
Workgroup: GNAP

Internet-Draft:

draft-ietf-gnap-resource-servers-00

Published: 28 April 2021

Intended Status: Standards Track

Expires: 30 October 2021

Authors: J. Richer, Ed.

Bespoke Engineering

A. Parecki

Okta

F. Imbault

acert.io

Grant Negotiation and Authorization Protocol Resource Server

Connections

Abstract

GNAP defines a mechanism for delegating authorization to a piece of

software, and conveying that delegation to the software. This

extension defines methods for resource servers (RS) to communicate

with authorization servers (AS) in an interoperable fashion.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

1.1.  Terminology

2.  Access Token Formats

3.  Resource-Server-Facing API

3.1.  RS-facing AS Discovery

3.2.  Protecting RS requests to the AS

3.3.  Token Introspection

3.4.  Registering a Resource Handle

4.  Deriving a downstream token

5.  Requesting Resources With Insufficient Access

6.  Acknowledgements

7.  IANA Considerations

8.  Security Considerations

9.  Privacy Considerations

10. Normative References

Appendix A.  Document History

Authors' Addresses

1. Introduction

The core GNAP protocol does not define any one specific mechanism

for the resource server (RS) to communicate with the authorization

server (AS), allowing the connection between these components to be

solved orthogonally to the core protocol's concerns. For example,

the RS and AS roles could be fulfilled by the same piece of software

with common storage, obviating the need for any connecting protocol.

However, it is often desirable to have the RS and AS communicate at

runtime for a variety of purposes, including allowing the RS to

validate and understand the rights and privileges associated with a

grant of access represented by an access token issued by (AS), or

negotiating the capabilities of either party. These types of

connections are particularly useful for connecting an AS and RS from

different vendors, allowing interoperable distributed deployments of

GNAP-protected systems.

This specification defines several means for a RS and AS to

communicate these aspects with each other, including structured

access tokens and RS-facing APIs. This specification also discusses

methods for an RS to derive a downstream token for calling another

chained RS as well as a client-facing discovery mechanism that can

be used to bootstrap the GNAP process when the client instance does

not know which AS protects a given RS.

The means of the authorization server issuing the access token to

the client instance and the means of the client instance presenting

the access token to the resource server are the subject of the GNAP

core protocol specification [I-D.ietf-gnap-core-protocol].

¶

¶

¶



1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document contains non-normative examples of partial and

complete HTTP messages, JSON structures, URLs, query components,

keys, and other elements. Some examples use a single trailing

backslash '' to indicate line wrapping for long values, as per 

[RFC8792]. The \ character and leading spaces on wrapped lines are

not part of the value.

2. Access Token Formats

When the AS issues an access token for use at an RS, the RS needs to

have some means of understanding what the access token is for in

order to determine how to respond to the request. The core GNAP

protocol makes no assumptions or demands on the format or contents

of the access token, but such token formats can be the topic of

agreements between the AS and RS.

Self-contained structured token formats allow for the conveyance of

information between the AS and RS without requiring the RS to call

the AS at runtime as described in Section 3.3.

Some token formats, such as Macaroons and Biscuits, allow for the RS

to derive sub-tokens without having to call the AS as described in 

Section 4.

3. Resource-Server-Facing API

To facilitate runtime and dynamic connections, the AS can offer an

RS-Facing API consisting of one or more of the following optional

pieces.

Discovery

Introspection

Token chaining

Resource reference registration

3.1. RS-facing AS Discovery

A GNAP AS offering RS-facing services can publish its features on a

well-known discovery document using the URL .well-known/gnap-as-rs.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶



introspection_endpoint:

token_formats_supported:

resource_registration_endpoint:

grant_endpoint:

This endpoint contains a JSON document [RFC8259] consisting of a

single JSON object with any combination of the following optional

fields:

The URL of the endpoint offering

introspection. Section 3.3

A list of token formats supported by this

AS.

The URL of the endpoint offering

resource registration. Section 3.4

The grant endpoint of the GNAP AS.

3.2. Protecting RS requests to the AS

Unless otherwise specified, the RS protects its calls to the AS

using any of the signature methods defined by GNAP. This signing

method MUST cover all of the appropriate portions of the HTTP

request message, including any body elements, tokens, or headers

required for functionality.

The AS MAY require an RS to pre-register its keys or could

alternatively allow calls from arbitrary keys, in a trust-on-first-

use model. The RS MAY present its keys by reference or by value in

the same fashion as a client instance calling the AS in the core

protocol of GNAP [I-D.ietf-gnap-core-protocol].

3.3. Token Introspection

The AS issues access tokens representing a set of delegated access

rights to be used at one or more RSs. The AS can offer an

introspection service to allow an RS to validate that a given access

token:

has been issued by the AS

has not expired

has not been revoked

is appropriate for the RS identified in the call

When the RS receives an access token, it can call the introspection

endpoint at the AS to get token information. [[ See issue #115 ]]

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/115


The client instance calls the RS with its access token.

