
Network Working Group R. Moskowitz
Internet-Draft ICSAlabs, a Division of TruSecure
Expires: April 25, 2005 Corporation
 P. Nikander
 P. Jokela (editor)
 Ericsson Research NomadicLab
 T. Henderson
 The Boeing Company
 October 25, 2004

Host Identity Protocol
draft-ietf-hip-base-01

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This memo specifies the details of the Host Identity Protocol (HIP).
 The overall description of protocol and the underlying architectural
 thinking is available in the separate HIP architecture specification.
 The Host Identity Protocol is used to establish a rapid
 authentication between two hosts and to provide continuity of

https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Moskowitz, et al. Expires April 25, 2005 [Page 1]

Internet-Draft Host Identity Protocol October 2004

 communications between those hosts independent of the networking
 layer.

 The various forms of the Host Identity, Host Identity Tag (HIT) and
 Local Scope Identifier (LSI), are covered in detail. It is described
 how they are used to support authentication and the establishment of
 keying material, which is then used by IPsec Encapsulated Security
 payload (ESP) to establish a two-way secured communication channel
 between the hosts. The basic state machine for HIP provides a HIP
 compliant host with the resiliency to avoid many denial-of-service
 (DoS)attacks. The basic HIP exchange for two public hosts shows the
 actual packet flow. Other HIP exchanges, including those that work
 across NATs are covered elsewhere.

Table of Contents

1. Introduction . 5
1.1 A new name space and identifiers 5
1.2 The HIP protocol . 5

2. Conventions used in this document 7
3. Host Identifier (HI) and its representations 8
3.1 Host Identity Tag (HIT) 8
3.1.1 Generating a HIT from a HI 9

3.2 Local Scope Identifier (LSI) 11
3.3 Security Parameter Index (SPI) 11

4. Host Identity Protocol 13
4.1 HIP base exchange . 13
4.1.1 HIP Cookie Mechanism 14
4.1.2 Authenticated Diffie-Hellman protocol 17
4.1.3 HIP replay protection 18

4.2 TCP and UDP pseudo-header computation 19
4.3 Updating a HIP association 19
4.4 Error processing . 19
4.5 Certificate distribution 19
4.6 Sending data on HIP packets 20

5. HIP protocol overview 21
5.1 HIP Scenarios . 21
5.2 Refusing a HIP exchange 22
5.3 Reboot and SA timeout restart of HIP 22
5.4 HIP State Machine . 23
5.4.1 HIP States . 23
5.4.2 HIP State Processes 23
5.4.3 Simplified HIP State Diagram 27

6. Packet formats . 29
6.1 Payload format . 29
6.1.1 HIP Controls . 30
6.1.2 Checksum . 30

6.2 HIP parameters . 31

Moskowitz, et al. Expires April 25, 2005 [Page 2]

Internet-Draft Host Identity Protocol October 2004

6.2.1 TLV format . 32
6.2.2 Defining new parameters 33
6.2.3 SPI . 34
6.2.4 R1_COUNTER . 35
6.2.5 PUZZLE . 36
6.2.6 SOLUTION . 37
6.2.7 DIFFIE_HELLMAN . 38
6.2.8 HIP_TRANSFORM . 39
6.2.9 ESP_TRANSFORM . 39
6.2.10 HOST_ID . 40
6.2.11 CERT . 41
6.2.12 HMAC . 42
6.2.13 HMAC_2 . 42
6.2.14 HIP_SIGNATURE 43
6.2.15 HIP_SIGNATURE_2 44
6.2.16 NES . 44
6.2.17 SEQ . 45
6.2.18 ACK . 46
6.2.19 ENCRYPTED . 47
6.2.20 NOTIFY . 48
6.2.21 ECHO_REQUEST . 51
6.2.22 ECHO_RESPONSE 52

6.3 ICMP messages . 52
6.3.1 Invalid Version 52

 6.3.2 Other problems with the HIP header and packet
 structure . 53

6.3.3 Unknown SPI . 53
6.3.4 Invalid Cookie Solution 53
6.3.5 Non-existing HIP association 53

7. HIP Packets . 54
7.1 I1 - the HIP initiator packet 54
7.2 R1 - the HIP responder packet 55
7.3 I2 - the second HIP initiator packet 56
7.4 R2 - the second HIP responder packet 58
7.5 CER - the HIP Certificate Packet 58
7.6 UPDATE - the HIP Update Packet 59
7.7 NOTIFY - the HIP Notify Packet 60
7.8 CLOSE - the HIP association closing packet 60
7.9 CLOSE_ACK - the HIP closing acknowledgment packet 61

8. Packet processing . 62
8.1 Processing outgoing application data 62
8.2 Processing incoming application data 63
8.3 HMAC and SIGNATURE calculation and verification 64
8.3.1 HMAC calculation 64
8.3.2 Signature calculation 64

8.4 Initiation of a HIP exchange 65
8.4.1 Sending multiple I1s in parallel 66

 8.4.2 Processing incoming ICMP Protocol Unreachable

Moskowitz, et al. Expires April 25, 2005 [Page 3]

Internet-Draft Host Identity Protocol October 2004

 messages . 66
8.5 Processing incoming I1 packets 67
8.5.1 R1 Management . 67
8.5.2 Handling malformed messages 68

8.6 Processing incoming R1 packets 68
8.6.1 Handling malformed messages 70

8.7 Processing incoming I2 packets 70
8.7.1 Handling malformed messages 71

8.8 Processing incoming R2 packets 72
8.9 Dropping HIP associations 72
8.10 Initiating rekeying 72
8.11 Processing UPDATE packets 74
8.11.1 Processing an UPDATE packet in state ESTABLISHED . . 75
8.11.2 Processing an UPDATE packet in state REKEYING . . . 75
8.11.3 Leaving REKEYING state 76

8.12 Processing CER packets 76
8.13 Processing NOTIFY packets 76
8.14 Processing CLOSE packets 77
8.15 Processing CLOSE_ACK packets 77

9. HIP KEYMAT . 78
10. HIP Fragmentation Support 80
11. ESP with HIP . 81
11.1 ESP Security Associations 81
11.2 Updating ESP SAs during rekeying 81
11.3 Security Association Management 82
11.4 Security Parameter Index (SPI) 82
11.5 Supported Transforms 82
11.6 Sequence Number . 83

12. HIP Policies . 84
13. Security Considerations 85
14. IANA Considerations . 88
15. Acknowledgments . 89
16. References . 90
16.1 Normative references 90
16.2 Informative references 91

 Authors' Addresses . 92
A. API issues . 93
B. Probabilities of HIT collisions 95
C. Probabilities in the cookie calculation 96
D. Using responder cookies 97
E. Running HIP over IPv4 UDP 100
F. Example checksums for HIP packets 101
F.1 IPv6 HIP example (I1) 101
F.2 IPv4 HIP packet (I1) 101
F.3 TCP segment . 101

G. 384-bit group . 103
 Intellectual Property and Copyright Statements 104

Moskowitz, et al. Expires April 25, 2005 [Page 4]

Internet-Draft Host Identity Protocol October 2004

1. Introduction

 The Host Identity Protocol (HIP) provides a rapid exchange of Host
 Identities between two hosts. The exchange also establishes a pair
 IPsec Security Associations (SA), to be used with IPsec Encapsulated
 Security Payload (ESP) [19]. The HIP protocol is designed to be
 resistant to Denial-of-Service (DoS) and Man-in-the-middle (MitM)
 attacks, and when used to enable ESP, provides DoS and MitM
 protection for upper layer protocols, such as TCP and UDP.

1.1 A new name space and identifiers

 The Host Identity Protocol introduces a new namespace, the Host
 Identity. The effects of this change are explained in the companion
 document, the HIP architecture [21] specification.

 There are two main representations of the Host Identity, the full
 Host Identifier (HI) and the Host Identity Tag (HIT). The HI is a
 public key and directly represents the Identity. Since there are
 different public key algorithms that can be used with different key
 lengths, the HI is not good for using as a packet identifier, or as a
 index into the various operational tables needed to support HIP.
 Consequently, a hash of the HI, the Host Identity Tag (HIT), becomes
 the operational representation. It is 128 bits long and is used in
 the HIP payloads and to index the corresponding state in the end
 hosts.

1.2 The HIP protocol

 The base HIP exchange consists of four packets. The four-packet
 design helps to make HIP DoS resilient. The protocol exchanges
 Diffie-Hellman keys in the 2nd and 3rd packets, and authenticates the
 parties in the 3rd and 4th packets. Additionally, it starts the
 cookie exchange in the 2nd packet, completing it in the 3rd packet.

 The exchange uses the Diffie-Hellman exchange to hide the Host
 Identity of the Initiator in packet 3. The Responder's Host Identity
 is not protected. It should be noted, however, that both the
 Initiator's and the Responder's HITs are transported as such (in
 cleartext) in the packets, allowing an eavesdropper with a priori
 knowledge about the parties to verify their identities.

 Data packets start after the 4th packet. The 3rd and 4th HIP packets
 may carry a data payload in the future. However, the details of this
 are to be defined later as more implementation experience is gained.

 Finally, HIP is designed as an end-to-end authentication and key
 establishment protocol. It lacks much of the fine-grained policy

Moskowitz, et al. Expires April 25, 2005 [Page 5]

Internet-Draft Host Identity Protocol October 2004

 control found in Internet Key Exchange IKE RFC2409 [8] that allows
 IKE to support complex gateway policies. Thus, HIP is not a complete
 replacement for IKE.

Moskowitz, et al. Expires April 25, 2005 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2409

Internet-Draft Host Identity Protocol October 2004

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [5].

Moskowitz, et al. Expires April 25, 2005 [Page 7]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Host Identity Protocol October 2004

3. Host Identifier (HI) and its representations

 A public key of an asymmetric key pair is used as the Host Identifier
 (HI). Correspondingly, the host itself is the entity that holds the
 private key from the key pair. See the HIP architecture
 specification [21] for more details about the difference between an
 identity and the corresponding identifier.

 HIP implementations MUST support the Rivest Shamir Adelman (RSA) [14]
 public key algorithm, and SHOULD support the Digital Signature
 Algorithm (DSA) [13] algorithm; other algorithms MAY be supported.

 A hash of the HI, the Host Identity Tag (HIT), is used in protocols
 to represent the Host Identity. The HIT is 128 bits long and has the
 following three key properties: i) it is the same length as an IPv6
 address and can be used in address-sized fields in APIs and
 protocols, ii) it is self-certifying (i.e., given a HIT, it is
 computationally hard to find a Host Identity key that matches the
 HIT), and iii) the probability of HIT collision between two hosts is
 very low.

 In many environments, 128 bits is still considered large. For
 example, currently used IPv4 based applications are constrained with
 32-bit address fields. Another problem is that the cohabitation of
 IPv6 and HIP might require some applications to differentiate an IPv6
 address from a HIT. Thus, a third representation, the Local Scope
 Identifier (LSI), may be needed. There are two types of such LSIs:
 32 bits long IPv4-compatible one and 128 bits long IPv6-compatible
 one. The LSI provides a compression of the HIT with only a local
 scope so that it can be carried efficiently in any application level
 packet and used in API calls. LSIs do not have the same properties
 as HITs (i.e., they are not self-certifying nor are they as unlikely
 to collide -- hence their local scope), and consequently they must be
 used more carefully.

 Finally, HIs, HITs, and LSIs are not carried explicitly in the
 headers of user data packets. Instead, the IPsec Security Parameter
 Index (SPI) is used in data packets to index the right host context.
 The SPIs are selected during the HIP exchange. For user data packets,
 then, the combination of IPsec SPIs and IP addresses are used
 indirectly to identify the host context, thereby avoiding an
 additional explicit protocol header.

3.1 Host Identity Tag (HIT)

 The Host Identity Tag is a 128 bit value -- a hash of the Host
 Identifier. There are two advantages of using a hash over the actual
 Identity in protocols. Firstly, its fixed length makes for easier

Moskowitz, et al. Expires April 25, 2005 [Page 8]

Internet-Draft Host Identity Protocol October 2004

 protocol coding and also better manages the packet size cost of this
 technology. Secondly, it presents a consistent format to the
 protocol whatever underlying identity technology is used.

 There are two types of HITs. HITs of the first type, called *type 1
 HIT*, consist of 128 bits of the SHA-1 hash of the public key. HITs
 of the second type consist of a Host Assigning Authority Field (HAA),
 and only the last 64 bits come from a SHA-1 hash of the Host
 Identity. This latter format for HIT is recommended for 'well known'
 systems. It is possible to support a resolution mechanism for these
 names in hierarchical directories, like the DNS. Another use of HAA
 is in policy controls, see Section 12.

 As the type of a HIT cannot be determined by inspecting its contents,
 the HIT type must be communicated by some external means.

 When comparing HITs for equality, it is RECOMMENDED that conforming
 implementations ignore the TBD top most bits. This is to allow
 better compatibility for legacy IPv6 applications; see Appendix A.
 However, independent of how many bits are actually used for HIT
 comparison, it is also RECOMMENDED that the final equality decision
 is based on the public key and not the HIT, if possible. See also

Section 3.2 for related discussion.

 This document fully specifies only type 1 HITs. HITs that consists
 of the HAA field and the hash are specified in [24].

 Any conforming implementation MUST be able to deal with Type 1 HITs.
 When handling other than type 1 HITs, the implementation is
 RECOMMENDED to explicitly learn and record the binding between the
 Host Identifier and the HIT, as it may not be able to generate such
 HITs from the Host Identifiers.

3.1.1 Generating a HIT from a HI

 The 128 or 64 hash bits in a HIT MUST be generated by taking the
 least significant 128 or 64 bits of the SHA-1 [22] hash of the Host
 Identifier as it is represented in the Host Identity field in a HIP
 payload packet.

 For Identities that are either RSA or DSA public keys, the HIT is
 formed as follows:
 1. The public key is encoded as specified in the corresponding
 DNSSEC document, taking the algorithm specific portion of the
 RDATA part of the KEY RR. There is currently only two defined
 public key algorithms: RSA and DSA. Hence, either of the
 following applies:

Moskowitz, et al. Expires April 25, 2005 [Page 9]

Internet-Draft Host Identity Protocol October 2004

 The RSA public key is encoded as defined in RFC3110 [14]
Section 2, taking the exponent length (e_len), exponent (e)

 and modulus (n) fields concatenated. The length of the
 modulus (n) can be determined from the total HI length
 (hi_len) and the preceding HI fields including the exponent
 (e). Thus, the data to be hashed has the same length than the
 HI (hi_len). The fields MUST be encoded in network byte order,
 as defined in RFC3110 [14].
 The DSA public key is encoded as defined in RFC2536 [13]

Section 2, taking the fields T, Q, P, G, and Y, concatenated.
 Thus, the data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T
 octets long, where T is the size parameter as defined in

RFC2536 [13]. The size parameter T, affecting the field
 lengths, MUST be selected as the minimum value that is long
 enough to accommodate P, G, and Y. The fields MUST be encoded
 in network byte order, as defined in RFC2536 [13].
 2. A SHA-1 hash [22] is calculated over the encoded key.
 3. The least significant 128 or 64 bits of the hash result are used
 to create the HIT, as defined above.

 The following pseudo-codes illustrates the process for both RSA and
 DSA. The symbol := denotes assignment; the symbol += denotes
 appending. The pseudo-function encode_in_network_byte_order takes
 two parameters, an integer (bignum) and a length in bytes, and
 returns the integer encoded into a byte string of the given length.

 switch (HI.algorithm)
 {

 case RSA:
 buffer := encode_in_network_byte_order (HI.RSA.e_len,
 (HI.RSA.e_len > 255) ? 3 : 1)
 buffer += encode_in_network_byte_order (HI.RSA.e, HI.RSA.e_len)
 buffer += encode_in_network_byte_order (HI.RSA.n, HI.hi_len)
 break;

 case DSA:
 buffer := encode_in_network_byte_order (HI.DSA.T , 1)
 buffer += encode_in_network_byte_order (HI.DSA.Q , 20)
 buffer += encode_in_network_byte_order (HI.DSA.P , 64 + 8 * HI.DSA.T)
 buffer += encode_in_network_byte_order (HI.DSA.G , 64 + 8 * HI.DSA.T)
 buffer += encode_in_network_byte_order (HI.DSA.Y , 64 + 8 * HI.DSA.T)
 break;

 }

 digest := SHA-1 (buffer)

https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536

Moskowitz, et al. Expires April 25, 2005 [Page 10]

Internet-Draft Host Identity Protocol October 2004

 hit_128 := low_order_bits (digest, 128)
 hit_haa := concatenate (HAA, low_order_bits (digest, 64))

3.2 Local Scope Identifier (LSI)

 LSIs are 32 or 128 bits long localized representations of a Host
 Identity. The purpose of an LSI is to facilitate using Host
 Identities in existing IPv4 or IPv6 based protocols and APIs. The
 LSI can be used anywhere in system processes where IP addresses have
 traditionally been used, such as IPv4 and IPv6 API calls and FTP PORT
 commands.

 The IPv4-compatible LSIs MUST be allocated from the TBD subnet and
 the IPv6-compatible LSIs MUST be allocated from the TBD subnet. That
 makes it easier to differentiate between LSIs and IP addresses at the
 API level. By default, the low order 24 bits of an IPv4-compatible
 LSI are equal to the low order 24 bits of the corresponding HIT,
 while the low order TBD bits of an IPv6-compatible LSI are equal to
 the low order TBD bits of the corresponding HIT.

 A host performing a HIP handshake may discover that the LSI formed
 from the peer's HIT collides with another LSI in use locally (i.e.,
 the lower 24 or TBD bits of two different HITs are the same). In
 that case, the host MUST handle the LSI collision locally such that
 application calls can be disambiguated. One possible means of doing
 so is to perform a Host NAT function to locally convert a peer's LSI
 into a different LSI value. This would require the host to ensure
 that LSI bits on the wire (i.e., in the application data stream) are
 converted back to match that host's LSI. Other alternatives for
 resolving LSI collisions may be added in the future.

3.3 Security Parameter Index (SPI)

 SPIs are used in ESP to find the right security association for
 received packets. The ESP SPIs have added significance when used
 with HIP; they are a compressed representation of the HITs in every
 packet. Thus, SPIs MAY be used by intermediary systems in providing
 services like address mapping. Note that since the SPI has
 significance at the receiver, only the < DST, SPI >, where DST is a
 destination IP address, uniquely identifies the receiver HIT at every
 given point of time. The same SPI value may be used by several
 hosts. A single < DST, SPI > value may denote different hosts at
 different points of time, depending on which host is currently
 reachable at the DST.

 Each host selects for itself the SPI it wants to see in packets
 received from its peer. This allows it to select different SPIs for

Moskowitz, et al. Expires April 25, 2005 [Page 11]

Internet-Draft Host Identity Protocol October 2004

 different peers. The SPI selection SHOULD be random; the rules of
Section 2.1 of the ESP specification [19] must be followed. A

 different SPI SHOULD be used for each HIP exchange with a particular
 host; this is to avoid a replay attack. Additionally, when a host
 rekeys, the SPI MUST be changed. Furthermore, if a host changes over
 to use a different IP address, it MAY change the SPI.

 One method for SPI creation that meets these criteria would be to
 concatenate the HIT with a 32-bit random or sequential number, hash
 this (using SHA1), and then use the high order 32 bits as the SPI.

 The selected SPI is communicated to the peer in the third (I2) and
 fourth (R2) packets of the base HIP exchange. Changes in SPI are
 signaled with NES parameters.

Moskowitz, et al. Expires April 25, 2005 [Page 12]

Internet-Draft Host Identity Protocol October 2004

4. Host Identity Protocol

 The Host Identity Protocol is IP protocol TBD (number will be
 assigned by IANA). The HIP payload could be carried in every
 datagram. However, since HIP datagrams are relatively large (at
 least 40 bytes), and ESP already has all of the functionality to
 maintain and protect state, the HIP payload is 'compressed' into an
 ESP payload after the HIP exchange. Thus in practice, HIP packets
 only occur in datagrams to establish or change HIP state.

 For testing purposes, the protocol number 99 is currently used.

4.1 HIP base exchange

 The base HIP exchange serves to manage the establishment of state
 between an Initiator and a Responder. During the exchange, an IPsec
 Security Association is created between the hosts. The last three
 packets of the exchange, R1, I2, and R2, constitute a standard
 authenticated Diffie-Hellman key exchange for session key generation.

 The Initiator first sends a trigger packet, I1, to the Responder.
 The packet contains only the HIT of the Initiator and possibly the
 HIT of the Responder, if it is known.

 The second packet, R1, starts the actual exchange. It contains a
 puzzle, that is, a cryptographic challenge that the Initiator must
 solve before continuing the exchange. In addition, it contains the
 initial Diffie-Hellman parameters and a signature, covering part of
 the message. Some fields are left outside the signature to support
 pre-created R1s.

 In the I2 packet, the Initiator must display the solution to the
 received puzzle. Without a correct solution, the I2 message is
 discarded. The I2 also contains a Diffie-Hellman parameter that
 carries needed information for the Responder. The packet is signed
 by the sender.

