
Network Working Group R. Moskowitz
Internet-Draft ICSAlabs, a Division of TruSecure
Expires: September 3, 2006 Corporation
 P. Nikander
 P. Jokela (editor)
 Ericsson Research NomadicLab
 T. Henderson
 The Boeing Company
 March 2, 2006

Host Identity Protocol
draft-ietf-hip-base-05

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 3, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo specifies the details of the Host Identity Protocol (HIP).
 HIP allows consenting hosts to securely establish and maintain shared
 IP-layer state, allowing separation of the identifier and locator

Moskowitz, et al. Expires September 3, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Host Identity Protocol March 2006

 roles of IP addresses, thereby enabling continuity of communications
 across IP address changes. HIP is based on a Sigma-compliant Diffie-
 Hellman key exchange, using public-key identifiers from a new Host
 Identity name space for mutual peer authentication. The protocol is
 designed to be resistant to Denial-of-Service (DoS) and Man-in-the-
 middle (MitM) attacks, and when used together with another suitable
 security protocol, such as Encapsulated Security Payload (ESP), it
 provides integrity protection and optional encryption for upper layer
 protocols, suchs as TCP and UDP. Discussion related to this document
 is going on at the IETF HIP Working Group mailing list.

Table of Contents

1. Introduction . 5
1.1. A New Name Space and Identifiers 5
1.2. The HIP Base Exchange 5
1.3. Memo structure . 6

2. Terms and Definitions . 7
2.1. Requirements Terminology 7
2.2. Notation . 7
2.3. Definitions . 7

3. Host Identifier (HI) and its Representations 9
3.1. Host Identity Tag (HIT) 9
3.2. Generating a HIT from a HI 10

4. Protocol Overview . 12
4.1. Creating a HIP Association 12
4.1.1. HIP Puzzle Mechanism 13
4.1.2. Puzzle exchange 14
4.1.3. Authenticated Diffie-Hellman Protocol 15
4.1.4. HIP Replay Protection 16
4.1.5. Refusing a HIP Exchange 17

4.2. Updating a HIP Association 17
4.3. Error Processing . 18
4.4. HIP State Machine . 19
4.4.1. HIP States . 20
4.4.2. HIP State Processes 20
4.4.3. Simplified HIP State Diagram 27

4.5. User Data Considerations 29
 4.5.1. TCP and UDP Pseudo-header Computation for User Data . 29

4.5.2. Sending Data on HIP Packets 29
4.5.3. Transport Formats 29
4.5.4. Reboot and SA Timeout Restart of HIP 29

4.6. Certificate Distribution 30
5. Packet Formats . 31
5.1. Payload Format . 31
5.1.1. Checksum . 32
5.1.2. HIP Controls . 32

Moskowitz, et al. Expires September 3, 2006 [Page 2]

Internet-Draft Host Identity Protocol March 2006

5.1.3. HIP Fragmentation Support 33
5.2. HIP Parameters . 33
5.2.1. TLV Format . 35
5.2.2. Defining New Parameters 36
5.2.3. R1_COUNTER . 37
5.2.4. PUZZLE . 38
5.2.5. SOLUTION . 39
5.2.6. DIFFIE_HELLMAN 40
5.2.7. HIP_TRANSFORM . 41
5.2.8. HOST_ID . 42
5.2.9. HMAC . 43
5.2.10. HMAC_2 . 43
5.2.11. HIP_SIGNATURE . 44
5.2.12. HIP_SIGNATURE_2 45
5.2.13. SEQ . 45
5.2.14. ACK . 46
5.2.15. ENCRYPTED . 47
5.2.16. NOTIFY . 48
5.2.17. ECHO_REQUEST . 51
5.2.18. ECHO_RESPONSE . 52

5.3. HIP Packets . 52
5.3.1. I1 - the HIP Initiator Packet 53
5.3.2. R1 - the HIP Responder Packet 54
5.3.3. I2 - the Second HIP Initiator Packet 55
5.3.4. R2 - the Second HIP Responder Packet 57
5.3.5. UPDATE - the HIP Update Packet 57
5.3.6. NOTIFY - the HIP Notify Packet 58
5.3.7. CLOSE - the HIP Association Closing Packet 59
5.3.8. CLOSE_ACK - the HIP Closing Acknowledgment Packet . . 59

5.4. ICMP Messages . 59
5.4.1. Invalid Version 60

 5.4.2. Other Problems with the HIP Header and Packet
 Structure . 60

5.4.3. Invalid Puzzle Solution 60
5.4.4. Non-existing HIP Association 60

6. Packet Processing . 62
6.1. Processing Outgoing Application Data 62
6.2. Processing Incoming Application Data 63
6.3. Solving the Puzzle 64
6.4. HMAC and SIGNATURE Calculation and Verification 65
6.4.1. HMAC Calculation 65
6.4.2. Signature Calculation 66

6.5. HIP KEYMAT Generation 67
6.6. Initiation of a HIP Exchange 68
6.6.1. Sending Multiple I1s in Parallel 69

 6.6.2. Processing Incoming ICMP Protocol Unreachable
 Messages . 70

6.7. Processing Incoming I1 Packets 70

Moskowitz, et al. Expires September 3, 2006 [Page 3]

Internet-Draft Host Identity Protocol March 2006

6.7.1. R1 Management . 71
6.7.2. Handling Malformed Messages 71

6.8. Processing Incoming R1 Packets 71
6.8.1. Handling Malformed Messages 73

6.9. Processing Incoming I2 Packets 74
6.9.1. Handling Malformed Messages 76

6.10. Processing Incoming R2 Packets 76
6.11. Sending UPDATE Packets 77
6.12. Receiving UPDATE Packets 78

 6.12.1. Handling a SEQ parameter in a received UPDATE
 message . 78
 6.12.2. Handling an ACK Parameter in a Received UPDATE
 Packet . 79

6.13. Processing NOTIFY Packets 80
6.14. Processing CLOSE Packets 80
6.15. Processing CLOSE_ACK Packets 80
6.16. Dropping HIP Associations 80

7. HIP Policies . 81
8. Security Considerations 82
9. IANA Considerations . 85
10. Acknowledgments . 90
11. References . 91
11.1. Normative References 91
11.2. Informative References 92

Appendix A. Using Responder Puzzles 94
Appendix B. Generating a HIT from a HI 95
Appendix C. Example Checksums for HIP Packets 96
C.1. IPv6 HIP Example (I1) 96
C.2. IPv4 HIP Packet (I1) 96
C.3. TCP Segment . 96

Appendix D. 384-bit Group 98
 Authors' Addresses . 99
 Intellectual Property and Copyright Statements 100

Moskowitz, et al. Expires September 3, 2006 [Page 4]

Internet-Draft Host Identity Protocol March 2006

1. Introduction

 This memo specifies the details of the Host Identity Protocol (HIP).
 A high-level description of the protocol and the underlying
 architectural thinking is available in the separate HIP architecture
 description [26]. Briefly, the HIP architecture proposes an
 alternative to the dual use of IP addresses as "locators" (routing
 labels) and "identifiers" (endpoint, or host, identifiers). In HIP,
 public cryptographic keys, of a public/private key pair, are used as
 Host Identifiers, to which higher ayer protocols are bound instead of
 an IP address. By using public keys (and their representations) as
 host identifiers, dynamic changes to IP address sets can be directly
 authenticated between hosts and if desired, strong authentication
 between hosts at the TCP/IP stack level can be obtained.

 This memo specifies the base HIP protocol ("base exchange") used
 between hosts to establish an IP-layer communications context, called
 HIP association, prior to communications. It also defines a packet
 format and procedures for updating an active HIP association. Other
 elements of the HIP architecture are specified in other documents,
 including how HIP can be combined with a variant of the Encapsulating
 Security Payload (ESP) for integrity protection and optional
 encryption, mobility and multi-homing extensions to HIP, extensions
 to the Domain Name System (DNS) for storing Host Identities there,
 proposals on added HIP-related infrastructure into the networks, and
 techniques for NAT traversal.

1.1. A New Name Space and Identifiers

 The Host Identity Protocol introduces a new name space, the Host
 Identity name space. Some ramifications of this new namespace are
 explained in the HIP architecture description [26].

 There are two main representations of the Host Identity, the full
 Host Identifier (HI) and the Host Identity Tag (HIT The HI is a
 public key and directly represents the Identity. Since there are
 different public key algorithms that can be used with different key
 lengths, the HI is not good for use as a packet identifier, or as an
 index into the various operational tables needed to support HIP.
 Consequently, a hash of the HI, the Host Identity Tag (HIT), becomes
 the operational representation. It is 128 bits long and is used in
 the HIP payloads and to index the corresponding state in the end
 hosts. The HIT has an important security property in that it is
 self-certifying (see Section 3).

1.2. The HIP Base Exchange

 The HIP base exchange is a two-party cryptographic protocol used to

Moskowitz, et al. Expires September 3, 2006 [Page 5]

Internet-Draft Host Identity Protocol March 2006

 establish communications context between hosts. The base exchange is
 a Sigma-compliant [30] four packet exchange. The first party is
 called the Initiator and the second party the Responder. The four-
 packet design helps to make HIP DoS resilient. The protocol
 exchanges Diffie-Hellman keys in the 2nd and 3rd packets, and
 authenticates the parties in the 3rd and 4th packets. Additionally,
 the Responder starts a puzzle exchange in the 2nd packet, with the
 Initiator completing it in the 3rd packet before the Responder stores
 any state from the exchange.

 The exchange can use the Diffie-Hellman output to encrypt the Host
 Identity of the Initiator in packet 3 (although Aura et al. [29]
 notes that such operation may interfere with packet-inspecting
 middleboxes), or the Host Identity may instead be sent unencrypted.
 The Responder's Host Identity is not protected. It should be noted,
 however, that both the Initiator's and the Responder's HITs are
 transported as such (in cleartext) in the packets, allowing an
 eavesdropper with a priori knowledge about the parties to verify
 their identities.

 Data packets start to flow after the 4th packet. The 3rd and 4th HIP
 packets may carry a data payload in the future. However, the details
 of this are to be defined later as more implementation experience is
 gained.

 An existing HIP association can be updated using the update mechanism
 defined in this document, and when the association is no longer
 needed, it can be closed using the defined closing mechanism.

