indicate that the operation failed. Note further that if there
 are multiple errors in a single leaf PATH-DATA/FULLDATA, the FE can
 select which error it chooses to return. So if a FULLDATA for a SET/
 SET-PROPERTY of a structure attempts to write one field which is read
 only, and attempts to set another field to an invalid value, the FE
 can return indication of either error.

 A SET/SET-PROPERTY operation on a variable length element with a
 length of 0 for the item is not the same as deleting it. If the CE
 wishes to delete then the DEL operation should be used whether the
 path refers to an array element or an optional structure element.

7.1.1.1.7. Result TLV

 The RESULT TLV is an instance of TLV defined in Section 6.2. The
 definition is as below:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = RESULT | Length |
 +-+
 | Result Value | Reserved |
 +-+

 Figure 19: Result TLV

Doria, et al. Expires August 5, 2007 [Page 53]

Internet-Draft ForCES February 2007

 Defined Result Values

 +-----------------------------+-----------+-------------------------+
 | Result Value | Value | Definition |
 +-----------------------------+-----------+-------------------------+
E_SUCCESS	0x00	Success
E_INVALID_HEADER	0x01	Unspecified error with
		header.
E_LENGTH_MISMATCH	0x02	Header length field
		does not match actual
		packet length.
E_VERSION_MISMATCH	0x03	Unresolvable mismatch
		in versions.
E_INVALID_DESTINATION_PID	0x04	Destination PID is
		invalid for the message
		receiver.
E_LFB_UNKNOWN	0x05	LFB Class ID is not
		known by receiver.
E_LFB_NOT_FOUND	0x06	LFB Class ID is known
		by receiver but not
		currently in use.
E_LFB_INSTANCE_ID_NOT_FOUND	0x07	LFB Class ID is known
		but the specified
		instance of that class
		does not exist.
E_INVALID_PATH	0x08	The specified path is
		impossible.
E_ELEMENT_DOES_NOT_EXIST	0x09	The specified path is
		possible but the
		element does not exist
		(e.g., attempt to
		modify a table row that
		has not been created).

Doria, et al. Expires August 5, 2007 [Page 54]

Internet-Draft ForCES February 2007

E_EXISTS	0x0A	The specified object
		exists but it cannot
		exist for the operation
		to succeed (e.g.,
		attempt to add an
		existing LFB instance
		or array subscript).
E_NOT_FOUND	0x0B	The specified object
		does not exist but it
		must exist for the
		operation to succeed
		(e.g., attempt to
		delete a non-existing
		LFB instance or array
		subscript).
E_READ_ONLY	0x0C	Attempt to modify a
		read-only value.
E_INVALID_ARRAY_CREATION	0x0D	Attempt to create an
		array with an unallowed
		subscript.
E_VALUE_OUT_OF_RANGE	0x0E	Attempt to set a
		parameter to a value
		outside of its
		allowable range.
E_CONTENTS_TOO_LONG	0x0D	Attempt to write
		contents larger than
		the target object space
		(i.e., exceeding a
		buffer).
E_INVALID_PARAMETERS	0x10	Any other error with
		data parameters.
E_INVALID_MESSAGE_TYPE	0x11	Message type is not
		acceptable.
E_INVALID_FLAGS	0x12	Message flags are not
		acceptable for the
		given message type.
E_INVALID_TLV	0x13	A TLV is not acceptable
		for the given message
		type.

Doria, et al. Expires August 5, 2007 [Page 55]

Internet-Draft ForCES February 2007

E_EVENT_ERROR	0x14	Unspecified error while
		handling an event.
E_NOT_SUPPORTED	0x15	Attempt to perform a
		valid ForCES operation
		that is unsupported by
		the message receiver.
E_MEMORY_ERROR	0x16	A memory error occurred
		while processing a
		message (no error
		detected in the message
		itself)
E_INTERNAL_ERROR	0x17	An unspecified error
		occured while
		processing a message
		(no error detected in
		the message itself)
-	0x18-0xFE	Reserved
E_UNSPECIFIED_ERROR	0xFF	Unspecified error (for
		when the FE can not
		decide what went wrong)
 +-----------------------------+-----------+-------------------------+

 Table 5

7.1.1.1.8. DATA TLV

 A FULLDATA TLV has "T"= FULLDATA and a 16-bit Length followed by the
 data value/contents. Likewise, a SPARSEDATA TLV has "T" =
 SPARSEDATA, a 16-bit Length, followed by the data value/contents. In
 the case of the SPARSEDATA, each element in the Value part of the TLV
 will be further encapsulated in an ILV.

 Below are the encoding rules for the FULLDATA and SPARSEDATA TLVs.
Appendix C is very useful in illustrating these rules:

 1. Both ILVs and TLVs MUST be 32 bit aligned. Any padding bits used
 for the alignment MUST be zero on transmission and MUST be
 ignored upon reception.

 2. FULLDATA TLVs may be used at a particular path only if every
 element at that path level is present. In example 1(c) of

Appendix C this concept is illustrated by the presence of all
 elements of the structure S in the FULLDATA TLV encoding. This

Doria, et al. Expires August 5, 2007 [Page 56]

Internet-Draft ForCES February 2007

 requirement holds regardless of whether the fields are fixed or
 variable length, mandatory or optional.

 * If a FULLDATA TLV is used, the encoder MUST lay out data for
 each element in the same order in which the data was defined
 in the LFB specification. This ensures the decoder is able to
 retrieve the data. To use the example 1 again in Appendix C,
 this implies the encoder/decoder is assumed to have knowledge
 of how structure S is laid out in the definition.

 * In the case of a SPARSEDATA, it does not need to be ordered
 since the "I" in the ILV uniquely identifies the element.
 Examples 1(a) and 1(b) illustrate the power of SPARSEDATA
 encoding.

 3. Inside a FULLDATA TLV

 * The values for atomic, fixed-length fields are given without
 any TLV or ILV encapsulation.

 * The values for atomic, variable-length fields are given inside
 FULLDATA TLVs.

 4. Inside a SPARSEDATA TLV

 * The values for atomic fields may be given with ILVs (32-bit
 index, 32-bit length)

 5. Any of the FULLDATA TLVs can contain an ILV but an ILV cannot
 contain a FULLDATA. This is because it is hard to disambiguate
 ILV since an I is 32 bits and a T is 16 bits.

 6. A FULLDATA can also contain a FULLDATA for variable sized
 elements. The decoding disambiguation is assumed from rule #3
 above.

7.1.1.1.9. SET and GET Relationship

 It is expected that a GET-RESPONSE would satisfy the following:

 o It would have exactly the same path definitions as those sent in
 the GET. The only difference being a GET-RESPONSE will contain
 FULLDATA TLVs.

 o It should be possible to take the same GET-RESPONSE and convert it
 to a SET successfully by merely changing the T in the operational
 TLV.

Doria, et al. Expires August 5, 2007 [Page 57]

Internet-Draft ForCES February 2007

 o There are exceptions to this rule:

 1. When a KEY selector is used with a path in a GET operation,
 that selector is not returned in the GET-RESPONSE; instead the
 cooked result is returned. Refer to the examples using KEYS
 to see this.

 2. When dumping a whole table in a GET, the GET-RESPONSE that
 merely edits the T to be SET will end up overwriting the
 table.

7.1.2. Protocol Encoding Visualization

 The figure below shows a general layout of the PL PDU. A main header
 is followed by one or more LFB selections each of which may contain
 one or more operation.

Doria, et al. Expires August 5, 2007 [Page 58]

Internet-Draft ForCES February 2007

 main hdr (Config in this case)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID
 | |
 | |
 | +-- LFBInstance
 | |
 | +-- T = SET
 | | |
 | | +-- // one or more path targets
 | | // with their data here to be added
 | |
 | +-- T = DEL
 | . |
 | . +-- // one or more path targets to be deleted
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID
 | |
 | |
 | +-- LFBInstance
 | |
 | + -- T= SET
 | | .
 | | .
 | + -- T= DEL
 | | .
 | | .
 | |
 | + -- T= SET
 | | .
 | | .
 |
 |
 +--- T = LFBselect
 |
 +-- LFBCLASSID
 |
 +-- LFBInstance
 .
 .
 .

Doria, et al. Expires August 5, 2007 [Page 59]

Internet-Draft ForCES February 2007

 Figure 20: PL PDU logical layout

 The figure below shows a more detailed example of the general layout
 of the operation within a targeted LFB selection. The idea is to
 show the different nesting levels a path could take to get to the
 target path.

 T = SET
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | |
 | +- T = Path-data
 | |
 | + -- flags
 | + -- IDCount
 | + -- IDs
 | + -- T = KEYINFO
 | | + -- KEY_ID
 | | + -- KEY_DATA
 | |
 | + -- T = FULLDATA
 | + -- data
 |
 |
 T = SET
 | |
 | +- T = Path-data
 | | |
 | | + -- flags
 | | + -- IDCount
 | | + -- IDs
 | | |
 | | + -- T = FULLDATA
 | | + -- data
 | +- T = Path-data
 | |

Doria, et al. Expires August 5, 2007 [Page 60]

Internet-Draft ForCES February 2007

 | + -- flags
 | + -- IDCount
 | + -- IDs
 | |
 | + -- T = FULLDATA
 | + -- data
 T = DEL
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 |
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs
 + -- T = KEYINFO
 | + -- KEY_ID
 | + -- KEY_DATA
 +- T = Path-data
 |
 + -- flags
 + -- IDCount
 + -- IDs

 Figure 21: Sample operation layout

Appendix D shows a more concise set of use-cases on how the data
 encoding is done.

7.2. Core ForCES LFBs

 There are two LFBs that are used to control the operation of the
 ForCES protocol and to interact with FEs and CEs:

 o FE Protocol LFB

Doria, et al. Expires August 5, 2007 [Page 61]

Internet-Draft ForCES February 2007

 o FE Object LFB

 Although these LFBs have the same form and interface as other LFBs,
 they are special in many respects. They have fixed well-known LFB
 Class and Instance IDs. They are statically defined (no dynamic
 instantiation allowed) and their status cannot be changed by the
 protocol: any operation to change the state of such LFBs (for
 instance, in order to disable the LFB) must result in an error.
 Moreover, these LFBs must exist before the first ForCES message can
 be sent or received. All attributes in these LFBs must have pre-
 defined default values. Finally, these LFBs do not have input or
 output ports and do not integrate into the intra-FE LFB topology.