 The R2 packet finalizes the 4-way handshake, containing the SPI value
 of the Responder. The packet is signed.

 The base exchange is illustrated below. During this D-H procedure,
 the hosts create an IPsec session key.

Moskowitz, et al. Expires April 25, 2005 [Page 13]

Internet-Draft Host Identity Protocol October 2004

 Initiator Responder

 I1: trigger exchange
 -------------------------->
 select pre-computed R1
 R1: puzzle, D-H, key, sig
 <-------------------------
 check sig remain stateless
 solve puzzle
 I2: solution, D-H, {key}, sig
 -------------------------->
 compute D-H check cookie
 check puzzle
 check sig
 R2: sig
 <--------------------------
 check sig compute D-H

 In R1, the signature covers the packet, after setting the Initiator
 HIT, header checksum, and the PUZZLE parameter's Opaque and Random #I
 fields temporarily to zero, and excluding any TLVs that follow the
 signature.

 In I2, the signature covers the whole packet, excluding any TLVs that
 follow the signature.

 In R2, the signature and the HMAC cover the whole envelope.

 In this section we cover the overall design of the base exchange.
 The details are the subject of the rest of this memo.

4.1.1 HIP Cookie Mechanism

 The purpose of the HIP cookie mechanism is to protect the Responder
 from a number of denial-of-service threats. It allows the Responder
 to delay state creation until receiving I2. Furthermore, the puzzle
 included in the cookie allows the Responder to use a fairly cheap
 calculation to check that the Initiator is "sincere" in the sense
 that it has churned CPU cycles in solving the puzzle.

 The Cookie mechanism has been explicitly designed to give space for
 various implementation options. It allows a responder implementation
 to completely delay session specific state creation until a valid I2
 is received. In such a case a validly formatted I2 can be rejected
 earliest only once the Responder has checked its validity by
 computing one hash function. On the other hand, the design also
 allows a responder implementation to keep state about received I1s,

Moskowitz, et al. Expires April 25, 2005 [Page 14]

Internet-Draft Host Identity Protocol October 2004

 and match the received I2s against the state, thereby allowing the
 implementation to avoid the computational cost of the hash function.
 The drawback of this latter approach is the requirement of creating
 state. Finally, it also allows an implementation to use any
 combination of the space-saving and computation-saving mechanisms.

 One possible way for a Responder to remain stateless but drop most
 spoofed I2s is to base the selection of the cookie on some function
 over the Initiator's Host Identity. The idea is that the Responder
 has a (perhaps varying) number of pre-calculated R1 packets, and it
 selects one of these based on the information carried in I1. When
 the Responder then later receives I2, it checks that the cookie in
 the I2 matches with the cookie sent in the R1, thereby making it
 impractical for the attacker to first exchange one I1/R1, and then
 generate a large number of spoofed I2s that seemingly come from
 different IP addresses or use different HITs. The method does not
 protect from an attacker that uses fixed IP addresses and HITs,
 though. Against such an attacker it is probably best to create a
 piece of local state, and remember that the puzzle check has
 previously failed. See Appendix D for one possible implementation.
 Note, however, that the implementations MUST NOT use the exact
 implementation given in the appendix, and SHOULD include sufficient
 randomness to the algorithm so that algorithm complexity attacks
 become impossible [26].

 The Responder can set the difficulty for Initiator, based on its
 concern of trust of the Initiator. The Responder SHOULD use
 heuristics to determine when it is under a denial-of-service attack,
 and set the difficulty value K appropriately.

 The Responder starts the cookie exchange when it receives an I1. The
 Responder supplies a random number I, and requires the Initiator to
 find a number J. To select a proper J, the Initiator must create the
 concatenation of I, the HITs of the parties, and J, and take a SHA-1
 hash over this concatenation. The lowest order K bits of the result
 MUST be zeros.

 To generate a proper number J, the Initiator will have to generate a
 number of Js until one produces the hash target of zero. The
 Initiator SHOULD give up after exceeding the puzzle lifetime received
 in PUZZLE TLV. The Responder needs to re-create the concatenation of
 I, the HITs, and the provided J, and compute the hash once to prove
 that the Initiator did its assigned task.

 To prevent pre-computation attacks, the Responder MUST select the
 number I in such a way that the Initiator cannot guess it.
 Furthermore, the construction MUST allow the Responder to verify that
 the value was indeed selected by it and not by the Initiator. See

Moskowitz, et al. Expires April 25, 2005 [Page 15]

Internet-Draft Host Identity Protocol October 2004

Appendix D for an example on how to implement this.

 Using the Opaque data field in the ECHO_REQUEST, the Responder can
 include some data in R1 that the Initiator must copy unmodified in
 the corresponding I2 packet. The Responder can generate the Opaque
 data e.g. using the sent I, some secret and possibly other related
 data. Using this same secret, received I in I2 packet and possible
 other data, the Receiver can verify that it has itself sent the I to
 the Initiator. The Responder must change the secret periodically.

 It is RECOMMENDED that the Responder generates a new cookie and a new
 R1 once every few minutes. Furthermore, it is RECOMMENDED that the
 Responder remembers an old cookie at least 2*lifetime seconds after
 it has been deprecated. These time values allow a slower Initiator
 to solve the cookie puzzle while limiting the usability that an old,
 solved cookie has to an attacker.

 NOTE: The protocol developers explicitly considered whether R1 should
 include a timestamp in order to protect the Initiator from replay
 attacks. The decision was NOT to include a timestamp.

 In R1, the values I and K are sent in network byte order. Similarly,
 in I2 the values I and J are sent in network byte order. The SHA-1
 hash is created by concatenating, in network byte order, the
 following data, in the following order:
 64-bit random value I, in network byte order, as appearing in R1
 and I2.
 128-bit initiator HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.
 128-bit responder HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.
 64-bit random value J, in network byte order, as appearing in I2.
 In order to be a valid response cookie, the K low-order bits of the
 resulting SHA-1 digest must be zero.

 Notes:
 The length of the data to be hashed is 48 bytes.
 All the data in the hash input MUST be in network byte order.
 The order of the initiator and responder HITs are different in the
 R1 and I2 packets, see Section 6.1. Care must be taken to copy
 the values in right order to the hash input.

 Precomputation by the Responder

 Sets up the challenge difficulty K.
 Creates a signed R1 and caches it.

Moskowitz, et al. Expires April 25, 2005 [Page 16]

Internet-Draft Host Identity Protocol October 2004

 Responder

 Selects a suitable cached R1.
 Generates a random number I.
 Sends I and K in a HIP Cookie in the R1.
 Saves I and K for a Delta time.
 Initiator

 Generates repeated attempts to solve the challenge until a
 matching J is found:

 Ltrunc(SHA-1(I | HIT-I | HIT-R | J), K) == 0
 Sends I and J in HIP Cookie in a I2.
 Responder

 Verifies that the received I is a saved one.
 Finds the right K based on I.
 Computes V := Ltrunc(SHA-1(I | HIT-I | HIT-R | J), K)
 Rejects if V != 0
 Accept if V == 0

 The Ltrunc (SHA-1(), K) denotes the lowest order K bits of the SHA-1
 result.

4.1.2 Authenticated Diffie-Hellman protocol

 The packets R1, I2, and R2 implement a standard authenticated
 Diffie-Hellman exchange. The Responder sends its public
 Diffie-Hellman key and its public authentication key, i.e., its host
 identity, in R1. The signature in R1 allows the Initiator to verify
 that the R1 has been once generated by the Responder. However, since
 it is precomputed and therefore does not cover all of the packet, it
 does not protect from replay attacks.

 When the Initiator receives an R1, it computes the Diffie-Hellman
 session key. It creates a HIP security association using keying
 material from the session key (see Section 9), and uses the security
 association to encrypt its public authentication key, i.e., host
 identity. The resulting I2 contains the Initiator's Diffie-Hellman
 key and its the encrypted public authentication key. The signature
 in I2 covers all of the packet.

 The Responder extracts the Initiator Diffie-Hellman public key from
 the I2, computes the Diffie-Hellman session key, creates a
 corresponding HIP security association, and decrypts the Initiator's
 public authentication key. It can then verify the signature using
 the authentication key.

Moskowitz, et al. Expires April 25, 2005 [Page 17]

Internet-Draft Host Identity Protocol October 2004

 The final message, R2, is needed to protect the Initiator from replay
 attacks.

4.1.3 HIP replay protection

 The HIP protocol includes the following mechanisms to protect against
 malicious replays. Responders are protected against replays of I1
 packets by virtue of the stateless response to I1s with presigned R1
 messages. Initiators are protected against R1 replays by a
 monotonically increasing "R1 generation counter" included in the R1.
 Responders are protected against replays or false I2s by the cookie
 mechanism (Section 4.1.1 above), and optional use of opaque data.
 Hosts are protected against replays to R2s and UPDATEs by use of a
 less expensive HMAC verification preceding HIP signature
 verification.

 The R1 generation counter is a monotonically increasing 64-bit
 counter that may be initialized to any value. The scope of the
 counter MAY be system-wide but SHOULD be per host identity, if there
 is more than one local host identity. The value of this counter
 SHOULD be kept across system reboots and invocations of the HIP
 signaling process. This counter indicates the current generation of
 cookie puzzles. Implementations MUST accept puzzles from the current
 generation and MAY accept puzzles from earlier generations. A
 system's local counter MUST be incremented at least as often as every
 time old R1s cease to be valid, and SHOULD never be decremented, lest
 the host expose its peers to the replay of previously generated,
 higher numbered R1s. Also, the R1 generation counter MUST NOT roll
 over; if the counter is about to become exhausted, the corresponding
 HI must be abandoned and replaced with a new one.

 A host may receive more than one R1, either due to sending multiple
 I1s (Section 8.4.1) or due to a replay of an old R1. When sending
 multiple I1s, an initiator SHOULD wait for a small amount of time
 after the first R1 reception to allow possibly multiple R1s to
 arrive, and it SHOULD respond to an R1 among the set with the largest
 R1 generation counter. If an initiator is processing an R1 or has
 already sent an I2 (still waiting for R2) and it receives another R1
 with a larger R1 generation counter, it MAY elect to restart R1
 processing with the fresher R1, as if it were the first R1 to arrive.

 Upon conclusion of an active HIP association with another host, the
 R1 generation counter associated with the peer host SHOULD be
 flushed. A local policy MAY override the default flushing of R1
 counters on a per-HIT basis. The reason for recommending the
 flushing of this counter is that there may be hosts where the R1
 generation counter (occasionally) decreases; e.g., due to hardware
 failure.

Moskowitz, et al. Expires April 25, 2005 [Page 18]

Internet-Draft Host Identity Protocol October 2004

4.2 TCP and UDP pseudo-header computation

 When computing TCP and UDP checksums on sockets bound to HITs or
 LSIs, the IPv6 pseudo-header format [11] MUST be used. Additionally,
 the HITs MUST be used in the place of the IPv6 addresses in the IPv6
 pseudo-header. Note that the pseudo-header for actual HIP payloads
 is computed differently; see Section 6.1.2.

4.3 Updating a HIP association

 A HIP association between two hosts may need to be updated over time.
 Examples include the need to rekey expiring security associations,
 add new security associations, or change IP addresses associated with
 hosts. This document only specifies how UPDATE is used for rekeying;
 other uses are deferred to other drafts.

 HIP provides a general purpose UPDATE packet, which can carry
 multiple HIP parameters, for updating the HIP state between two
 peers. The UPDATE mechanism has the following properties:
 UPDATE messages carry a monotonically increasing sequence number
 and are explicitly acknowledged by the peer. Lost UPDATEs or
 acknowledgments may be recovered via retransmission. Multiple
 UPDATE messages may be outstanding.
 UPDATE is protected by both HMAC and HIP_SIGNATURE parameters,
 since processing UPDATE signatures alone is a potential DoS attack
 against intermediate systems.

 The UPDATE packet is defined in Section 7.6.

4.4 Error processing

 HIP error processing behaviour depends on whether there exists an
 active HIP association or not. In general, if an HIP security
 association exists between the sender and receiver of a packet
 causing an error condition, the receiver SHOULD respond with a NOTIFY
 packet. On the other hand, if there are no existing HIP security
 associations between the sender and receiver, or the receiver cannot
 reasonably determine the identity of the sender, the receiver MAY
 respond with a suitable ICMP message; see Section 6.3 for more
 details.

4.5 Certificate distribution

 HIP does not define how to use certificates. However, it does define
 a simple certificate transport mechanisms that MAY be used to
 implement certificate based security policies. The certificate
 payload is defined in Section 6.2.11, and the certificate packet in

Section 7.5.

Moskowitz, et al. Expires April 25, 2005 [Page 19]

Internet-Draft Host Identity Protocol October 2004

4.6 Sending data on HIP packets

 A future version of this document may define how to include ESP
 protected data on various HIP packets. However, currently the HIP
 header is a terminal header, and not followed by any other headers.

Moskowitz, et al. Expires April 25, 2005 [Page 20]

Internet-Draft Host Identity Protocol October 2004

5. HIP protocol overview

 The following material is an overview of the HIP protocol operation.
Section 8 describes the packet processing steps in more detail.

 A typical HIP packet flow is shown below, between an Initiator (I)
 and a Responder (R). It illustrates the exchange of four HIP packets
 (I1, R1, I2, and R2).

 I --> Directory: lookup R
 I <-- Directory: return R's addresses, and HI and/or HIT
 I1 I --> R (Hi. Here is my I1, let's talk HIP)
 R1 I <-- R (OK. Here is my R1, handle this HIP cookie)
 I2 I --> R (Compute, compute, here is my counter I2)
 R2 I <-- R (OK. Let's finish HIP with my R2)
 I --> R (ESP protected data)
 I <-- R (ESP protected data)

 By definition, the system initiating a HIP exchange is the Initiator,
 and the peer is the Responder. This distinction is forgotten once
 the base exchange completes, and either party can become the
 initiator in future communications.

5.1 HIP Scenarios

 The HIP protocol and state machine is designed to recover from one of
 the parties crashing and losing its state. The following scenarios
 describe the main use cases covered by the design.
 No prior state between the two systems.
 The system with data to send is the Initiator. The process
 follows the standard four packet base exchange, establishing
 the SAs.
 The system with data to send has no state with the receiver, but
 the receiver has a residual SA.
 The system with data to send is the Initiator. The Initiator
 acts as in no prior state, sending I1 and getting R1. When the
 Responder receives a valid I2, the old SAs are 'discovered' and
 deleted, and the new SAs are established.
 The system with data to send has an SA, but the receiver does not.
 The system sends data on the outbound SA. The receiver
 'detects' the situation when it receives an ESP packet that
 contains an unknown SPI. The receiving host MUST discard this
 packet, in accordance with IPsec architecture. Optionally, the
 receiving host MAY send an ICMP packet with the Parameter
 Problem type to inform about invalid SPI (see Section 6.3, and
 it MAY initiate a new HIP negotiation. However, responding
 with these optional mechanisms is implementation or policy
 dependent.

Moskowitz, et al. Expires April 25, 2005 [Page 21]

Internet-Draft Host Identity Protocol October 2004

 A system determines that it needs to reset ESP Sequence Number, or
 rekey.
 The system sends a HIP UPDATE packet. The peer responds with a
 HIP UPDATE response. The UPDATE exchanges can refresh or
 establish new SAs for peers.

5.2 Refusing a HIP exchange

 A HIP aware host may choose not to accept a HIP exchange. If the
 host's policy is to only be an Initiator, it should begin its own HIP
 exchange. A host MAY choose to have such a policy since only the
 Initiator HI is protected in the exchange. There is a risk of a race
 condition if each host's policy is to only be an Initiator, at which
 point the HIP exchange will fail.

 If the host's policy does not permit it to enter into a HIP exchange
 with the Initiator, it should send an ICMP 'Destination Unreachable,
 Administratively Prohibited' message. A more complex HIP packet is
 not used here as it actually opens up more potential DoS attacks than
 a simple ICMP message.

5.3 Reboot and SA timeout restart of HIP

 Simulating a loss of state is a potential DoS attack. The following
 process has been crafted to manage state recovery without presenting
 a DoS opportunity.

 If a host reboots or times out, it has lost its HIP state. If the
 system that lost state has a datagram to deliver to its peer, it
 simply restarts the HIP exchange. The peer replies with an R1 HIP
 packet, but does not reset its state until it receives the I2 HIP
 packet. The I2 packet MUST have a valid solution to the puzzle and,
 if inserted in R1, a valid Opaque data as well as a valid signature.
 Note that either the original Initiator or the Responder could end up
 restarting the exchange, becoming the new Initiator.

 If a system receives an ESP packet for an unknown SPI, it is possible
 that it has lost the state and its peer has not. It MAY send an ICMP
 packet with the Parameter Problem type, the Pointer pointing to the
 SPI value within the ESP header. Reacting to ESP traffic with unknown
 SPI depends on the implementation and the environment where the
 implementation is used.

 The initiating host cannot know, if the SA indicated by the received
 ESP packet is either a HIP SA or and IKE SA. If the old SA was not a
 HIP SA, the peer may not respond to the I1 packet.

 After sending the I1, the HIP negotiation proceeds as normally and,

Moskowitz, et al. Expires April 25, 2005 [Page 22]

Internet-Draft Host Identity Protocol October 2004

 when successful, the SA is created at the initiating end. The peer
 end removes the OLD SA and replaces it with the new one.

5.4 HIP State Machine

 The HIP protocol itself has very little state. In the HIP base
 exchange, there is an Initiator and a Responder. Once the SAs are
 established, this distinction is lost. If the HIP state needs to be
 re-established, the controlling parameters are which peer still has
 state and which has a datagram to send to its peer. The following
 state machine attempts to capture these processes.

 The state machine is presented in a single system view, representing
 either an Initiator or a Responder. There is not a complete overlap
 of processing logic here and in the packet definitions. Both are
 needed to completely implement HIP.

 Implementors must understand that the state machine, as described
 here, is informational. Specific implementations are free to
 implement the actual functions differently. Section 8 describes the
 packet processing rules in more detail. This state machine focuses
 on the HIP I1, R1, I2, R2, and UPDATE packets only, and specifically,
 the state induced by an UPDATE that triggers a rekeying event. Other
 states may be introduced by mechanisms in other drafts (such as
 mobility and multihoming).

5.4.1 HIP States

 UNASSOCIATED State machine start
 I1-SENT Initiating HIP
 I2-SENT Waiting to finish HIP
 R2-SENT Waiting to finish HIP
 ESTABLISHED HIP SA established
 REKEYING HIP SA established, but UPDATE is outstanding for rekeying
 CLOSING HIP SA closing, no data (ESP) can be sent
 CLOSED HIP SA closed, no data (ESP) can be sent
 E-FAILED HIP exchange failed

5.4.2 HIP State Processes

 +------------+
 |UNASSOCIATED| Start state
 +------------+

 Datagram to send requiring a new SA, send I1 and go to I1-SENT
 Receive I1, send R1 and stay at UNASSOCIATED
 Receive I2, process
 if successful, send R2 and go to R2-SENT

Moskowitz, et al. Expires April 25, 2005 [Page 23]

Internet-Draft Host Identity Protocol October 2004

 if fail, stay at UNASSOCIATED

 Receive ESP for unknown SA, optionally send ICMP as defined
 in

Section 6.3
 and stay at UNASSOCIATED

 Receive CLOSE, or UPDATE, optionally send ICMP Parameter
 Problem and stay in UNASSOCIATED.

 Receive ANYOTHER, drop and stay at UNASSOCIATED

 +---------+
 | I1-SENT | Initiating HIP
 +---------+

 Receive I1, send R1 and stay at I1-SENT
 Receive I2, process
 if successful, send R2 and go to R2-SENT
 if fail, stay at I1-SENT
 Receive R1, process
 if successful, send I2 and go to I2-SENT
 if fail, go to E-FAILED

 Receive ANYOTHER, drop and stay at I1-SENT
 Timeout, increment timeout counter
 If counter is less than I1_RETRIES_MAX, send I1 and stay at I1-SENT
 If counter is greater than I1_RETRIES_MAX, go to E-FAILED

 +---------+
 | I2-SENT | Waiting to finish HIP
 +---------+

 Receive I1, send R1 and stay at I2-SENT
 Receive R1, process
 if successful, send I2 and cycle at I2-SENT
 if fail, stay at I2-SENT
 Receive I2, process
 if successful, send R2 and go to R2-SENT
 if fail, stay at I2-SENT
 Receive R2, process
 if successful, go to ESTABLISHED
 if fail, go to E-FAILED

 Receive ANYOTHER, drop and stay at I2-SENT
 Timeout, increment timeout counter
 If counter is less than I2_RETRIES_MAX, send I2 and stay at I2-SENT

Moskowitz, et al. Expires April 25, 2005 [Page 24]

Internet-Draft Host Identity Protocol October 2004

 If counter is greater than I2_RETRIES_MAX, go to E-FAILED

 +---------+
 | R2-SENT | Waiting to finish HIP
 +---------+

 Receive I1, send R1 and stay at R2-SENT
 Receive I2, process,
 if successful, send R2, and cycle at R2-SENT
 if failed, stay at R2-SENT
 Receive R1, drop and stay at R2-SENT
 Receive R2, drop and stay at R2-SENT

 Receive ESP for SA, process and go to ESTABLISHED
 Receive UPDATE, go to ESTABLISHED and process from ESTABLISHED state

 Move to ESTABLISHED after an implementation specific time.