 Finally, HIP is designed as an end-to-end authentication and key
 establishment protocol, to be used with Encapsulated Security Payload
 (ESP) [24] and other end-to-end security protocols. The base
 protocol lacks the details for security association management and
 much of the fine-grained policy control found in Internet Key
 Exchange IKE RFC2409 [7] that allows IKE to support complex gateway
 policies. Thus, HIP is not a replacement for IKE.

1.3. Memo structure

 The rest of this memo is structured as follows. Section 2 defines
 the central keywords, notation, and terms used throughout the rest of
 the document. Section 3 defines the structure of the Host Identity
 and its various representations. Section 4 gives an overview of the
 HIP base exchange protocol. Section 5 and Section 6 define the
 detail packet formats and rules for packet processing. Finally,

Section 7, Section 8, and Section 9 discuss policy, security, and
 IANA considerations, respectively.

https://datatracker.ietf.org/doc/html/rfc2409

Moskowitz, et al. Expires September 3, 2006 [Page 6]

Internet-Draft Host Identity Protocol March 2006

2. Terms and Definitions

2.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [5].

2.2. Notation

 [x] indicates that x is optional.

 {x} indicates that x is encrypted.

 X(y) indicates that y is a parameter of X.

 <x>i indicates that x exists i times.

 --> signifies "Initiator to Responder" communication (requests).

 <-- signifies "Responder to Initiator" communication (replies).

 | signifies concatenation of information-- e.g. X | Y is the
 concatenation of X with Y.

 Ltrunc (SHA-1(), K) denotes the lowest order K bits of the SHA-1
 result.

2.3. Definitions

 Unused Association Lifetime (UAL): Implementation-specific time for
 which, if no packet is sent or received for this time interval, a
 host MAY begin to tear down an active association.

 Maximum Segment Lifetime (MSL): Maximum time that a TCP segment is
 expected to spend in the network.

 Exchange Complete (EC): Time that the host spends at the R2-SENT
 before it moves to ESTABLISHED state. The time is n * I2
 retransmission timeout, where n ~ I2_RETRIES_MAX.

 HIT Hash Algorithm: hash algorithm used to generate a Host Identity
 Tag (HIT) from the Host Identity public key. Currently SHA-1 [25]
 is used.

https://datatracker.ietf.org/doc/html/rfc2119

Moskowitz, et al. Expires September 3, 2006 [Page 7]

Internet-Draft Host Identity Protocol March 2006

 Puzzle Hash Algorithm (PHASH): hash algorithm used to calculate the
 puzzle hash. The algorithm is the same as is used to generate the
 Responder's HIT.

 Opportunistic mode: HIP base exchange where the Responder's HIT is
 not a priori known to the Initiator.

Moskowitz, et al. Expires September 3, 2006 [Page 8]

Internet-Draft Host Identity Protocol March 2006

3. Host Identifier (HI) and its Representations

 In this section, the properties of the Host Identifier and Host
 Identifier Tag are discussed, and the exact format for them is
 defined. In HIP, public key of an asymmetric key pair is used as the
 Host Identifier (HI). Correspondingly, the host itself is defined as
 the entity that holds the private key from the key pair. See the HIP
 architecture specification [26] for more details about the difference
 between an identity and the corresponding identifier.

 HIP implementations MUST support the Rivest Shamir Adelman (RSA) [15]
 public key algorithm, and SHOULD support the Digital Signature
 Algorithm (DSA) [13] algorithm; other algorithms MAY be supported.

 A hashed encoding of the HI, the Host Identity Tag (HIT), is used in
 protocols to represent the Host Identity. The HIT is 128 bits long
 and has the following three key properties: i) it is the same length
 as an IPv6 address and can be used in address-sized fields in APIs
 and protocols, ii) it is self-certifying (i.e., given a HIT, it is
 computationally hard to find a Host Identity key that matches the
 HIT), and iii) the probability of HIT collision between two hosts is
 very low.

 Carrying HIs and HITs in the header of user data packets would
 increase the overhead of packets. Thus, it is not expected that they
 are carried in every packet, but other methods are used to map the
 data packets to the corresponding HIs. In some cases, this makes it
 possible to use HIP without any additional headers in the user data
 packets. For example, if ESP is used to protect data traffic, the
 Security Parameter Index (SPI) carried in the ESP header, can be used
 to map the encrypted data packet to the correct HIP association.

3.1. Host Identity Tag (HIT)

 The Host Identity Tag is a 128 bits long value -- a hashed encoding
 of the Host Identifier. There are two advantages of using a hashed
 encoding over the actual Host Identity public key in protocols.
 Firstly, its fixed length makes for easier protocol coding and also
 better manages the packet size cost of this technology. Secondly, it
 presents a consistent format to the protocol whatever underlying
 identity technology is used.

 "A Non-Routable IPv6 Prefix for Keyed Hash Identifiers" [22] has been
 specified to store 128-bit hash based identifier called Keyed Hash
 Identifier (KHI) under an 8-bit prefix, proposed to be allocated from
 the IPv6 address block 1000::/4. The Host Identity Tag is a KHI
 valid for the Context ID [22] value for HIP, 0xF0EF F02F BFF4 3D0F
 E793 0C3C 6E61 74EA (The tag value has been generated randomly by the

Moskowitz, et al. Expires September 3, 2006 [Page 9]

Internet-Draft Host Identity Protocol March 2006

 editor of this specification.) The following figure shows, for
 informal purposes only, the format of a HIT specified by [22], and
 used in this document:

 1
 0 2

0 1 2 3 4 5 6 7 8 ... 7
 +-+-+-+-+-+-+-+-+-+-//-+
 | Prefix | Hash |
 +-+-+-+-+-+-+-+-+-+-//-+

 Prefix (8 bits) - Fixed prefix, TBD (0x11, TO BE DISCUSSED), as
 defined per [22].

 Encoding (120 bits) - Encoding of the public key and KHI context
 identifier as defined per [22].

 Additional values for the prefix (including different hash
 algorithms, or other information) may be defined in the future. A
 host may receive a HIT for which it does not understand the prefix.
 In such a case, it will not be able to check the mapping between HI
 and HIT.

3.2. Generating a HIT from a HI

 The HIT MUST be generated according to the KHI generation method
 described in [22] using a context ID value of 0xF0EF F02F BFF4 3D0F
 E793 0C3C 6E61 74EA, and an input encoding the Host Identity field
 (see Section 5.2.8) present in a HIP payload packet.

 For Identities that are either RSA or DSA public keys, this input
 consists of the public key encoding as specified in the corresponding
 DNSSEC document, taking the algorithm specific portion of the RDATA
 part of the KEY RR. There is currently only two defined public key
 algorithms: RSA and DSA. Hence, either of the following applies:

 The RSA public key is encoded as defined in RFC3110 [15] Section
2, taking the exponent length (e_len), exponent (e) and modulus

 (n) fields concatenated. The length (n_len) of the modulus (n)
 can be determined from the total HI Length and the preceding HI
 fields including the exponent (e). Thus, the data to be hashed
 has the same length as the HI. The fields MUST be encoded in
 network byte order, as defined in RFC3110 [15].

 The DSA public key is encoded as defined in RFC2536 [13] Section
2, taking the fields T, Q, P, G, and Y, concatenated. Thus, the

 data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T octets long,

https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc2536

Moskowitz, et al. Expires September 3, 2006 [Page 10]

Internet-Draft Host Identity Protocol March 2006

 where T is the size parameter as defined in RFC2536 [13]. The
 size parameter T, affecting the field lengths, MUST be selected as
 the minimum value that is long enough to accommodate P, G, and Y.
 The fields MUST be encoded in network byte order, as defined in

RFC2536 [13].

 In Appendix B the public key encoding generation process is
 illustrated using pseudo-code.

Moskowitz, et al. Expires September 3, 2006 [Page 11]

https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536

Internet-Draft Host Identity Protocol March 2006

4. Protocol Overview

 The following material is an overview of the HIP protocol operation,
 and does not contain all details of the packet formats or the packet
 processing steps. Section 5 and Section 6 describe in more detail
 the packet formats and packet processing steps, respectively, and are
 normative in case of any conflicts with this section.

 The protocol number for Host Identity Protocol will be assigned by
 IANA. For testing purposes, the protocol number 253 is currently
 used. This number has been reserved by IANA for experimental use
 (see [19]).

 The HIP payload (Section 5.1) header could be carried in every IP
 datagram. However, since HIP headers are relatively large (40
 bytes), it is desirable to 'compress' the HIP header so that the HIP
 header only occurs in control packets used to establish or change HIP
 association state. The actual method for header 'compression' and
 for matching data packets with existing HIP associations (if any) is
 defined in separate documents, describing transport formats and
 methods. All HIP implementations MUST implement, at minimum, the ESP
 transport format for HIP [24].

4.1. Creating a HIP Association

 By definition, the system initiating a HIP exchange is the Initiator,
 and the peer is the Responder. This distinction is forgotten once
 the base exchange completes, and either party can become the
 Initiator in future communications.

 The HIP base exchange serves to manage the establishment of state
 between an Initiator and a Responder. The first packet, I1,
 initiates the exchange, and the last three packets, R1, I2, and R2,
 constitute a standard authenticated Diffie-Hellman key exchange for
 session key generation. During the Diffie-Hellman key exchange, a
 piece of keying material is generated. The HIP association keys are
 drawn from this keying material. If other cryptographic keys are
 needed, e.g., to be used with ESP, they are expected to be drawn from
 the same keying material.

 The Initiator first sends a trigger packet, I1, to the Responder.
 The packet contains only the HIT of the Initiator and possibly the
 HIT of the Responder, if it is known. Note that in some cases it may
 be possible to replace this trigger packet by some other form of a
 trigger, in which case the protocol starts with the Responder sending
 the R1 packet.

 The second packet, R1, starts the actual exchange. It contains a

Moskowitz, et al. Expires September 3, 2006 [Page 12]

Internet-Draft Host Identity Protocol March 2006

 puzzle-- a cryptographic challenge that the Initiator must solve
 before continuing the exchange. The level of difficulty of the
 puzzle can be adjusted based on level of trust with the Initiator,
 current load, or other factors. In addition, the R1 contains the
 initial Diffie-Hellman parameters and a signature, covering part of
 the message. Some fields are left outside the signature to support
 pre-created R1s.

 In the I2 packet, the Initiator must display the solution to the
 received puzzle. Without a correct solution, the I2 message is
 discarded. The I2 also contains a Diffie-Hellman parameter that
 carries needed information for the Responder. The packet is signed
 by the sender.