7.2.1. FE Protocol LFB

 The FE Protocol LFB is a logical entity in each FE that is used to
 control the ForCES protocol. The FE Protocol LFB Class ID is
 assigned the value 0x1. The FE Protocol LFB Instance ID is assigned
 the value 0x1. There MUST be one and only one instance of the FE
 Protocol LFB in an FE. The values of the attributes in the FE
 Protocol LFB have pre-defined default values that are specified here.
 Unless explicit changes are made to these values using Config
 messages from the CE, these default values MUST be used for correct
 operation of the protocol.

 The formal definition of the FE Protocol Object LFB can be found in
Appendix B.

7.2.1.1. FE Protocol capabilities

 FE Protocol capabilities are read-only.

7.2.1.1.1. SupportableVersions

 ForCES protocol version(s) supported by the FE

7.2.1.1.2. FE Protocol Attributes

 FE Protocol attributes (can be read and set).

7.2.1.1.2.1. CurrentRunningVersion

 Current running version of the ForCES protocol

Doria, et al. Expires August 5, 2007 [Page 62]

Internet-Draft ForCES February 2007

7.2.1.1.2.2. FEID

 FE unicast ID

7.2.1.1.2.3. MulticastFEIDs

 FE multicast ID(s) list - this is a list of multicast IDs that the FE
 belongs to. These IDs are configured by the CE.

7.2.1.1.2.4. CEHBPolicy

 CE heartbeat policy - This policy, along with the parameter 'CE
 Heartbeat Dead Interval (CE HDI)' as described below defines the
 operating parameters for the FE to check the CE liveness. The policy
 values with meanings are listed as below:

 o 0 (default) - This policy specifies that the CE will send a
 Heartbeat Message to the FE(s) whenever the CE reaches a time
 interval within which no other PL messages were sent from the CE
 to the FE(s); refer to Section 4.3.3 and Section 7.9 for details.
 The CE HDI attribute as described below is tied to this policy.

 o 1 - The CE will not generate any HB messages. This actually means
 CE does not want the FE to check the CE liveness.

 o Others - reserved.

7.2.1.1.2.5. CEHDI

 CE Heartbeat Dead Interval (CE HDI) - The time interval the FE uses
 to check the CE liveness. If FE has not received any messages from
 CE within this time interval, FE deduces lost connectivity which
 implies that the CE is dead or the association to the CE is lost.
 Default value 30 s.

7.2.1.1.2.6. FEHBPolicy

 FE heartbeat policy - This policy, along with the parameter 'FE
 Heartbeat Interval (FE HI)', defines the operating parameters for how
 the FE should behave so that the CE can deduce its liveness. The
 policy values and the meanings are:

 o 0 (default) - The FE should not generate any Heartbeat messages.
 In this scenario, the CE is responsible for checking FE liveness
 by setting the PL header ACK flag of the message it sends to
 AlwaysACK. The FE responds to CE whenever CE sends such Heartbeat
 Request Message. Refer to Section 7.9 and Section 4.3.3 for
 details.

Doria, et al. Expires August 5, 2007 [Page 63]

Internet-Draft ForCES February 2007

 o 1 - This policy specifies that FE must actively send a Heartbeat
 Message if it reaches the time interval assigned by the FE HI as
 long as no other messages were sent from FE to CE during that
 interval as described in Section 4.3.3.

 o Others - Reserved.

7.2.1.1.2.7. FEHI

 FE Heartbeat Interval (FE HI) - The time interval the FE should use
 to send HB as long as no other messages were sent from FE to CE
 during that interval as described in Section 4.3.3. The default
 value for an FE HI is 500ms.

7.2.1.1.2.8. CEID

 Primary CEID - The CEID that the FE is associated with.

7.2.1.1.2.9. LastCEID

 Last Primary CEID - The CEID of the last CE that that the FE
 associated with. This CE ID is reported to the new Primary CEID.

7.2.1.1.2.10. BackupCEs

 The list of backup CEs an FE can use as backups. Refer to Section 8
 for details.

7.2.1.1.2.11. CEFailoverPolicy

 CE failover policy - This specifies the behavior of the FE when the
 association with the CE is lost. There is a very tight relation
 between CE failover policy and Section 7.2.1.1.2.8,

Section 7.2.1.1.2.10, Section 7.2.1.1.2.12, and Section 8. When an
 association is lost, depending on configuration, one of the policies
 listed below is activated.

 o 0 (default) - FE should stop functioning immediately and
 transition to FE DOWN.

 o 1 - The FE should continue running and do what it can even without
 an associated CE. This basically requires that the FE support CE
 Graceful restart (and defines such support in its capabilities).
 If the CEFTI expires before the FE re-associates with either the
 primary (Section 7.2.1.1.2.8) or one of possibly several backup
 CEs (Section 7.2.1.1.2.10), the FE will go operationally down.

Doria, et al. Expires August 5, 2007 [Page 64]

Internet-Draft ForCES February 2007

 o Others - Reserved

7.2.1.1.2.12. CEFTI

 CE Failover Timeout Interval (CEFTI) - The time interval associated
 with the CE failover policy case '0' and '2'. The default value is
 set to 300 seconds. Note that it is advisable to set the CEFTI value
 much higher than the CE Heartbeat Dead Interval (CE HDI) since the
 effect of expiring this parameter is devastating to the operation of
 the FE.

7.2.1.1.2.13. FERestartPolicy

 FE restart policy - This specifies the behavior of the FE during an
 FE restart. The restart may be from an FE failure or other reasons
 that have made FE down and then need to restart. The values are
 defined as below:

 o 0(default)- Restart the FE from scratch. In this case, the FE
 should start from the pre-association phase.

 o others - Reserved for future use.

7.2.2. FE Object LFB

 The FE Object LFB is a logical entity in each FE and contains
 attributes relative to the FE itself, and not to the operation of the
 ForCES protocol.

 The formal definition of the FE Object LFB can be found in
 [FE-MODEL]. The model captures the high level properties of the FE
 that the CE needs to know to begin working with the FE. The class ID
 for this LFB Class is also assigned in [FE-MODEL]. The singular
 instance of this class will always exist, and will always have
 instance ID 0x1 within its class. It is common, although not
 mandatory, for a CE to fetch much of the attribute and capability
 information from this LFB instance when the CE begins controlling the
 operation of the FE.

7.3. Semantics of Message Direction

 Recall: The PL provides a master(CE)-Slave(FE) relationship. The
 LFBs reside at the FE and are controlled by CE.

 When messages go from the CE, the LFB Selector (Class and instance)
 refers to the destination LFB selection which resides in the FE.

 When messages go from the FE to the CE, the LFB Selector (Class and

Doria, et al. Expires August 5, 2007 [Page 65]

Internet-Draft ForCES February 2007

 instance) refers to the source LFB selection which resides in the FE.

7.4. Association Messages

 The ForCES Association messages are used to establish and teardown
 associations between FEs and CEs.

7.4.1. Association Setup Message

 This message is sent by the FE to the CE to setup a ForCES
 association between them.

 Message transfer direction:
 FE to CE

 Message header:
 The Message Type in the header is set MessageType=
 'AssociationSetup'. The ACK flag in the header MUST be ignored,
 and the association setup message always expects to get a response
 from the message receiver (CE), whether the setup is successful or
 not. The correlator field in the header is set, so that FE can
 correlate the response coming back from the CE correctly. The FE
 may set the source ID to 0 in the header to request that the CE
 should assign an FE ID for the FE in the setup response message.

 Message body:
 The association setup message body optionally consists of zero,
 one or two LFBselect TLVs, as described in Section 7.1.1.1.5. The
 Association Setup message only operates on the FE Object and FE
 Protocol LFBs, therefore, the LFB class ID in the LFBselect TLV
 only points to these two kinds of LFBs.

 The OPERSELECT in the LFBselect TLV is defined as a 'REPORT'
 operation. More than one attribute may be announced in this
 message using REPORT operation to let the FE declare its
 configuration parameters in an unsolicited manner. These may
 contain attributes suggesting values such as the FE HB Interval,
 or the FEID. The OPERSELECT used is defined below.

 OPERSELECT for Association Setup:

 +-+
 | Type = REPORT | Length |
 +-+
 | PATH-DATA-TLV for REPORT |
 +-+

Doria, et al. Expires August 5, 2007 [Page 66]

Internet-Draft ForCES February 2007

 Figure 22: OPERSELECT

 Type:
 Only one operation type is defined for the association setup
 message:

 Type = "REPORT" - this type of operation is for FE to
 report something to CE.

 PATH-DATA-TLV for REPORT:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for REPORT operation MAY contain
 FULLDATA-TLV(s) but SHALL NOT contain any RESULT-TLV in the data
 format. The RESULT-TLV is defined in Section 7.1.1.1.7 and the
 FULLDATA-TLV is defined in Section 7.1.1.1.8.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

 main hdr (type = Association Setup)
 |
 |
 +--- T = LFBselect
 | |
 | +-- LFBCLASSID = FE object
 | |
 | |
 | +-- LFBInstance = 0x1
 |
 +--- T = LFBselect
 |
 +-- LFBCLASSID = FE Protocol object
 |
 |
 +-- LFBInstance = 0x1
 |
 +---OPERSELECT = REPORT
 |
 +-- Path-data to one or more attributes

 Figure 23: PDU Format For Association Setup

Doria, et al. Expires August 5, 2007 [Page 67]

Internet-Draft ForCES February 2007

7.4.2. Association Setup Response Message

 This message is sent by the CE to the FE in response to the Setup
 message. It indicates to the FE whether the setup is successful or
 not, i.e., whether an association is established.

 Message transfer direction:
 CE to FE

 Message Header:
 The Message Type in the header is set MessageType=
 'AssociationSetupResponse'. The ACK flag in the header MUST be
 ignored, and the setup response message never expects to get any
 more responses from the message receiver (FE). The destination
 ID in the header will be set to the source ID in the
 corresponding association setup message, unless that source ID
 was 0. If the corresponding source ID was 0, then the CE will
 assign an FE ID value and use that value for the destination ID.

 Message body:
 The Association Setup Response message body only consists of one
 TLV, the Association Result TLV, the format of which is as
 follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = ASRresult | Length |
 +-+
 | Association Setup Result |
 +-+

 Figure 24: ASResult OPERSELECT

 Type (16 bits):
 The type of the TLV is "ASResult".

 Length (16 bits):
 Length of the TLV including the T and L fields, in octets.

 Association Setup Result (32 bits):
 This indicates whether the setup msg was successful or whether
 the FE request was rejected by the CE. the defined values are:

 0 = success

Doria, et al. Expires August 5, 2007 [Page 68]

Internet-Draft ForCES February 2007

 1 = FE ID invalid

 2 = permission denied

7.4.3. Association Teardown Message

 This message can be sent by the FE or CE to any ForCES element to end
 its ForCES association with that element.