 +------------+
 |ESTABLISHED | HIP SA established
 +------------+

 Receive I1, send R1 and stay at ESTABLISHED
 Receive I2, process with cookie and possible Opaque data verification
 if successful, send R2, drop old SAs, establish new SA, go to
 R2-SENT
 if fail, stay at ESTABLISHED
 Receive R1, drop and stay at ESTABLISHED
 Receive R2, drop and stay at ESTABLISHED

 Receive ESP for SA, process and stay at ESTABLISHED
 Receive UPDATE, process
 if successful, send UPDATE in reply and go to REKEYING
 if failed, stay at ESTABLISHED
 Need rekey,
 send UPDATE and go to REKEYING
 No packet sent/received during UAL minutes, send CLOSE and go to
 CLOSING.
 Receive CLOSE, process
 if successful, send CLOSE_ACK and go to CLOSED
 if failed, stay at ESTABLISHED

 +---------+
 | CLOSING | HIP association has not been used for UAL (Unused
 +---------+ Association Lifetime) minutes.

 Datagram to send, requires the creation of another incarnation

Moskowitz, et al. Expires April 25, 2005 [Page 25]

Internet-Draft Host Identity Protocol October 2004

 of the HIP association, started by sending an I1,
 and stay at CLOSING

 Receive I1, send R1 and stay at CLOSING
 Receive I2, process
 if successful, send R2 and go to R2-SENT
 if fail, stay at CLOSING

 Receive R1, process
 if successful, send I2 and go to I2-SENT
 if fail, stay at CLOSING

 Receive CLOSE, process
 if successful, send CLOSE_ACK, discard state and go to CLOSED
 if failed, stay at CLOSING
 Receive CLOSE_ACK, process
 if successful, discard state and go to UNASSOCIATED
 if failed, stay at CLOSING

 Receive ANYOTHER, drop and stay at CLOSING

 Timeout, increment timeout sum, reset timer
 if timeout sum is less than UAL+MSL minutes, retransmit CLOSE
 and stay at CLOSING
 if timeout sum is greater than UAL+MSL minutes, go to
 UNASSOCIATED

 +--------+
 | CLOSED | CLOSE_ACK sent, resending CLOSE_ACK if necessary
 +--------+

 Datagram to send, requires the creation of another incarnation
 of the HIP association, started by sending an I1,
 and stay at CLOSED

 Receive I1, send R1 and stay at CLOSED
 Receive I2, process
 if successful, send R2 and go to R2-SENT
 if fail, stay at CLOSED

 Receive R1, process
 if successful, send I2 and go to I2-SENT
 if fail, stay at CLOSED

 Receive CLOSE, process
 if successful, send CLOSE_ACK, stay at CLOSED
 if failed, stay at CLOSED

Moskowitz, et al. Expires April 25, 2005 [Page 26]

Internet-Draft Host Identity Protocol October 2004

 Receive CLOSE_ACK, process
 if successful, discard state and go to UNASSOCIATED
 if failed, stay at CLOSED

 Receive ANYOTHER, drop and stay at CLOSED

 Timeout (UAL + 2MSL), discard state and go to UNASSOCIATED

 +----------+
 | REKEYING | HIP SA established, rekey pending
 +----------+

 Receive I1, send R1 and stay at REKEYING
 Receive I2, process with cookie and possible Opaque data verification
 if successful, send R2, drop old SA and go to R2-SENT
 if fail, stay at REKEYING
 Receive R1, drop and stay at REKEYING
 Receive R2, drop and stay at REKEYING

 Receive ESP for SA, process and stay at REKEYING
 Receive UPDATE, process
 if successful completion of rekey, go to ESTABLISHED
 if failed, stay at REKEYING
 Timeout, increment timeout counter
 If counter is less than UPDATE_RETRIES_MAX, send UPDATE and stay at
 REKEYING
 If counter is greater than UPDATE_RETRIES_MAX, go to E-FAILED

 +----------+
 | E-FAILED | HIP failed to establish association with peer
 +----------+

 Move to UNASSOCIATED after an implementation specific time. Re-negotiation
 is possible after moving to UNASSOCIATED state.

5.4.3 Simplified HIP State Diagram

 The following diagram shows the major state transitions. Transitions
 based on received packets implicitly assume that the packets are
 successfully authenticated or processed. The diagram assumes that
 UPDATE messages are being used for rekeying.

 +-+ +------------------------------+
 I1 received, send R1 | | | |
 | v v |

Moskowitz, et al. Expires April 25, 2005 [Page 27]

Internet-Draft Host Identity Protocol October 2004

 Datagram to send +--------------+ I2 received, send R2 |
 +---------------| UNASSOCIATED |---------------+ |
 | +--------------+ | |
 v | |
 +---------+ I2 received, send R2 | |
 +---->| I1-SENT |---------------------------------------+ | |
+---------+						
	+------------------------+					
	R1 received,	I2 received, send R2				
v send I2	v v v					
+---------+	+---------+					
+->	I2-SENT	------------+	R2-SENT	<-----+		
	+---------+ +---------+					
	receive					
	R1, send	timeout,	receive I2,			
	I2	R2 received +--------------+ ESP	send R2			
	+----------->	ESTABLISHED	<---------+			
	+--------------+					
	Update received/	^				
	Update triggered				+---------------------------+	
	+----------------+					
					No packet sent/received	
	v			for UAL min, send CLOSE		
	+----------+					
		REKEYING	-------------+		+---------+<-+ timeout	
	+----------+ UPDATE acked	+--->	CLOSING	--+ (UAL+MSL)		
	and NES received	+---------+ retransmit				
+--+----------------------------+---------+				CLOSE		
+----------------------------+-----------+		+----------------+				
		+-----------+ +------------------+--+				
			receive CLOSE, CLOSE_ACK			
			send CLOSE_ACK received or			
	v v timeout					
	+--------+ (UAL+MSL)					
+---------------------------	CLOSED	---------------------------+				
 +------------------------------+--------+------------------------------+
 Datagram to send ^ | timeout (UAL+2MSL),
 +-+ move to UNASSOCIATED
 CLOSE received,
 send CLOSE_ACK

Moskowitz, et al. Expires April 25, 2005 [Page 28]

Internet-Draft Host Identity Protocol October 2004

6. Packet formats

6.1 Payload format

 All HIP packets start with a fixed header.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Payload Len | Type | VER. | RES. |
 +-+
 | Controls | Checksum |
 +-+
 | Sender's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | Receiver's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | |
 / HIP Parameters /
 / /
 | |
 +-+

 The HIP header is logically an IPv6 extension header. However, this
 document does not describe processing for Next Header values other
 than decimal 59, IPPROTO_NONE, the IPV6 no next header value. Future
 documents MAY do so. However, implementations MUST ignore trailing
 data if a Next Header value is received that is not implemented.

 The Header Length field contains the length of the HIP Header and the
 length of HIP parameters in 8 bytes units, excluding the first 8
 bytes. Since all HIP headers MUST contain the sender's and
 receiver's HIT fields, the minimum value for this field is 4, and
 conversely, the maximum length of the HIP Parameters field is
 (255*8)-32 = 2008 bytes. Note: this sets an additional limit for
 sizes of TLVs included in the Parameters field, independent of the
 individual TLV parameter maximum lengths.

 The Packet Type indicates the HIP packet type. The individual packet
 types are defined in the relevant sections. If a HIP host receives a

Moskowitz, et al. Expires April 25, 2005 [Page 29]

Internet-Draft Host Identity Protocol October 2004

 HIP packet that contains an unknown packet type, it MUST drop the
 packet.

 The HIP Version is four bits. The current version is 1. The version
 number is expected to be incremented only if there are incompatible
 changes to the protocol. Most extensions can be handled by defining
 new packet types, new parameter types, or new controls.

 The following four bits are reserved for future use. They MUST be
 zero when sent, and they SHOULD be ignored when handling a received
 packet.

 The HIT fields are always 128 bits (16 bytes) long.

6.1.1 HIP Controls

 The HIP control section transfers information about the structure of
 the packet and capabilities of the host.

 The following fields have been defined:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | SHT | DHT | | | | | | | | |C|A|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 C - Certificate One or more certificate packets (CER) follows this
 HIP packet (see Section 7.5).
 A - Anonymous If this is set, the sender's HI in this packet is
 anonymous, i.e., one not listed in a directory. Anonymous HIs
 SHOULD NOT be stored. This control is set in packets R1 and/or
 I2. The peer receiving an anonymous HI may choose to refuse it by
 silently dropping the exchange.
 SHT - Sender's HIT Type Currently the following values are specified:
 0 RESERVED
 1 Type 1 HIT
 2 Type 2 HIT
 3-6 UNASSIGNED
 7 RESERVED
 DHT - Destination's HIT Type Using the same values as SHT.
 The rest of the fields are reserved for future use and MUST be set to
 zero on sent packets and ignored on received packets.

6.1.2 Checksum

 The checksum field is located at the same location within the header
 as the checksum field in UDP packets, enabling hardware assisted
 checksum generation and verification. Note that since the checksum
 covers the source and destination addresses in the IP header, it must

Moskowitz, et al. Expires April 25, 2005 [Page 30]

Internet-Draft Host Identity Protocol October 2004

 be recomputed on HIP based NAT boxes.

 If IPv6 is used to carry the HIP packet, the pseudo-header [11]
 contains the source and destination IPv6 addresses, HIP packet length
 in the pseudo-header length field, a zero field, and the HIP protocol
 number (TBD, see Section 4) in the Next Header field. The length
 field is in bytes and can be calculated from the HIP header length
 field: (HIP Header Length + 1) * 8.

 In case of using IPv4, the IPv4 UDP pseudo header format [1] is used.
 In the pseudo header, the source and destination addresses are those
 used in the IP header, the zero field is obviously zero, the protocol
 is the HIP protocol number (TBD, see Section 4), and the length is
 calculated as in the IPv6 case.

6.2 HIP parameters

 The HIP Parameters are used to carry the public key associated with
 the sender's HIT, together with other related security information.
 The HIP Parameters consists of ordered parameters, encoded in TLV
 format.

 The following parameter types are currently defined.

 TLV Type Length Data

 SPI 1 4 Remote's SPI.

 R1_COUNTER 2 12 System Boot Counter

 PUZZLE 5 12 K and Random #I

 SOLUTION 7 20 K, Random #I and puzzle solution

 NES 9 12 Old SPI, New SPI and other
 info needed for UPDATE

 SEQ 11 4 Update packet ID number

 ACK 13 variable Update packet ID number

 DIFFIE_HELLMAN 15 variable public key

 HIP_TRANSFORM 17 variable HIP Encryption and Integrity
 Transform

 ESP_TRANSFORM 19 variable ESP Encryption and
 Authentication Transform

Moskowitz, et al. Expires April 25, 2005 [Page 31]

Internet-Draft Host Identity Protocol October 2004

 ENCRYPTED 21 variable Encrypted part of I2 or CER
 packets

 HOST_ID 35 variable Host Identity with Fully
 Qualified Domain Name

 CERT 64 variable HI certificate

 NOTIFY 256 variable Informational data

 ECHO_REQUEST 1022 variable Opaque data to be echoed back;
 under signature

 ECHO_RESPONSE 1024 variable Opaque data echoed back; under
 signature

 HMAC 65245 20 HMAC based message
 authentication code, with
 key material from HIP_TRANSFORM

 HMAC_2 65247 20 HMAC based message
 authentication code, with
 key material from HIP_TRANSFORM

 HIP_SIGNATURE_2 65277 variable Signature of the R1 packet

 HIP_SIGNATURE 65279 variable Signature of the packet

 ECHO_REQUEST 65281 variable Opaque data to be echoed back

 ECHO_RESPONSE 65283 variable Opaque data echoed back; after
 signature

6.2.1 TLV format

 The TLV encoded parameters are described in the following
 subsections. The type-field value also describes the order of these
 fields in the packet. The parameters MUST be included into the
 packet so that the types form an increasing order. If the order does
 not follow this rule, the packet is considered to be malformed and it
 MUST be discarded.

 All the TLV parameters have a length (including Type and Length
 fields) which is a multiple of 8 bytes. When needed, padding MUST be
 added to the end of the parameter so that the total length becomes a
 multiple of 8 bytes. This rule ensures proper alignment of data. If

Moskowitz, et al. Expires April 25, 2005 [Page 32]

Internet-Draft Host Identity Protocol October 2004

 padding is added, the Length field MUST NOT include the padding. Any
 added padding bytes MUST be set zero by the sender, but their content
 SHOULD NOT be checked on the receiving end.

 Consequently, the Length field indicates the length of the Contents
 field (in bytes). The total length of the TLV parameter (including
 Type, Length, Contents, and Padding) is related to the Length field
 according to the following formula:

 Total Length = 11 + Length - (Length + 3) % 8;

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |C| Length |
 +-+
 | |
 / Contents /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Type Type code for the parameter
 C Critical. One if this parameter is critical, and
 MUST be recognized by the recipient, zero otherwise.
 The C bit is considered to be a part of the Type field.
 Consequently, critical parameters are always odd
 and non-critical ones have an even value.
 Length Length of the Contents, in bytes.
 Contents Parameter specific, defined by Type
 Padding Padding, 0-7 bytes, added if needed

 Critical parameters MUST be recognized by the recipient. If a
 recipient encounters a critical parameter that it does not recognize,
 it MUST NOT process the packet any further.

 Non-critical parameters MAY be safely ignored. If a recipient
 encounters a non-critical parameter that it does not recognize, it
 SHOULD proceed as if the parameter was not present in the received
 packet.

6.2.2 Defining new parameters

 Future specifications may define new parameters as needed. When
 defining new parameters, care must be taken to ensure that the
 parameter type values are appropriate and leave suitable space for
 other future extensions. One must remember that the parameters MUST
 always be arranged in the increasing order by the type code, thereby

Moskowitz, et al. Expires April 25, 2005 [Page 33]

Internet-Draft Host Identity Protocol October 2004

 limiting the order of parameters.

 The following rules must be followed when defining new parameters.
 1. The low order bit C of the Type code is used to distinguish
 between critical and non-critical parameters.
 2. A new parameter may be critical only if an old recipient ignoring
 it would cause security problems. In general, new parameters
 SHOULD be defined as non-critical, and expect a reply from the
 recipient.
 3. If a system implements a new critical parameter, it MUST provide
 the ability to configure the associated feature off, such that
 the critical parameter is not sent at all. The configuration
 option must be well documented. By default, sending of such a new
 critical parameter SHOULD be off. In other words, the management
 interface MUST allow vanilla standards only mode as a default
 configuration setting, and MAY allow new critical payloads to be
 configured on (and off).
 4. The following type codes are reserved for future base protocol
 extensions, and may be assigned only through an appropriate WG or
 RFC action.
 0 - 511
 65024 - 65535
 5. The following type codes are reserved for experimentation and
 private use. Types SHOULD be selected in a random fashion from
 this range, thereby reducing the probability of collisions. A
 method employing genuine randomness (such as flipping a coin)
 SHOULD be used.
 32768 - 49141
 6. All other parameter type codes MUST be registered by the IANA.
 See Section 14.

6.2.3 SPI

 The SPI parameter contains the SPI that the receiving host must use
 when sending data to the sending host. It may be possible, in future
 extensions of this protocol, for multiple SPIs to exist in a
 host-host communications context.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | SPI |
 +-+

 Type 1
 Length 4

Moskowitz, et al. Expires April 25, 2005 [Page 34]

Internet-Draft Host Identity Protocol October 2004

 SPI Security Parameter Index

6.2.4 R1_COUNTER

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved, 4 bytes |
 +-+
 | R1 generation counter, 8 bytes |
 | |
 +-+

 Type 2
 Length 12
 R1 generation
 counter The current generation of valid puzzles

 The R1_COUNTER parameter contains an 64-bit unsigned integer in
 network byte order, indicating the current generation of valid
 puzzles. The sender is supposed to increment this counter
 periodically. It is RECOMMENDED that the counter value is
 incremented at least as often as old PUZZLE values are deprecated so
 that SOLUTIONs to them are no longer accepted.

 The R1_COUNTER parameter is optional. It SHOULD be included in the
 R1 (in which case it is covered by the signature), and if present in
 the R1, it MAY be echoed (including the Reserved field) by the
 Initiator in the I2.

Moskowitz, et al. Expires April 25, 2005 [Page 35]

Internet-Draft Host Identity Protocol October 2004

6.2.5 PUZZLE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Lifetime | Opaque, 2 bytes |
 +-+
 | Random # I, 8 bytes |
 | |
 +-+

 Type 5
 Length 12
 K K is the number of verified bits
 Lifetime Puzzle lifetime 2^(value-32) seconds
 Opaque Data set by the Responder, indexing the puzzle
 Random #I random number

 Random #I is represented as 64-bit integer, K and Lifetime as 8-bit
 integer, all in network byte order.

 The PUZZLE parameter contains the puzzle difficulty K and an 64-bit
 puzzle random integer #I. Puzzle Lifetime indicates the time during
 which the puzzle solution is valid and sets a time limit for
 initiator which it should not exceed while trying to solve the
 puzzle. The lifetime is indicated as power of 2 using formula
 2^(Lifetime-32) seconds. A puzzle MAY be augmented by including an
 ECHO_REQUEST parameter to an R1. The contents of the ECHO_REQUEST
 are then echoed back in ECHO_RESPONSE, allowing the Responder to use
 the included information as a part of puzzle processing.

 The Opaque and Random #I field are not covered by the HIP_SIGNATURE_2
 parameter.

Moskowitz, et al. Expires April 25, 2005 [Page 36]

Internet-Draft Host Identity Protocol October 2004

6.2.6 SOLUTION

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Reserved | Opaque, 2 bytes |
 +-+
 | Random #I, 8 bytes |
 | |
 +-+
 | Puzzle solution #J, 8 bytes |
 | |
 +-+

 Type 7
 Length 20
 K K is the number of verified bits
 Reserved zero when sent, ignored when received
 Opaque Copied unmodified from the received PUZZLE TLV
 Random #I random number
 Puzzle solution
 #J random number

 Random #I, and Random #J are represented as 64-bit integers, K as
 8-bit integer, all in network byte order.

 The SOLUTION parameter contains a solution to a puzzle. It also
 echoes back the random difficulty K, the Opaque field, and the puzzle
 integer #I.

Moskowitz, et al. Expires April 25, 2005 [Page 37]

Internet-Draft Host Identity Protocol October 2004

6.2.7 DIFFIE_HELLMAN

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Group ID | Public Value /
 +-+
 / | padding |
 +-+

 Type 15
 Length length in octets, excluding Type, Length, and padding
 Group ID defines values for p and g
 Public Value the sender's public Diffie-Hellman key

 The following Group IDs have been defined:

 Group Value
 Reserved 0
 384-bit group 1
 OAKLEY well known group 1 2
 1536-bit MODP group 3
 3072-bit MODP group 4
 6144-bit MODP group 5
 8192-bit MODP group 6

 The MODP Diffie-Hellman groups are defined in [18]. The OAKLEY group
 is defined in [9]. The OAKLEY well known group 5 is the same as the
 1536-bit MODP group.

 A HIP implementation MUST support Group IDs 1 and 3. The 384-bit
 group can be used when lower security is enough (e.g. web surfing)
 and when the equipment is not powerful enough (e.g. some PDAs).
 Equipment powerful enough SHOULD implement also group ID 5. The
 384-bit group is defined in Appendix G.

 To avoid unnecessary failures during the 4-way handshake, the rest of
 the groups SHOULD be implemented in hosts where resources are
 adequate.

Moskowitz, et al. Expires April 25, 2005 [Page 38]

Internet-Draft Host Identity Protocol October 2004

6.2.8 HIP_TRANSFORM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Transform-ID #1 | Transform-ID #2 |
 +-+
 | Transform-ID #n | Padding |
 +-+

 Type 17
 Length length in octets, excluding Type, Length, and padding
 Transform-ID Defines the HIP Suite to be used

 The Suite-IDs are identical to those defined in Section 6.2.9.

 There MUST NOT be more than six (6) HIP Suite-IDs in one HIP
 transform TLV. The limited number of transforms sets the maximum
 size of HIP_TRANSFORM TLV. The HIP_TRANSFORM TLV MUST contain at
 least one of the mandatory Suite-IDs.

 Mandatory implementations: ENCR-AES-CBC with HMAC-SHA1 and ENCR-NULL
 with HMAC-SHA1.