 The R2 packet finalizes the base exchange. The packet is signed.

 The base exchange is illustrated below. The term "key" refers to the
 host identity public key, and "sig" represents a signature using such
 a key. The packets contain other parameters not shown in this
 figure.

 Initiator Responder

 I1: trigger exchange
 -------------------------->
 select pre-computed R1
 R1: puzzle, D-H, key, sig
 <-------------------------
 check sig remain stateless
 solve puzzle
 I2: solution, D-H, {key}, sig
 -------------------------->
 compute D-H check puzzle
 check sig
 R2: sig
 <--------------------------
 check sig compute D-H

4.1.1. HIP Puzzle Mechanism

 The purpose of the HIP puzzle mechanism is to protect the Responder
 from a number of denial-of-service threats. It allows the Responder
 to delay state creation until receiving I2. Furthermore, the puzzle
 allows the Responder to use a fairly cheap calculation to check that
 the Initiator is "sincere" in the sense that it has churned CPU
 cycles in solving the puzzle.

Moskowitz, et al. Expires September 3, 2006 [Page 13]

Internet-Draft Host Identity Protocol March 2006

 The Puzzle mechanism has been explicitly designed to give space for
 various implementation options. It allows a Responder implementation
 to completely delay session specific state creation until a valid I2
 is received. In such a case a correctly formatted I2 can be rejected
 only once the Responder has checked its validity by computing one
 hash function. On the other hand, the design also allows a Responder
 implementation to keep state about received I1s, and match the
 received I2s against the state, thereby allowing the implementation
 to avoid the computational cost of the hash function. The drawback
 of this latter approach is the requirement of creating state.
 Finally, it also allows an implementation to use other combinations
 of the space-saving and computation-saving mechanisms.

 One possible way for a Responder to remain stateless but drop most
 spoofed I2s is to base the selection of the puzzle on some function
 over the Initiator's Host Identity. The idea is that the Responder
 has a (perhaps varying) number of pre-calculated R1 packets, and it
 selects one of these based on the information carried in I1. When
 the Responder then later receives I2, it checks that the puzzle in
 the I2 matches with the puzzle sent in the R1, thereby making it
 impractical for the attacker to first exchange one I1/R1, and then
 generate a large number of spoofed I2s that seemingly come from
 different IP addresses or use different HITs. The method does not
 protect from an attacker that uses fixed IP addresses and HITs,
 though. Against such an attacker a viable approach may be to create
 a piece of local state, and remember that the puzzle check has
 previously failed. See Appendix A for one possible implementation.
 Implementations SHOULD include sufficient randomness to the algorithm
 so that algorithm complexity attacks become impossible [31].

 The Responder can set the puzzle difficulty for Initiator, based on
 its level of trust of the Initiator. The Responder SHOULD use
 heuristics to determine when it is under a denial-of-service attack,
 and set the puzzle difficulty value K appropriately; see below.

4.1.2. Puzzle exchange

 The Responder starts the puzzle exchange when it receives an I1. The
 Responder supplies a random number I, and requires the Initiator to
 find a number J. To select a proper J, the Initiator must create the
 concatenation of I, the HITs of the parties, and J, and take a SHA-1
 hash over this concatenation. The lowest order K bits of the result
 MUST be zeros. The value K sets the difficulty of the puzzle.

 To generate a proper number J, the Initiator will have to generate a
 number of Js until one produces the hash target of zero. The
 Initiator SHOULD give up after exceeding the puzzle lifetime in the
 PUZZLE parameter (Section 5.2.4). The Responder needs to re-create

Moskowitz, et al. Expires September 3, 2006 [Page 14]

Internet-Draft Host Identity Protocol March 2006

 the concatenation of I, the HITs, and the provided J, and compute the
 hash once to prove that the Initiator did its assigned task.

 To prevent pre-computation attacks, the Responder MUST select the
 number I in such a way that the Initiator cannot guess it.
 Furthermore, the construction MUST allow the Responder to verify that
 the value was indeed selected by it and not by the Initiator. See

Appendix A for an example on how to implement this.

 Using the Opaque data field in an ECHO_REQUEST parameter
 (Section 5.2.17), the Responder can include some data in R1 that the
 Initiator must copy unmodified in the corresponding I2 packet. The
 Responder can generate the Opaque data in various ways; e.g. using
 the sent I, some secret, and possibly other related data. Using this
 same secret, received I in I2 packet and possible other data, the
 Receiver can verify that it has itself sent the I to the Initiator.
 The Responder MUST change such a secret periodically.

 It is RECOMMENDED that the Responder generates a new puzzle and a new
 R1 once every few minutes. Furthermore, it is RECOMMENDED that the
 Responder remembers an old puzzle at least 2*lifetime seconds after
 it has been deprecated. These time values allow a slower Initiator
 to solve the puzzle while limiting the usability that an old, solved
 puzzle has to an attacker.

 NOTE: The protocol developers explicitly considered whether R1 should
 include a timestamp in order to protect the Initiator from replay
 attacks. The decision was to NOT include a timestamp.

 NOTE: The protocol developers explicitly considered whether a memory
 bound function should be used for the puzzle instead of a CPU bound
 function. The decision was not to use memory bound functions. At
 the time of the decision the idea of memory bound functions was
 relatively new and their IPR status were unknown. Once there is more
 experience about memory bound functions and once their IPR status is
 better known, it may be reasonable to reconsider this decision.

4.1.3. Authenticated Diffie-Hellman Protocol

 The packets R1, I2, and R2 implement a standard authenticated Diffie-
 Hellman exchange. The Responder sends its public Diffie-Hellman key
 and its public authentication key, i.e., its host identity, in R1.
 The signature in R1 allows the Initiator to verify that the R1 has
 been once generated by the Responder. However, since it is
 precomputed and therefore does not cover all of the packet, it does
 not protect from replay attacks.

 When the Initiator receives an R1, it computes the Diffie-Hellman

Moskowitz, et al. Expires September 3, 2006 [Page 15]

Internet-Draft Host Identity Protocol March 2006

 session key. It creates a HIP association using keying material from
 the session key (see Section 6.5), and may use the association to
 encrypt its public authentication key, i.e., host identity. The
 resulting I2 contains the Initiator's Diffie-Hellman key and its
 (optionally encrypted) public authentication key. The signature in
 I2 covers all of the packet.

 The Responder extracts the Initiator Diffie-Hellman public key from
 the I2, computes the Diffie-Hellman session key, creates a
 corresponding HIP association, and decrypts the Initiator's public
 authentication key. It can then verify the signature using the
 authentication key.

 The final message, R2, is needed to protect the Initiator from replay
 attacks.

4.1.4. HIP Replay Protection

 The HIP protocol includes the following mechanisms to protect against
 malicious replays. Responders are protected against replays of I1
 packets by virtue of the stateless response to I1s with presigned R1
 messages. Initiators are protected against R1 replays by a
 monotonically increasing "R1 generation counter" included in the R1.
 Responders are protected against replays or false I2s by the puzzle
 mechanism (Section 4.1.1 above), and optional use of opaque data.
 Hosts are protected against replays to R2s and UPDATEs by use of a
 less expensive HMAC verification preceding HIP signature
 verification.

 The R1 generation counter is a monotonically increasing 64-bit
 counter that may be initialized to any value. The scope of the
 counter MAY be system-wide but SHOULD be per host identity, if there
 is more than one local host identity. The value of this counter
 SHOULD be kept across system reboots and invocations of the HIP base
 exchange. This counter indicates the current generation of puzzles.
 Implementations MUST accept puzzles from the current generation and
 MAY accept puzzles from earlier generations. A system's local
 counter MUST be incremented at least as often as every time old R1s
 cease to be valid, and SHOULD never be decremented, lest the host
 expose its peers to the replay of previously generated, higher
 numbered R1s. Also, the R1 generation counter MUST NOT roll over; if
 the counter is about to become exhausted, the corresponding HI must
 be abandoned and replaced with a new one.

 A host may receive more than one R1, either due to sending multiple
 I1s (Section 6.6.1) or due to a replay of an old R1. When sending
 multiple I1s, an initiator SHOULD wait for a small amount of time
 after the first R1 reception to allow possibly multiple R1s to

Moskowitz, et al. Expires September 3, 2006 [Page 16]

Internet-Draft Host Identity Protocol March 2006

 arrive, and it SHOULD respond to an R1 among the set with the largest
 R1 generation counter. If an Initiator is processing an R1 or has
 already sent an I2 (still waiting for R2) and it receives another R1
 with a larger R1 generation counter, it MAY elect to restart R1
 processing with the fresher R1, as if it were the first R1 to arrive.

 Upon conclusion of an active HIP association with another host, the
 R1 generation counter associated with the peer host SHOULD be
 flushed. A local policy MAY override the default flushing of R1
 counters on a per-HIT basis. The reason for recommending the
 flushing of this counter is that there may be hosts where the R1
 generation counter (occasionally) decreases; e.g., due to hardware
 failure.

4.1.5. Refusing a HIP Exchange

 A HIP aware host may choose not to accept a HIP exchange. If the
 host's policy is to only be an Initiator, it should begin its own HIP
 exchange. A host MAY choose to have such a policy since only the
 Initiator HI is protected in the exchange. There is a risk of a race
 condition if each host's policy is to only be an Initiator, at which
 point the HIP exchange will fail.

 If the host's policy does not permit it to enter into a HIP exchange
 with the Initiator, it should send an ICMP 'Destination Unreachable,
 Administratively Prohibited' message. A more complex HIP packet is
 not used here as it actually opens up more potential DoS attacks than
 a simple ICMP message.

4.2. Updating a HIP Association

 A HIP association between two hosts may need to be updated over time.
 Examples include the need to rekey expiring user data security
 associations, add new security associations, or change IP addresses
 associated with hosts. The UPDATE packet is used for those and other
 similar purposes. This document only specifies the UPDATE packet
 format and basic processing rules, with mandatory parameters. The
 actual usage is defined in separate specifications.

 HIP provides a general purpose UPDATE packet, which can carry
 multiple HIP parameters, for updating the HIP state between two
 peers. The UPDATE mechanism has the following properties:

 UPDATE messages carry a monotonically increasing sequence number
 and are explicitly acknowledged by the peer. Lost UPDATEs or
 acknowledgments may be recovered via retransmission. Multiple
 UPDATE messages may be outstanding under certain circumstances.