 Message transfer direction:
 CE to FE, or FE to CE (or CE to CE)

 Message Header:
 The Message Type in the header is set MessageType=
 "AssociationTeardown". The ACK flag MUST be ignored. The
 correlator field in the header MUST be set to zero and MUST be
 ignored by the receiver.

 Message Body:
 The association teardown message body only consists of one TLV,
 the Association Teardown Reason TLV, the format of which is as
 follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = ASTreason | Length |
 +-+
 | Teardown Reason |
 +-+

 Figure 25: ASTreason TLV

 Type (16 bits):
 The type of the TLV is "ASTreason".

 Length (16 bits):
 Length of the TLV including the T and L fields, in octets.

 Teardown Reason (32 bits):
 This indicates the reason why the association is being
 terminated. Several reason codes are defined as follows.

 0 - normal teardown by administrator

Doria, et al. Expires August 5, 2007 [Page 69]

Internet-Draft ForCES February 2007

 1 - error - loss of heartbeats

 2 - error - out of bandwidth

 3 - error - out of memory

 4 - error - application crash

 255 - error - other or unspecified

7.5. Configuration Messages

 The ForCES Configuration messages are used by CE to configure the FEs
 in a ForCES NE and report the results back to the CE.

7.5.1. Config Message

 This message is sent by the CE to the FE to configure LFB attributes
 in the FE. This message is also used by the CE to subscribe/
 unsubscribe to LFB events.

 As usual, a config message is composed of a common header followed by
 a message body that consists of one or more TLV data format.
 Detailed description of the message is as below.

 Message transfer direction:
 CE to FE

 Message Header:
 The Message Type in the header is set MessageType= 'Config'. The
 ACK flag in the header can be set to any value defined in

Section 6.1, to indicate whether or not a response from FE is
 expected by the message.

 Message body:
 The config message body MUST consist of at least one LFBselect
 TLV as described in Section 7.1.1.1.5. The OPERSELECT in the
 LFBselect TLV is defined below.

 OPERSELECT for Config:

 +-+
 | Type | Length |
 +-+
 | PATH-DATA-TLV |
 +-+

Doria, et al. Expires August 5, 2007 [Page 70]

Internet-Draft ForCES February 2007

 Figure 26: OPERSELECT for Config

 Type:
 The operation type for config message. two types of operations
 for the config message are defined:

 Type = "SET" - this operation is to set LFB attributes

 Type = "SET-PROPERTY" - this operation is to set LFB
 attribute properties

 Type = "DEL" - this operation to delete some LFB
 attributes

 Type = "COMMIT" - this operation is sent to the FE to
 commit in a 2pc transaction. A COMMIT TLV is an empty TLV
 i.e it has no "V"alue. In other words, There is a Length
 of 4 (which is for the header only).

 PATH-DATA-TLV:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for SET/
 SET-PROPERTY operation is that it MUST contain either a FULLDATA
 or SPARSEDATA TLV(s), but MUST NOT contain any RESULT-TLV. The
 restriction on the use of PATH-DATA-TLV for DEL operation is it
 MAY contain FULLDATA or SPARSEDATA TLV(s), but MUST NOT contain
 any RESULT-TLV. The RESULT-TLV is defined in Section 7.1.1.1.7
 and FULLDATA and SPARSEDATA TLVs is defined in Section 7.1.1.1.8.

 *Note: For Event subscription, the events will be defined by the
 individual LFBs.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

Doria, et al. Expires August 5, 2007 [Page 71]

Internet-Draft ForCES February 2007

 main hdr (type = Config)
 |
 |
 +--- T = LFBselect
 . |
 . +-- LFBCLASSID = target LFB class
 . |
 |
 +-- LFBInstance = target LFB instance
 |
 |
 +-- T = operation { SET }
 | |
 | +-- // one or more path targets
 | // associated with FULL or SPARSEDATA TLV(s)
 |
 +-- T = operation { DEL }
 | |
 | +-- // one or more path targets

 Figure 27: PDU Format for Config

7.5.2. Config Response Message

 This message is sent by the FE to the CE in response to the Config
 message. It indicates whether the Config was successful or not on
 the FE and also gives a detailed response regarding the configuration
 result of each attribute.

 Message transfer direction:
 FE to CE

 Message Header:
 The Message Type in the header is set MessageType= 'Config
 Response'. The ACK flag in the header is always ignored, and the
 Config Response message never expects to get any further response
 from the message receiver (CE).

 Message body:
 The Config message body MUST consist of at least one LFBselect
 TLV as described in Section 7.1.1.1.5. The OPERSELECT in the
 LFBselect TLV is defined below.

Doria, et al. Expires August 5, 2007 [Page 72]

Internet-Draft ForCES February 2007

 OPERSELECT for Config Response:

 +-+
 | Type | Length |
 +-+
 | PATH-DATA-TLV |
 +-+

 Figure 28: OPERSELECT for Config Response

 Type:
 The operation type for Config Response message. Two types of
 operations for the Config Response message are defined:

 Type = "SET-RESPONSE" - this operation is for the response
 of SET operation of LFB attributes

 Type = "SET-PROPERTY-RESPONSE" - this operation is for the
 response of SET-PROPERTY operation of LFB attribute
 properties

 Type = "DEL-RESPONSE" - this operation is for the response
 of the DELETE operation of LFB attributes

 Type = "COMMIT-RESPONSE" - this operation is sent to the
 CE to confirm a commit success in a 2pc transaction. A
 COMMIT-RESPONSE TLV is an empty TLV i.e., it has no
 "V"alue. In other words, there is a length of 4 (which is
 for the header only).

 PATH-DATA-TLV:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for SET-
 RESPONSE operation is that it MUST contain RESULT-TLV(s). The
 restriction on the use of PATH-DATA-TLV for DEL-RESPONSE
 operation is it also MUST contain RESULT-TLV(s). The RESULT-TLV
 is defined in Section 7.1.1.1.7.

7.6. Query Messages

 The ForCES query messages are used by the CE to query LFBs in the FE
 for informations like LFB attributes, capabilities, statistics, etc.
 Query Messages include the Query Message and the Query Response
 Message.

Doria, et al. Expires August 5, 2007 [Page 73]

Internet-Draft ForCES February 2007

7.6.1. Query Message

 A Query message is composed of a common header and a message body
 that consists of one or more TLV data format. Detailed description
 of the message is as below.

 Message transfer direction:
 from CE to FE

 Message Header:
 The Message Type in the header is set to MessageType= 'Query'.
 The ACK flag in the header is always ignored, and a full response
 for a query message is always expected. The Correlator field in
 the header is set, so that the CE can locate the response back
 from FE correctly.

 Message body:
 The query message body MUST consist of at least one LFBselect TLV
 as described in Section 7.1.1.1.5. The OPERSELECT in the
 LFBselect TLV is defined below.

 OPERSELECT for Query:

 +-+
 | Type = GET/GET-PROPERTY | Length |
 +-+
 | PATH-DATA-TLV for GET/GET-PROPERTY |
 +-+

 Figure 29: TLV for Query

 Type:
 The operation type for query. Two operation types are defined:

 Type = "GET" - this operation is to request to get LFB
 attributes.

 Type = "GET-PROPERTY" - this operation is to request to
 get LFB attributes.

 PATH-DATA-TLV for GET/GET-PROPERTY:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The restriction on the use of PATH-DATA-TLV for GET/
 GET-PROPERTY operation is it MUST NOT contain any SPARSEDATA or
 FULLDATA TLV and RESULT-TLV in the data format.

Doria, et al. Expires August 5, 2007 [Page 74]

Internet-Draft ForCES February 2007

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

 main hdr (type = Query)
 |
 |
 +--- T = LFBselect
 . |
 . +-- LFBCLASSID = target LFB class
 . |
 |
 +-- LFBInstance = target LFB instance
 |
 |
 +-- T = operation { GET }
 | |
 | +-- // one or more path targets
 |
 +-- T = operation { GET }
 . |
 . +-- // one or more path targets
 .

 Figure 30: PDU Format

7.6.2. Query Response Message

 When receiving a Query message, the receiver should process the
 message and come up with a query result. The receiver sends the
 query result back to the message sender by use of the Query Response
 Message. The query result can be the information being queried if
 the query operation is successful, or can also be error codes if the
 query operation fails, indicating the reasons for the failure.

 A Query Response message is also composed of a common header and a
 message body consisting of one or more TLVs describing the query
 result. Detailed description of the message is as below.

 Message transfer direction:
 from FE to CE

 Message Header:
 The Message Type in the header is set to MessageType=
 'QueryResponse'. The ACK flag in the header is ignored. As a
 response itself, the message does not expect a further response.

Doria, et al. Expires August 5, 2007 [Page 75]

Internet-Draft ForCES February 2007

 Message body:
 The Query Response message body MUST consist of at least one
 LFBselect TLV as described in Section 7.1.1.1.5. The OPERSELECT
 in the LFB select TLV is defined below.

 OPERSELECT for Query Response:

 +-+
 |Type = GET-RESPONSE/GET-PROPERTY-RESPONSE| Length |
 +-+
 | PATH-DATA-TLV for GET-RESPONSE/GET-PROPERTY-RESPONSE |
 +-+

 Figure 31: TLV for Query Response

 Type:
 The operation type for query response. One operation type is
 defined:

 Type = "GET-RESPONSE" - this operation is to response to
 get operation of LFB attributes.

 Type = "GET-PROPERTY-RESPONSE" - this operation is to
 response to GET-PROPERTY operation of LFB attributes.

 PATH-DATA-TLV for GET-RESPONSE/GET-PROPERTY-RESPONSE:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for GET-RESPONSE operation MAY
 contain SPARSEDATA TLV, FULLDATA TLV and/or RESULT-TLV(s) in the
 data encoding. The RESULT-TLV is defined in Section 7.1.1.1.7
 and the SPARSEDATA and FULLDATA TLVs are defined in

Section 7.1.1.1.8.

7.7. Event Notification Message

 Event Notification Message is used by FE to asynchronously notify CE
 of events that happen in the FE.

 All events that can be generated in an FE are subscribable by the CE.
 The CE can subscribe to an event via a Config message with SET-
 PROPERTY operation, where the included path specifies the event, as
 defined by the LFB Library and described by the FE Model.

 As usual, an Event Notification Message is composed of a common
 header and a message body that consists of one or more TLV data
 format. Detailed description of the message is as below.