6.2.9 ESP_TRANSFORM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |E| Suite-ID #1 |
 +-+
 | Suite-ID #2 | Suite-ID #3 |
 +-+
 | Suite-ID #n | Padding |
 +-+

 Type 19
 Length length in octets, excluding Type, Length, and padding
 E One if the ESP transform requires 64-bit sequence
 numbers
 (see

Section 11.6
)
 Reserved zero when sent, ignored when received

Moskowitz, et al. Expires April 25, 2005 [Page 39]

Internet-Draft Host Identity Protocol October 2004

 Suite-ID defines the ESP Suite to be used

 The following Suite-IDs are defined ([20],[23]):

 Suite-ID Value

 RESERVED 0
 ESP-AES-CBC with HMAC-SHA1 1
 ESP-3DES-CBC with HMAC-SHA1 2
 ESP-3DES-CBC with HMAC-MD5 3
 ESP-BLOWFISH-CBC with HMAC-SHA1 4
 ESP-NULL with HMAC-SHA1 5
 ESP-NULL with HMAC-MD5 6

 There MUST NOT be more than six (6) ESP Suite-IDs in one
 ESP_TRANSFORM TLV. The limited number of Suite-IDs sets the maximum
 size of ESP_TRANSFORM TLV. The ESP_TRANSFORM MUST contain at least
 one of the mandatory Suite-IDs.

 Mandatory implementations: ESP-AES-CBC with HMAC-SHA1 and ESP-NULL
 with HMAC-SHA1.

6.2.10 HOST_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | HI Length |DI-type| DI Length |
 +-+
 | Host Identity /
 +-+
 / | Domain Identifier /
 +-+
 / | Padding |
 +-+

 Type 35
 Length length in octets, excluding Type, Length, and
 Padding
 DI-type type of the following Domain Identifier field
 DI Length length of the FQDN or NAI in octets
 N if set, the following FQDN/NAI field contains a
 NAI
 Host Identity actual host identity
 Domain Identifier the identifier of the sender

Moskowitz, et al. Expires April 25, 2005 [Page 40]

Internet-Draft Host Identity Protocol October 2004

 The Host Identity is represented in RFC2535 [12] format. The
 algorithms used in RDATA format are the following:

 Algorithms Values

 RESERVED 0
 DSA 3 [RFC2536] (RECOMMENDED)
 RSA 5 [RFC3110] (REQUIRED)

 The following DI-types have been defined:

 Type Value
 none included 0
 FQDN 1
 NAI 2

 FQDN Fully Qualified Domain Name, in binary format.
 NAI Network Access Identifier, in binary format. The
 format of the NAI is login@FQDN.

 The format for the FQDN is defined in RFC1035 [3] Section 3.1.

 If there is no Domain Identifier, i.e. the DI-type field is zero,
 also the DI Length field is set to zero.

6.2.11 CERT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Cert count | Cert ID | Cert type | /
 +-+
 / Certificate /
 +-+
 / | Padding |
 +-+

 Type 64
 Length length in octets, excluding Type, Length, and padding
 Cert count total count of certificates that are sent, possibly
 in several consecutive CER packets
 Cert ID the order number for this certificate
 Cert Type describes the type of the certificate

 The receiver must know the total number (Cert count) of certificates

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc1035

Moskowitz, et al. Expires April 25, 2005 [Page 41]

Internet-Draft Host Identity Protocol October 2004

 that it will receive from the sender, related to the R1 or I2. The
 Cert ID identifies the particular certificate and its order in the
 certificate chain. The numbering in Cert ID MUST go from 1 to Cert
 count.

 The following certificate types are defined:

 Cert format Type number
 X.509 v3 1

 The encoding format for X.509v3 certificate is defined in [15].

6.2.12 HMAC

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 | HMAC |
 | |
 | |
 | |
 +-+

 Type 65245
 Length 20
 HMAC 160 low order bits of the HMAC computed over the HIP
 packet, excluding the HMAC parameter and any
 following HIP_SIGNATURE or HIP_SIGNATURE_2
 parameters. The checksum field MUST be set to zero
 and the HIP header length in the HIP common header
 MUST be calculated not to cover any excluded
 parameters when the HMAC is calculated.

 The HMAC calculation and verification process is presented in Section
8.3.1

6.2.13 HMAC_2

 The TLV structure is the same as in Section 6.2.12. The fields are:

Moskowitz, et al. Expires April 25, 2005 [Page 42]

Internet-Draft Host Identity Protocol October 2004

 Type 65247
 Length 20
 HMAC 160 low order bits of the HMAC computed over the HIP
 packet, excluding the HMAC parameter and any
 following HIP_SIGNATURE or HIP_SIGNATURE_2
 parameters and including an additional sender's
 HOST_ID TLV during the HMAC calculation. The
 checksum field MUST be set to zero and the HIP
 header length in the HIP common header MUST be
 calculated not to cover any excluded parameters when
 the HMAC is calculated.

 The HMAC calculation and verification process is presented in Section
8.3.1

6.2.14 HIP_SIGNATURE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | SIG alg | Signature /
 +-+
 / | Padding |
 +-+

 Type 65279 (2^16-2^8-1)
 Length length in octets, excluding Type, Length, and Padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the HIP packet,
 excluding the HIP_SIGNATURE TLV field and any TLVs
 that follow the HIP_SIGNATURE TLV. The checksum field
 MUST be set to zero, and the HIP header length in the
 HIP common header MUST be calculated only to the
 beginning of the HIP_SIGNATURE TLV when the signature
 is calculated.

 The signature algorithms are defined in Section 6.2.10. The
 signature in the Signature field is encoded using the proper method
 depending on the signature algorithm (e.g. according to [14] in case
 of RSA, or according to [13] in case of DSA).

 The HIP_SIGNATURE calculation and verification process is presented
 in Section 8.3.2

Moskowitz, et al. Expires April 25, 2005 [Page 43]

Internet-Draft Host Identity Protocol October 2004

6.2.15 HIP_SIGNATURE_2

 The TLV structure is the same as in Section 6.2.14. The fields are:

 Type 65277 (2^16-2^8-3)
 Length length in octets, excluding Type, Length, and Padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the HIP R1 packet,
 excluding the HIP_SIGNATURE_2 TLV field and any
 TLVs that follow the HIP_SIGNATURE_2 TLV. Initiator's
 HIT, checksum field, and the Opaque and Random #I
 fields in the PUZZLE TLV MUST be set to zero while
 computing the HIP_SIGNATURE_2 signature. Further, the
 HIP packet length in the HIP header MUST be
 calculated to the beginning of the HIP_SIGNATURE_2
 TLV when the signature is calculated.

 Zeroing the Initiator's HIT makes it possible to create R1 packets
 beforehand to minimize the effects of possible DoS attacks. Zeroing
 the I and Opaque fields allows these fields to be populated
 dynamically on precomputed R1s.

 Signature calculation and verification follows the process in Section
8.3.2.

6.2.16 NES

 During the life of an SA established by HIP, one of the hosts may
 need to reset the Sequence Number to one (to prevent wrapping) and
 rekey. The reason for rekeying might be an approaching sequence
 number wrap in ESP, or a local policy on use of a key. Rekeying ends
 the current SAs and starts new ones on both peers.

 The NES parameter is carried in the HIP UPDATE packet. It is used to
 reset Security Associations. It introduces a new SPI to be used when
 sending data to the sender of the UPDATE packet. The keys for the
 new Security Association will be drawn from KEYMAT. If the packet
 contains a Diffie-Hellman parameter, the KEYMAT is first recomputed
 before drawing the new keys.

Moskowitz, et al. Expires April 25, 2005 [Page 44]

Internet-Draft Host Identity Protocol October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved | Keymat Index |
 +-+
 | Old SPI |
 +-+
 | New SPI |
 +-+

 Type 9
 Length 12
 Keymat Index Index, in bytes, where to continue to draw ESP keys
 from KEYMAT. If the packet includes a new
 Diffie-Hellman key, the field MUST be zero. Note
 that the length of this field limits the amount of
 keying material that can be drawn from KEYMAT. If
 that amount is exceeded, the NES packet MUST contain
 a new Diffie-Hellman key.
 Old SPI Old SPI for data sent to the source address of
 this packet
 New SPI New SPI for data sent to the source address of
 this packet

 A host that receives an NES must reply shortly thereafter with an
 NES. Any middleboxes between the communicating hosts will learn the
 mappings from the pair of UPDATE messages.

6.2.17 SEQ

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Update ID |
 +-+

 Type 11
 Length 4
 Update ID 32-bit sequence number

 The Update ID is an unsigned quantity, initialized by a host to zero
 upon moving to ESTABLISHED state. The Update ID has scope within a
 single HIP association, and not across multiple associations or
 multiple hosts. The Update ID is incremented by one before each new

Moskowitz, et al. Expires April 25, 2005 [Page 45]

Internet-Draft Host Identity Protocol October 2004

 UPDATE that is sent by the host (i.e., the first UPDATE packet
 originated by a host has an Update ID of 1).

6.2.18 ACK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | peer Update ID |
 +-+

 Type 13
 Length variable (multiple of 4)
 peer Update ID 32-bit sequence number corresponding to the
 Update ID being acked.

 The ACK parameter includes one or more Update IDs that have been
 received from the peer. The Length field identifies the number of
 peer Update IDs that are present in the parameter.

Moskowitz, et al. Expires April 25, 2005 [Page 46]

Internet-Draft Host Identity Protocol October 2004

6.2.19 ENCRYPTED

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | IV /
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
 / Encrypted data /
 / /
 / +-------------------------------+
 / | Padding |
 +-+

 Type 21
 Length length in octets, excluding Type, Length, and Padding
 Reserved zero when sent, ignored when received
 IV Initialization vector, if needed, otherwise nonexistent.
 The length of the IV is inferred from the HIP transform.
 Encrypted The data is encrypted using an encryption algorithm as
 data defined in HIP transform.
 Padding Any Padding, if necessary, to make the TLV a multiple
 of 8 bytes.

 The encrypted data is in TLV format itself. Consequently, the first
 fields in the contents are Type and Length, allowing the contents to
 be easily parsed after decryption. Each of the TLVs to be encrypted,
 must be padded according to rules in Section 6.2.1 before encryption.

 If the encryption algorithm requires the length of the data to be
 encrypted to be a multiple of the cipher algorithm block size,
 thereby necessitating padding, and if the encryption algorithm does
 not specify the padding contents, then an implementation MUST append
 the TLV parameter that is to be encrypted with an additional padding,
 so that the length of the resulting cleartext is a multiple of the
 cipher block size length. Such a padding MUST be constructed as
 specified in [19] Section 2.4. On the other hand, if the data to be
 encrypted is already a multiple of the block size, or if the
 encryption algorithm does specify padding as per [19] Section 2.4,
 then such additional padding SHOULD NOT be added.

 The Length field in the inside, to be encrypted TLV does not include
 the padding. The Length field in the outside ENCRYPTED TLV is the

Moskowitz, et al. Expires April 25, 2005 [Page 47]

Internet-Draft Host Identity Protocol October 2004

 length of the data after encryption (including the Reserved field,
 the IV field, and the output from the encryption process specified
 for that suite, but not any additional external padding). Note that
 the length of the cipher suite output may be smaller or larger than
 the length of the data to be encrypted, since the encryption process
 may compress the data or add additional padding to the data.

 The ENCRYPTED payload may contain additional external padding, if the
 result of encryption, the TLV header and the IV is not a multiple of
 8 bytes. The contents of this external padding MUST follow the rules
 given in Section 6.2.1.

6.2.20 NOTIFY

 The NOTIFY parameter is used to transmit informational data, such as
 error conditions and state transitions, to a HIP peer. A NOTIFY
 parameter may appear in the NOTIFY packet type. The use of the
 NOTIFY parameter in other packet types is for further study.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved | Notify Message Type |
 +-+
 | /
 / Notification data /
 / +---------------+
 / | Padding |
 +-+

 Type 256
 Length length in octets, excluding Type, Length, and Padding
 Reserved zero when sent, ignored when received
 Notify Message Specifies the type of notification
 Type
 Notification Informational or error data transmitted in addition
 Data to the Notify Message Type. Values for this field are
 type specific (see below).
 Padding Any Padding, if necessary, to make the TLV a multiple
 of 8 bytes.

 Notification information can be error messages specifying why an SA
 could not be established. It can also be status data that a process
 managing an SA database wishes to communicate with a peer process.
 The table below lists the Notification messages and their
 corresponding values.

Moskowitz, et al. Expires April 25, 2005 [Page 48]

Internet-Draft Host Identity Protocol October 2004

 To avoid certain types of attacks, a Responder SHOULD avoid sending a
 NOTIFY to any host with which it has not successfully verified a
 puzzle solution.

 Types in the range 0 - 16383 are intended for reporting errors. An
 implementation that receives a NOTIFY error parameter in response to
 a request packet (e.g., I1, I2, UPDATE), SHOULD assume that the
 corresponding request has failed entirely. Unrecognized error types
 MUST be ignored except that they SHOULD be logged.

 Notify payloads with status types MUST be ignored if not recognized.

 NOTIFY PARAMETER - ERROR TYPES Value
 ------------------------------ -----

 UNSUPPORTED_CRITICAL_PARAMETER_TYPE 1

 Sent if the parameter type has the "critical" bit set and the
 parameter type is not recognized. Notification Data contains
 the two octet parameter type.

 INVALID_SYNTAX 7

 Indicates that the HIP message received was invalid because
 some type, length, or value was out of range or because the
 request was rejected for policy reasons. To avoid a denial
 of service attack using forged messages, this status may
 only be returned for and in an encrypted packet if the
 message ID and cryptographic checksum were valid. To avoid
 leaking information to someone probing a node, this status
 MUST be sent in response to any error not covered by one of
 the other status types. To aid debugging, more detailed
 error information SHOULD be written to a console or log.

 NO_DH_PROPOSAL_CHOSEN 14

 None of the proposed group IDs was acceptable.

 INVALID_DH_CHOSEN 15

 The D-H Group ID field does not correspond to one offered
 by the responder.

 NO_HIP_PROPOSAL_CHOSEN 16

Moskowitz, et al. Expires April 25, 2005 [Page 49]

Internet-Draft Host Identity Protocol October 2004

 None of the proposed HIP Transform crypto suites was
 acceptable.

 INVALID_HIP_TRANSFORM_CHOSEN 17

 The HIP Transform crypto suite does not correspond to
 one offered by the responder.

 NO_ESP_PROPOSAL_CHOSEN 18

 None of the proposed ESP Transform crypto suites was
 acceptable.

 INVALID_ESP_TRANSFORM_CHOSEN 19

 The ESP Transform crypto suite does not correspond to
 one offered by the responder.

 AUTHENTICATION_FAILED 24

 Sent in response to a HIP signature failure.

 CHECKSUM_FAILED 26

 Sent in response to a HIP checksum failure.

 HMAC_FAILED 28

 Sent in response to a HIP HMAC failure.

 ENCRYPTION_FAILED 32

 The responder could not successfully decrypt the
 ENCRYPTED TLV.

 INVALID_HIT 40

 Sent in response to a failure to validate the peer's
 HIT from the corresponding HI.

 BLOCKED_BY_POLICY 42

 The responder is unwilling to set up an association
 for some policy reason (e.g. received HIT is NULL
 and policy does not allow opportunistic mode).

 SERVER_BUSY_PLEASE_RETRY 44

Moskowitz, et al. Expires April 25, 2005 [Page 50]

Internet-Draft Host Identity Protocol October 2004

 The responder is unwilling to set up an association
 as it is suffering under some kind of overload and
 has chosen to shed load by rejecting your request.
 You may retry if you wish, however you MUST find
 another (different) puzzle solution for any such
 retries. Note that you may need to obtain a new
 puzzle with a new I1/R1 exchange.

 I2_ACKNOWLEDGEMENT 46

 The responder has received your I2 but had to queue
 the I2 for processing. The puzzle was correctly solved
 and the responder is willing to set up an association
 but has currently a number of I2s in processing queue.
 R2 will be sent after the I2 has been processed.

 NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 (None defined at present)

6.2.21 ECHO_REQUEST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Opaque data (variable length) |
 +-+

 Type 65281 or 1022
 Length variable
 Opaque data Opaque data, supposed to be meaningful only to the
 node that sends ECHO_REQUEST and receives a corresponding
 ECHO_RESPONSE.

 The ECHO_REQUEST parameter contains an opaque blob of data that the
 sender wants to get echoed back in the corresponding reply packet.

 The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
 purpose where a node wants to carry some state in a request packet
 and get it back in a response packet. The ECHO_REQUEST MAY be
 covered by the HMAC and SIGNATURE. This is dictated by the Type
 field selected for the parameter; Type 1022 ECHO_REQUEST is covered
 and Type 65281 is not.

Moskowitz, et al. Expires April 25, 2005 [Page 51]

Internet-Draft Host Identity Protocol October 2004

6.2.22 ECHO_RESPONSE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Opaque data (variable length) |
 +-+

 Type 65283 or 1024
 Length variable
 Opaque data Opaque data, copied unmodified from the ECHO_REQUEST
 parameter that triggered this response.

 The ECHO_RESPONSE parameter contains an opaque blob of data that the
 sender of the ECHO_REQUEST wants to get echoed back. The opaque data
 is copied unmodified from the ECHO_REQUEST parameter.

 The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
 purpose where a node wants to carry some state in a request packet
 and get it back in a response packet. The ECHO_RESPONSE MAY be
 covered by the HMAC and SIGNATURE. This is dictated by the Type field
 selected for the parameter; Type 1024 ECHO_RESPONSE is covered and
 Type 65283 is not.

6.3 ICMP messages

 When a HIP implementation detects a problem with an incoming packet,
 and it either cannot determine the identity of the sender of the
 packet or does not have any existing HIP security association with
 the sender of the packet, it MAY respond with an ICMP packet. Any
 such replies MUST be rate limited as described in [4]. In most
 cases, the ICMP packet will have the Parameter Problem type (12 for
 ICMPv4, 4 for ICMPv6), with the Pointer field pointing to the field
 that caused the ICMP message to be generated.

 XXX: Should we say something more about rate limitation here?

6.3.1 Invalid Version

 If a HIP implementation receives a HIP packet that has an
 unrecognized HIP version number, it SHOULD respond, rate limited,
 with an ICMP packet with type Parameter Problem, the Pointer pointing
 to the VER./RES. byte in the HIP header.

Moskowitz, et al. Expires April 25, 2005 [Page 52]

Internet-Draft Host Identity Protocol October 2004

6.3.2 Other problems with the HIP header and packet structure

 If a HIP implementation receives a HIP packet that has other
 unrecoverable problems in the header or packet format, it MAY
 respond, rate limited, with an ICMP packet with type Parameter
 Problem, the Pointer pointing to the field that failed to pass the
 format checks. However, an implementation MUST NOT send an ICMP
 message if the Checksum fails; instead, it MUST silently drop the
 packet.

6.3.3 Unknown SPI

 If a HIP implementation receives an ESP packet that has an
 unrecognized SPI number, it MAY responder, rate limited, with an ICMP
 packet with type Parameter Problem, the Pointer pointing to the the
 beginning of SPI field in the ESP header.

6.3.4 Invalid Cookie Solution

 If a HIP implementation receives an I2 packet that has an invalid
 cookie solution, the behaviour depends on the underlying version of
 IP. If IPv6 is used, the implementation SHOULD respond with an ICMP
 packet with type Parameter Problem, the Pointer pointing to the
 beginning of the Puzzle solution #J field in the SOLUTION payload in
 the HIP message.

 If IPv4 is used, the implementation MAY respond with an ICMP packet
 with the type Parameter Problem, copying enough of bytes form the I2
 message so that the SOLUTION parameter fits in to the ICMP message,
 the Pointer pointing to the beginning of the Puzzle solution #J
 field, as in the IPv6 case. Note, however, that the resulting ICMPv4
 message exceeds the typical ICMPv4 message size as defined in [2].

6.3.5 Non-existing HIP association

 If a HIP implementation receives a CLOSE, or UPDATE packet, or any
 other packet whose handling requires an existing association, that
 has either a Receiver or Sender HIT that does not match with any
 existing HIP association, the implementation MAY respond, rate
 limited, with an ICMP packet with the type Parameter Problem, the
 Pointer pointing to the the beginning of the first HIT that does not
 match.

 A host MUST NOT reply with such an ICMP if it receives any of the
 following messages: I1, R2, I2, R2, CER, and NOTIFY. When
 introducing new packet types, a specification SHOULD define the
 appropriate rules for sending or not sending this kind of ICMP
 replies.

Moskowitz, et al. Expires April 25, 2005 [Page 53]

Internet-Draft Host Identity Protocol October 2004

7. HIP Packets

 There are nine basic HIP packets. Four are for the base HIP
 exchange, one is for updating, one is a broadcast for use when there
 is no IP addressing (e.g., before DHCP exchange), one is used to send
 certificates, one for sending notifications, and one is for sending
 unencrypted data.

 Packets consist of the fixed header as described in Section 6.1,
 followed by the parameters. The parameter part, in turn, consists of
 zero or more TLV coded parameters.

 In addition to the base packets, other packets types will be defined
 later in separate specifications. For example, support for mobility
 and multi-homing is not included in this specification.

 Packet representation uses the following operations:

 () parameter
 x{y} operation x on content y
 <x>i x exists i times
 [] optional parameter
 x | y x or y

 In the future, an OPTIONAL upper layer payload MAY follow the HIP
 header. The payload proto field in the header indicates if there is
 additional data following the HIP header. The HIP packet, however,
 MUST NOT be fragmented. This limits the size of the possible
 additional data in the packet.