Moskowitz, et al. Expires September 3, 2006 [Page 17]

Internet-Draft Host Identity Protocol March 2006

 UPDATE is protected by both HMAC and HIP_SIGNATURE parameters,
 since processing UPDATE signatures alone is a potential DoS attack
 against intermediate systems.

 UPDATE packets are explicitly acknowledged by the use of an
 acknowledgment parameter that echoes an individual sequence number
 received from the peer. A single UPDATE packet may contain both a
 sequence number and one or more acknowledgment numbers (i.e.,
 piggybacked acknowledgment(s) for the peer's UPDATE).

 The UPDATE packet is defined in Section 5.3.5.

4.3. Error Processing

 HIP error processing behavior depends on whether there exists an
 active HIP association or not. In general, if an HIP association
 exists between the sender and receiver of a packet causing an error
 condition, the receiver SHOULD respond with a NOTIFY packet. On the
 other hand, if there are no existing HIP associations between the
 sender and receiver, or the receiver cannot reasonably determine the
 identity of the sender, the receiver MAY respond with a suitable ICMP
 message; see Section 5.4 for more details.

 The HIP protocol and state machine is designed to recover from one of
 the parties crashing and losing its state. The following scenarios
 describe the main use cases covered by the design.

 No prior state between the two systems.

 The system with data to send is the Initiator. The process
 follows the standard four packet base exchange, establishing
 the HIP association.

 The system with data to send has no state with the receiver, but
 the receiver has a residual HIP association.

 The system with data to send is the Initiator. The Initiator
 acts as in no prior state, sending I1 and getting R1. When the
 Responder receives a valid I2, the old association is
 'discovered' and deleted, and the new association is
 established.

 The system with data to send has an HIP association, but the
 receiver does not.

 The system sends data on the outbound user data security
 association. The receiver 'detects' the situation when it
 receives a user data packet that it cannot match to any HIP

Moskowitz, et al. Expires September 3, 2006 [Page 18]

Internet-Draft Host Identity Protocol March 2006

 association. The receiving host MUST discard this packet.
 Optionally, the receiving host MAY send an ICMP packet with the
 Parameter Problem type to inform about non-existing HIP
 association (see Section 5.4), and it MAY initiate a new HIP
 negotiation. However, responding with these optional
 mechanisms is implementation or policy dependent.

4.4. HIP State Machine

 The HIP protocol itself has little state. In the HIP base exchange,
 there is an Initiator and a Responder. Once the SAs are established,
 this distinction is lost. If the HIP state needs to be re-
 established, the controlling parameters are which peer still has
 state and which has a datagram to send to its peer. The following
 state machine attempts to capture these processes.

 The state machine is presented in a single system view, representing
 either an Initiator or a Responder. There is not a complete overlap
 of processing logic here and in the packet definitions. Both are
 needed to completely implement HIP.

 Implementors must understand that the state machine, as described
 here, is informational. Specific implementations are free to
 implement the actual functions differently. Section 6 describes the
 packet processing rules in more detail. This state machine focuses
 on the HIP I1, R1, I2, and R2 packets only. Other states may be
 introduced by mechanisms in other specifications (such as mobility
 and multihoming).

Moskowitz, et al. Expires September 3, 2006 [Page 19]

Internet-Draft Host Identity Protocol March 2006

4.4.1. HIP States

 +---------------------+---+
 | State | Explanation |
 +---------------------+---+
UNASSOCIATED	State machine start
I1-SENT	Initiating base exchange
I2-SENT	Waiting to complete base exchange
R2-SENT	Waiting to complete base exchange
ESTABLISHED	HIP association established
CLOSING	HIP association closing, no data can be
	sent
CLOSED	HIP association closed, no data can be sent
E-FAILED	HIP exchange failed
 +---------------------+---+

4.4.2. HIP State Processes

 System behaviour in state UNASSOCIATED, Table 2.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
User data to send,	Send I1 and go to I1-SENT
requiring a new HIP	
association	
Receive I1	Send R1 and stay at UNASSOCIATED
Receive I2, process	If successful, send R2 and go to R2-SENT
	If fail, stay at UNASSOCIATED
Receive user data	Optionally send ICMP as defined in
for unknown HIP	Section 5.4 and stay at UNASSOCIATED
association	
Receive CLOSE	Optionally send ICMP Parameter Problem and
	stay at UNASSOCIATED

Moskowitz, et al. Expires September 3, 2006 [Page 20]

Internet-Draft Host Identity Protocol March 2006

 | Receive ANYOTHER | Drop and stay at UNASSOCIATED |
 +---------------------+---+

 Table 2: UNASSOCIATED - Start state

 System behaviour in state I1-SENT, Table 3.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Receive I1	If the local HIT is smaller than the peer
	HIT, drop I1 and stay at I1-SENT
	If the local HIT is greater than the peer
	HIT, send R1 and stay at I1_SENT
Receive I2, process	If successful, send R2 and go to R2-SENT
	If fail, stay at I1-SENT
Receive R1, process	If successful, send I2 and go to I2-SENT
	If fail, go to E-FAILED
Receive ANYOTHER	Drop and stay at I1-SENT
Timeout, increment	If counter is less than I1_RETRIES_MAX,
timeout counter	send I1 and stay at I1-SENT
	If counter is greater than I1_RETRIES_MAX,
	go to E-FAILED
 +---------------------+---+

 Table 3: I1-SENT - Initiating HIP

Moskowitz, et al. Expires September 3, 2006 [Page 21]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state I2-SENT, Table 4.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Receive I1	Send R1 and stay at I2-SENT
Receive R1, process	If successful, send I2 and cycle at I2-SENT
	If fail, stay at I2-SENT
Receive I2, process	If successful and local HIT is smaller than
	the peer HIT, drop I2 and stay at I2-SENT
	If succesful and local HIT is greater than
	the peer HIT, send R2 and go to R2-SENT
	If fail, stay at I2-SENT
Receive R2, process	If successful, go to ESTABLISHED
	If fail, go to E-FAILED
Receive ANYOTHER	Drop and stay at I2-SENT
Timeout, increment	If counter is less than I2_RETRIES_MAX,
timeout counter	send I2 and stay at I2-SENT
	If counter is greater than I2_RETRIES_MAX,
	go to E-FAILED
 +---------------------+---+

 Table 4: I2-SENT - Waiting to finish HIP

Moskowitz, et al. Expires September 3, 2006 [Page 22]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state R2-SENT, Table 5.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Receive I1	Send R1 and stay at R2-SENT
Receive I2, process	If successful, send R2 and cycle at R2-SENT
	If fail, stay at R2-SENT
Receive R1	Drop and stay at R2-SENT
Receive R2	Drop and stay at R2-SENT
Receive data or	Move to ESTABLISHED
UPDATE	
Exchange Complete	Move to ESTABLISHED
Timeout	
 +---------------------+---+

 Table 5: R2-SENT - Waiting to finish HIP

Moskowitz, et al. Expires September 3, 2006 [Page 23]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state ESTABLISHED, Table 6.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Receive I1	Send R1 and stay at ESTABLISHED
Receive I2, process	If successful, send R2, drop old HIP
with puzzle and	association, establish a new HIP
possible Opaque	association, go to R2-SENT
data verification	
	If fail, stay at ESTABLISHED
Receive R1	Drop and stay at ESTABLISHED
Receive R2	Drop and stay at ESTABLISHED
Receive user data	Process and stay at ESTABLISHED
for HIP association	
No packet	Send CLOSE and go to CLOSING
sent/received	
during UAL minutes	
Receive CLOSE,	If successful, send CLOSE_ACK and go to
process	CLOSED
	If fail, stay at ESTABLISHED
 +---------------------+---+

 Table 6: ESTABLISHED - HIP association established

Moskowitz, et al. Expires September 3, 2006 [Page 24]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state CLOSING, Table 7.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
User data to send,	Send I1 and stay at CLOSING
requires the	
creation of another	
incarnation of the	
HIP association	
Receive I1	Send R1 and stay at CLOSING
Receive I2, process	If successful, send R2 and go to R2-SENT
	If fail, stay at CLOSING
Receive R1, process	If successful, send I2 and go to I2-SENT
	If fail, stay at CLOSING
Receive CLOSE,	If successful, send CLOSE_ACK, discard
process	state and go to CLOSED
	If fail, stay at CLOSING
Receive CLOSE_ACK,	If successful, discard state and go to
process	UNASSOCIATED
	If fail, stay at CLOSING
Receive ANYOTHER	Drop and stay at CLOSING
Timeout, increment	If timeout sum is less than UAL+MSL
timeout sum, reset	minutes, retransmit CLOSE and stay at
timer	CLOSING
	If timeout sum is greater than UAL+MSL
	minutes, go to UNASSOCIATED
 +---------------------+---+

 Table 7: CLOSING - HIP association has not been used for UAL minutes

Moskowitz, et al. Expires September 3, 2006 [Page 25]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state CLOSED, Table 8.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Datagram to send,	Send I1, and stay at CLOSED
requires the	
creation of another	
incarnation of the	
HIP association	
Receive I1	Send R1 and stay at CLOSED
Receive I2, process	If successful, send R2 and go to R2-SENT
	If fail, stay at CLOSED
Receive R1, process	If successful, send I2 and go to I2-SENT
	If fail, stay at CLOSED
Receive CLOSE,	If successful, send CLOSE_ACK, stay at
process	CLOSED
	If fail, stay at CLOSED
Receive CLOSE_ACK,	If successful, discard state and go to
process	UNASSOCIATED
	If fail, stay at CLOSED
Receive ANYOTHER	Drop and stay at CLOSED
Timeout (UAL+2MSL)	Discard state and go to UNASSOCIATED
 +---------------------+---+

 Table 8: CLOSED - CLOSE_ACK sent, resending CLOSE_ACK if necessary

Moskowitz, et al. Expires September 3, 2006 [Page 26]

Internet-Draft Host Identity Protocol March 2006

 System behaviour in state E-FAILED, Table 9.

 +---------------------+---+
 | Trigger | Action |
 +---------------------+---+
Wait for	Go to UNASSOCIATED. Re-negotiation is
implementation	possible after moving to UNASSOCIATED
specific time	state.
 +---------------------+---+

 Table 9: E-FAILED - HIP failed to establish association with peer

4.4.3. Simplified HIP State Diagram

 The following diagram shows the major state transitions. Transitions
 based on received packets implicitly assume that the packets are
 successfully authenticated or processed.