Doria, et al. Expires August 5, 2007 [Page 76]

Internet-Draft ForCES February 2007

 Message Transfer Direction:
 FE to CE

 Message Header:
 The Message Type in the message header is set to
 MessageType = 'EventNotification'. The ACK flag in the header
 MUST be ignored by the CE, and the event notification message does
 not expect any response from the receiver.

 Message Body:
 The event notification message body MUST consist of at least one
 LFBselect TLV as described in Section 7.1.1.1.5. The OPERSELECT
 in the LFBselect TLV is defined below.

 OPERSELECT for Event Notification:

 +-+
 | Type = REPORT | Length |
 +-+
 | PATH-DATA-TLV for REPORT |
 +-+

 Figure 32: TLV for Event Notification

 Type:
 Only one operation type is defined for the event notification
 message:

 Type = "REPORT" - this type of operation is for FE to
 report something to CE.

 PATH-DATA-TLV for REPORT:
 This is generically a PATH-DATA-TLV format that has been defined
 in "Protocol Grammar" section (Section 7.1) in the PATH-DATA BNF
 definition. The PATH-DATA-TLV for REPORT operation MAY contain
 FULLDATA or SPARSEDATA TLV(s) but MUST NOT contain any RESULT-TLV
 in the data format.

 To better illustrate the above PDU format, a tree structure for the
 format is shown below:

Doria, et al. Expires August 5, 2007 [Page 77]

Internet-Draft ForCES February 2007

 main hdr (type = Event Notification)
 |
 |
 +--- T = LFBselect
 |
 +-- LFBCLASSID = target LFB class
 |
 |
 +-- LFBInstance = target LFB instance
 |
 |
 +-- T = operation { REPORT }
 | |
 | +-- // one or more path targets
 | // associated with FULL/SPARSE DATA TLV(s)
 +-- T = operation { REPORT }
 . |
 . +-- // one or more path targets
 . // associated with FULL/SPARSE DATA TLV(s)

 Figure 33: PDU Format

7.8. Packet Redirect Message

 A packet Redirect message is used to transfer data packets between CE
 and FE. Usually these data packets are control packets but they may
 be just data-path packets which need further (exception or high-
 touch) processing. It is also feasible that this message carries no
 data packets and rather just metadata.

 The Packet Redirect message data format is formated as follows:

 Message Direction:
 CE to FE or FE to CE

 Message Header:
 The Message Type in the header is set to MessageType=
 'PacketRedirect'.

 Message Body:
 This consists of one or more TLVs that contain or describe the
 packet being redirected. The TLV is specifically a Redirect TLV
 (with the TLV Type="Redirect"). Detailed data format of a
 Redirect TLV for packet redirect message is as below:

Doria, et al. Expires August 5, 2007 [Page 78]

Internet-Draft ForCES February 2007

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = Redirect | Length |
 +-+
 | Meta Data TLV |
 . .
 +-+
 | Redirect Data TLV |
 . .
 +-+

 Figure 34: Redirect_Data TLV

 Meta Data TLV:
 This is a TLV that specifies meta-data associated with followed
 redirected data. The TLV is as follows:

 +-+
 | Type = METADATA | Length |
 +-+
 | Meta Data ILV |
 . .
 +-+
 ~ ... ~
 +-+
 | Meta Data ILV |
 . .
 +-+

 Figure 35: METADARA TLV

 Meta Data ILV:
 This is an Identifier-Length-Value format that is used to describe
 one meta data. The ILV has the format as:

 +-+
 | Meta Data ID |
 +-+
 | Length |
 +-+
 | Meta Data Value |
 . .
 +-+

 Figure 36: Meta Data ILV

Doria, et al. Expires August 5, 2007 [Page 79]

Internet-Draft ForCES February 2007

 Where, Meta Data ID is an identifier for the meta data, which is
 statically assigned by the LFB definition.

 Redirect Data TLV
 This is a TLV describing one packet of data to be directed via the
 redirect operation. The TLV format is as follows:

 +-+
 | Type = REDIRECTDATA | Length |
 +-+
 | Redirected Data |
 . .
 +-+

 Figure 37: Redirect Data TLV

 Redirected Data:
 This field contains the packet that is to be redirected in network
 byte order. The packet should be 32-bits aligned as is the dat
 for all TLVs. The metadata infers what kind of packet is carried
 in value field and therefore allows for easy decoding of data
 encapsulated

7.9. Heartbeat Message

 The Heartbeat (HB) Message is used for one ForCES element (FE or CE)
 to asynchronously notify one or more other ForCES elements in the
 same ForCES NE on its liveness. Section 4.3.3 describes the traffic-
 sensitive approach used.

 A Heartbeat Message is sent by a ForCES element periodically. The
 parameterization and policy definition for heartbeats for an FE is
 managed as attributes of the FE Protocol Object LFB, and can be set
 by CE via a Config message. The Heartbeat message is a little
 different from other protocol messages in that it is only composed of
 a common header, with the message body left empty. A detailed
 description of the message is as below.

 Message Transfer Direction:
 FE to CE or CE to FE

 Message Header:
 The Message Type in the message header is set to MessageType =
 'Heartbeat'. Section 4.3.3 describes the HB mechanisms used.
 The ACK flag in the header MUST be set to either 'NoACK' or
 'AlwaysACK' when the HB is sent.

Doria, et al. Expires August 5, 2007 [Page 80]

Internet-Draft ForCES February 2007

 * When set to 'NoACK', the HB is not soliciting for a response.

 * When set to 'AlwaysACK', the HB Message sender is always
 expecting a response from its receiver. According the HB
 policies defined in Section 7.2.1, only the CE can send such
 an HB message to query FE liveness. For simplicity and
 because of the minimal nature of the HB message, the response
 to a HB message is another HB message, i.e., no specific HB
 response message is defined. Whenever an FE receives a HB
 message marked with 'AlwaysACK' from the CE, the FE MUST send
 a HB message back immediately. The HB message sent by the FE
 in response to the 'AlwasyACK' MUST modify the source and
 destination IDs so that the ID of the FE is the source ID and
 the CE ID of the sender is the destination ID, and MUST
 change the ACK information to 'NoACK'. A CE MUST NOT respond
 to an HB message with 'AlwasyACK' set.

 * When set to anything else other than 'NoACK' or 'AlwaysACK',
 the HB Message is treated as if it was a 'NoACK'.

 The correlator field in the HB message header SHOULD be set
 accordingly when a response is expected so that a receiver can
 correlate the response correctly. The correlator field MAY be
 ignored if no response is expected.

 Message Body:
 The message body is empty for the Heartbeat Message.

Doria, et al. Expires August 5, 2007 [Page 81]

Internet-Draft ForCES February 2007

8. High Availability Support

 The ForCES protocol provides mechanisms for CE redundancy and
 failover, in order to support High Availability as defined in
 [RFC3654]. FE redundancy and FE to FE interaction is currently out
 of scope of this document. There can be multiple redundant CEs and
 FEs in a ForCES NE. However, at any one time only one primary CE can
 control the FEs though there can be multiple secondary CEs. The FE
 and the CE PL are aware of the primary and secondary CEs. This
 information (primary, secondary CEs) is configured in the FE and in
 the CE PLs during pre-association by the FEM and the CEM
 respectively. Only the primary CE sends control messages to the FEs.

8.1. Relation with the FE Protocol

 High Availability parameterization in an FE is driven by configuring
 the FE Protocol Object LFB (refer to Appendix B and Section 7.2.1).
 The FE Heartbeat Interval, CE Heartbeat Dead Interval, and CE
 Heartbeat policy help in detecting connectivity problems between an
 FE and CE. The CE Failover policy defines the reaction on a detected
 failure.

 Figure 38 extends the state machine illustrated in Figure 4 to allow
 for new states that facilitate connection recovery.

https://datatracker.ietf.org/doc/html/rfc3654

Doria, et al. Expires August 5, 2007 [Page 82]

Internet-Draft ForCES February 2007

 +-----------------+
 Lost association && | Pre-Association |
 CE failover policy = 0 | (Association |
 +------------>-->--| in +<----+
 | | progress) | |
 | +--------+--------+ |
 | | |
 | Y |
 | | |
 | Associated ^
 | | |
 | Y |
 | | |
 | +-------+-------+ |
 | CE issues | DOWN FE | |
 | FEO Admin | (ForCES | ^
 | UP | Active) | | |
 | +-------- | | |
 | | | | |
 | | +---------------+ ^
 | Y ^ |
 | | | |CEFTI expired
 | Y |CE issues Admin | &&
 | | | DOWN |!connected
 | | | ^
 | Y | |
 +-+-----------+ | +------+------+
 | UP |------------+ |Disconnected |
 |(associated) | | |
 | |Lost association | |
 | | && | |
 | |--------->------>----->|(Continue |
 | |CE failover policy |Forwarding) |
 | | = 1 | |
 +-------------+ +-------------+
 ^ |
 | Resynchronize !CEFTI expired |
 | complete && |
 | reconnected |
 | +---------------+ |
 | | Resynch state | |
 | | (via | |
 +-----------| graceful |<--------+
 | restart) |
 +---------------+

 Figure 38: FE State Machine considering HA

Doria, et al. Expires August 5, 2007 [Page 83]

Internet-Draft ForCES February 2007

Section 4.2 describes transitions between the UP, DOWN and Pre-
 association states. In this section we deal with disconnected
 states.

 During a communication failure between the FE and CE (which is caused
 due to CE or link reasons, i.e. not FE related), either the TML on
 the FE will trigger the FE PL regarding this failure or it will be
 detected using the HB messages between FEs and CEs. The
 communication failure, regardless of how it is detected, MUST be
 considered as a loss of association between the CE and corresponding
 FE.

 If the FE's FEPO CE Failover Policy is configured to mode 0 (the
 default), it will immediately transition to the pre-association
 phase. This means that if it ever reconnects again, it will re-
 establish state from scratch.

 If the FE's FEPO CE Failover Policy is configured to mode 1, it
 implies that the FE is capable of HA as well as graceful restart
 recovery. In such a case, the FE transitions to the disconnected
 state and the CEFTI timer is started. The FE continues to forward
 packets during this state. It also recycles through its configured
 secondary CEs in a round-robin fashion. It first adds its primary CE
 to the tail of backup CEs and sets its primary CE to be the first
 secondary. It then attempts to connect to associate with the new
 primary CE. If it fails to re-associate with any CE and the CEFTI
 expires, the FE transitions to the Pre-association state.