7.1 I1 - the HIP initiator packet

 The HIP header values for the I1 packet:

 Header:
 Packet Type = 1
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT, or NULL

 IP (HIP ())

 The I1 packet contains only the fixed HIP header.

 Valid control bits: none

 The Initiator gets the Responder's HIT either from a DNS lookup of
 the Responder's FQDN, from some other repository, or from a local
 table. If the Initiator does not know the Responder's HIT, it may

Moskowitz, et al. Expires April 25, 2005 [Page 54]

Internet-Draft Host Identity Protocol October 2004

 attempt opportunistic mode by using NULL (all zeros) as the
 Responder's HIT. If the Initiator send a NULL as the Responder's
 HIT, it MUST be able to handle all MUST and SHOULD algorithms from

Section 3, which are currently RSA and DSA.

 Since this packet is so easy to spoof even if it were signed, no
 attempt is made to add to its generation or processing cost.

 Implementation MUST be able to handle a storm of received I1 packets,
 discarding those with common content that arrive within a small time
 delta.

7.2 R1 - the HIP responder packet

 The HIP header values for the R1 packet:

 Header:
 Packet Type = 2
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP ([R1_COUNTER,]
 PUZZLE,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 ESP_TRANSFORM,
 HOST_ID,
 [ECHO_REQUEST,]
 HIP_SIGNATURE_2)
 [, ECHO_REQUEST])

 Valid control bits: C, A

 The R1 packet may be followed by one or more CER packets. In this
 case, the C-bit in the control field MUST be set.

 If the responder HI is an anonymous one, the A control MUST be set.

 The initiator HIT MUST match the one received in I1. If the
 Responder has multiple HIs, the responder HIT used MUST match
 Initiator's request. If the Initiator used opportunistic mode, the
 Responder may select freely among its HIs.

 The R1 generation counter is used to determine the currently valid
 generation of puzzles. The value is increased periodically, and it
 is RECOMMENDED that it is increased at least as often as solutions to
 old puzzles are not accepted any longer.

Moskowitz, et al. Expires April 25, 2005 [Page 55]

Internet-Draft Host Identity Protocol October 2004

 The Puzzle contains a random #I and the difficulty K. The difficulty
 K is the number of bits that the Initiator must get zero in the
 puzzle. The random #I is not covered by the signature and must be
 zeroed during the signature calculation, allowing the sender to
 select and set the #I into a pre-computed R1 just prior sending it to
 the peer.

 The Diffie-Hellman value is ephemeral, but can be reused over a
 number of connections. In fact, as a defense against I1 storms, an
 implementation MAY use the same Diffie-Hellman value for a period of
 time, for example, 15 minutes. By using a small number of different
 Cookies for a given Diffie-Hellman value, the R1 packets can be
 pre-computed and delivered as quickly as I1 packets arrive. A
 scavenger process should clean up unused DHs and Cookies.

 The HIP_TRANSFORM contains the encryption and integrity algorithms
 supported by the Responder to protect the HI exchange, in the order
 of preference. All implementations MUST support the AES [10] with
 HMAC-SHA-1-96 [6].

 The ESP_TRANSFORM contains the ESP modes supported by the Responder,
 in the order of preference. All implementations MUST support AES
 [10] with HMAC-SHA-1-96 [6].

 The ECHO_REQUEST contains data that the sender wants to receive
 unmodified in the corresponding response packet in the ECHO_RESPONSE
 parameter. The ECHO_REQUEST can be either covered by the signature,
 or it can be left out from it. In the first case, the ECHO_REQUEST
 gets Type number 1022 and in the latter case 65281.

 The signature is calculated over the whole HIP envelope, after
 setting the initiator HIT, header checksum as well as the Opaque
 field and the Random #I in the PUZZLE parameter temporarily to zero,
 and excluding any TLVs that follow the signature, as described in

Section 6.2.15. This allows the Responder to use precomputed R1s.
 The Initiator SHOULD validate this signature. It SHOULD check that
 the responder HI received matches with the one expected, if any.

7.3 I2 - the second HIP initiator packet

 The HIP header values for the I2 packet:

Moskowitz, et al. Expires April 25, 2005 [Page 56]

Internet-Draft Host Identity Protocol October 2004

 Header:
 Type = 3
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT

 IP (HIP (SPI,
 [R1_COUNTER,]
 SOLUTION,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 ESP_TRANSFORM,
 ENCRYPTED { HOST_ID },
 [ECHO_RESPONSE ,]
 HMAC,
 HIP_SIGNATURE
 [, ECHO_RESPONSE]))

 Valid control bits: C, A

 The HITs used MUST match the ones used previously.

 If the initiator HI is an anonymous one, the A control MUST be set.

 The Initiator MAY include an unmodified copy of the R1_COUNTER
 parameter received in the corresponding R1 packet into the I2 packet.

 The Solution contains the random # I from R1 and the computed # J.
 The low order K bits of the SHA-1(I | ... | J) MUST be zero.

 The Diffie-Hellman value is ephemeral. If precomputed, a scavenger
 process should clean up unused DHs.

 The HIP_TRANSFORM contains the encryption and integrity used to
 protect the HI exchange selected by the Initiator. All
 implementations MUST support the AES transform [10].

 The Initiator's HI is encrypted using the HIP_TRANSFORM encryption
 algorithm. The keying material is derived from the Diffie-Hellman
 exchanged as defined in Section 9.

 The ESP_TRANSFORM contains the ESP mode selected by the Initiator.
 All implementations MUST support AES [10] with HMAC-SHA-1-96 [6].

 The ECHO_RESPONSE contains the the unmodified Opaque data copied from
 the corresponding ECHO_REQUEST TLV. The ECHO_RESPONSE can be either
 covered by the signature, or it can be left out from it. In the
 first case, the ECHO_RESPONSE gets Type number 1024 and in the latter
 case 65283.

Moskowitz, et al. Expires April 25, 2005 [Page 57]

Internet-Draft Host Identity Protocol October 2004

 The HMAC is calculated over whole HIP envelope, excluding any TLVs
 after the HMAC, as described in Section 8.3.1. The Responder MUST
 validate the HMAC.

 The signature is calculated over whole HIP envelope, excluding any
 TLVs after the HIP_SIGNATURE, as described in Section 6.2.14. The
 Responder MUST validate this signature. It MAY use either the HI in
 the packet or the HI acquired by some other means.

7.4 R2 - the second HIP responder packet

 The HIP header values for the R2 packet:

 Header:
 Packet Type = 4
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP (SPI, HMAC_2, HIP_SIGNATURE))

 Valid control bits: none

 The HMAC_2 is calculated over whole HIP envelope, with Responder's
 HOST_ID TLV concatenated with the HIP envelope. The HOST_ID TLV is
 removed after the HMAC calculation. The procedure is described in
 8.3.1.

 The signature is calculated over whole HIP envelope.

 The Initiator MUST validate both the HMAC and the signature.

7.5 CER - the HIP Certificate Packet

 The CER packet is OPTIONAL.

 The Optional CER packets over the Announcer's HI by a higher level
 authority known to the Recipient is an alternative method for the
 Recipient to trust the Announcer's HI (over DNSSEC or PKI).

 The HIP header values for CER packet:

 Header:
 Packet Type = 5
 SRC HIT = Announcer's HIT
 DST HIT = Recipient's HIT

 IP (HIP (<CERT>i , HIP_SIGNATURE)) or

Moskowitz, et al. Expires April 25, 2005 [Page 58]

Internet-Draft Host Identity Protocol October 2004

 IP (HIP (ENCRYPTED { <CERT>i }, HIP_SIGNATURE))

 Valid control bits: None

 Certificates in the CER packet MAY be encrypted. The encryption
 algorithm is provided in the HIP transform of the previous (R1 or I2)
 packet.

7.6 UPDATE - the HIP Update Packet

 Support for the UPDATE packet is MANDATORY.

 The HIP header values for the UPDATE packet:

 Header:
 Packet Type = 6
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP ([NES, SEQ, ACK, DIFFIE_HELLMAN,] HMAC, HIP_SIGNATURE))

 Valid control bits: None

 The UPDATE packet contains mandatory HMAC and HIP_SIGNATURE
 parameters, and other optional parameters.

 The UPDATE packet contains zero or one SEQ parameter. The presence
 of a SEQ parameter indicates that the receiver MUST ack the UPDATE.
 An UPDATE that does not contain a SEQ parameter is simply an ACK of a
 previous UPDATE and itself MUST not be acked.

 An UPDATE packet contains zero or one ACK parameters. The ACK
 parameter echoes the SEQ sequence number of the UPDATE packet being
 acked. A host MAY choose to ack more than one UPDATE packet at a
 time; e.g., the ACK may contain the last two SEQ values received, for
 robustness to ack loss. ACK values are not cumulative; each received
 unique SEQ value requires at least one corresponding ACK value in
 reply. Received ACKs that are redundant are ignored.

 The UPDATE packet may contain both a SEQ and an ACK parameter. In
 this case, the ACK is being piggybacked on an outgoing UPDATE. In
 general, UPDATEs carrying SEQ SHOULD be acked upon completion of the
 processing of the UPDATE. A host MAY choose to hold the UPDATE
 carrying ACK for a short period of time to allow for the possibility
 of piggybacking the ACK parameter, in a manner similar to TCP delayed
 acknowledgments.

 A sender MAY choose to forego reliable transmission of a particular

Moskowitz, et al. Expires April 25, 2005 [Page 59]

Internet-Draft Host Identity Protocol October 2004

 UPDATE (e.g., it becomes overcome by events). The semantics are such
 that the receiver MUST acknowledge the UPDATE but the sender MAY
 choose to not care about receiving the ACK.

 UPDATEs MAY be retransmitting without incrementing SEQ. If the same
 subset of parameters is included in multiple UPDATEs with different
 SEQs, the host MUST ensure that receiver processing of the parameters
 multiple times will not result in a protocol error.

 In the case of rekeying (Section 8.10), the UPDATE packet MUST carry
 NES and MAY carry DIFFIE_HELLMAN parameter, unless the UPDATE is a
 bare ack.

 Intermediate systems that use the SPI will have to inspect HIP
 packets for a UPDATE packet. The packet is signed for the benefit of
 the intermediate systems. Since intermediate systems may need the
 new SPI values, the contents of this packet cannot be encrypted.

7.7 NOTIFY - the HIP Notify Packet

 The NOTIFY packet is OPTIONAL. The NOTIFY packet MAY be used to
 provide information to a peer. Typically, NOTIFY is used to indicate
 some type of protocol error or negotiation failure.

 The HIP header values for the NOTIFY packet:

 Header:
 Packet Type = 7
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT, or zero if unknown

 IP (HIP (<NOTIFY>i, [HOST_ID,] HIP_SIGNATURE))

 Valid control bits: None

 The NOTIFY packet is used to carry one or more NOTIFY parameters.

7.8 CLOSE - the HIP association closing packet

 The HIP header values for the CLOSE packet:

 Header:
 Packet Type = 8
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REQUEST, HMAC, HIP_SIGNATURE))

Moskowitz, et al. Expires April 25, 2005 [Page 60]

Internet-Draft Host Identity Protocol October 2004

 Valid control bits: none

 The sender MUST include an ECHO_REPLY used to validate CLOSE_ACK
 received in response, and both an HMAC and a signature (calculated
 over the whole HIP envelope).

 The receiver peer MUST validate both the HMAC and the signature if it
 has a HIP association state, and MUST reply with a CLOSE_ACK
 containing an ECHO_REPLY corresponding to the received ECHO_REQUEST.

7.9 CLOSE_ACK - the HIP closing acknowledgment packet

 The HIP header values for the CLOSE_ACK packet:

 Header:
 Packet Type = 9
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REPLY, HMAC, HIP_SIGNATURE))

 Valid control bits: none

 The sender MUST include both an HMAC and signature (calculated over
 the whole HIP envelope).

 The receiver peer MUST validate both the HMAC and the signature.

Moskowitz, et al. Expires April 25, 2005 [Page 61]

Internet-Draft Host Identity Protocol October 2004

8. Packet processing

 Each host is assumed to have a single HIP protocol implementation
 that manages the host's HIP associations and handles requests for new
 ones. Each HIP association is governed by a conceptual state
 machine, with states defined above in Section 5.4. The HIP
 implementation can simultaneously maintain HIP associations with more
 than one host. Furthermore, the HIP implementation may have more
 than one active HIP association with another host; in this case, HIP
 associations are distinguished by their respective HITs and IPsec
 SPIs. It is not possible to have more than one HIP associations
 between any given pair of HITs. Consequently, the only way for two
 hosts to have more than one parallel association is to use different
 HITs, at least at one end.

 The processing of packets depends on the state of the HIP
 association(s) with respect to the authenticated or apparent
 originator of the packet. A HIP implementation determines whether it
 has an active association with the originator of the packet based on
 the HITs or the SPI of the packet.

8.1 Processing outgoing application data

 In a HIP host, an application can send application level data using
 HITs or LSIs as source and destination identifiers. The HITs and
 LSIs may be specified via a backwards compatible API (see Appendix A)
 or a completely new API. However, whenever there is such outgoing
 data, the stack has to protect the data with ESP, and send the
 resulting datagram using appropriate source and destination IP
 addresses. Here, we specify the processing rules only for the base
 case where both hosts have only single usable IP addresses; the
 multi-address multi-homing case will be specified separately.

 If the IPv4 or IPv6 backward compatible APIs and therefore LSIs are
 supported, it is assumed that the LSIs will be converted into proper
 HITs somewhere in the stack. The exact location of the conversion is
 an implementation specific issue and not discussed here. The
 following conceptual algorithm discusses only HITs, with the
 assumption that the LSI-to-HIT conversion takes place somewhere.

 The following steps define the conceptual processing rules for
 outgoing datagrams destined to a HIT.
 1. If the datagram has a specified source address, it MUST be a HIT.
 If it is not, the implementation MAY replace the source address
 with a HIT. Otherwise it MUST drop the packet.
 2. If the datagram has an unspecified source address, the
 implementation must choose a suitable source HIT for the
 datagram. In selecting a proper local HIT, the implementation

Moskowitz, et al. Expires April 25, 2005 [Page 62]

Internet-Draft Host Identity Protocol October 2004

 SHOULD consult the table of currently active HIP sessions, and
 preferably select a HIT that already has an active session with
 the target HIT.
 3. If there no active HIP session with the given < source,
 destination > HIT pair, one must be created by running the base
 exchange. The implementation SHOULD queue at least one packet
 per HIP session to be formed, and it MAY queue more than one.
 4. Once there is an active HIP session for the given < source,
 destination > HIT pair, the outgoing datagram is protected using
 the associated ESP security association. In a typical
 implementation, this will result in an transport mode ESP
 datagram that still has HITs in the place of IP addresses.
 5. The HITs in the datagram are replaced with suitable IP addresses.
 For IPv6, the rules defined in [16] SHOULD be followed. Note
 that this HIT-to-IP-address conversion step MAY also be performed
 at some other point in the stack, e.g., before ESP processing.
 However, care must be taken to make sure that the right ESP SA is
 employed.

8.2 Processing incoming application data

 Incoming HIP datagrams arrive as ESP protected packets. In the usual
 case the receiving host has a corresponding ESP security association,
 identified by the SPI and destination IP address in the packet.
 However, if the host has crashed or otherwise lost its HIP state, it
 may not have such an SA.

 The following steps define the conceptual processing rules for
 incoming ESP protected datagrams targeted to an ESP security
 association created with HIP.
 1. Detect the proper IPsec SA using the SPI. If the resulting SA is
 a non-HIP ESP SA, process the packet according to standard IPsec
 rules. If there are no SAs identified with the SPI, the host MAY
 send an ICMP packet as defined in Section 6.3.3. How to handle
 lost state is an implementation issue.
 2. If a proper HIP ESP SA is found, the packet is processed normally
 by ESP, as if the packet were a transport mode packet. The
 packet may be dropped by ESP, as usual. In a typical
 implementation, the result of successful ESP decryption and
 verification is a datagram with the original IP addresses as
 source and destination.
 3. The IP addresses in the datagram are replaced with the HITs
 associated with the ESP SA. Note that this IP-address-to-HIT
 conversion step MAY also be performed at some other point in the
 stack, e.g., before ESP processing.
 4. The datagram is delivered to the upper layer. Demultiplexing the
 datagram the right upper layer socket is based on the HITs (or
 LSIs).

Moskowitz, et al. Expires April 25, 2005 [Page 63]

Internet-Draft Host Identity Protocol October 2004

8.3 HMAC and SIGNATURE calculation and verification

 The following subsections define the actions for processing HMAC,
 HIP_SIGNATURE and HIP_SIGNATURE_2 TLVs.

8.3.1 HMAC calculation

 The following process applies both to the HMAC and HMAC_2 TLVs. When
 processing HMAC_2, the difference is that the HMAC calculation
 includes pseudo HOST_ID field containing the Responder's information
 as sent in the R1 packet earlier.

 The HMAC TLV is defined in Section 6.2.12 and HMAC_2 TLV in Section
6.2.13. HMAC calculation and verification process:

 Packet sender:
 1. Create the HIP packet, without the HMAC or any possible
 HIP_SIGNATURE or HIP_SIGNATURE_2 TLVs.
 2. In case of HMAC_2 calculation, add a HOST_ID (Responder) TLV to
 the packet.
 3. Calculate the Length field in the HIP header.
 4. Compute the HMAC.
 5. In case of HMAC_2, remove the HOST_ID TLV from the packet.
 6. Add the HMAC TLV to the packet and any HIP_SIGNATURE or
 HIP_SIGNATURE_2 TLVs that may follow.
 7. Recalculate the Length field in the HIP header.

 Packet receiver:
 1. Verify the HIP header Length field.
 2. Remove the HMAC or HMAC_2 TLV, and if the packet contains any
 HIP_SIGNATURE or HIP_SIGNATURE_2 fields, remove them too, saving
 the contents if they will be needed later.
 3. In case of HMAC_2, build and add a HOST_ID TLV (with Responder
 information) to the packet.
 4. Recalculate the HIP packet length in the HIP header and clear the
 Checksum field (set it to all zeros).
 5. Compute the HMAC and verify it against the received HMAC.
 6. In case of HMAC_2, remove the HOST_ID TLV from the packet before
 further processing.

8.3.2 Signature calculation

 The following process applies both to the HIP_SIGNATURE and
 HIP_SIGNATURE_2 TLVs. When processing HIP_SIGNATURE_2, the only
 difference is that instead of HIP_SIGNATURE TLV, the HIP_SIGNATURE_2
 TLV is used, and the Initiator's HIT and PUZZLE Opaque and Random #I
 fields are cleared (set to all zeros) before computing the signature.
 The HIP_SIGNATURE TLV is defined in Section 6.2.14 and the

Moskowitz, et al. Expires April 25, 2005 [Page 64]

Internet-Draft Host Identity Protocol October 2004

 HIP_SIGNATURE_2 TLV in Section 6.2.15.

 Signature calculation and verification process:

 Packet sender:
 1. Create the HIP packet without the HIP_SIGNATURE TLV or any TLVs
 that follow the HIP_SIGNATURE TLV.
 2. Calculate the Length field in the HIP header.
 3. Compute the signature.
 4. Add the HIP_SIGNATURE TLV to the packet.
 5. Add any TLVs that follow the HIP_SIGNATURE TLV.
 6. Recalculate the Length field in the HIP header.

 Packet receiver:
 1. Verify the HIP header Length field.
 2. Save the contents of the HIP_SIGNATURE TLV and any TLVs following
 the HIP_SIGNATURE TLV and remove them from the packet.
 3. Recalculate the HIP packet Length in the HIP header and clear the
 Checksum field (set it to all zeros).
 4. Compute the signature and verify it against the received
 signature.

 The verification can use either the HI received from a HIP packet,
 the HI from a DNS query, if the FQDN has been received either in the
 HOST_ID or in the CER packet, or one received by some other means.

8.4 Initiation of a HIP exchange

 An implementation may originate a HIP exchange to another host based
 on a local policy decision, usually triggered by an application
 datagram, in much the same way that an IPsec IKE key exchange can
 dynamically create a Security Association. Alternatively, a system
 may initiate a HIP exchange if it has rebooted or timed out, or
 otherwise lost its HIP state, as described in Section 5.3.

 The implementation prepares an I1 packet and sends it to the IP
 address that corresponds to the peer host. The IP address of the
 peer host may be obtained via conventional mechanisms, such as DNS
 lookup. The I1 contents are specified in Section 7.1. The selection
 of which host identity to use, if a host has more than one to choose
 from, is typically a policy decision.

 The following steps define the conceptual processing rules for
 initiating a HIP exchange:
 1. The Initiator gets the Responder's HIT and one or more addresses
 either from a DNS lookup of the responder's FQDN, from some other
 repository, or from a local table. If the initiator does not know
 the responder's HIT, it may attempt opportunistic mode by using

Moskowitz, et al. Expires April 25, 2005 [Page 65]

Internet-Draft Host Identity Protocol October 2004

 NULL (all zeros) as the responder's HIT.
 2. The Initiator sends an I1 to one of the Responder's addresses.
 The selection of which address to use is a local policy decision.
 3. Upon sending an I1, the sender shall transition to state I1-SENT,
 start a timer whose timeout value should be larger than the
 worst-case anticipated RTT, and shall increment a timeout counter
 associated with the I1.
 4. Upon timeout, the sender SHOULD retransmit the I1 and restart the
 timer, up to a maximum of I1_RETRIES_MAX tries.