Moskowitz, et al. Expires September 3, 2006 [Page 27]

Internet-Draft Host Identity Protocol March 2006

 +-+ +---------------------------+
 I1 received, send R1 | | | |
 | v v |
 Datagram to send +--------------+ I2 received, send R2 |
 +---------------| UNASSOCIATED |---------------+ |
 | +--------------+ | |
 v | |
 +---------+ I2 received, send R2 | |
 +---->| I1-SENT |---------------------------------------+ | |
+---------+					
	+------------------------+				
	R1 received,	I2 received, send R2			
v send I2	v v v				
+---------+	+---------+				
+->	I2-SENT	------------+	R2-SENT	<----+	
	+---------+ +---------+				
		data			
	receive	or			
	R1, send	EC timeout	receive I2,		
	I2	R2 received +--------------+	send R2		
	+----------->	ESTABLISHED	<-------+		
	+--------------+				
	+------------+	+------------------------+			
	recv				
	CLOSE,	No packet sent			
	send	/received for			
	CLOSE_ACK	UAL min, send			
		CLOSE	+---------+<-+ timeout		
		+--->	CLOSING	--+ (UAL+MSL)	
		+---------+ retransmit			
+--	------------	----------------------+			
+------------	------------------------+		+----------------+		
		+-----------+ +------------------	--+		
	+------------+	receive CLOSE, CLOSE_ACK			
			send CLOSE_ACK received or		
	v v timeout				
	+--------+ (UAL+MSL)				
+------------------------	CLOSED	---------------------------+			
 +---------------------------+--------+------------------------------+
 Datagram to send ^ | timeout (UAL+2MSL),
 +-+ move to UNASSOCIATED
 CLOSE received,
 send CLOSE_ACK

Moskowitz, et al. Expires September 3, 2006 [Page 28]

Internet-Draft Host Identity Protocol March 2006

4.5. User Data Considerations

4.5.1. TCP and UDP Pseudo-header Computation for User Data

 When computing TCP and UDP checksums on user data packets that flow
 through sockets bound to HITs, the IPv6 pseudo-header format [11]
 MUST be used, even if the actual addresses on the packet are IPv4
 addresses. Additionally, the HITs MUST be used in the place of the
 IPv6 addresses in the IPv6 pseudo-header. Note that the pseudo-
 header for actual HIP payloads is computed differently; see

Section 5.1.1.

4.5.2. Sending Data on HIP Packets

 A future version of this document may define how to include user data
 on various HIP packets. However, currently the HIP header is a
 terminal header, and not followed by any other headers.

4.5.3. Transport Formats

 The actual data transmission format, used for user data after the HIP
 base exchange, is not defined in this document. Such transport
 formats and methods are described in separate specifications. All
 HIP implementations MUST implement, at minimum, the ESP transport
 format for HIP [24].

 When new transport formats are defined, they get the type value from
 the HIP Transform type value space 2048 - 4095. The order in which
 the transport formats are presented in the R1 packet, is the
 preferred order. The last of the transport formats MUST be ESP
 transport format, represented by the ESP_TRANSFORM parameter.

4.5.4. Reboot and SA Timeout Restart of HIP

 Simulating a loss of state is a potential DoS attack. The following
 process has been crafted to manage state recovery without presenting
 a DoS opportunity.

 If a host reboots or the HIP association times out, it has lost its
 HIP state. If the host that lost state has a datagram to send to the
 peer, it simply restarts the HIP base exchange. After the base
 exchange has completed, the Initiator can create a new SA and start
 sending data. The peer does not reset its state until it receives a
 valid I2 HIP packet.

 If a system receives a user data packet that cannot be matched to any
 existing HIP association, it is possible that it has lost the state
 and its peer has not. It MAY send an ICMP packet with the Parameter

Moskowitz, et al. Expires September 3, 2006 [Page 29]

Internet-Draft Host Identity Protocol March 2006

 Problem type, the Pointer pointing to the referred HIP-related
 association information. Reacting to such traffic depends on the
 implementation and the environment where the implementation is used.

 If the host, that apparently has lost its state, decides to restart
 the HIP base exchange, it sends an I1 packet to the peer. After the
 base exchange has been completed successfully, the Initiator can
 create a new HIP association and the peer drops its OLD SA and
 creates a new one.

4.6. Certificate Distribution

 HIP base specification does not define how to use certificates or how
 to transfer them between hosts. These functions are defined in a
 separate specification. A parameter type value, meant to be used for
 carrying certificates, is reserved, though: CERT, Type 768; see

Section 5.2.

Moskowitz, et al. Expires September 3, 2006 [Page 30]

Internet-Draft Host Identity Protocol March 2006

5. Packet Formats

5.1. Payload Format

 All HIP packets start with a fixed header.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Header Length |0| Packet Type | VER. | RES.|1|
 +-+
 | Checksum | Controls |
 +-+
 | Sender's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | Receiver's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | |
 / HIP Parameters /
 / /
 | |
 +-+

 The HIP header is logically an IPv6 extension header. However, this
 document does not describe processing for Next Header values other
 than decimal 59, IPPROTO_NONE, the IPv6 no next header value. Future
 documents MAY do so. However, current implementations MUST ignore
 trailing data if an unimplemented Next Header value is received.

 The Header Length field contains the length of the HIP Header and HIP
 parameters in 8 bytes units, excluding the first 8 bytes. Since all
 HIP headers MUST contain the sender's and receiver's HIT fields, the
 minimum value for this field is 4, and conversely, the maximum length
 of the HIP Parameters field is (255*8)-32 = 2008 bytes. Note: this
 sets an additional limit for sizes of parameters included in the
 Parameters field, independent of the individual parameter maximum
 lengths.

 The Packet Type indicates the HIP packet type. The individual packet
 types are defined in the relevant sections. If a HIP host receives a

Moskowitz, et al. Expires September 3, 2006 [Page 31]

Internet-Draft Host Identity Protocol March 2006

 HIP packet that contains an unknown packet type, it MUST drop the
 packet.

 The HIP Version is four bits. The current version is 1. The version
 number is expected to be incremented only if there are incompatible
 changes to the protocol. Most extensions can be handled by defining
 new packet types, new parameter types, or new controls.

 The following three bits are reserved for future use. They MUST be
 zero when sent, and they SHOULD be ignored when handling a received
 packet.

 The two fixed bits in the header are reserved for potential SHIM6
 compatibility [27]. For implementations adhering (only) to this
 specification, they MUST be set as shown when sending and MUST be
 ignored when receiving. This is to ensure optimal forward
 compatibility. Note that implementations that implement other
 compatible specifications in addition to this specification, the
 corresponding rules may well be different. For example, in the case
 that the forthcoming SHIM6 protocol happens to be compatible with
 this specification, an implementation that implements both this
 specification and the SHIM6 protocol may need to check these bits in
 order to determine how to handle the packet.

 The HIT fields are always 128 bits (16 bytes) long.

5.1.1. Checksum

 Since the checksum covers the source and destination addresses in the
 IP header, it must be recomputed on HIP-aware NAT devies.

 If IPv6 is used to carry the HIP packet, the pseudo-header [11]
 contains the source and destination IPv6 addresses, HIP packet length
 in the pseudo-header length field, a zero field, and the HIP protocol
 number (see Section 4) in the Next Header field. The length field is
 in bytes and can be calculated from the HIP header length field: (HIP
 Header Length + 1) * 8.

 In case of using IPv4, the IPv4 UDP pseudo header format [1] is used.
 In the pseudo header, the source and destination addresses are those
 used in the IP header, the zero field is obviously zero, the protocol
 is the HIP protocol number (see Section 4), and the length is
 calculated as in the IPv6 case.

5.1.2. HIP Controls

 The HIP Controls section conveys information about the structure of
 the packet and capabilities of the host.

Moskowitz, et al. Expires September 3, 2006 [Page 32]

Internet-Draft Host Identity Protocol March 2006

 The following fields have been defined:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | | | | | | | | | | | |A|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 A - Anonymous: If this is set, the sender's HI in this packet is
 anonymous, i.e., one not listed in a directory. Anonymous HIs
 SHOULD NOT be stored. This control is set in packets R1 and/or
 I2. The peer receiving an anonymous HI may choose to refuse it.

 The rest of the fields are reserved for future use and MUST be set to
 zero on sent packets and ignored on received packets.

5.1.3. HIP Fragmentation Support

 A HIP implementation must support IP fragmentation / reassembly.
 Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
 fragment generation is REQUIRED to be implemented in IPv4 (IPv4
 stacks and networks will usually do this by default) and RECOMMENDED
 to be implemented in IPv6. In IPv6 networks, the minimum MTU is
 larger, 1280 bytes, than in IPv4 networks. The larger MTU size is
 usually sufficient for most HIP packets, and therefore fragment
 generation may not be needed. If a host expects to send HIP packets
 that are larger than the minimum IPv6 MTU, it MUST implement fragment
 generation even for IPv6.

 In IPv4 networks, HIP packets may encounter low MTUs along their
 routed path. Since HIP does not provide a mechanism to use multiple
 IP datagrams for a single HIP packet, support for path MTU discovery
 does not bring any value to HIP in IPv4 networks. HIP-aware NAT
 devices MUST perform any IPv4 reassembly/fragmentation.

 All HIP implementations MUST employ a reassembly algorithm that is
 sufficiently resistant to DoS attacks.

5.2. HIP Parameters

 The HIP Parameters are used to carry the public key associated with
 the sender's HIT, together with related security and other
 information. They consist of ordered parameters, encoded in TLV
 format.

 The following parameter types are currently defined.