 If the FE, while in the Disconnected state, manages to reconnect to a
 new primary CE before CEFTI expires it transitions to the Resynch
 state. In the Resynch state, the FE tries to recover any state that
 may have been lost during the Disonnected state. Graceful restart is
 one such mechanism. How the FE achieves these goals is out of scope
 for this document.

 Figure 39 below illustrates the Forces message sequences that the FE
 uses to recover the connection.

Doria, et al. Expires August 5, 2007 [Page 84]

Internet-Draft ForCES February 2007

 FE CE Primary CE Secondary
 | | |
 | Asso Estb,Caps exchg | |
 1 |<--------------------->| |
 | | |
 | All msgs | |
 2 |<--------------------->| |
 | | |
 | | |
 | FAILURE |
 | |
 | Asso Estb,Caps exchange |
 3 |<-->|
 | |
 | Event Report (pri CE down) |
 4 |--->|
 | |
 | All Msgs |
 5 |<-->|

 Figure 39: CE Failover for Report Primary Mode

 A CE-to-CE synchronization protocol would be needed to support fast
 failover as well as to address some of the corner cases, however this
 will not be defined by the ForCES protocol as it is out of scope for
 this specification.

 An explicit message (a Config message setting Primary CE attribute in
 ForCES Protocol object) from the primary CE, can also be used to
 change the Primary CE for an FE during normal protocol operation.

 Also note that the FEs in a ForCES NE could also use a multicast CE
 ID, i.e., they could be associated with a group of CEs (this assumes
 the use of a CE-CE synchronization protocol, which is out of scope
 for this specification). In this case, the loss of association would
 mean that communication with the entire multicast group of CEs has
 been lost. The mechanisms described above will apply for this case
 as well during the loss of association. If, however, the secondary
 CE was also using the multicast CE ID that was lost, then the FE will
 need to form a new association using a different CE ID. If the
 capability exists, the FE MAY first attempt to form a new association
 with original primary CE using a different non multicast CE ID.

8.2. Responsibilities for HA

 TML Level:

Doria, et al. Expires August 5, 2007 [Page 85]

Internet-Draft ForCES February 2007

 1. The TML controls logical connection availability and failover.

 2. The TML also controls peer HA management.

 At this level, control of all lower layers, for example transport
 level (such as IP addresses, MAC addresses etc) and associated links
 going down are the role of the TML.

 PL Level:
 All other functionality, including configuring the HA behavior during
 setup, the CE IDs used to identify primary and secondary CEs,
 protocol messages used to report CE failure (Event Report), Heartbeat
 messages used to detect association failure, messages to change the
 primary CE (Config), and other HA related operations described
 before, are the PL responsibility.

 To put the two together, if a path to a primary CE is down, the TML
 would take care of failing over to a backup path, if one is
 available. If the CE is totally unreachable then the PL would be
 informed and it would take the appropriate actions described before.

Doria, et al. Expires August 5, 2007 [Page 86]

Internet-Draft ForCES February 2007

9. Security Considerations

 ForCES architecture identifies several levels of security in
 [RFC3746]. ForCES PL uses security services provided by the ForCES
 TML. The TML provides security services such as endpoint
 authentication service, message authentication service and
 confidentiality service. Endpoint authentication service is invoked
 at the time of the pre-association connection establishment phase and
 message authentication is performed whenever the FE or CE receives a
 packet from its peer.

 The following are the general security mechanisms that need to be in
 place for ForCES PL.

 o Security mechanisms are session controlled - that is, once the
 security is turned on depending upon the chosen security level (No
 Security, Authentication, Confidentiality), it will be in effect
 for the entire duration of the session.

 o An operator should configure the same security policies for both
 primary and backup FEs and CEs (if available). This will ensure
 uniform operations and avoid unnecessary complexity in policy
 configuration.

9.1. No Security

 When "No security" is chosen for ForCES protocol communication, both
 endpoint authentication and message authentication service needs to
 be performed by ForCES PL. Both these mechanism are weak and do not
 involve cryptographic operation. An operator can choose "No
 Security" level when the ForCES protocol endpoints are within a
 single box, for example.

 In order to have interoperable and uniform implementation across
 various security levels, each CE and FE endpoint MUST implement this
 level.

9.1.1. Endpoint Authentication

 Each CE and FE PL maintains a list of associations as part its of
 configuration. This is done via the CEM and FEM interfaces. An FE
 MUST connect to only those CEs that are configured via the FEM;
 similarly, a CE should accept the connection and establish
 associations for the FEs which are configured via the CEM. The CE
 should validate the FE identifier before accepting the connections
 during the pre-association phase.

https://datatracker.ietf.org/doc/html/rfc3746

Doria, et al. Expires August 5, 2007 [Page 87]

Internet-Draft ForCES February 2007

9.1.2. Message authentication

 When a CE or FE initiates a message, the receiving endpoint MUST
 validate the initiator of the message by checking the common header
 CE or FE identifiers. This will ensure proper protocol functioning.
 This extra processing step is recommend even when underlying provides
 TLM layer security services exist.

9.2. ForCES PL and TML security service

 This section is applicable if an operator wishes to use the TML
 security services. A ForCES TML MUST support one or more security
 services such as endpoint authentication service, message
 authentication service, and confidentiality service, as part of TML
 security layer functions. It is the responsibility of the operator
 to select an appropriate security service and configure security
 policies accordingly. The details of such configuration are outside
 the scope of the ForCES PL and are dependent on the type of transport
 protocol and the nature of the connection.

 All these configurations should be done prior to starting the CE and
 FE.

 When certificates-based authentication is being used at the TML, the
 certificate can use a ForCES-specific naming structure as certificate
 names and, accordingly, the security policies can be configured at
 the CE and FE.

9.2.1. Endpoint authentication service

 When TML security services are enabled, the ForCES TML performs
 endpoint authentication. Security association is established between
 CE and FE and is transparent to the ForCES PL.

9.2.2. Message authentication service

 This is a TML specific operation and is transparent to the ForCES PL.
 For details, refer to Section 5.

9.2.3. Confidentiality service

 This is a TML specific operation and is transparent to the ForCES PL.
 For details, refer to Section 5.

Doria, et al. Expires August 5, 2007 [Page 88]

Internet-Draft ForCES February 2007

10. Acknowledgments

 The authors of this draft would like to acknowledge and thank the
 ForCES Working Group and especially the following: Furquan Ansari,
 Alex Audu, Steven Blake, Shuchi Chawla, Alan DeKok, Ellen M.
 Deleganes, Xiaoyi Guo, Yunfei Guo, Evangelos Haleplidis, Joel M.
 Halpern (who should probably be listed among the authors), Zsolt
 Haraszti, Fenggen Jia, John C. Lin, Alistair Munro, Jeff Pickering,
 T. Sridhlar, Guangming Wang, Chaoping Wu, and Lily L. Yang, for their
 contributions. We would also like to thank David Putzolu, and
 Patrick Droz for their comments and suggestions on the protocol and
 for their infinite patience. We would also like to thank Sue Hares
 and Alia Atlas for extensive reviews of the document.

 Alia Atlas has done a wonderful job of shaping the draft to make it
 more readable by providing the IESG feedback.

 The editors have used the xml2rfc [RFC2629] tools in creating this
 document and are very grateful for the existence and quality of these
 tools. The editor is also grateful to Elwyn Davies for his help in
 correcting the XML source of this document.

https://datatracker.ietf.org/doc/html/rfc2629

Doria, et al. Expires August 5, 2007 [Page 89]

Internet-Draft ForCES February 2007

11. References

11.1. Normative References

 [FE-MODEL]
 Yang, L., Halpern, J., Gopal, R., DeKok, A., Haraszti, Z.,
 and S. Blake, "ForCES Forwarding Element Model",
 Feb. 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC3654] Khosravi, H. and T. Anderson, "Requirements for Separation
 of IP Control and Forwarding", RFC 3654, November 2003.

 [RFC3746] Yang, L., Dantu, R., Anderson, T., and R. Gopal,
 "Forwarding and Control Element Separation (ForCES)
 Framework", RFC 3746, April 2004.

11.2. Informational References

 [2PCREF] Gray, J., "Notes on database operating systems. In
 Operating Systems: An Advanced Course. Lecture Notes in
 Computer Science, Vol. 60, pp. 394-481, Springer-Verlag",
 1978.

 [ACID] Haerder, T. and A. Reuter, "Principles of Transaction-
 Orientated Database Recovery", 1983.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3654
https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc2629

Doria, et al. Expires August 5, 2007 [Page 90]

Internet-Draft ForCES February 2007

Appendix A. IANA Considerations

 Following the policies outlined in "Guidelines for Writing an IANA
 Considerations Section in RFCs" (RFC 2434 [RFC2434]), the following
 name spaces are defined in ForCES.

 o Message Type Name Space Section 7.1.1

 o Operation Type Name Space Section 7.1.1.1.6

 o Header Flags Section 6.1

 o TLV Type Section 7.1.1

 o TLV Result Values Section 7.1.1.1.7

 o LFB Class ID Section 7.1.1.1.5

 o Result: Association Setup Response Section 7.4.2

 o Reason: Association Teardown Message Section 7.4.3

A.1. Message Type Name Space

 The Message Type is an 8 bit value. The following is the guideline
 for defining the Message Type namespace

 Message Types 0x00 - 0x0F
 Message Types in this range are part of the base ForCES Protocol.
 Message Types in this range are allocated through an IETF
 consensus action. [RFC2434]
 Values assigned by this specification:

 0x00 Reserved
 0x01 AssociationSetup
 0x02 AssociationTeardown
 0x03 Config
 0x04 Query
 0x05 EventNotification
 0x06 PacketRedirect
 0x07 - 0x0E Reserved
 0x0F Hearbeat
 0x11 AssociationSetupRepsonse
 0x12 Reserved
 0x13 ConfigRepsonse
 0x14 QueryResponse

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria, et al. Expires August 5, 2007 [Page 91]

Internet-Draft ForCES February 2007

 Message Types 0x20 - 0x7F
 Message Types in this range are Specification Required [RFC2434]
 Message Types using this range must be documented in an RFC or
 other permanent and readily available reference.

 Message Types 0x80 - 0xFF
 Message Types in this range are reserved for vendor private
 extensions and are the responsibility of individual vendors. IANA
 management of this range of the Message Type Name Space is
 unnecessary.

A.2. Operation Selection

 The Operation Selection (OPERSELECT) name space is 16 bits long. The
 following is the guideline for managing the OPERSELECT Name Space.