8.4.1 Sending multiple I1s in parallel

 For the sake of minimizing the session establishment latency, an
 implementation MAY send the same I1 to more than one of the
 Responder's addresses. However, it MUST NOT send to more than three
 (3) addresses in parallel. Furthermore, upon timeout, the
 implementation MUST refrain from sending the same I1 packet to
 multiple addresses. These limitations are placed order to avoid
 congestion of the network, and potential DoS attacks that might
 happen, e.g., because someone claims to have hundreds or thousands of
 addresses.

 As the Responder is not guaranteed to distinguish the duplicate I1's
 it receives at several of its addresses (because it avoids to store
 states when it answers back an R1), the Initiator may receive several
 duplicate R1's.

 The Initiator SHOULD then select the initial preferred destination
 address using the source address of the selected received R1, and use
 the preferred address as a source address for the I2. Processing
 rules for received R1s are discussed in Section 8.6.

8.4.2 Processing incoming ICMP Protocol Unreachable messages

 A host may receive an ICMP Destination Protocol Unreachable message
 as a response to sending an HIP I1 packet. Such a packet may be an
 indication that the peer does not support HIP, or it may be an
 attempt to launch an attack by making the Initiator believe that the
 Responder does not support HIP.

 When a system receives an ICMP Destination Protocol Unreachable
 message while it is waiting for an R1, it MUST NOT terminate the
 wait. It MAY continue as if it had not received the ICMP message,
 and send a few more I1s. Alternatively, it MAY take the ICMP message
 as a hint that the peer most probably does not support HIP, and
 return to state UNASSOCIATED earlier than otherwise. However, at
 minimum, it MUST continue waiting for an R1 for a reasonable time
 before returning to UNASSOCIATED.

Moskowitz, et al. Expires April 25, 2005 [Page 66]

Internet-Draft Host Identity Protocol October 2004

8.5 Processing incoming I1 packets

 An implementation SHOULD reply to an I1 with an R1 packet, unless the
 implementation is unable or unwilling to setup a HIP association. If
 the implementation is unable to setup a HIP association, the host
 SHOULD send an ICMP Destination Protocol Unreachable,
 Administratively Prohibited, message to the I1 source address. If
 the implementation is unwilling to setup a HIP association, the host
 MAY ignore the I1. This latter case may occur during a DoS attack
 such as an I1 flood.

 The implementation MUST be able to handle a storm of received I1
 packets, discarding those with common content that arrive within a
 small time delta.

 A spoofed I1 can result in an R1 attack on a system. An R1 sender
 MUST have a mechanism to rate limit R1s to an address.

 Under no circumstances does the HIP state machine transition upon
 sending an R1.

 The following steps define the conceptual processing rules for
 responding to an I1 packet:
 1. The responder MUST check that the responder HIT in the received
 I1 is either one of its own HITs, or NULL.
 2. If the responder is in ESTABLISHED state, the responder MAY
 respond to this with an R1 packet, prepare to drop existing SAs
 and stay at ESTABLISHED state.
 3. If the implementation chooses to respond to the I1 with and R1
 packet, it creates a new R1 or selects a precomputed R1 according
 to the format described in Section 7.2.
 4. The R1 MUST contain the received responder HIT, unless the
 received HIT is NULL, in which case the Responder SHOULD select a
 HIT that is constructed with the MUST algorithm in Section 3,
 which is currently RSA. Other than that, selecting the HIT is a
 local policy matter.
 5. The responder sends the R1 to the source IP address of the I1
 packet.

8.5.1 R1 Management

 All compliant implementations MUST produce R1 packets. An R1 packet
 MAY be precomputed. An R1 packet MAY be reused for time Delta T,
 which is implementation dependent. R1 information MUST not be
 discarded until Delta S after T. Time S is the delay needed for the
 last I2 to arrive back to the responder.

 An implementation MAY keep state about received I1s and match the

Moskowitz, et al. Expires April 25, 2005 [Page 67]

Internet-Draft Host Identity Protocol October 2004

 received I2s against the state, as discussed in Section 4.1.1.

8.5.2 Handling malformed messages

 If an implementation receives a malformed I1 message, it SHOULD NOT
 respond with a NOTIFY message, as such practice could open up a
 potential denial-of-service danger. Instead, it MAY respond with an
 ICMP packet, as defined in Section 6.3.

8.6 Processing incoming R1 packets

 A system receiving an R1 MUST first check to see if it has sent an I1
 to the originator of the R1 (i.e., it is in state I1-SENT). If so,
 it SHOULD process the R1 as described below, send an I2, and go to
 state I2-SENT, setting a timer to protect the I2. If the system is
 in state I2-SENT, it MAY respond to an R1 if the R1 has a larger R1
 generation counter; if so, it should drop its state due to processing
 the previous R1 and start over from state I1-SENT. If the system is
 in any other state with respect to that host, it SHOULD silently drop
 the R1.

 When sending multiple I1s, an initiator SHOULD wait for a small
 amount of time after the first R1 reception to allow possibly
 multiple R1s to arrive, and it SHOULD respond to an R1 among the set
 with the largest R1 generation counter.

 The following steps define the conceptual processing rules for
 responding to an R1 packet:
 1. A system receiving an R1 MUST first check to see if it has sent
 an I1 to the originator of the R1 (i.e., it has a HIP
 association that is in state I1-SENT and that is associated with
 the HITs in the R1). If so, it should process the R1 as
 described below.
 2. Otherwise, if the system is in any other state than I1-SENT or
 I2-SENT with respect to the HITs included in the R1, it SHOULD
 silently drop the R1 and remain in the current state.
 3. If the HIP association state is I1-SENT or I2-SENT, the received
 Initiator's HIT MUST correspond to the HIT used in the original,
 I1 and the Responder's HIT MUST correspond to the one used,
 unless the I1 contained a NULL HIT.
 4. The system SHOULD validate the R1 signature before applying
 further packet processing, according to Section 6.2.15.
 5. If the HIP association state is I1-SENT, and multiple valid R1s
 are present, the system SHOULD select from among the R1s with
 the largest R1 generation counter.
 6. If the HIP association state is I2-SENT, the system MAY reenter
 state I1-SENT and process the received R1 if it has a larger R1
 generation counter than the R1 responded to previously.

Moskowitz, et al. Expires April 25, 2005 [Page 68]

Internet-Draft Host Identity Protocol October 2004

 7. The R1 packet may have the C bit set -- in this case, the system
 should anticipate the receipt of HIP CER packets that contain
 the host identity corresponding to the responder's HIT.
 8. The R1 packet may have the A bit set -- in this case, the system
 MAY choose to refuse it by dropping the R1 and returning to
 state UNASSOCIATED. The system SHOULD consider dropping the R1
 only if it used a NULL HIT in I1. If the A bit is set, the
 Responder's HIT is anonymous and should not be stored.
 9. The system SHOULD attempt to validate the HIT against the
 received Host Identity.
 10. The system MUST store the received R1 generation counter for
 future reference.
 11. The system attempts to solve the cookie puzzle in R1. The
 system MUST terminate the search after exceeding the remaining
 lifetime of the puzzle. If the cookie puzzle is not
 successfully solved, the implementation may either resend I1
 within the retry bounds or abandon the HIP exchange.
 12. The system computes standard Diffie-Hellman keying material
 according to the public value and Group ID provided in the
 DIFFIE_HELLMAN parameter. The Diffie-Hellman keying material
 Kij is used for key extraction as specified in Section 9. If
 the received Diffie-Hellman Group ID is not supported, the
 implementation may either resend I1 within the retry bounds or
 abandon the HIP exchange.
 13. The system selects the HIP transform and ESP transform from the
 choices presented in the R1 packet and uses the selected values
 subsequently when generating and using encryption keys, and when
 sending the I2. If the proposed alternatives are not acceptable
 to the system, it may either resend I1 within the retry bounds
 or abandon the HIP exchange.
 14. The system prepares and creates an incoming IPsec ESP security
 association. It may also prepare a security association for
 outgoing traffic, but since it does not have the correct SPI
 value yet, it cannot activate it.
 15. The system initialized the remaining variables in the associated
 state, including Update ID counters.
 16. The system prepares and sends an I2, as described in Section

7.3.
 17. The system SHOULD start a timer whose timeout value should be
 larger than the worst-case anticipated RTT, and MUST increment a
 timeout counter associated with the I2. The sender SHOULD
 retransmit the I2 upon a timeout and restart the timer, up to a
 maximum of I2_RETRIES_MAX tries.
 18. If the system is in state I1-SENT, it shall transition to state
 I2-SENT. If the system is in any other state, it remains in the
 current state.

Moskowitz, et al. Expires April 25, 2005 [Page 69]

Internet-Draft Host Identity Protocol October 2004

8.6.1 Handling malformed messages

 If an implementation receives a malformed R1 message, it MUST
 silently drop the packet. Sending a NOTIFY or ICMP would not help,
 as the sender of the R1 typically doesn't have any state. An
 implementation SHOULD wait for some more time for a possible good R1,
 after which it MAY try again by sending a new I1 packet.

8.7 Processing incoming I2 packets

 Upon receipt of an I2, the system MAY perform initial checks to
 determine whether the I2 corresponds to a recent R1 that has been
 sent out, if the Responder keeps such state. For example, the sender
 could check whether the I2 is from an address or HIT that has
 recently received an R1 from it. The R1 may have had Opaque data
 included that was echoed back in the I2. If the I2 is considered to
 be suspect, it MAY be silently discarded by the system.

 Otherwise, the HIP implementation SHOULD process the I2. This
 includes validation of the cookie puzzle solution, generating the
 Diffie-Hellman key, decrypting the Initiator's Host Identity,
 verifying the signature, creating state, and finally sending an R2.

 The following steps define the conceptual processing rules for
 responding to an I2 packet:
 1. The system MAY perform checks to verify that the I2 corresponds
 to a recently sent R1. Such checks are implementation
 dependent. See Appendix D for a description of an example
 implementation.
 2. The system MUST check that the Responder's HIT corresponds to
 one of its own HITs.
 3. If the system is in the R2-SENT state, it MAY check if the newly
 received I2 is similar to the one that triggered moving to
 R2-SENT. If so, it MAY retransmit a previously sent R2, reset
 the R2-SENT timer, and stay in R2-SENT.
 4. If the system is in any other state, it SHOULD check that the
 echoed R1 generation counter in I2 is within the acceptable
 range. Implementations MUST accept puzzles from the current
 generation and MAY accept puzzles from earlier generations. If
 the newly received I2 is outside the accepted range, the I2 is
 stale (perhaps replayed) and SHOULD be dropped.
 5. The system MUST validate the solution to the cookie puzzle by
 computing the SHA-1 hash described in Section 7.3.
 6. The I2 MUST have a single value in each of the HIP_TRANSFORM and
 ESP_TRANSFORM parameters, which MUST each match one of the
 values offered to the Initiator in the R1 packet.
 7. The system must derive Diffie-Hellman keying material Kij based
 on the public value and Group ID in the DIFFIE_HELLMAN

Moskowitz, et al. Expires April 25, 2005 [Page 70]

Internet-Draft Host Identity Protocol October 2004

 parameter. This key is used to derive the HIP and ESP
 association keys, as described in Section 9. If the
 Diffie-Hellman Group ID is unsupported, the I2 packet is
 silently dropped.
 8. The encrypted HOST_ID decrypted by the Initiator encryption key
 defined in Section 9. If the decrypted data is not an HOST_ID
 parameter, the I2 packet is silently dropped.
 9. The implementation SHOULD also verify that the Initiator's HIT
 in the I2 corresponds to the Host Identity sent in the I2.
 10. The system MUST verify the HMAC according to the procedures in

Section 6.2.12.
 11. The system MUST verify the HIP_SIGNATURE according to Section

6.2.14 and Section 7.3.
 12. If the checks above are valid, then the system proceeds with
 further I2 processing; otherwise, it discards the I2 and remains
 in the same state.
 13. The I2 packet may have the C bit set -- in this case, the system
 should anticipate the receipt of HIP CER packets that contain
 the host identity corresponding to the responder's HIT.
 14. The I2 packet may have the A bit set -- in this case, the system
 MAY choose to refuse it by dropping the I2 and returning to
 state UNASSOCIATED. If the A bit is set, the Initiator's HIT is
 anonymous and should not be stored.
 15. The SPI field is parsed to obtain the SPI that will be used for
 the Security Association outbound from the Responder and inbound
 to the Initiator.
 16. The system prepares and creates both incoming and outgoing ESP
 security associations.
 17. The system initialized the remaining variables in the associated
 state, including Update ID counters.
 18. Upon successful processing of an I2 in states UNASSOCIATED,
 I1-SENT, I2-SENT, and R2-SENT, an R2 is sent and the state
 machine transitions to state ESTABLISHED.
 19. Upon successful processing of an I2 in state ESTABLISHED/
 REKEYING, the old Security Association is dropped and a new one
 is installed, an R2 is sent, and the state machine transitions
 to R2-SENT, dropping any possibly ongoing rekeying attempt.
 20. Upon transitioning to R2-SENT, start a timer. Leave R2-SENT if
 either the timer expires (allowing for maximal retransmission of
 I2s), some data has been received on the incoming SA, or an
 UPDATE packet has been received (or some other packet that
 indicates that the peer has moved to ESTABLISHED).

8.7.1 Handling malformed messages

 If an implementation receives a malformed I2 message, the behaviour
 SHOULD depend on how much checks the message has already passed. If
 the puzzle solution in the message has already been checked, the

Moskowitz, et al. Expires April 25, 2005 [Page 71]

Internet-Draft Host Identity Protocol October 2004

 implementation SHOULD report the error by responding with a NOTIFY
 packet. Otherwise the implementation MAY respond with an ICMP
 message as defined in Section 6.3.

8.8 Processing incoming R2 packets

 An R2 received in states UNASSOCIATED, I1-SENT, ESTABLISHED, or
 REKEYING results in the R2 being dropped and the state machine
 staying in the same state. If an R2 is received in state I2-SENT, it
 SHOULD be processed.

 The following steps define the conceptual processing rules for
 incoming R2 packet:
 1. The system MUST verify that the HITs in use correspond to the
 HITs that were received in R1.
 2. The system MUST verify the HMAC_2 according to the procedures in

Section 6.2.13.
 3. The system MUST verify the HIP signature according to the
 procedures in Section 6.2.14.
 4. If any of the checks above fail, there is a high probability of
 an ongoing man-in-the-middle or other security attack. The
 system SHOULD act accordingly, based on its local policy.
 5. If the system is in any other state than I2-SENT, the R2 is
 silently dropped.
 6. The SPI field is parsed to obtain the SPI that will be used for
 the ESP Security Association inbound to the Responder. The
 system uses this SPI to create or activate the outgoing ESP
 security association used to send packets to the peer.
 7. Upon successful processing of the R2, the state machine moves to
 state ESTABLISHED.

8.9 Dropping HIP associations

 A HIP implementation is free to drop a HIP association at any time,
 based on its own policy. If a HIP host decides to drop an HIP
 association, it deletes the IPsec SAs related to that association and
 the corresponding HIP state, including the keying material. The
 implementation MUST also drop the peer's R1 generation counter value,
 unless a local policy explicitly defines that the value of that
 particular host is stored. An implementation MUST NOT store R1
 generation counters by default, but storing R1 generation counter
 values, if done, MUST be configured by explicit HITs.

8.10 Initiating rekeying

 A system may initiate the rekey procedure at any time. It MUST
 initiate a rekey if its incoming ESP sequence counter is about to
 overflow. The system MUST NOT replace its keying material until the

Moskowitz, et al. Expires April 25, 2005 [Page 72]

Internet-Draft Host Identity Protocol October 2004

 rekeying packet exchange successfully completes. Optionally,
 depending on policy, a system may include a new Diffie-Hellman key
 for use in new KEYMAT generation. New KEYMAT generation occurs prior
 to drawing the new keys.

 In the conceptual state machine, a system rekeys when it sends a NES
 parameter to the peer and receives both an ACK of the relevant UPDATE
 message and its peer's NES parameter. To leave REKEYING state, both
 parameters must be received. It may be that the ACK and the NES
 arrive in different UPDATE messages. This is always true if a system
 does not initiate rekeying but responds to a rekeying request from
 the peer, but may also occur if two systems initiate a rekey nearly
 simultaneously. In such a case, if the system is in state REKEYING,
 it saves the one parameter and waits for the other before leaving
 state REKEYING. This implies that the REKEYING state may have
 conceptual substates.

 The following steps define the processing rules for initiating a
 rekey:
 1. The system decides whether to continue to use the existing KEYMAT
 or to generate new KEYMAT. In the latter case, the system MUST
 generate a new Diffie-Hellman public key.
 2. The system increments its outgoing Update ID by one.
 3. The system creates a UPDATE packet, which contains an SEQ
 parameter (with the current value of Update ID), NES parameter
 and an optional DIFFIE_HELLMAN parameter. If the UPDATE packet
 contains the DIFFIE_HELLMAN parameter, the Keymat Index in the
 NES parameter MUST be zero. If the UPDATE does not contain
 DIFFIE_HELLMAN, the NES Keymat Index MUST be larger or equal to
 the index of the next byte to be drawn from the current KEYMAT.
 4. The system sends the UPDATE packet and transitions to state
 REKEYING.
 5. The system SHOULD start a timer whose timeout value should be
 larger than the worst-case anticipated RTT, and MUST increment a
 timeout counter associated with UPDATE. The sender SHOULD
 retransmit the UPDATE upon a timeout and restart the timer, up to
 a maximum of UPDATE_RETRIES_MAX tries.
 6. The system MUST NOT delete its existing SAs, but continue using
 them if its policy still allows. The UPDATE procedure SHOULD be
 initiated early enough to make sure that the SA replay counters
 do not overflow.
 7. In case a protocol error occurs and the peer system acknowledges
 the UPDATE but does not itself send a NES, the system may hang in
 state REKEYING. To guard against this, a system MAY re-initiate
 the rekeying procedure after some time waiting for the peer to
 respond, or it MAY decide to abort the HIP association after
 waiting for an implementation-dependent time. The system MUST
 NOT hang in state REKEYING for an indefinite time.

Moskowitz, et al. Expires April 25, 2005 [Page 73]

Internet-Draft Host Identity Protocol October 2004

 To simplify the state machine, a host MUST NOT generate new UPDATEs
 (with higher Update IDs) while in state REKEYING, unless it is
 restarting the rekeying process.

8.11 Processing UPDATE packets

 When a system receives an UPDATE packet, its processing depends on
 the state of the HIP association and the presence of and values of
 the SEQ and ACK parameters. An UPDATE MUST be processed if the
 following conditions hold (note: UPDATEs may also be processed when
 additional conditions hold, as specified in other drafts):
 1. If there is no corresponding HIP association, the implementation
 MAY reply with an ICMP Parameter Problem, as specified in Section

6.3.5.
 2. The state of the HIP association is ESTABLISHED or REKEYING, and
 both the SEQ and NES parameters are present in the UPDATE. This
 is the case for which the peer host is in the process of
 rekeying.
 3. The state of the HIP association is REKEYING and an ACK (of
 outstanding Update ID) is in the UPDATE. This case usually
 corresponds to the peer completing the rekeying process first.

 If the above conditions hold, the following steps define the
 conceptual processing rules for handling a received UPDATE packet:
 1. If the SEQ parameter is present, and the Update ID in the
 received SEQ is smaller than the stored Update ID for the host,
 the packet MUST BE dropped.
 2. If the SEQ parameter is present, and the Update ID in the
 received SEQ is equal to the stored Update ID for the host, the
 packet is treated as a retransmission. However, the HMAC
 verification (next step) MUST NOT be skipped. (A byte-by-byte
 comparison of the received and a store packet would be OK,
 though.) It is recommended that a host cache the last packet
 that was acked to avoid the cost of generating a new ACK packet
 to respond to a replayed UPDATE. Systems MUST again acknowledge
 such apparent UPDATE message retransmissions but SHOULD also
 consider rate-limiting such retransmission responses to guard
 against replay attacks.
 3. The system MUST verify the HMAC in the UPDATE packet. If the
 verification fails, the packet MUST be dropped.
 4. If the received UPDATE contains a DIFFIE_HELLMAN parameter, the
 received Keymat Index MUST be zero. If this test fails, the
 packet SHOULD be dropped and the system SHOULD log an error
 message.
 5. The system MAY verify the SIGNATURE in the UPDATE packet. If the
 verification fails, the packet SHOULD be dropped and an error
 message logged.