The RS introspects the access token value at the AS. The RS

signs the request with its own key (not the client instance's

key or the token's key).

The AS validates the access token value and the client

instance's request and returns the introspection response for

the token.

The RS fulfills the request from the client instance.

The RS signs the request with its own key and sends the access token

as the body of the request.

The AS responds with a data structure describing the token's current

state and any information the RS would need to validate the token's

presentation, such as its intended proofing mechanism and key

material. The response MAY include any fields defined in an access

token response.

+--------+       +------+       +------+

| Client |--(1)->|  RS  |       |  AS  |

|Instance|       |      |--(2)->|      |

|        |       |      |       |      |

|        |       |      |<-(3)--|      |

|        |       |      |       +------+

|        |<-(4)--|      |

+--------+       +------+

¶

1. ¶

2. 

¶

3. 

¶

4. ¶

¶

POST /introspect HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JWS: ejy0...

{

    "access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

    "proof": "httpsig",

    "resource_server": "7C7C4AZ9KHRS6X63AJAO"

}

¶

¶



3.4. Registering a Resource Handle

If the RS needs to, it can post a set of resources as described in

the Resource Access Rights section of [I-D.ietf-gnap-core-protocol]

to the AS's resource registration endpoint.

The RS MUST identify itself with its own key and sign the request.

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

    "active": true,

    "access": [

        "dolphin-metadata", "some other thing"

    ],

    "key": {

        "proof": "httpsig",

        "jwk": {

                "kty": "RSA",

                "e": "AQAB",

                "kid": "xyz-1",

                "alg": "RS256",

                "n": "kOB5rR4Jv0GMeL...."

        }

    }

}

¶

¶

¶



The AS responds with a handle appropriate to represent the resources

list that the RS presented.

The RS MAY make this handle available as part of a response (Section

5) or as documentation to developers.

[[ See issue #117 ]]

4. Deriving a downstream token

Some architectures require an RS to act as a client instance and use

a derived access token for a secondary RS. Since the RS is not the

same entity that made the initial grant request, the RS is not

capable of referencing or modifying the existing grant. As such, the

POST /resource HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JWS: ejy0...

{

    "access": [

        {

            "actions": [

                "read",

                "write",

                "dolphin"

            ],

            "locations": [

                "https://server.example.net/",

                "https://resource.local/other"

            ],

            "datatypes": [

                "metadata",

                "images"

            ]

        },

        "dolphin-metadata"

    ],

    "resource_server": "7C7C4AZ9KHRS6X63AJAO"

}

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

    "resource_handle": "FWWIKYBQ6U56NL1"

}

¶

¶

¶

https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/117


RS needs to request or generate a new token access token for its use

at the secondary RS. This internal secondary token is issued in the

context of the incoming access token.

While it is possible to use a [token format]{#structure} that allows

for the RS to generate its own secondary token, the AS can allow the

RS to request this secondary access token using the same process

used by the original client instance to request the primary access

token. Since the RS is acting as its own client instance from the

perspective of GNAP, this process uses the same grant endpoint,

request structure, and response structure as a client instance's

request.

The client instance calls RS1 with an access token.

RS1 presents that token to the AS to get a derived token for

use at RS2. RS1 indicates that it has no ability to interact

with the RO. Note that RS1 signs its request with its own key,

not the token's key or the client instance's key.

The AS returns a derived token to RS1 for use at RS2.

RS1 calls RS2 with the token from (3).

RS2 fulfills the call from RS1.

RS1 fulfills the call from the original client instance.

If the RS needs to derive a token from one presented to it, it can

request one from the AS by making a token request as described in 

[I-D.ietf-gnap-core-protocol] and presenting the existing access

token's value in the "existing_access_token" field.

Since the RS is acting as a client instance, the RS MUST identify

itself with its own key in the client field and sign the request

just as any client instance would.

[[ See issue #116 ]]

¶

¶

+--------+       +-------+       +------+       +-------+

| Client |--(1)->|  RS1  |       |  AS  |       |  RS2  |

|Instance|       |       |--(2)->|      |       |       |

|        |       |       |<-(3)--|      |       |       |

|        |       |       |       +------+       |       |

|        |       |       |                      |       |

|        |       |       |-----------(4)------->|       |

|        |       |       |<----------(5)--------|       |

|        |<-(6)--|       |                      |       |

+--------+       +-------+                      +-------+

¶

1. ¶

2. 

¶

3. ¶

4. ¶

5. ¶

6. ¶

¶

¶

¶

https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/116


The AS responds with a token for the downstream RS2 as described in 

[I-D.ietf-gnap-core-protocol]. The downstream RS2 could repeat this

process as necessary for calling further RS's.