 OPERSELECT Type 0x0000-0x00FF
 OPERSELECT Types in this range are allocated through an IETF
 consensus process. [RFC2434].
 Values assigned by this specification:

 0x0000 Reserved
 0x0001 SET
 0x0002 SET-PROPERTY
 0x0003 SET-RESPONSE
 0x0004 SET-PROPERTY-RESPONSE
 0x0005 DEL
 0x0006 DEL-RESPONSE
 0x0007 GET
 0x0008 GET-PROPERTY
 0x0009 GET-RESPONSE
 0x000A GET-PROPERTY-RESPONSE
 0x000B REPORT
 0x000C COMMIT
 0x000D COMMIT-RESPONSE

 OPERSELECT Type 0x0100-0x7FFF
 OPERSELECT Types using this range must be documented in an RFC or
 other permanent and readily available reference. [RFC2434].

 OPERSELECT Type 0x8000-0xFFFF
 OPERSELECT Types in this range are reserved for vendor private
 extensions and are the responsibility of individual vendors. IANA
 management of this range of the OPERSELECT Type Name Space is
 unnecessary.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria, et al. Expires August 5, 2007 [Page 92]

Internet-Draft ForCES February 2007

A.3. Header Flags

 The Header flag field is 32 bits long. Header flags are part of
 the ForCES base protocol. Header flags are allocated through an
 IETF consensus action [RFC2434].

A.4. TLV Type Name Space

 The TLV Type name space is 16 bits long. The following is the
 guideline for managing the TLV Type Name Space.

 TLV Type 0x0000-0x00FF
 TLV Types in this range are allocated through an IETF consensus
 process. [RFC2434].
 Values assigned by this specification:

 0x0000 Reserved
 0x0001 REDIRECT-TLV
 0x0010 ASResult-TLV
 0x0011 ASTreason-TLV
 0x1000 LFBselect-TLV
 0x0110 PATH-DATA-TLV
 0x0111 KEYINFO-TLV
 0x0112 FULLDATA-TLV
 0x0113 SPARSEDATA-TLV
 0x0114 RESULT-TLV
 0x0115 METADATA-TLV
 0x0116 REDIRECTDATA-TLV

 TLV Type 0x0200-0x7FFF
 TLV Types using this range must be documented in an RFC or other
 permanent and readily available reference [RFC2434].

 TLV Type 0x8000-0xFFFF
 TLV Types in this range are reserved for vendor private extensions
 and are the responsibility of individual vendors. IANA management
 of this range of the TLV Type Name Space is unnecessary.

A.5. Result-TLV Result Values

 The RESULT-TLV RTesult Value is an 8 bit value.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria, et al. Expires August 5, 2007 [Page 93]

Internet-Draft ForCES February 2007

 0x00 E_SUCCESS
 0x01 E_INVALID_HEADER
 0x02 E_LENGTH_MISMATCH
 0x03 E_VERSION_MISMATCH
 0x04 E_INVALID_DESTINATION_PID
 0x05 E_LFB_UNKNOWN
 0x06 E_LFB_NOT_FOUND
 0x07 E_LFB_INSTANCE_ID_NOT_FOUND
 0x08 E_INVALID_PATH
 0x09 E_ELEMENT_DOES_NOT_EXIST
 0x0A E_EXISTS
 0x0B E_NOT_FOUND
 0x0C E_READ_ONLY
 0x0D E_INVALID_ARRAY_CREATION
 0x0E E_VALUE_OUT_OF_RANGE
 0x0F E_CONTENTS_TOO_LONG
 0x10 E_INVALID_PARAMETERS
 0x11 E_INVALID_MESSAGE_TYPE
 0x12 E_E_INVALID_FLAGS
 0x13 E_INVALID_TLV
 0x14 E_EVENT_ERROR
 0x15 E_NOT_SUPPORTED
 0x16 E_MEMORY_ERROR
 0x17 E_INTERNAL_ERROR
 0x18-0xFE Reserved
 0xFF E_UNSPECIFIED_ERROR

 All values not assigned in this specification are designated as
 Assignment by Expert review.

A.6. Association Setup Response

 The Association Setup Response name space is 32 bits long. The
 following is the guideline for managing the Association Setup
 Response Name Space.

 Association Setup Response 0x0000-0x00FF
 Association Setup Responses in this range are allocated through an
 IETF consensus process [RFC2434].
 Values assigned by this specification:

 0x0000 Success
 0x0001 FE ID Invalid
 0x0002 Permission Denied

https://datatracker.ietf.org/doc/html/rfc2434

Doria, et al. Expires August 5, 2007 [Page 94]

Internet-Draft ForCES February 2007

 Association Setup Response 0x0100-0x0FFF
 Association Setup Responses in this range are Specification
 Required [RFC2434] Values using this range must be documented in
 an RFC or other permanent and readily available reference
 [RFC2434].

 Association Setup Response 0x1000-0xFFFFFFFFF
 Association Setup Responses in this range are reserved for vendor
 private extensions and are the responsibility of individual
 vendors. IANA management of this range of the Association Setup
 Responses Name Space is unnecessary.

A.7. Association Teardown Message

 The Association Teardown Message name space is 32 bits long. The
 following is the guideline for managing the Association Teardown
 Message Name Space.

 Association Teardown Message 0x00000000-0x0000FFFF
 Association Teardown Messages in this range are allocated through
 an IETF consensus process [RFC2434].
 Values assigned by this specification:

 0x00000000 Normal - Teardown by Administrator
 0x00000001 Error - loss of heartbeats
 0x00000002 Error - loss of bandwidth
 0x00000003 Error - Out of Memory
 0x00000004 Error - Application Crash
 0x000000FF Error - Unspecified

 Association Teardown Message 0x00010000-0x7FFFFFFF
 Association Teardown Messages in this range are Specification
 Required [RFC2434] Association Teardown Messages using this range
 must be documented in an RFC or other permanent and readily
 available references. [RFC2434].

 Association Teardown Message 0x80000000-0xFFFFFFFFF
 Association Teardown Messages in this range are reserved for
 vendor private extensions and are the responsibility of individual
 vendors. IANA management of this range of the Association
 Teardown Message Name Space is unnecessary.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Doria, et al. Expires August 5, 2007 [Page 95]

Internet-Draft ForCES February 2007

Appendix B. ForCES Protocol LFB schema

 The schema described below conforms to the LFB schema described in
 ForCES Model draft. [FE-MODEL]

Section 7.2.1 describes the details of the different attributes
 defined in this definition.

 <LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmodel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://ietf.org/forces/1.0/lfbmodel
 provides="FEPO">
 <!-- XXX -->
 <dataTypeDefs>
 <dataTypeDef>
 <name>CEHBPolicyValues</name>
 <synopsis>
 The possible values of CE heartbeat policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>CEHBPolicy0</name>
 <synopsis>
 The CE heartbeat policy 0
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>CEHBPolicy1</name>
 <synopsis>
 The CE heartbeat policy 1
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>FEHBPolicyValues</name>
 <synopsis>
 The possible values of FE heartbeat policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>

Doria, et al. Expires August 5, 2007 [Page 96]

Internet-Draft ForCES February 2007

 <specialValue value="0">
 <name>FEHBPolicy0</name>
 <synopsis>
 The FE heartbeat policy 0
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>FEHBPolicy1</name>
 <synopsis>
 The FE heartbeat policy 1
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>FERestartPolicyValues</name>
 <synopsis>
 The possible values of FE restart policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>FERestartPolicy0</name>
 <synopsis>
 The FE restart policy 0
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>CEFailoverPolicyValues</name>
 <synopsis>
 The possible values of CE failover policy
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>CEFailoverPolicy0</name>
 <synopsis>
 The CE failover policy 0
 </synopsis>
 </specialValue>

Doria, et al. Expires August 5, 2007 [Page 97]

Internet-Draft ForCES February 2007

 <specialValue value="1">
 <name>CEFailoverPolicy1</name>
 <synopsis>
 The CE failover policy 1
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>

 <dataTypeDef>
 <name>FEHACapab</name>
 <synopsis>
 The supported HA features
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>GracefullRestart</name>
 <synopsis>
 The FE supports Graceful Restart
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>HA</name>
 <synopsis>
 The FE supports HA
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 </dataTypeDefs>

 <LFBClassDefs>
 <LFBClassDef LFBClassID="1">
 <name>FEPO</name>
 <synopsis>
 The FE Protocol Object
 </synopsis>
 <version>1.0</version>

 <attributes>
 <attribute elementID="1" access="read-only">
 <name>CurrentRunningVersion</name>
 <synopsis>Currently running ForCES version</synopsis>
 <typeRef>u8</typeRef>

Doria, et al. Expires August 5, 2007 [Page 98]

Internet-Draft ForCES February 2007

 </attribute>
 <attribute elementID="2" access="read-only">
 <name>FEID</name>
 <synopsis>Unicast FEID</synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="3" access="read-write">
 <name>MulticastFEIDs</name>
 <synopsis>
 the table of all multicast IDs
 </synopsis>
 <array type="variable-size">
 <typeRef>uint32</typeRef>
 </array>
 </attribute>
 <attribute elementID="4" access="read-write">
 <name>CEHBPolicy</name>
 <synopsis>
 The CE Heartbeat Policy
 </synopsis>
 <typeRef>CEHBPolicyValues</typeRef>
 </attribute>
 <attribute elementID="5" access="read-write">
 <name>CEHDI</name>
 <synopsis>
 The CE Heartbeat Dead Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="6" access="read-write">
 <name>FEHBPolicy</name>
 <synopsis>
 The FE Heartbeat Policy
 </synopsis>
 <typeRef>FEHBPolicyValues</typeRef>
 </attribute>
 <attribute elementID="7" access="read-write">
 <name>FEHI</name>
 <synopsis>
 The FE Heartbeat Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="8" access="read-write">
 <name>CEID</name>
 <synopsis>
 The Primary CE this FE is associated with
 </synopsis>

Doria, et al. Expires August 5, 2007 [Page 99]

Internet-Draft ForCES February 2007

 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="9" access="read-write">
 <name>BackupCEs</name>
 <synopsis>
 The table of all backup CEs other than the primary
 </synopsis>
 <array type="variable-size">
 <typeRef>uint32</typeRef>
 </array>
 </attribute>
 <attribute elementID="10" access="read-write">
 <name>CEFailoverPolicy</name>
 <synopsis>
 The CE Failover Policy
 </synopsis>
 <typeRef>CEFailoverPolicyValues</typeRef>
 </attribute>

 <attribute elementID="11" access="read-write">
 <name>CEFTI</name>
 <synopsis>
 The CE Failover Timeout Interval in millisecs
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 <attribute elementID="12" access="read-write">
 <name>FERestartPolicy</name>
 <synopsis>
 The FE Restart Policy
 </synopsis>
 <typeRef>FERestartPolicyValues</typeRef>
 </attribute>
 <attribute elementID="13" access="read-write">
 <name>LastCEID</name>
 <synopsis>
 The Primary CE this FE was last associated with
 </synopsis>
 <typeRef>uint32</typeRef>
 </attribute>
 </attributes>

 <capabilities>
 <capability elementID="30" access="read-only">
 <name>SupportableVersions</name>
 <synopsis>
 the table of ForCES versions that FE supports
 </synopsis>

Doria, et al. Expires August 5, 2007 [Page 100]

Internet-Draft ForCES February 2007

 <array type="variable-size">
 <typeRef>u8</typeRef>
 </array>
 </capability>
 <capability elementID="31" access="read-only">
 <name>HACapabilities</name>
 <synopsis>
 the table of HA capabilities the FE supports
 </synopsis>
 <array type="variable-size">
 <typeRef>FEHACapab</typeRef>
 </array>
 </capability>
 </capabilities>

 <events baseID="61">
 <event eventID="1">
 <name>PrimaryCEDown</name>
 <synopsis>
 The pimary CE has changed
 </synopsis>
 <eventTarget>
 <eventField>LastCEID</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <eventReport>
 <eventField>LastCEID</eventField>
 </eventReport>
 </eventReports>
 </event>
 </events>

 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

B.1. Capabilities

 Supportable Versions enumerates all ForCES versions that an FE
 supports.