Moskowitz, et al. Expires September 3, 2006 [Page 33]

Internet-Draft Host Identity Protocol March 2006

 +------------------+-------+----------+-----------------------------+
 | TLV | Type | Length | Data |
 +------------------+-------+----------+-----------------------------+
R1_COUNTER	128	12	System Boot Counter
PUZZLE	257	12	K and Random #I
SOLUTION	321	20	K, Random #I and puzzle
			solution J
SEQ	385	4	Update packet ID number
ACK	449	variable	Update packet ID number
DIFFIE_HELLMAN	513	variable	public key
HIP_TRANSFORM	577	variable	HIP Encryption and
			Integrity Transform
ENCRYPTED	641	variable	Encrypted part of I2 packet
HOST_ID	705	variable	Host Identity with Fully
			Qualified Domain Name or
			NAI
CERT	768	variable	HI Certificate; used to
			transfer certificates.
			Usage defined in a separate
			document.
NOTIFY	832	variable	Informational data
ECHO_REQUEST	897	variable	Opaque data to be echoed
			back; under signature
ECHO_RESPONSE	961	variable	Opaque data echoed back;
			under signature
HMAC	61505	20	HMAC based message
			authentication code, with
			key material from
			HIP_TRANSFORM
HMAC_2	61569	20	HMAC based message
			authentication code, with
			key material from
			HIP_TRANSFORM

Moskowitz, et al. Expires September 3, 2006 [Page 34]

Internet-Draft Host Identity Protocol March 2006

HIP_SIGNATURE_2	61633	variable	Signature of the R1 packet
HIP_SIGNATURE	61697	variable	Signature of the packet
ECHO_REQUEST	63661	variable	Opaque data to be echoed
			back; after signature
ECHO_RESPONSE	63425	variable	Opaque data echoed back;
			after signature
 +------------------+-------+----------+-----------------------------+

 Because the ordering (from lowest to highest) of HIP parameters is
 strictly enforced (see Section 5.2.1), the parameter type values for
 existing parameters have been spaced to allow for future protocol
 extensions. Parameters numbered between 0-1023 are used in HIP
 handshake and update procedures and are covered by signatures.
 Parameters numbered between 1024-2047 are reserved. Parameters
 numbered between 2048-4095 are used for parameters related to HIP
 transform types. Parameters numbered between 4096 and (2^16 - 2^12)
 61439 are reserved. Parameters numbered between 61440-62463 are used
 for signatures and signed MACs. Parameters numbered between 62464-
 63487 are used for parameters that fall outside of the signed area of
 the packet. Parameters numbered between 63488-64511 are used for
 rendezvous and other relaying services. Parameters numbered between
 64512-65535 are reserved.

5.2.1. TLV Format

 The TLV-encoded parameters are described in the following
 subsections. The type-field value also describes the order of these
 fields in the packet, except for type values from 2048 to 4095 which
 are reserved for new transport forms. The parameters MUST be
 included in the packet such that their types form an increasing
 order. If the order does not follow this rule, the packet is
 considered to be malformed and it MUST be discarded.

 Parameters using type values from 2048 up to 4095 are transport
 formats. Currently, one transport format is defined: the ESP
 transport format [24]. The order of these parameters does not follow
 the order of their type value, but they are put in the packet in
 order of preference. The first of the transport formats it the most
 preferred, and so on.

 All of the TLV parameters have a length (including Type and Length
 fields) which is a multiple of 8 bytes. When needed, padding MUST be
 added to the end of the parameter so that the total length becomes a
 multiple of 8 bytes. This rule ensures proper alignment of data. If
 padding is added, the Length field MUST NOT include the padding. Any

Moskowitz, et al. Expires September 3, 2006 [Page 35]

Internet-Draft Host Identity Protocol March 2006

 added padding bytes MUST be zeroed by the sender, and their values
 SHOULD NOT be checked by the receiver.

 Consequently, the Length field indicates the length of the Contents
 field (in bytes). The total length of the TLV parameter (including
 Type, Length, Contents, and Padding) is related to the Length field
 according to the following formula:

 Total Length = 11 + Length - (Length + 3) % 8;

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |C| Length |
 +-+
 | |
 / Contents /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Type Type code for the parameter. 16 bits long, C-bit
 being part of the Type code.
 C Critical. One if this parameter is critical, and
 MUST be recognized by the recipient, zero otherwise.
 The C bit is considered to be a part of the Type
 field. Consequently, critical parameters are always
 odd and non-critical ones have an even value.
 Length Length of the Contents, in bytes.
 Contents Parameter specific, defined by Type
 Padding Padding, 0-7 bytes, added if needed

 Critical parameters MUST be recognized by the recipient. If a
 recipient encounters a critical parameter that it does not recognize,
 it MUST NOT process the packet any further. It MAY send an ICMP or
 NOTIFY, as defined in Section 4.3.

 Non-critical parameters MAY be safely ignored. If a recipient
 encounters a non-critical parameter that it does not recognize, it
 SHOULD proceed as if the parameter was not present in the received
 packet.

5.2.2. Defining New Parameters

 Future specifications may define new parameters as needed. When
 defining new parameters, care must be taken to ensure that the
 parameter type values are appropriate and leave suitable space for
 other future extensions. One must remember that the parameters MUST

Moskowitz, et al. Expires September 3, 2006 [Page 36]

Internet-Draft Host Identity Protocol March 2006

 always be arranged in the increasing order by type code, thereby
 limiting the order of parameters (see Section 5.2.1).

 The following rules must be followed when defining new parameters.

 1. The low order bit C of the Type code is used to distinguish
 between critical and non-critical parameters.

 2. A new parameter may be critical only if an old recipient ignoring
 it would cause security problems. In general, new parameters
 SHOULD be defined as non-critical, and expect a reply from the
 recipient.

 3. If a system implements a new critical parameter, it MUST provide
 the ability to configure the associated feature off, such that
 the critical parameter is not sent at all. The configuration
 option must be well documented. By default, sending of such a
 new critical parameter SHOULD be off. In other words, the
 management interface MUST allow vanilla standards-only mode as a
 default configuration setting, and MAY allow new critical
 payloads to be configured on (and off).

 4. See section Section 9 for allocation rules regarding type codes.

5.2.3. R1_COUNTER

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved, 4 bytes |
 +-+
 | R1 generation counter, 8 bytes |
 | |
 +-+

 Type 128
 Length 12
 R1 generation
 counter The current generation of valid puzzles

 The R1_COUNTER parameter contains an 64-bit unsigned integer in
 network byte order, indicating the current generation of valid
 puzzles. The sender is supposed to increment this counter
 periodically. It is RECOMMENDED that the counter value is
 incremented at least as often as old PUZZLE values are deprecated so

Moskowitz, et al. Expires September 3, 2006 [Page 37]

Internet-Draft Host Identity Protocol March 2006

 that SOLUTIONs to them are no longer accepted.

 The R1_COUNTER parameter is optional. It SHOULD be included in the
 R1 (in which case it is covered by the signature), and if present in
 the R1, it MAY be echoed (including the Reserved field verbatim) by
 the Initiator in the I2.

5.2.4. PUZZLE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Lifetime | Opaque, 2 bytes |
 +-+
 | Random # I, 8 bytes |
 | |
 +-+

 Type 257
 Length 12
 K K is the number of verified bits
 Lifetime Puzzle lifetime 2^(value-32) seconds
 Opaque Data set by the Responder, indexing the puzzle
 Random #I random number

 Random #I is represented as 64-bit integer, K and Lifetime as 8-bit
 integer, all in network byte order.

 The PUZZLE parameter contains the puzzle difficulty K and a 64-bit
 puzzle random integer #I. The Puzzle Lifetime indicates the time
 during which the puzzle solution is valid, and sets a time limit
 which should not be exceeded by the Initiator while it attempts to
 solve the puzzle. The lifetime is indicated as a power of 2 using
 the formula 2^(Lifetime-32) seconds. A puzzle MAY be augmented with
 an ECHO_REQUEST parameter included in the R1; the contents of the
 ECHO_REQUEST are then echoed back in the ECHO_RESPONSE, allowing the
 Responder to use the included information as a part of its puzzle
 processing.

 The Opaque and Random #I field are not covered by the HIP_SIGNATURE_2
 parameter.

Moskowitz, et al. Expires September 3, 2006 [Page 38]

Internet-Draft Host Identity Protocol March 2006

5.2.5. SOLUTION

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Reserved | Opaque, 2 bytes |
 +-+
 | Random #I, 8 bytes |
 | |
 +-+
 | Puzzle solution #J, 8 bytes |
 | |
 +-+

 Type 321
 Length 20
 K K is the number of verified bits
 Reserved zero when sent, ignored when received
 Opaque copied unmodified from the received PUZZLE
 parameter
 Random #I random number
 Puzzle solution
 #J random number

 Random #I, and Random #J are represented as 64-bit integers, K as an
 8-bit integer, all in network byte order.

 The SOLUTION parameter contains a solution to a puzzle. It also
 echoes back the random difficulty K, the Opaque field, and the puzzle
 integer #I.

Moskowitz, et al. Expires September 3, 2006 [Page 39]

Internet-Draft Host Identity Protocol March 2006

5.2.6. DIFFIE_HELLMAN

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Group ID | Public Value /
 +-+
 / | padding |
 +-+

 Type 513
 Length length in octets, excluding Type, Length, and
 padding
 Group ID defines values for p and g
 Public Value the sender's public Diffie-Hellman key

 The following Group IDs have been defined:

 Group Value
 Reserved 0
 384-bit group 1
 OAKLEY well known group 1 2
 1536-bit MODP group 3
 3072-bit MODP group 4
 6144-bit MODP group 5
 8192-bit MODP group 6

 The MODP Diffie-Hellman groups are defined in [17]. The OAKLEY group
 is defined in [8]. The OAKLEY well known group 5 is the same as the
 1536-bit MODP group.

 A HIP implementation MUST support Group IDs 1 and 3. The 384-bit
 group can be used when lower security is enough (e.g. web surfing)
 and when the equipment is not powerful enough (e.g. some PDAs).
 Equipment powerful enough SHOULD implement also group ID 5. The 384-
 bit group is defined in Appendix D.

 To avoid unnecessary failures during the base exchange, the rest of
 the groups SHOULD be implemented in hosts where resources are
 adequate.

Moskowitz, et al. Expires September 3, 2006 [Page 40]

Internet-Draft Host Identity Protocol March 2006

5.2.7. HIP_TRANSFORM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Transform-ID #1 | Transform-ID #2 |
 +-+
 | Transform-ID #n | Padding |
 +-+

 Type 577
 Length length in octets, excluding Type, Length, and
 padding
 Transform-ID Defines the HIP Suite to be used

 The following Suite-IDs are defined ([21],[10]):

 Suite-ID Value

 RESERVED 0
 AES-CBC with HMAC-SHA1 1
 3DES-CBC with HMAC-SHA1 2
 3DES-CBC with HMAC-MD5 3
 BLOWFISH-CBC with HMAC-SHA1 4
 NULL-ENCRYPT with HMAC-SHA1 5
 NULL-ENCRYPT with HMAC-MD5 6

 There MUST NOT be more than six (6) HIP Suite-IDs in one HIP
 transform parameter. The limited number of transforms sets the
 maximum size of HIP_TRANSFORM parameter. The HIP_TRANSFORM parameter
 MUST contain at least one of the mandatory Suite-IDs.