5. Requesting Resources With Insufficient Access

If the client instance calls an RS without an access token, or with

an invalid access token, the RS MAY respond to the client instance

with an authentication header indicating that GNAP needs to be used

to access the resource. The address of the GNAP endpoint MUST be

sent in the "as_uri" parameter. The RS MAY additionally return a

resource reference that the client instance MAY use in its access

token request. This resource reference handle SHOULD be sufficient

for at least the action the client instance was attempting to take

at the RS. The RS MAY use the dynamic resource handle request

(Section 3.4) to register a new resource handle, or use a handle

that has been pre-configured to represent what the RS is protecting.

The content of this handle is opaque to the RS and the client

instance in both cases.

POST /tx HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JWS: ejy0...

{

    "access_token": {

        "access": [

            {

                "actions": [

                    "read",

                    "write",

                    "dolphin"

                ],

                "locations": [

                    "https://server.example.net/",

                    "https://resource.local/other"

                ],

                "datatypes": [

                    "metadata",

                    "images"

                ]

            },

            "dolphin-metadata"

        ]

    },

    "client": "7C7C4AZ9KHRS6X63AJAO",

    "existing_access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"

}

¶

¶

¶



The client instance then makes a call to the "as_uri" as described

in [I-D.ietf-gnap-core-protocol], with the value of "access" as one

of the members of the access array in the access_token portion of

the request. The client instance MAY request additional resources

and other information, and MAY request multiple access tokens.

[[ See issue #118 ]]

6. Acknowledgements

(TODO: the ACK section should probably be split between the

documents)

7. IANA Considerations

[[ TBD: There are a lot of items in the document that are expandable

through the use of value registries. ]]

8. Security Considerations

[[ TBD: There are a lot of security considerations to add. ]]

All requests have to be over TLS or equivalent as per [BCP195]. Many

handles act as shared secrets, though they can be combined with a

requirement to provide proof of a key as well.

9. Privacy Considerations

[[ TBD: There are a lot of privacy considerations to add. ]]

WWW-Authenticate: \

  GNAP as_uri=https://server.example/tx,access=FWWIKYBQ6U56NL1

¶

¶

POST /tx HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JWS: ejy0...

{

    "access_token": {

        "access": [

            "FWWIKYBQ6U56NL1",

            "dolphin-metadata"

        ]

    },

    "client": "KHRS6X63AJ7C7C4AZ9AO"

}

¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/118


[BCP195]

[I-D.ietf-gnap-core-protocol]

[RFC2119]

[RFC8174]

[RFC8259]

[RFC8792]

When introspection is used, the AS is made aware of a particular

token being used at a particular AS, and the AS would not otherwise

have insight into this.

When the client instance receives information about the protecting

AS from an RS, this can be used to derive information about the

resources being protected without releasing the resources

themselves.

10. Normative References

Sheffer, Y., Holz, R., and P. Saint-Andre, 

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", May 2015, <https://www.rfc-editor.org/info/

bcp195>. 

Richer, J., Parecki, A., and F.

Imbault, "Grant Negotiation and Authorization Protocol", 

Work in Progress, Internet-Draft, draft-ietf-gnap-core-

protocol-04, 22 February 2021, <https://www.ietf.org/

archive/id/draft-ietf-gnap-core-protocol-04.txt>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>. 

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu, 

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020, 

<https://www.rfc-editor.org/info/rfc8792>. 

Appendix A. Document History

-00

Extracted resource server section.

¶

¶

* ¶

- ¶

https://www.rfc-editor.org/info/bcp195
https://www.rfc-editor.org/info/bcp195
https://www.ietf.org/archive/id/draft-ietf-gnap-core-protocol-04.txt
https://www.ietf.org/archive/id/draft-ietf-gnap-core-protocol-04.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8792


Authors' Addresses

Justin Richer (editor)

Bespoke Engineering

Email: ietf@justin.richer.org

URI: https://bspk.io/

Aaron Parecki

Okta

Email: aaron@parecki.com

URI: https://aaronparecki.com

Fabien Imbault

acert.io

Email: fabien.imbault@acert.io

URI: https://acert.io/

mailto:ietf@justin.richer.org
https://bspk.io/
mailto:aaron@parecki.com
https://aaronparecki.com
mailto:fabien.imbault@acert.io
https://acert.io/

	Grant Negotiation and Authorization Protocol Resource Server Connections
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Access Token Formats
	3. Resource-Server-Facing API
	3.1. RS-facing AS Discovery
	3.2. Protecting RS requests to the AS
	3.3. Token Introspection
	3.4. Registering a Resource Handle

	4. Deriving a downstream token
	5. Requesting Resources With Insufficient Access
	6. Acknowledgements
	7. IANA Considerations
	8. Security Considerations
	9. Privacy Considerations
	10. Normative References
	Appendix A. Document History
	Authors' Addresses