 FEHACapab enumerates the HA capabilities of the FE. If the FE is not
 capable of Graceful restarts or HA, then it will not be able to
 participate in HA as described in Section 8.1

Doria, et al. Expires August 5, 2007 [Page 101]

Internet-Draft ForCES February 2007

B.2. Attributes

 All Attributes are explained in Section 7.2.1.

Doria, et al. Expires August 5, 2007 [Page 102]

Internet-Draft ForCES February 2007

Appendix C. Data Encoding Examples

 In this section a few examples of data encoding are discussed. these
 example, however, do not show any padding.

 ==========
 Example 1:
 ==========

 Structure with three fixed-lengthof, mandatory fields.

 struct S {
 uint16 a
 uint16 b
 uint16 c
 }

 (a) Describing all fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 Note: Even though there are non-optional elements in structure S,
 since one can uniquely identify elements, one can selectively send
 element of structure S (eg in the case of an update from CE to FE).

 (c) Describing all fields using a FULLDATA TLV

 Path-Data TLV
 Path to an instance of S ...
 FULLDATA TLV
 valueof(a)
 valueof(b)
 valueof(c)

Doria, et al. Expires August 5, 2007 [Page 103]

Internet-Draft ForCES February 2007

 ==========
 Example 2:
 ==========

 Structure with three fixed-lengthof fields, one mandatory, two
 optional.

 struct T {
 uint16 a
 uint16 b (optional)
 uint16 c (optional)
 }

 This example is identical to Example 1, as illustrated below.

 (a) Describing all fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields using SPARSEDATA

 Path-Data TLV
 Path to an instance of S ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 (c) Describing all fields using a FULLDATA TLV

 Path-Data TLV
 Path to an instance of S ...
 FULLDATA TLV
 valueof(a)
 valueof(b)
 valueof(c)

 Note: FULLDATA TLV _cannot_ be used unless all fields are being
 described.

 ==========
 Example 3:
 ==========

Doria, et al. Expires August 5, 2007 [Page 104]

Internet-Draft ForCES February 2007

 Structure with a mix of fixed-lengthof and variable-lengthof fields,
 some mandatory, some optional. Note in this case, b is variable
 sized

 struct U {
 uint16 a
 string b (optional)
 uint16 c (optional)
 }

 (a) Describing all fields using SPARSEDATA

 Path to an instance of U ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementIDof(c), lengthof(c), valueof(c)

 (b) Describing a subset of fields using SPARSEDATA

 Path to an instance of U ...
 SPARSEDATA TLV
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 (c) Describing all fields using FULLDATA TLV

 Path to an instance of U ...
 FULLDATA TLV
 valueof(a)
 FULLDATA TLV
 valueof(b)
 valueof(c)

 Note: The variable-length field requires the addition of a FULLDATA
 TLV within the outer FULLDATA TLV as in the case of element b above.

 ==========
 Example 4:
 ==========

 Structure containing an array of another structure type.

 struct V {
 uint32 x
 uint32 y
 struct U z[]
 }

Doria, et al. Expires August 5, 2007 [Page 105]

Internet-Draft ForCES February 2007

 (a) Encoding using SPARSEDATA, with two instances of z[], also
 described with SPARSEDATA, assuming only the 10th and 15th subscript
 of z[] are encoded.

 path to instance of V ...
 SPARSEDATA TLV
 ElementIDof(x), lengthof(x), valueof(x)
 ElementIDof(y), lengthof(y), valueof(y)
 ElementIDof(z), lengthof(all below)
 ElementID = 10 (i.e index 10 from z[]), lengthof(all below)
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(b), lengthof(b), valueof(b)
 ElementID = 15 (index 15 from z[]), lengthof(all below)
 ElementIDof(a), lengthof(a), valueof(a)
 ElementIDof(c), lengthof(c), valueof(c)

 Note the holes in the elements of z (10 followed by 15). Also note
 the gap in index 15 with only elements a and c appearing but not b.

Doria, et al. Expires August 5, 2007 [Page 106]

Internet-Draft ForCES February 2007

Appendix D. Use Cases

 Assume LFB with following attributes for the following use cases.

 foo1, type u32, ID = 1

 foo2, type u32, ID = 2

 table1: type array, ID = 3
 elements are:
 t1, type u32, ID = 1
 t2, type u32, ID = 2 // index into table 2
 KEY: nhkey, ID = 1, V = t2

 table2: type array, ID = 4
 elements are:
 j1, type u32, ID = 1
 j2, type u32, ID = 2
 KEY: akey, ID = 1, V = { j1,j2 }

 table3: type array, ID = 5
 elements are:
 someid, type u32, ID = 1
 name, type string variable sized, ID = 2

 table4: type array, ID = 6
 elements are:
 j1, type u32, ID = 1
 j2, type u32, ID = 2
 j3, type u32, ID = 3
 j4, type u32, ID = 4
 KEY: mykey, ID = 1, V = { j1}

 table5: type array, ID = 7
 elements are:
 p1, type u32, ID = 1
 p2, type array, ID = 2, array elements of type-X

 Type-X:
 x1, ID 1, type u32
 x2, ID2 , type u32
 KEY: tkey, ID = 1, V = { x1}

 All examples will use valueof(x) to indicate the value of the

Doria, et al. Expires August 5, 2007 [Page 107]

Internet-Draft ForCES February 2007

 referenced attribute x. In the case where F_SEL** are missing (bits
 equal to 00) then the flags will not show any selection.

 All the examples only show use of FULLDATA for data encoding;
 although SPARSEDATA would make more sense in certain occasions, the
 emphasis is on showing the message layout. Refer to Appendix C for
 examples that show usage of both FULLDATA and SPARSEDATA.

 1. To get foo1

 OPER = GET-TLV
 Path-data TLV: IDCount = 1, IDs = 1
 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags=0, IDCount = 1, IDs = 1
 FULLDATA-TLV L = 4+4, V = valueof(foo1)

 2. To set foo2 to 10

 OPER = SET-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV: L = 4+4, V=10

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV

 3. To dump table2

 OPER = GET-TLV
 Path-data-TLV:
 IDCount = 1, IDs = 4
 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA=TLV: L = XXX, V=
 a series of: index, valueof(j1), valueof(j2)
 representing the entire table

Doria, et al. Expires August 5, 2007 [Page 108]

Internet-Draft ForCES February 2007

 Note: One should be able to take a GET-RESPONSE-TLV and
 convert it to a SET-TLV. If the result in the above example
 is sent back in a SET-TLV, (instead of a GET-RESPONSE_TLV)
 then the entire contents of the table will be replaced at
 that point.

 4. Multiple operations Example. To create entry 0-5 of table2
 (Error conditions are ignored)

 OPER = SET-TLV
 Path-data-TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 1
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 2
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 3
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 FULLDATA-TLV valueof(j1), valueof(j2) of entry 5

Doria, et al. Expires August 5, 2007 [Page 109]

Internet-Draft ForCES February 2007

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 RESULT-TLV

 5. Block operations (with holes) example. Replace entry 0,2 of
 table2

OPER = SET-TLV
 Path-data TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV containing valueof(j1), valueof(j2) of 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV containing valueof(j1), valueof(j2) of 2

Result:
OPER = SET-TLV
 Path-data TLV:
 flags = 0 , IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 RESULT-TLV
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV

Doria, et al. Expires August 5, 2007 [Page 110]

Internet-Draft ForCES February 2007

 6. Getting rows example. Get first entry of table2.

 OPER = GET-TLV
 Path-data TLV:
 IDCount = 2, IDs=4.0

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 IDCount = 2, IDs=4.0
 FULLDATA-TLV containing valueof(j1), valueof(j2)

 7. Get entry 0-5 of table2.

Doria, et al. Expires August 5, 2007 [Page 111]

Internet-Draft ForCES February 2007

 OPER = GET-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data-TLV:
 flags = 0, IDCount = 1, IDs=4
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 0
 FULLDATA-TLV containing valueof(j1), valueof(j2)
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA-TLV containing valueof(j1), valueof(j2)
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA-TLV containing valueof(j1), valueof(j2)
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA-TLV containing valueof(j1), valueof(j2)
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 4
 FULLDATA-TLV containing valueof(j1), valueof(j2)
 PATH-DATA-TLV
 flags = 0, IDCount = 1, IDs = 5
 FULLDATA-TLV containing valueof(j1), valueof(j2)

 8. Create a row in table2, index 5.

Doria, et al. Expires August 5, 2007 [Page 112]

Internet-Draft ForCES February 2007

 OPER = SET-TLV
 Path-data-TLV:
 flags = 0, IDCount = 2, IDs=4.5
 FULLDATA-TLV containing valueof(j1), valueof(j2)

 Result:
 OPER = SET-RESPONSE-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=4.5
 RESULT-TLV

 9. An example of "create and give me an index" Assuming one asked
 for verbose response back in the main message header.

 OPER = SET-TLV
 Path-data -TLV:
 flags = FIND-EMPTY, IDCount = 1, IDs=4
 FULLDATA-TLV containing valueof(j1), valueof(j2)

 Result
 If 7 were the first unused entry in the table:
 OPER = SET-RESPONSE
 Path-data TLV:
 flags = 0, IDCount = 2, IDs=4.7
 RESULT-TLV indicating success, and
 FULLDATA-TLV containing valueof(j1), valueof(j2)

 10. Dump contents of table1.

 OPER = GET-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=3

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs=3
 FULLDATA TLV, Length = XXXX
 (depending on size of table1)
 index, valueof(t1),valueof(t2)
 index, valueof(t1),valueof(t2)
 .
 .
 .