Moskowitz, et al. Expires April 25, 2005 [Page 74]

Internet-Draft Host Identity Protocol October 2004

 6. If a new SEQ parameter is being processed, the system MUST record
 the Update ID in the received SEQ parameter, for replay
 protection.
 7. If the system is in state ESTABLISHED, and the UPDATE has the NES
 and SEQ parameters, the packet processing continues as specified
 in Section 8.11.1.
 8. If the system is in state REKEYING, the packet processing
 continues as specified in Section 8.11.2.

8.11.1 Processing an UPDATE packet in state ESTABLISHED

 The following steps define the conceptual processing rules responding
 handling a received initial UPDATE packet:
 1. The system consults its policy to see if it needs to generate a
 new Diffie-Hellman key, and generates a new key if needed. The
 system records any newly generated or received Diffie-Hellman
 keys, for use in KEYMAT generation upon leaving the REKEYING
 state.
 2. If the system generated new Diffie-Hellman key in the previous
 step, or it received a DIFFIE_HELLMAN parameter, it sets NES
 Keymat Index to zero. Otherwise, the NES Keymat Index MUST be
 larger or equal to the index of the next byte to be drawn from
 the current KEYMAT. In this case, it is RECOMMENDED that the
 host use the Keymat Index requested by the peer in the received
 NES.
 3. The system increments its outgoing Update ID by one.
 4. The system creates a UPDATE packet, which contains an SEQ
 parameter (with the current value of Update ID), NES parameter
 and the optional DIFFIE_HELLMAN parameter. The UPDATE packet also
 includes the ACK of the Update ID found in the received UPDATE
 SEQ parameter.
 5. The system sends the UPDATE packet and transitions to state
 REKEYING. The system stores any received NES and DIFFIE_HELLMAN
 parameters. At this point, it only needs to receive an ACK of
 its current Update ID to finish rekeying.

8.11.2 Processing an UPDATE packet in state REKEYING

 The following steps define the conceptual processing rules responding
 handling a received reply UPDATE packet:
 1. If the packet contains a SEQ and NES parameters, then the system
 sends a new UPDATE packet with an ACK of the peer's Update ID as
 received in the SEQ parameter. Additionally, if the UPDATE packet
 contained an ACK of the outstanding Update ID, or if the ACK of
 the UPDATE packet that contained the NES has already been
 received, the system stores the received NES and (optional)
 DIFFIE_HELLMAN parameters and finishes the rekeying procedure as
 described in Section 8.11.3. If the ACK of the outstanding Update

Moskowitz, et al. Expires April 25, 2005 [Page 75]

Internet-Draft Host Identity Protocol October 2004

 ID has not been received, stay in state REKEYING after storing
 the received NES and (optional) DIFFIE_HELLMAN.
 2. If the packet contains an ACK parameter that ACKs the outstanding
 Update ID, and the system has previously received a NES from the
 peer, the system finishes the rekeying procedure as described in

Section 8.11.3. If the system is still waiting for the peer's
 NES parameter (to arrive in subsequent UPDATE message), the
 system stays in state REKEYING.

8.11.3 Leaving REKEYING state

 A system leaves REKEYING state when it has received both a NES from
 its peer and the ACK of the Update ID that was sent in its own NES to
 the peer. The following steps are taken:
 1. If either the received UPDATE contains a new Diffie-Hellman key,
 the system has a new Diffie-Hellman key from initiating rekey, or
 both, the system generates new KEYMAT. If there is only one new
 Diffie-Hellman key, the old key is used as the other key.
 2. If the system generated new KEYMAT in the previous step, it sets
 Keymat Index to zero, independent on whether the received UPDATE
 included a Diffie-Hellman key or not. If the system did not
 generate new KEYMAT, it uses the lowest Keymat Index of the two
 NES parameters.
 3. The system draws keys for new incoming and outgoing ESP SAs,
 starting from the Keymat Index, and prepares new incoming and
 outgoing ESP SAs. The SPI for the outgoing SA is the new SPI
 value from the UPDATE. The SPI for the incoming SA was generated
 when NES was sent. The order of the keys retrieved from the
 KEYMAT during rekeying process is similar to that described in

Section 9. Note, that only IPsec ESP keys are retrieved during
 rekeying process, not the HIP keys.
 4. The system cancels any timers protecting the UPDATE and
 transitions to ESTABLISHED.
 5. The system starts to send to the new outgoing SA and prepares to
 start receiving data on the new incoming SA.

8.12 Processing CER packets

 Processing CER packets is OPTIONAL, and currently undefined.

8.13 Processing NOTIFY packets

 Processing NOTIFY packets is OPTIONAL. If processed, any errors
 noted by the NOTIFY parameter SHOULD be taken into account by the HIP
 state machine (e.g., by terminating a HIP handshake), and the error
 SHOULD be logged.

Moskowitz, et al. Expires April 25, 2005 [Page 76]

Internet-Draft Host Identity Protocol October 2004

8.14 Processing CLOSE packets

 When the host receives a CLOSE message it responds with a CLOSE_ACK
 message and moves to CLOSED state. (The authenticity of the CLOSE
 message is verified using both HMAC and SIGNATURE). This processing
 applies whether or not the HIP association state is CLOSING in order
 to handle CLOSE messages from both ends crossing in flight.

 The HIP association is not discarded before the host moves from the
 UNASSOCIATED state.

 Once the closing process has started, any need to send data packets
 will trigger creating and establishing of a new HIP association,
 starting with sending an I1.

 If there is no corresponding HIP association, the implementation MAY
 reply to a CLOSE with an ICMP Parameter Problem, as specified in

Section 6.3.5.

8.15 Processing CLOSE_ACK packets

 When a host receives a CLOSE_ACK message it verifies that it is in
 CLOSING or CLOSED state and that the CLOSE_ACK was in response to the
 CLOSE (using the included ECHO_REPLY in response to the sent
 ECHO_REQUEST).

 The CLOSE_ACK uses HMAC and SIGNATURE for verification. The state is
 discarded when the state changes to UNASSOCIATED and, after that,
 NOTIFY is sent as a response to a CLOSE message.

Moskowitz, et al. Expires April 25, 2005 [Page 77]

Internet-Draft Host Identity Protocol October 2004

9. HIP KEYMAT

 HIP keying material is derived from the Diffie-Hellman Kij produced
 during the base HIP exchange. The Initiator has Kij during the
 creation of the I2 packet, and the Responder has Kij once it receives
 the I2 packet. This is why I2 can already contain encrypted
 information.

 The KEYMAT is derived by feeding Kij and the HITs into the following
 operation; the | operation denotes concatenation.

 KEYMAT = K1 | K2 | K3 | ...
 where

 K1 = SHA-1(Kij | sort(HIT-I | HIT-R) | 0x01)
 K2 = SHA-1(Kij | K1 | 0x02)
 K3 = SHA-1(Kij | K2 | 0x03)
 ...
 K255 = SHA-1(Kij | K254 | 0xff)
 K256 = SHA-1(Kij | K255 | 0x00)
 etc.

 Sort(HIT-I | HIT-R) is defined as the network byte order
 concatenation of the two HITs, with the smaller HIT preceding the
 larger HIT, resulting from the numeric comparison of the two HITs
 interpreted as positive (unsigned) 128-bit integers in network byte
 order.

 The initial keys are drawn sequentially in the order that is
 determined by the numeric comparison of the two HITs, with comparison
 method described in the previous paragraph. HOST_g denotes the host
 with the greater HIT value, and HOST_l the host with the lower HIT
 value.

 The drawing order for initial keys:
 HIP-gl encryption key for HOST_g's outgoing HIP packets
 HIP-gl integrity (HMAC) key for HOST_g's outgoing HIP packets
 HIP-lg encryption key (currently unused) for HOST_l's outgoing HIP
 packets
 HIP-lg integrity (HMAC) key for HOST_l's outgoing HIP packets
 SA-gl ESP encryption key for HOST_g's outgoing traffic
 SA-gl ESP authentication key for HOST_g's outgoing traffic
 SA-lg ESP encryption key for HOST_l's outgoing traffic
 SA-lg ESP authentication key for HOST_l's outgoing traffic

 The number of bits drawn for a given algorithm is the "natural" size
 of the keys. For the mandatory algorithms, the following sizes
 apply:

Moskowitz, et al. Expires April 25, 2005 [Page 78]

Internet-Draft Host Identity Protocol October 2004

 AES 128 bits
 SHA-1 160 bits
 NULL 0 bits

 The four HIP keys are only drawn from KEYMAT during a HIP I1->R2
 exchange. Subsequent rekeys using UPDATE will only draw the four ESP
 keys from KEYMAT. Section 8.11 describes the rules for reusing or
 regenerating KEYMAT based on the UPDATE exchange.

Moskowitz, et al. Expires April 25, 2005 [Page 79]

Internet-Draft Host Identity Protocol October 2004

10. HIP Fragmentation Support

 A HIP implementation must support IP fragmentation / reassembly.
 Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
 fragment generation MUST be implemented only in IPv4 (IPv4 stacks and
 networks will usually do this by default) and SHOULD be implemented
 in IPv6. In the IPv6 world, the minimum MTU is larger, 1280 bytes,
 than in the IPv4 world. The larger MTU size is usually sufficient
 for most HIP packets, and therefore fragment generation may not be
 needed. If a host expects to send HIP packets that are larger than
 the minimum IPv6 MTU, it MUST implement fragment generation even for
 IPv6.

 In the IPv4 world, HIP packets may encounter low MTUs along their
 routed path. Since HIP does not provide a mechanism to use multiple
 IP datagrams for a single HIP packet, support of path MTU discovery
 does not bring any value to HIP in the IPv4 world. HIP aware NAT
 systems MUST perform any IPv4 reassembly/fragmentation.

 All HIP implementations MUST employ a reassembly algorithm that is
 sufficiently resistant against DoS attacks.

Moskowitz, et al. Expires April 25, 2005 [Page 80]

Internet-Draft Host Identity Protocol October 2004

11. ESP with HIP

 HIP is designed to be used in end-to-end fashion. The IPsec mode
 used with HIP is the BEET mode (A Bound End-to-End mode for ESP)
 [27]. The BEET mode provides some features from both IPsec tunnel
 and transport modes. The HIP uses HITs and LSIs as the "inner"
 addresses and IP addresses as "outer" addresses like IP addresses are
 used in the tunnel mode. Instead of tunneling packets between hosts,
 a conversion between inner and outer addresses is made at end-hosts
 and the inner address is never sent in the wire after the initial HIP
 negotiation. BEET provides IPsec transport mode syntax (no inner
 headers) with limited tunnel mode semantics (fixed logical inner
 addresses - the HITs - and changeable outer IP addresses).

 Since HIP does not negotiate any lifetimes, all lifetimes are local
 policy. The only lifetimes a HIP implementation MUST support are
 sequence number rollover (for replay protection), and SA timeout. An
 SA times out if no packets are received using that SA. The default
 timeout value is 15 minutes. Implementations MAY support lifetimes
 for the various ESP transforms.

11.1 ESP Security Associations

 Each HIP association is linked with two ESP SAs, one incoming and one
 outgoing. The Initiator's incoming SA corresponds with the
 Responder's outgoing one. The initiator defines the SPI for this
 association, as defined in Section 3.3. This SA is called SA-RI, and
 the corresponding SPI is called SPI-RI. Respectively, the
 Responder's incoming SA corresponds with the Initiator's outgoing SA
 and is called SA-IR, with the SPI-IR.

 The Initiator creates SA-RI as a part of R1 processing, before
 sending out the I2, as explained in Section 8.6. The keys are
 derived from KEYMAT, as defined in Section 9. The Responder creates
 SA-RI as a part of I2 processing, see Section 8.7.

 The Responder creates SA-IR as a part of I2 processing, before
 sending out R2, see Step 17 in Section 8.7. The Initiator creates
 SA-IR when processing R2, see Step 7 in Section 8.8.

11.2 Updating ESP SAs during rekeying

 After the initial 4-way handshake and SA establishment, both hosts
 are in state ESTABLISHED. There are no longer Initiator and
 Responder roles and the association is symmetric. In this
 subsection, the initiating party of the rekey procedure is denoted
 with I' and the peer with R'.

Moskowitz, et al. Expires April 25, 2005 [Page 81]

Internet-Draft Host Identity Protocol October 2004

 The I' initiates the rekeying process when needed (see Section 8.10).
 It creates an UPDATE packet with required information and sends it to
 the peer node. The old SAs are still in use.

 The R', after receiving and processing the UPDATE (see Section 8.11),
 generates new SAs: SA-I'R' and SA-R'I'. It does not take the new
 outgoing SA into use, but uses still the old one, so there exists two
 SA pairs towards the same peer host. For the new outgoing SA, the
 SPI-R'I' value is picked from the received UPDATE packet. The R'
 generates the new SPI value for the incoming SA, SPI-I'R', and
 includes it in the response UPDATE packet.

 When the I' receives a response UPDATE from the R', it generates new
 SAs, as described in Section 8.11: SA-I'R' and SA-R'I'. It starts
 using the new outgoing SA immediately.

 The R' starts using the new outgoing SA when it receives traffic from
 the new incoming SA. After this, the R' can remove old SAs.
 Similarly, when the I' receives traffic from the new incoming SA, it
 can safely remove old SAs.

11.3 Security Association Management

 An SA pair is indexed by the 2 SPIs and 2 HITs (both HITs since a
 system can have more than one HIT). An inactivity timer is
 recommended for all SAs. If the state dictates the deletion of an
 SA, a timer is set to allow for any late arriving packets.

11.4 Security Parameter Index (SPI)

 The SPIs in ESP provide a simple compression of the HIP data from all
 packets after the HIP exchange. This does require a per HIT- pair
 Security Association (and SPI), and a decrease of policy granularity
 over other Key Management Protocols like IKE.

 When a host rekeys, it gets a new SPI from its partner.

11.5 Supported Transforms

 All HIP implementations MUST support AES [10] and HMAC-SHA-1-96 [6].
 If the Initiator does not support any of the transforms offered by
 the Responder in the R1 HIP packet, it MUST use AES and HMAC-SHA-1-96
 and state so in the I2 HIP packet.

 In addition to AES, all implementations MUST implement the ESP NULL
 encryption and authentication algorithms. These algorithms are
 provided mainly for debugging purposes, and SHOULD NOT be used in
 production environments. The default configuration in

Moskowitz, et al. Expires April 25, 2005 [Page 82]

Internet-Draft Host Identity Protocol October 2004

 implementations MUST be to reject NULL encryption or authentication.

11.6 Sequence Number

 The Sequence Number field is MANDATORY in ESP. Anti-replay
 protection MUST be used in an ESP SA established with HIP.

 This means that each host MUST rekey before its sequence number
 reaches 2^32, or if extended sequence numbers are used, 2^64. Note
 that in HIP rekeying, unlike IKE rekeying, only one Diffie-Hellman
 key can be changed, that of the rekeying host. However, if one host
 rekeys, the other host SHOULD rekey as well.

 In some instances, a 32-bit sequence number is inadequate. In the
 ESP_TRANSFORM parameter, a peer MAY require that a 64 bit sequence
 number be used. In this case the higher 32 bits are NOT included in
 the ESP header, but are simply kept local to both peers. 64 bit
 sequence numbers must only be used for ciphers that will not be open
 to cryptanalysis as a result. AES is one such cipher.

Moskowitz, et al. Expires April 25, 2005 [Page 83]

Internet-Draft Host Identity Protocol October 2004

12. HIP Policies

 There are a number of variables that will influence the HIP exchanges
 that each host must support. All HIP implementations MUST support
 more than one simultaneous HIs, at least one of which SHOULD be
 reserved for anonymous usage. Although anonymous HIs will be rarely
 used as responder HIs, they will be common for Initiators. Support
 for more than two HIs is RECOMMENDED.

 Many Initiators would want to use a different HI for different
 Responders. The implementations SHOULD provide for an ACL of
 initiator HIT to responder HIT. This ACL SHOULD also include
 preferred transform and local lifetimes. For HITs with HAAs,
 wildcarding SHOULD be supported. Thus if a Community of Interest,
 like Banking, gets an RAA, a single ACL could be used. A global
 wildcard would represent the general policy to be used. Policy
 selection would be from most specific to most general.

 The value of K used in the HIP R1 packet can also vary by policy. K
 should never be greater than 20, but for trusted partners it could be
 as low as 0.

 Responders would need a similar ACL, representing which hosts they
 accept HIP exchanges, and the preferred transform and local
 lifetimes. Wildcarding SHOULD be supported for this ACL also.

Moskowitz, et al. Expires April 25, 2005 [Page 84]

Internet-Draft Host Identity Protocol October 2004

13. Security Considerations

 HIP is designed to provide secure authentication of hosts and to
 provide a fast key exchange for IPsec ESP. HIP also attempts to
 limit the exposure of the host to various denial-of-service and man-
 in-the-middle attacks. In so doing, HIP itself is subject to its own
 DoS and MitM attacks that potentially could be more damaging to a
 host's ability to conduct business as usual.

 HIP enabled ESP is IP address independent. This might seem to make
 it easier for an attacker, but ESP with replay protection is already
 as well protected as possible, and the removal of the IP address as a
 check should not increase the exposure of ESP to DoS attacks.
 Furthermore, this is in line with the forthcoming revision of ESP.

 Denial-of-service attacks take advantage of the cost of start of
 state for a protocol on the Responder compared to the 'cheapness' on
 the Initiator. HIP makes no attempt to increase the cost of the
 start of state on the Initiator, but makes an effort to reduce the
 cost to the Responder. This is done by having the Responder start
 the 3-way exchange instead of the Initiator, making the HIP protocol
 4 packets long. In doing this, packet 2 becomes a 'stock' packet
 that the Responder MAY use many times. The duration of use is a
 paranoia versus throughput concern. Using the same Diffie- Hellman
 values and random puzzle I has some risk. This risk needs to be
 balanced against a potential storm of HIP I1 packets.

 This shifting of the start of state cost to the Initiator in creating
 the I2 HIP packet, presents another DoS attack. The attacker spoofs
 the I1 HIP packet and the Responder sends out the R1 HIP packet.
 This could conceivably tie up the 'initiator' with evaluating the R1
 HIP packet, and creating the I2 HIP packet. The defense against this
 attack is to simply ignore any R1 packet where a corresponding I1 or
 ESP data was not sent.

 A second form of DoS attack arrives in the I2 HIP packet. Once the
 attacking Initiator has solved the cookie challenge, it can send
 packets with spoofed IP source addresses with either invalid
 encrypted HIP payload component or a bad HIP signature. This would
 take resources in the Responder's part to reach the point to discover
 that the I2 packet cannot be completely processed. The defense
 against this attack is after N bad I2 packets, the Responder would
 discard any I2s that contain the given Initiator HIT. Thus will shut
 down the attack. The attacker would have to request another R1 and
 use that to launch a new attack. The Responder could up the value of
 K while under attack. On the downside, valid I2s might get dropped
 too.

Moskowitz, et al. Expires April 25, 2005 [Page 85]

Internet-Draft Host Identity Protocol October 2004

 A third form of DoS attack is emulating the restart of state after a
 reboot of one of the partners. A host restarting would send an I1 to
 a peer, which would respond with an R1 even if it were in state
 ESTABLISHED. If the I1 were spoofed, the resulting R1 would be
 received unexpectedly by the spoofed host and would be dropped, as in
 the first case above.

 A fourth form of DoS attack is emulating the end of state. HIP
 relies on timers plus a CLOSE/CLOSE_ACK handshake to explicitly
 signals the end of a state. Because both CLOSE and CLOSE_ACK
 messages contain an HMAC, an outsider cannot close a connection. The
 presence of an additional SIGNATURE allows middle-boxes to inspect
 these messages and discard the associated state (for e.g.,
 firewalling, SPI-based NATing, etc.). However, the optional behavior
 of replying to CLOSE with an ICMP Parameter Problem packet (as
 described in Section 6.3.5), might allow an IP spoofer sending CLOSE
 messages to launch reflection attacks.

 A fifth form of DoS attack is replaying R1s to cause the initiator to
 solve stale puzzles and become out of synchronization with the
 responder. The R1 generation counter is a monotonically increasing
 counter designed to protect against this attack, as described in
 section Section 4.1.3.

 Man-in-the-middle attacks are difficult to defend against, without
 third-party authentication. A skillful MitM could easily handle all
 parts of HIP; but HIP indirectly provides the following protection
 from a MitM attack. If the Responder's HI is retrieved from a signed
 DNS zone, a certificate, or through some other secure means, the
 Initiator can use this to validate the R1 HIP packet.

 Likewise, if the Initiator's HI is in a secure DNS zone, a trusted
 certificate, or otherwise securely available, the Responder can
 retrieve it after it gets the I2 HIP packet and validate that.
 However, since an Initiator may choose to use an anonymous HI, it
 knowingly risks a MitM attack. The Responder may choose not to
 accept a HIP exchange with an anonymous Initiator.

 If an initiator wants to use opportunistic mode, it is vulnerable to
 man-in-the-middle attacks. Furthermore, the available HI types are
 limited to the MUST implement algorithms, as per Section 3. Hence,
 if a future specification deprecates the current MUST implement
 algorithm(s) and replaces it (them) with some new one(s), backward
 compatibility cannot be preserved.