 The Responder lists supported and desired Suite-IDs in order of
 preference in the R1, up to the maximum of six Suite-IDs. In the I2,
 the Initiator MUST choose and insert only one of the corresponding
 Suite-IDs that will be used for generating the I2.

 Mandatory implementations: AES-CBC with HMAC-SHA1 and NULL-ENCRYPTION
 with HMAC-SHA1.

Moskowitz, et al. Expires September 3, 2006 [Page 41]

Internet-Draft Host Identity Protocol March 2006

5.2.8. HOST_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | HI Length |DI-type| DI Length |
 +-+
 | Host Identity /
 +-+
 / | Domain Identifier /
 +-+
 / | Padding |
 +-+

 Type 705
 Length length in octets, excluding Type, Length, and
 Padding
 HI Length Length of the Host Identity in octets
 DI-type type of the following Domain Identifier field
 DI Length length of the FQDN or NAI in octets
 Host Identity actual host identity
 Domain Identifier the identifier of the sender

 The Host Identity is represented in RFC2535 [12] format. The
 algorithms used in RDATA format are the following:

 Algorithms Values

 RESERVED 0
 DSA 3 [RFC2536] (RECOMMENDED)
 RSA 5 [RFC3110] (REQUIRED)

 The following DI-types have been defined:

 Type Value
 none included 0
 FQDN 1
 NAI 2

 FQDN Fully Qualified Domain Name, in binary format.
 NAI Network Access Identifier
 [23]

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110

Moskowitz, et al. Expires September 3, 2006 [Page 42]

Internet-Draft Host Identity Protocol March 2006

 The format for the FQDN is defined in RFC1035 [3] Section 3.1.

 If there is no Domain Identifier, i.e. the DI-type field is zero,
 also the DI Length field is set to zero.

5.2.9. HMAC

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 | HMAC |
 | |
 | |
 | |
 +-+

 Type 61505
 Length 20
 HMAC 160 low order bits of the HMAC computed over the
 HIP packet, excluding the HMAC parameter and any
 following parameters, such as HIP_SIGNATURE,
 HIP_SIGNATURE_2, ECHO_REQUEST, or ECHO_RESPONSE.
 The checksum field MUST be set to zero
 and the HIP header length in the HIP common header
 MUST be calculated not to cover any excluded
 parameters when the HMAC is calculated.

 The HMAC calculation and verification process is presented in
Section 6.4.1

5.2.10. HMAC_2

 The parameter structure is the same as in Section 5.2.9. The fields
 are:

https://datatracker.ietf.org/doc/html/rfc1035

Moskowitz, et al. Expires September 3, 2006 [Page 43]

Internet-Draft Host Identity Protocol March 2006

 Type 61569
 Length 20
 HMAC 160 low order bits of the HMAC computed over the
 HIP packet, excluding the HMAC parameter and any
 following parameters such as HIP_SIGNATURE,
 HIP_SIGNATURE_2, ECHO_REQUEST, or ECHO_RESPONSE,
 and including an additional sender's
 HOST_ID parameter during the HMAC calculation. The
 checksum field MUST be set to zero and the HIP
 header length in the HIP common header MUST be
 calculated not to cover any excluded parameters
 when the HMAC is calculated.

 The HMAC calculation and verification process is presented in
Section 6.4.1

5.2.11. HIP_SIGNATURE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | SIG alg | Signature /
 +-+
 / | Padding |
 +-+

 Type 61697
 Length length in octets, excluding Type, Length, and
 Padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the HIP packet,
 excluding the HIP_SIGNATURE parameter and any
 parameters that follow the HIP_SIGNATURE parameter.
 The checksum field MUST be set to zero, and the HIP
 header length in the HIP common header MUST be
 calculated only to the beginning of the
 HIP_SIGNATURE parameter when the signature is
 calculated.

 The signature algorithms are defined in Section 5.2.8. The signature
 in the Signature field is encoded using the proper method depending
 on the signature algorithm (e.g. according to [15] in case of RSA, or
 according to [13] in case of DSA).

 The HIP_SIGNATURE calculation and verification process is presented

Moskowitz, et al. Expires September 3, 2006 [Page 44]

Internet-Draft Host Identity Protocol March 2006

 in Section 6.4.2

5.2.12. HIP_SIGNATURE_2

 The parameter structure is the same as in Section 5.2.11. The fields
 are:

 Type 61633
 Length length in octets, excluding Type, Length, and
 Padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the HIP R1 packet,
 excluding the HIP_SIGNATURE_2 parameter and any
 parameters that follow. Initiator's HIT, checksum
 field, and the Opaque and Random #I fields in the
 PUZZLE parameter MUST be set to zero while
 computing the HIP_SIGNATURE_2 signature. Further,
 the HIP packet length in the HIP header MUST be
 calculated to the beginning of the HIP_SIGNATURE_2
 parameter when the signature is calculated.

 Zeroing the Initiator's HIT makes it possible to create R1 packets
 beforehand to minimize the effects of possible DoS attacks. Zeroing
 the I and Opaque fields allows these fields to be populated
 dynamically on precomputed R1s.

 Signature calculation and verification follows the process in
Section 6.4.2.

5.2.13. SEQ

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Update ID |
 +-+

 Type 385
 Length 4
 Update ID 32-bit sequence number

 The Update ID is an unsigned quantity, initialized by a host to zero
 upon moving to ESTABLISHED state. The Update ID has scope within a
 single HIP association, and not across multiple associations or
 multiple hosts. The Update ID is incremented by one before each new
 UPDATE that is sent by the host; the first UPDATE packet originated

Moskowitz, et al. Expires September 3, 2006 [Page 45]

Internet-Draft Host Identity Protocol March 2006

 by a host has an Update ID of 0.

5.2.14. ACK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | peer Update ID |
 +-+

 Type 449
 Length variable (multiple of 4)
 peer Update ID 32-bit sequence number corresponding to the
 Update ID being acked.

 The ACK parameter includes one or more Update IDs that have been
 received from the peer. The Length field identifies the number of
 peer Update IDs that are present in the parameter.

Moskowitz, et al. Expires September 3, 2006 [Page 46]

Internet-Draft Host Identity Protocol March 2006

5.2.15. ENCRYPTED

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | IV /
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
 / Encrypted data /
 / /
 / +-------------------------------+
 / | Padding |
 +-+

 Type 641
 Length length in octets, excluding Type, Length, and
 Padding
 Reserved zero when sent, ignored when received
 IV Initialization vector, if needed, otherwise
 nonexistent. The length of the IV is inferred from
 the HIP transform.
 Encrypted The data is encrypted using an encryption algorithm
 data as defined in HIP transform.
 Padding Any Padding, if necessary, to make the parameter a
 multiple of 8 bytes.

 The ENCRYPTED parameter encapsulates another parameter, the encrypted
 data, which is also in TLV format. Consequently, the first fields in
 the encapsulated parameter(s) are Type and Length, allowing the
 contents to be easily parsed after decryption.

 Both the ENCRYPTED parameter and the encapsulated parameter(s) MUST
 be padded. The padding needed for the ENCRYPTED parameter is
 referred as the "outer" padding. Correspondingly, the padding for
 the parameter(s) encapsulated within the ENCRYPTED parameter is
 referred as the "inner" padding.

 The inner padding follows exactly the rules of Section 5.2.1. The
 outer padding also follows the same rules but with an exception.
 Namely, some algorithms require that the data to be encrypted must be
 a multiple of the cipher algorithm block size. In this case, the
 outer padding MUST include extra padding, as specified by the
 encryption algorithm. The size of the extra padding is selected so

Moskowitz, et al. Expires September 3, 2006 [Page 47]

Internet-Draft Host Identity Protocol March 2006

 that the length of the ENCRYPTED is the minimum value that is both
 multiple of eight and the cipher block size. The encryption
 algorithm may specify padding bytes other than zero; for example, AES
 [32] uses the PKCS5 padding scheme [14] (see section 6.1.1) where the
 remaining n bytes to fill the block each have the value n.

 Note that the length of the cipher suite output may be smaller or
 larger than the length of the data to be encrypted, since the
 encryption process may compress the data or add additional padding to
 the data.

5.2.16. NOTIFY

 The NOTIFY parameter is used to transmit informational data, such as
 error conditions and state transitions, to a HIP peer. A NOTIFY
 parameter may appear in the NOTIFY packet type. The use of the
 NOTIFY parameter in other packet types is for further study.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved | Notify Message Type |
 +-+
 | /
 / Notification data /
 / +---------------+
 / | Padding |
 +-+

 Type 832
 Length length in octets, excluding Type, Length, and
 Padding
 Reserved zero when sent, ignored when received
 Notify Message Specifies the type of notification
 Type
 Notification Informational or error data transmitted in addition
 Data to the Notify Message Type. Values for this field
 are type specific (see below).
 Padding Any Padding, if necessary, to make the parameter a
 multiple of 8 bytes.

 Notification information can be error messages specifying why an SA
 could not be established. It can also be status data that a process
 managing an SA database wishes to communicate with a peer process.
 The table below lists the Notification messages and their
 corresponding values.

Moskowitz, et al. Expires September 3, 2006 [Page 48]

Internet-Draft Host Identity Protocol March 2006

 To avoid certain types of attacks, a Responder SHOULD avoid sending a
 NOTIFY to any host with which it has not successfully verified a
 puzzle solution.

 Types in the range 0 - 16383 are intended for reporting errors. An
 implementation that receives a NOTIFY error parameter in response to
 a request packet (e.g., I1, I2, UPDATE), SHOULD assume that the
 corresponding request has failed entirely. Unrecognized error types
 MUST be ignored except that they SHOULD be logged.

 Notify payloads with status types MUST be ignored if not recognized.

 NOTIFY PARAMETER - ERROR TYPES Value
 ------------------------------ -----

 UNSUPPORTED_CRITICAL_PARAMETER_TYPE 1

 Sent if the parameter type has the "critical" bit set and the
 parameter type is not recognized. Notification Data contains
 the two octet parameter type.