Doria, et al. Expires August 5, 2007 [Page 113]

Internet-Draft ForCES February 2007

 11. Using Keys. Get row entry from table4 where j1=100. Recall, j1
 is a defined key for this table and its keyid is 1.

 OPER = GET-TLV
 Path-data-TLV:
 flags = F_SELKEY IDCount = 1, IDs=6
 KEYINFO-TLV = KEYID=1, KEY_DATA=100

 Result:
 If j1=100 was at index 10
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 flags = 0, IDCount = 1, IDs=6.10
 FULLDATA-TLV containing
 valueof(j1), valueof(j2),valueof(j3),valueof(j4)

 12. Delete row with KEY match (j1=100, j2=200) in table 2. Note
 that the j1,j2 pair are a defined key for the table 2.

 OPER = DEL-TLV
 Path-data TLV:
 flags = F_SELKEY IDCount = 1, IDs=4
 KEYINFO TLV: {KEYID =1 KEY_DATA=100,200}

 Result:
 If (j1=100, j2=200) was at entry 15:
 OPER = DELETE-RESPONSE-TLV
 Path-data TLV:
 flags = 0 IDCount = 2, IDs=4.15
 RESULT-TLV (with FULLDATA if verbose)

 13. Dump contents of table3. It should be noted that this table has
 a column with element name that is variable sized. The purpose
 of this use case is to show how such an element is to be
 encoded.

Doria, et al. Expires August 5, 2007 [Page 114]

Internet-Draft ForCES February 2007

 OPER = GET-TLV
 Path-data-TLV:
 flags = 0 IDCount = 1, IDs=5

 Result:
 OPER = GET-RESPONSE-TLV
 Path-data TLV:
 flags = 0 IDCount = 1, IDs=5
 FULLDATA TLV, Length = XXXX
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = valueof(v)
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = valueof(v)
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = valueof(v)
 index, someidv, TLV: T=FULLDATA, L = 4+strlen(namev),
 V = valueof(v)
 .
 .
 .

 14. Multiple atomic operations.

 Note 1: This emulates adding a new nexthop entry and then
 atomically updating the L3 entries pointing to an old NH to
 point to a new one. The assumption is both tables are in the
 same LFB

 Note2: Main header has atomic flag set and the request is for
 verbose/full results back; Two operations on the LFB
 instance, both are SET operations.

Doria, et al. Expires August 5, 2007 [Page 115]

Internet-Draft ForCES February 2007

 //Operation 1: Add a new entry to table2 index #20.
 OPER = SET-TLV
 Path-TLV:
 flags = 0, IDCount = 2, IDs=4.20
 FULLDATA TLV, V= valueof(j1),valueof(j2)

 // Operation 2: Update table1 entry which
 // was pointing with t2 = 10 to now point to 20
 OPER = SET-TLV
 Path-data-TLV:
 flags = F_SELKEY, IDCount = 1, IDs=3
 KEYINFO = KEYID=1 KEY_DATA=10
 Path-data-TLV
 flags = 0 IDCount = 1, IDs=2
 FULLDATA TLV, V= 20

 Result:
 //first operation, SET
 OPER = SET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 3, IDs=4.20
 RESULT-TLV code = success
 FULLDATA TLV, V = valueof(j1),valueof(j2)
 // second operation SET - assuming entry 16 was updated
 OPER = SET-RESPONSE-TLV
 Path-data TLV
 flags = 0 IDCount = 2, IDs=3.16
 Path-Data TLV
 flags = 0 IDCount = 1, IDs = 2
 SET-RESULT-TLV code = success
 FULLDATA TLV, Length = XXXX v=20

 15. Selective setting. On table 4 -- for indices 1, 3, 5, 7, and 9.
 Replace j1 to 100, j2 to 200, j3 to 300. Leave j4 as is.

 PER = SET-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 6
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3

Doria, et al. Expires August 5, 2007 [Page 116]

Internet-Draft ForCES February 2007

 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 5
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 7
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 9
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 FULLDATA TLV, Length = XXXX, V = {100}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 FULLDATA TLV, Length = XXXX, V = {200}
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 FULLDATA TLV, Length = XXXX, V = {300}

 Non-verbose response mode shown:

Doria, et al. Expires August 5, 2007 [Page 117]

Internet-Draft ForCES February 2007

 OPER = SET-RESPONSE-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 6
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 5
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 7
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV
 Path-data TLV

Doria, et al. Expires August 5, 2007 [Page 118]

Internet-Draft ForCES February 2007

 flags = 0, IDCount = 1, IDs = 9
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 1
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 2
 RESULT-TLV
 Path-data TLV
 flags = 0, IDCount = 1, IDs = 3
 RESULT-TLV

 16. Manipulation of table of table examples. Get x1 from table10
 row with index 4, inside table5 entry 10

 operation = GET-TLV
 Path-data-TLV
 flags = 0 IDCount = 5, IDs=7.10.2.4.1

 Results:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 5, IDs=7.10.2.4.1
 FULLDATA TLV: L=XXXX, V = valueof(x1)

 17. From table5's row 10 table10, get X2s based on on the value of
 x1 equaling 10 (recall x1 is KeyID 1)

 operation = GET-TLV
 Path-data-TLV
 flag = F_SELKEY, IDCount=3, IDS = 7.10.2
 KEYINFO TLV, KEYID = 1, KEYDATA = 10
 Path-data TLV
 IDCount = 1, IDS = 2 //select x2

 Results:
 If x1=10 was at entry 11:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flag = 0, IDCount=5, IDS = 7.10.2.11
 Path-data TLV
 flags = 0 IDCount = 1, IDS = 2
 FULLDATA TLV: L=XXXX, V = valueof(x2)

Doria, et al. Expires August 5, 2007 [Page 119]

Internet-Draft ForCES February 2007

 18. Further example of manipulating a table of tables

 Consider table 6 which is defined as:
 table6: type array, ID = 8
 elements are:
 p1, type u32, ID = 1
 p2, type array, ID = 2, array elements of type type-A

 type-A:
 a1, type u32, ID 1,
 a2, type array ID2 ,array elements of type type-B

 type-B:
 b1, type u32, ID 1
 b2, type u32, ID 2

 If for example one wanted to set by replacing:
 table6.10.p1 to 111
 table6.10.p2.20.a1 to 222
 table6.10.p2.20.a2.30.b1 to 333

 in one message and one operation.

 There are two ways to do this:
 a) using nesting
 b) using a flat path data

Doria, et al. Expires August 5, 2007 [Page 120]

Internet-Draft ForCES February 2007

 A. Method using nesting
 in one message with a single operation

 operation = SET-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=6.10
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 FULLDATA TLV: L=XXXX,
 V = {111}
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=2.20
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 FULLDATA TLV: L=XXXX,
 V = {222}
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=2.30.1
 FULLDATA TLV: L=XXXX,
 V = {333}
 Result:
 operation = SET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=6.10
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 RESULT-TLV
 Path-data-TLV
 flags = 0 IDCount = 2, IDs=2.20
 Path-data-TLV
 flags = 0, IDCount = 1, IDs=1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=2.30.1
 RESULT-TLV

Doria, et al. Expires August 5, 2007 [Page 121]

Internet-Draft ForCES February 2007

 B. Method using a flat path data in
 one message with a single operation

 operation = SET-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=6.10.1
 FULLDATA TLV: L=XXXX,
 V = {111}
 Path-data TLV :
 flags = 0, IDCount = 5, IDs=6.10.1.20.1
 FULLDATA TLV: L=XXXX,
 V = {222}
 Path-data TLV :
 flags = 0, IDCount = 7, IDs=6.10.1.20.1.30.1
 FULLDATA TLV: L=XXXX,
 V = {333}
 Result:
 operation = SET-TLV
 Path-data TLV :
 flags = 0, IDCount = 3, IDs=6.10.1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 5, IDs=6.10.1.20.1
 RESULT-TLV
 Path-data TLV :
 flags = 0, IDCount = 7, IDs=6.10.1.20.1.30.1
 RESULT-TLV

 19. Get a whole LFB (all its attributes, etc.).

 For example: at startup a CE might well want the entire FE
 OBJECT LFB. So, in a request targeted at class 1, instance
 1, one might find:

 operation = GET-TLV
 Path-data-TLV
 flags = 0 IDCount = 0

 result:
 operation = GET-RESPONSE-TLV
 Path-data-TLV
 flags = 0 IDCount = 0
 FULLDATA encoding of the FE Object LFB

Doria, et al. Expires August 5, 2007 [Page 122]

Internet-Draft ForCES February 2007

Authors' Addresses

 Ligang Dong
 Zhejiang Gongshang University
 149 Jiaogong Road
 Hangzhou 310035
 P.R.China

 Phone: +86-571-88071024
 Email: donglg@mail.zjgsu.edu.cn

 Avri Doria
 ETRI
 Lulea University of Technology
 Lulea
 Sweden

 Phone: +46 73 277 1788
 Email: avri@ltu.se

 Ram Gopal
 Nokia
 5, Wayside Road
 Burlington, MA 310035
 USA

 Phone: +1-781-993-3685
 Email: ram.gopal@nokia.com

 Robert Haas
 IBM
 Saumerstrasse 4
 8803 Ruschlikon
 Switzerland

 Phone:
 Email: rha@zurich.ibm.com

Doria, et al. Expires August 5, 2007 [Page 123]

Internet-Draft ForCES February 2007

 Jamal Hadi Salim
 Znyx
 Ottawa, Ontario
 Canada

 Phone:
 Email: hadi@znyx.com

 Hormuzd M Khosravi
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124
 USA

 Phone: +1 503 264 0334
 Email: hormuzd.m.khosravi@intel.com

 Weiming Wang
 Zhejiang Gongshang University
 149 Jiaogong Road
 Hangzhou 310035
 P.R.China

 Phone: +86-571-88057712
 Email: wmwang@mail.zjgsu.edu.cn

Doria, et al. Expires August 5, 2007 [Page 124]

Internet-Draft ForCES February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Doria, et al. Expires August 5, 2007 [Page 125]