 Since not all hosts will ever support HIP, ICMP 'Destination Protocol
 Unreachable' are to be expected and present a DoS attack. Against an
 Initiator, the attack would look like the Responder does not support

Moskowitz, et al. Expires April 25, 2005 [Page 86]

Internet-Draft Host Identity Protocol October 2004

 HIP, but shortly after receiving the ICMP message, the Initiator
 would receive a valid R1 HIP packet. Thus to protect from this
 attack, an Initiator should not react to an ICMP message until a
 reasonable delta time to get the real Responder's R1 HIP packet. A
 similar attack against the Responder is more involved. First an ICMP
 message is expected if the I1 was a DoS attack and the real owner of
 the spoofed IP address does not support HIP. The Responder SHOULD
 NOT act on this ICMP message to remove the minimal state from the R1
 HIP packet (if it has one), but wait for either a valid I2 HIP packet
 or the natural timeout of the R1 HIP packet. This is to allow for a
 sophisticated attacker that is trying to break up the HIP exchange.
 Likewise, the Initiator should ignore any ICMP message while waiting
 for an R2 HIP packet, deleting state only after a natural timeout.

Moskowitz, et al. Expires April 25, 2005 [Page 87]

Internet-Draft Host Identity Protocol October 2004

14. IANA Considerations

 IANA has assigned IP Protocol number TBD to HIP.

Moskowitz, et al. Expires April 25, 2005 [Page 88]

Internet-Draft Host Identity Protocol October 2004

15. Acknowledgments

 The drive to create HIP came to being after attending the MALLOC
 meeting at IETF 43. Baiju Patel and Hilarie Orman really gave the
 original author, Bob Moskowitz, the assist to get HIP beyond 5
 paragraphs of ideas. It has matured considerably since the early
 drafts thanks to extensive input from IETFers. Most importantly, its
 design goals are articulated and are different from other efforts in
 this direction. Particular mention goes to the members of the
 NameSpace Research Group of the IRTF. Noel Chiappa provided the
 framework for LSIs and Keith Moore the impetus to provide
 resolvability. Steve Deering provided encouragement to keep working,
 as a solid proposal can act as a proof of ideas for a research group.

 Many others contributed; extensive security tips were provided by
 Steve Bellovin. Rob Austein kept the DNS parts on track. Paul Kocher
 taught Bob Moskowitz how to make the cookie exchange expensive for
 the Initiator to respond, but easy for the Responder to validate.
 Bill Sommerfeld supplied the Birthday concept to simplify reboot
 management. Rodney Thayer and Hugh Daniels provide extensive
 feedback. In the early times of this draft, John Gilmore kept Bob
 Moskowitz challenged to provide something of value.

 During the later stages of this document, when the editing baton was
 transfered to Pekka Nikander, the input from the early implementors
 were invaluable. Without having actual implementations, this
 document would not be on the level it is now.

 In the usual IETF fashion, a large number of people have contributed
 to the actual text or ideas. The list of these people include Jeff
 Ahrenholz, Francis Dupont, Derek Fawcus, George Gross, Andrew
 McGregor, Julien Laganier, Miika Komu, Mika Kousa, Jan Melen, Henrik
 Petander, Michael Richardson, Tim Shepard, Jorma Wall, and Jukka
 Ylitalo. Our apologies to anyone who's name is missing.

Moskowitz, et al. Expires April 25, 2005 [Page 89]

Internet-Draft Host Identity Protocol October 2004

16. References

16.1 Normative references

 [1] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
 1980.

 [2] Postel, J., "Internet Control Message Protocol", STD 5, RFC
792, September 1981.

 [3] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [4] Conta, A. and S. Deering, "Internet Control Message Protocol
 (ICMPv6) for the Internet Protocol Version 6 (IPv6)", RFC 1885,
 December 1995.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP
 and AH", RFC 2404, November 1998.

 [7] Maughan, D., Schneider, M. and M. Schertler, "Internet Security
 Association and Key Management Protocol (ISAKMP)", RFC 2408,
 November 1998.

 [8] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.

 [9] Orman, H., "The OAKLEY Key Determination Protocol", RFC 2412,
 November 1998.

 [10] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms",
RFC 2451, November 1998.

 [11] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [12] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.

 [13] Eastlake, D., "DSA KEYs and SIGs in the Domain Name System
 (DNS)", RFC 2536, March 1999.

 [14] Eastlake, D., "RSA/SHA-1 SIGs and RSA KEYs in the Domain Name
 System (DNS)", RFC 3110, May 2001.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1885
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110

Moskowitz, et al. Expires April 25, 2005 [Page 90]

Internet-Draft Host Identity Protocol October 2004

 [15] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509
 Public Key Infrastructure Certificate and Certificate
 Revocation List (CRL) Profile", RFC 3280, April 2002.

 [16] Draves, R., "Default Address Selection for Internet Protocol
 version 6 (IPv6)", RFC 3484, February 2003.

 [17] Hinden, R. and S. Deering, "Internet Protocol Version 6 (IPv6)
 Addressing Architecture", RFC 3513, April 2003.

 [18] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)", RFC

3526, May 2003.

 [19] Kent, S., "IP Encapsulating Security Payload (ESP)",
draft-ietf-ipsec-esp-v3-05 (work in progress), April 2003.

 [20] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
draft-ietf-ipsec-ikev2-07 (work in progress), April 2003.

 [21] Moskowitz, R., "Host Identity Protocol Architecture",
draft-moskowitz-hip-arch-03 (work in progress), May 2003.

 [22] NIST, "FIPS PUB 180-1: Secure Hash Standard", April 1995.

16.2 Informative references

 [23] Bellovin, S. and W. Aiello, "Just Fast Keying (JFK)",
draft-ietf-ipsec-jfk-04 (work in progress), July 2002.

 [24] Moskowitz, R. and P. Nikander, "Using Domain Name System (DNS)
 with Host Identity Protocol (HIP)", draft-nikander-hip-dns-00
 (to be issued) (work in progress), June 2003.

 [25] Nikander, P., "SPI assisted NAT traversal (SPINAT) with Host
 Identity Protocol (HIP)", draft-nikander-hip-nat-00 (to be
 issued) (work in progress), June 2003.

 [26] Crosby, SA. and DS. Wallach, "Denial of Service via Algorithmic
 Complexity Attacks", in Proceedings of Usenix Security
 Symposium 2003, Washington, DC., August 2003.

 [27] Nikander, P., "A Bound End-to-End Tunnel (BEET) mode for ESP",
draft-nikander-esp-beet-mode-00 (expired) (work in progress),

 Oct 2003.

https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-esp-v3-05
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-07
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-arch-03
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-jfk-04
https://datatracker.ietf.org/doc/html/draft-nikander-hip-dns-00
https://datatracker.ietf.org/doc/html/draft-nikander-hip-nat-00
https://datatracker.ietf.org/doc/html/draft-nikander-esp-beet-mode-00

Moskowitz, et al. Expires April 25, 2005 [Page 91]

Internet-Draft Host Identity Protocol October 2004

Authors' Addresses

 Robert Moskowitz
 ICSAlabs, a Division of TruSecure Corporation
 1000 Bent Creek Blvd, Suite 200
 Mechanicsburg, PA
 USA

 EMail: rgm@icsalabs.com

 Pekka Nikander
 Ericsson Research NomadicLab

 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 EMail: pekka.nikander@nomadiclab.com

 Petri Jokela
 Ericsson Research NomadicLab

 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 EMail: petri.jokela@nomadiclab.com

 Thomas R. Henderson
 The Boeing Company
 P.O. Box 3707
 Seattle, WA
 USA

 EMail: thomas.r.henderson@boeing.com

Moskowitz, et al. Expires April 25, 2005 [Page 92]

Internet-Draft Host Identity Protocol October 2004

Appendix A. API issues

 The following text is informational and may be expanded upon or
 revised in a separate Informational document.

 HIP may be used to support application data transfers in one of three
 ways:
 the application may be HIP-aware and may explicitly use a
 HIP-based API and/or resolver library;
 the application may not be HIP-aware but may be provided with HITs
 or LSIs in place of IP addresses as part of the address resolution
 process; and
 the application may or may not be HIP-aware and may present IP
 addresses to the system, but the system may decide to
 opportunistically invoke HIP or use a pre-existing HIP-based SA on
 its behalf.

 The first case is the most straightforward. The HIP-based API is
 outside the scope of this document.

 The second case is one way to provide HIP support to non-HIP-aware
 applications. HITs may be stored in the DNS or some other
 infrastructure, and the resolver library may choose to supply a
 querying application with a HIT or LSI in place of an IP address.
 Note that if the application truly needs IP addresses for a domain
 name for some reason (e.g., a diagnostic application, or for use in a
 referral scenario to a non-HIP-based host), blindly providing HITs or
 LSIs in place of actual IP addresses may cause some applications to
 break.

 In both of the first two cases, the means whereby a system can
 resolve an LSI or HIT to an IP address, when such a mapping is not
 locally cached in the system, is outside the scope of this document.

 In the third case, the system is explicitly invoking HIP to a
 particular destination IP address on the basis of a local policy
 decision. This approach resembles the way that opportunistic IPsec
 works. Effectively, this approach is implicitly associating IP
 addresses with host identities, and is prone to certain failures or
 ambiguity in an environment where IP addresses are dynamic (e.g., an
 application connects to an IP address, the peer host moves at some
 later time, then another host acquires the old IP address, and the
 system again receives a request to connect to that IP address, in
 which case it is ambiguous whether the application wants to connect
 to the host previously at that IP address or the new host at that
 address).

 If HIP is used to support an application, the application data stream

Moskowitz, et al. Expires April 25, 2005 [Page 93]

Internet-Draft Host Identity Protocol October 2004

 may contain either IP addresses or LSIs or HITs in place of the IP
 addresses.

 Historically, the first two bits of a HIT were used to differentiate
 between Type 1, Type 2, and IPv6 address formats. This was changed
 in October 2004, when the Working Group decided that all (currently
 defined) HITs are 128-bit long. Hence, a Type 1 HIT consists of 128
 bits of the SHA-1 hash of the public key, and a Type 2 HIT consists
 of a 64-bits long HAA field, followed by a 64-bits of the SHA-1 hash.
 [The format of the HAA field is left undefined in this document.]

 In this document, we additionally define an internal IPv6-compatible
 LSI representation format, to be used within the legacy
 IPv6-compatible API (e.g., socket over AF_INET6). The format of
 these IPv6-compatible LSIs is designed to avoid the most commonly
 occurring IPv6 addresses in RFC3596 [9]. An IPv6-compatible LSI
 representation of a HIT can be easily computed by replacing the first
 TBDth bits of the HIT by the TBD bits long prefix "0xTBD".
 Accordingly, this specification also RECOMMENDS that conforming
 implementations ignore the TBD prefix bits when comparing HITs for
 equality; see Section 3.1.

https://datatracker.ietf.org/doc/html/rfc3596

Moskowitz, et al. Expires April 25, 2005 [Page 94]

Internet-Draft Host Identity Protocol October 2004

Appendix B. Probabilities of HIT collisions

 The birthday paradox sets a bound for the expectation of collisions.
 It is based on the square root of the number of values. A 64-bit
 hash, then, would put the chances of a collision at 50-50 with 2^32
 hosts (4 billion). A 1% chance of collision would occur in a
 population of 640M and a .001% collision chance in a 20M population.
 A 128 bit hash will have the same .001% collision chance in a 9x10^16
 population.

Moskowitz, et al. Expires April 25, 2005 [Page 95]

Internet-Draft Host Identity Protocol October 2004

Appendix C. Probabilities in the cookie calculation

 A question: Is it guaranteed that the Initiator is able to solve the
 puzzle in this way when the K value is large?

 Answer: No, it is not guaranteed. But it is not guaranteed even in
 the old mechanism, since the Initiator may start far away from J and
 arrive to J after far too many steps. If we wanted to make sure that
 the Initiator finds a value, we would need to give some hint of a
 suitable J, and I don't think we want to do that.

 In general, if we model the hash function with a random function, the
 probability that one iteration gives are result with K zero bits is
 2^-K. Thus, the probability that one iteration does *not* give K
 zero bits is (1 - 2^-K). Consequently, the probability that 2^K
 iterations does not give K zero bits is (1 - 2^-K)^(2^K).

 Since my calculus starts to be rusty, I made a small experiment and
 found out that

 lim (1 - 2^-k)^(2^k) = 0.36788
 k->inf

 lim (1 - 2^-k)^(2^(k+1)) = 0.13534
 k->inf

 lim (1 - 2^-k)^(2^(k+2)) = 0.01832
 k->inf

 lim (1 - 2^-k)^(2^(k+3)) = 0.000335
 k->inf

 Thus, if hash functions were random functions, we would need about
 2^(K+3) iterations to make sure that the probability of a failure is
 less than 1% (actually less than 0.04%). Now, since my perhaps
 flawed understanding of hash functions is that they are "flatter"
 than random functions, 2^(K+3) is probably an overkill. OTOH, the
 currently suggested 2^K is clearly too little.

Moskowitz, et al. Expires April 25, 2005 [Page 96]

Internet-Draft Host Identity Protocol October 2004

Appendix D. Using responder cookies

 As mentioned in Section 4.1.1, the Responder may delay state creation
 and still reject most spoofed I2s by using a number of pre-calculated
 R1s and a local selection function. This appendix defines one
 possible implementation in detail. The purpose of this appendix is
 to give the implementors an idea on how to implement the mechanism.
 The method described in this appendix SHOULD NOT be used in any real
 implementation. If the implementation is based on this appendix, it
 SHOULD contain some local modification that makes an attacker's task
 harder.

 The basic idea is to create a cheap, varying local mapping function
 f:

 f(IP-I, IP-R, HIT-I, HIT-R) -> cookie-index

 That is, given the Initiator's and Responder's IP addresses and
 HITs, the function returns an index to a cookie. When processing an
 I1, the cookie is embedded in an pre-computed R1, and the Responder
 simply sends that particular R1 to the Initiator. When processing an
 I2, the cookie may still be embedded in the R1, or the R1 may be
 deprecated (and replaced with a new one), but the cookie is still
 there. If the received cookie does not match with the R1 or saved
 cookie, the I2 is simply dropped. That prevents the Initiator from
 generating spoofed I2s with a probability that depends on the number
 of pre-computed R1s.

 As a concrete example, let us assume that the Responder has an array
 of R1s. Each slot in the array contains a timestamp, an R1, and an
 old cookie that was sent in the previous R1 that occupied that
 particular slot. The Responder replaces one R1 in the array every
 few minutes, thereby replacing all the R1s gradually.

 To create a varying mapping function, the Responder generates a
 random number every few minutes. The octets in the IP addresses and
 HITs are XORed together, and finally the result is XORed with the
 random number. Using pseudo-code, the function looks like the
 following.

 Pre-computation:
 r1 := random number

 Index computation:
 index := r1 XOR hit_r[0] XOR hit_r[1] XOR ... XOR hit_r[15]
 index := index XOR hit_i[0] XOR hit_i[1] XOR ... XOR hit_i[15]
 index := index XOR ip_r[0] XOR ip_r[1] XOR ... XOR ip_r[15]
 index := index XOR ip_i[0] XOR ip_i[1] XOR ... XOR ip_i[15]

Moskowitz, et al. Expires April 25, 2005 [Page 97]

Internet-Draft Host Identity Protocol October 2004

 The index gives the slot used in the array.

 It is possible that an Initiator receives an I1, and while it is
 computing I2, the Responder deprecates an R1 and/or chooses a new
 random number for the mapping function. Therefore the Responder must
 remember the cookies used in deprecated R1s and the previous random
 number.

 To check an received I2, the Responder can use a simple algorithm,
 expressed in pseudo-code as follows.

 If I2.hit_r does not match my_hits, drop the packet.

 index := compute_index(current_random_number, I2)
 If current_cookie[index] == I2.cookie, go to cookie check.
 If previous_cookie[index] == I2.cookie, go to cookie check.

 index := compute_index(previous_random_number, I2)
 If current_cookie[index] == I2.cookie, go to cookie check.
 If previous_cookie[index] == I2.cookie, go to cookie check.

 Drop packet.

 cookie_check:
 V := Ltrunc(SHA-1(I2.I, I2.hit_i, I2.hit_r, I2.J), K)
 if V != 0, drop the packet.

 Whenever the Responder receives an I2 that fails on the index check,
 it can simply drop the packet on the floor and forget about it. New
 I2s with the same or other spoofed parameters will get dropped with a
 reasonable probability and minimal effort.

 If a Responder receives an I2 that passes the index check but fails
 on the puzzle check, it should create a state indicating this. After
 two or three failures the Responder should cease checking the puzzle
 but drop the packets directly. This saves the Responder from the
 SHA-1 calculations. Such block should not last long, however, or
 there would be a danger that a legitimate Initiator could be blocked
 from getting connections.

 A key for the success of the defined scheme is that the mapping
 function must be considerably cheaper than computing SHA-1. It also
 must detect any changes in the IP addresses, and preferably most
 changes in the HITs. Checking the HITs is not that essential,
 though, since HITs are included in the cookie computation, too.

 The effectivity of the method can be varied by varying the size of
 the array containing pre-computed R1s. If the array is large, the

Moskowitz, et al. Expires April 25, 2005 [Page 98]

Internet-Draft Host Identity Protocol October 2004

 probability that an I2 with a spoofed IP address or HIT happens to
 map to the same slot is fairly slow. However, a large array means
 that each R1 has a fairly long life time, thereby allowing an
 attacker to utilize one solved puzzle for a longer time.

Moskowitz, et al. Expires April 25, 2005 [Page 99]

Internet-Draft Host Identity Protocol October 2004

Appendix E. Running HIP over IPv4 UDP

 In the IPv4 world, with the deployed NAT devices, it may make sense
 to run HIP over UDP. When running HIP over UDP, the following packet
 structure is used. The structure is followed by the HITs, as usual.
 Both the Source and Destination port MUST be 272.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Source port | Destination port | \
 +-+ >UDP
 | Length | Checksum | /
 +-+<
 | HIP Controls | HIP pkt Type | Ver. | Res. | >HIP
 +-+/

 It is currently undefined how the actual data transfer, using ESP, is
 handled. Plain ESP may not go through all NAT devices.

 It is currently FORBIDDEN to use this packet format with IPv6.

Moskowitz, et al. Expires April 25, 2005 [Page 100]

Internet-Draft Host Identity Protocol October 2004

Appendix F. Example checksums for HIP packets

 The HIP checksum for HIP packets is specified in Section 6.1.2.
 Checksums for TCP and UDP packets running over HIP-enabled security
 associations are specified in Section 3.5. The examples below use IP
 addresses of 192.168.0.1 and 192.168.0.2 (and their respective
 IPv4-compatible IPv6 formats), and type 1 HITs with the first two
 bits "01" followed by 124 zeroes followed by a decimal 1 or 2,
 respectively.

F.1 IPv6 HIP example (I1)

 Source Address: ::c0a8:0001
 Destination Address: ::c0a8:0002
 Upper-Layer Packet Length: 40 0x28
 Next Header: 99 0x63
 Payload Protocol: 59 0x3b
 Header Length: 4 0x04
 Packet Type: 1 0x01
 Version: 1 0x1
 Reserved: 0 0x0
 Control: 0 0x0000
 Checksum: 49672 0xc208
 Sender's HIT: 4000::0001
 Receiver's HIT: 4000::0002

F.2 IPv4 HIP packet (I1)

 The IPv4 checksum value for the same example I1 packet is the same as
 the IPv6 checksum (since the checksums due to the IPv4 and IPv6
 pseudo-header components are the same).

F.3 TCP segment

 Regardless of whether IPv6 or IPv4 is used, the TCP and UDP sockets
 use the IPv6 pseudo-header format [8], with the HITs used in place of
 the IPv6 addresses.

Moskowitz, et al. Expires April 25, 2005 [Page 101]

Internet-Draft Host Identity Protocol October 2004

 Sender's HIT: 4000::0001
 Receiver's HIT: 4000::0002
 Upper-Layer Packet Length: 20 0x14
 Next Header: 6 0x06
 Source port: 32769 0x8001
 Destination port: 22 0x0016
 Sequence number: 1 0x00000001
 Acknowledgment number: 0 0x00000000
 Header length: 20 0x14
 Flags: SYN 0x02
 Window size: 5840 0x16d0
 Checksum: 54519 0xd4f7
 Urgent pointer: 0 0x0000

Moskowitz, et al. Expires April 25, 2005 [Page 102]

Internet-Draft Host Identity Protocol October 2004

Appendix G. 384-bit group

 This 384-bit group is defined only to be used with HIP. NOTE: The
 security level of this group is very low! The encryption may be
 broken in a very short time, even real-time. It should be used only
 when the host is not powerful enough (e.g. some PDAs) and when
 security requirements are low (e.g. during normal web surfing).

 This prime is: 2^384 - 2^320 - 1 + 2^64 * { [2^254 pi] + 5857 }

 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B13B202 FFFFFFFF FFFFFFFF

 The generator is: 2.

Moskowitz, et al. Expires April 25, 2005 [Page 103]

Internet-Draft Host Identity Protocol October 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF's procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Moskowitz, et al. Expires April 25, 2005 [Page 104]