 INVALID_SYNTAX 7

 Indicates that the HIP message received was invalid because
 some type, length, or value was out of range or because the
 request was rejected for policy reasons. To avoid a denial of
 service attack using forged messages, this status may only be
 returned for packets whose HMAC (if present) and SIGNATURE have
 been verified. This status MUST be sent in response to any
 error not covered by one of the other status types, and should
 not contain details to avoid leaking information to someone
 probing a node. To aid debugging, more detailed error
 information SHOULD be written to a console or log.

 NO_DH_PROPOSAL_CHOSEN 14

 None of the proposed group IDs was acceptable.

 INVALID_DH_CHOSEN 15

 The D-H Group ID field does not correspond to one offered
 by the Responder.

 NO_HIP_PROPOSAL_CHOSEN 16

 None of the proposed HIP Transform crypto suites was
 acceptable.

Moskowitz, et al. Expires September 3, 2006 [Page 49]

Internet-Draft Host Identity Protocol March 2006

 INVALID_HIP_TRANSFORM_CHOSEN 17

 The HIP Transform crypto suite does not correspond to
 one offered by the Responder.

 AUTHENTICATION_FAILED 24

 Sent in response to a HIP signature failure, except when
 the signature verification fails in a NOTIFY message.

 CHECKSUM_FAILED 26

 Sent in response to a HIP checksum failure.

 HMAC_FAILED 28

 Sent in response to a HIP HMAC failure.

 ENCRYPTION_FAILED 32

 The Responder could not successfully decrypt the
 ENCRYPTED parameter.

 INVALID_HIT 40

 Sent in response to a failure to validate the peer's
 HIT from the corresponding HI.

 BLOCKED_BY_POLICY 42

 The Responder is unwilling to set up an association
 for some policy reason (e.g. received HIT is NULL
 and policy does not allow opportunistic mode).

 SERVER_BUSY_PLEASE_RETRY 44

 The Responder is unwilling to set up an association
 as it is suffering under some kind of overload and
 has chosen to shed load by rejecting your request.
 You may retry if you wish, however you MUST find
 another (different) puzzle solution for any such
 retries. Note that you may need to obtain a new
 puzzle with a new I1/R1 exchange.

 I2_ACKNOWLEDGEMENT 46

 The Responder has received your I2 but had to queue
 the I2 for processing. The puzzle was correctly solved

Moskowitz, et al. Expires September 3, 2006 [Page 50]

Internet-Draft Host Identity Protocol March 2006

 and the Responder is willing to set up an association
 but has currently a number of I2s in processing queue.
 R2 will be sent after the I2 has been processed.

 NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 (None defined at present)

5.2.17. ECHO_REQUEST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Opaque data (variable length) |
 +-+

 Type 63661 or 897
 Length variable
 Opaque data Opaque data, supposed to be meaningful only to the
 node that sends ECHO_REQUEST and receives a
 corresponding ECHO_RESPONSE.

 The ECHO_REQUEST parameter contains an opaque blob of data that the
 sender wants to get echoed back in the corresponding reply packet.

 The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
 purpose where a node wants to carry some state in a request packet
 and get it back in a response packet. The ECHO_REQUEST MAY be
 covered by the HMAC and SIGNATURE. This is dictated by the Type
 field selected for the parameter; Type 897 ECHO_REQUEST is covered
 and Type 63661 is not covered. A HIP packet can contain only one
 ECHO_REQUEST parameter.

Moskowitz, et al. Expires September 3, 2006 [Page 51]

Internet-Draft Host Identity Protocol March 2006

5.2.18. ECHO_RESPONSE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Opaque data (variable length) |
 +-+

 Type 63425 or 961
 Length variable
 Opaque data Opaque data, copied unmodified from the ECHO_REQUEST
 parameter that triggered this response.

 The ECHO_RESPONSE parameter contains an opaque blob of data that the
 sender of the ECHO_REQUEST wants to get echoed back. The opaque data
 is copied unmodified from the ECHO_REQUEST parameter.

 The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
 purpose where a node wants to carry some state in a request packet
 and get it back in a response packet. The ECHO_RESPONSE MAY be
 covered by the HMAC and SIGNATURE. This is dictated by the Type
 field selected for the parameter; Type 961 ECHO_RESPONSE is covered
 and Type 63425 is not.

5.3. HIP Packets

 There are eight basic HIP packets (see Table 11). Four are for the
 HIP base exchange, one is for updating, one is for sending
 notifications, and two for closing a HIP association.

Moskowitz, et al. Expires September 3, 2006 [Page 52]

Internet-Draft Host Identity Protocol March 2006

 +-------------+---+
 | Packet type | Packet name |
 +-------------+---+
 | 1 | I1 - the HIP Initiator Packet |
 | | |
 | 2 | R1 - the HIP Responder Packet |
 | | |
 | 3 | I2 - the Second HIP Initiator Packet |
 | | |
 | 4 | R2 - the Second HIP Responder Packet |
 | | |
 | 16 | UPDATE - the HIP Update Packet |
 | | |
 | 17 | NOTIFY - the HIP Notify Packet |
 | | |
 | 18 | CLOSE - the HIP Association Closing Packet |
 | | |
 | 19 | CLOSE_ACK - the HIP Closing Acknowledgment Packet |
 +-------------+---+

 Table 11: HIP packets and packet type numbers

 Packets consist of the fixed header as described in Section 5.1,
 followed by the parameters. The parameter part, in turn, consists of
 zero or more parameter coded parameters.

 In addition to the base packets, other packets types will be defined
 later in separate specifications. For example, support for mobility
 and multi-homing is not included in this specification.

 See Notation (Section 2.2) for used operations.

 In the future, an OPTIONAL upper layer payload MAY follow the HIP
 header. The Next Header field in the header indicates if there is
 additional data following the HIP header. The HIP packet, however,
 MUST NOT be fragmented. This limits the size of the possible
 additional data in the packet.

5.3.1. I1 - the HIP Initiator Packet

 The HIP header values for the I1 packet:

 Header:
 Packet Type = 1
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT, or NULL

 IP (HIP ())

Moskowitz, et al. Expires September 3, 2006 [Page 53]

Internet-Draft Host Identity Protocol March 2006

 The I1 packet contains only the fixed HIP header.

 Valid control bits: none

 The Initiator gets the Responder's HIT either from a DNS lookup of
 the Responder's FQDN, from some other repository, or from a local
 table. If the Initiator does not know the Responder's HIT, it may
 attempt opportunistic mode by using NULL (all zeros) as the
 Responder's HIT. If the Initiator sends a NULL as the Responder's
 HIT, it MUST be able to handle all MUST and SHOULD algorithms from

Section 3, which are currently RSA and DSA.

 Since this packet is so easy to spoof even if it were signed, no
 attempt is made to add to its generation or processing cost.

 Implementations MUST be able to handle a storm of received I1
 packets, discarding those with common content that arrive within a
 small time delta.

5.3.2. R1 - the HIP Responder Packet

 The HIP header values for the R1 packet:

 Header:
 Packet Type = 2
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP ([R1_COUNTER,]
 PUZZLE,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 HOST_ID,
 [ECHO_REQUEST,]
 HIP_SIGNATURE_2)
 [, ECHO_REQUEST])

 Valid control bits: A

 If the Responder HI is an anonymous one, the A control MUST be set.

 The Initiator HIT MUST match the one received in I1. If the
 Responder has multiple HIs, the Responder HIT used MUST match
 Initiator's request. If the Initiator used opportunistic mode, the
 Responder may select freely among its HIs.

 The R1 generation counter is used to determine the currently valid
 generation of puzzles. The value is increased periodically, and it

Moskowitz, et al. Expires September 3, 2006 [Page 54]

Internet-Draft Host Identity Protocol March 2006

 is RECOMMENDED that it is increased at least as often as solutions to
 old puzzles are no longer accepted.

 The Puzzle contains a random #I and the difficulty K. The difficulty
 K is the number of bits that the Initiator must get zero in the
 puzzle. The random #I is not covered by the signature and must be
 zeroed during the signature calculation, allowing the sender to
 select and set the #I into a pre-computed R1 just prior sending it to
 the peer.

 The Diffie-Hellman value is ephemeral, but can be reused over a
 number of connections. In fact, as a defense against I1 storms, an
 implementation MAY use the same Diffie-Hellman value for a period of
 time, for example, 15 minutes. By using a small number of different
 puzzles for a given Diffie-Hellman value, the R1 packets can be pre-
 computed and delivered as quickly as I1 packets arrive. A scavenger
 process should clean up unused DHs and puzzles.

 The HIP_TRANSFORM contains the encryption and integrity algorithms
 supported by the Responder to protect the HI exchange, in the order
 of preference. All implementations MUST support the AES [18] with
 HMAC-SHA-1-96 [6].

 The ECHO_REQUEST contains data that the sender wants to receive
 unmodified in the corresponding response packet in the ECHO_RESPONSE
 parameter. The ECHO_REQUEST can be either covered by the signature,
 or it can be left out from it. In the first case, the ECHO_REQUEST
 gets Type number 897 and in the latter case 63661.

 The signature is calculated over the whole HIP envelope, after
 setting the Initiator HIT, header checksum as well as the Opaque
 field and the Random #I in the PUZZLE parameter temporarily to zero,
 and excluding any parameters that follow the signature, as described
 in Section 5.2.12. This allows the Responder to use precomputed R1s.
 The Initiator SHOULD validate this signature. It SHOULD check that
 the Responder HI received matches with the one expected, if any.

5.3.3. I2 - the Second HIP Initiator Packet

 The HIP header values for the I2 packet:

Moskowitz, et al. Expires September 3, 2006 [Page 55]

Internet-Draft Host Identity Protocol March 2006

 Header:
 Type = 3
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT

 IP (HIP ([R1_COUNTER,]
 SOLUTION,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 ENCRYPTED { HOST_ID } or HOST_ID,
 [ECHO_RESPONSE ,]
 HMAC,
 HIP_SIGNATURE
 [, ECHO_RESPONSE]))

 Valid control bits: A

 The HITs used MUST match the ones used previously.

 If the Initiator HI is an anonymous one, the A control MUST be set.

 The Initiator MAY include an unmodified copy of the R1_COUNTER
 parameter received in the corresponding R1 packet into the I2 packet.

 The Solution contains the random # I from R1 and the computed # J.
 The low order K bits of the PHASH(I | ... | J) MUST be zero.

 The Diffie-Hellman value is ephemeral. If precomputed, a scavenger
 process should clean up unused DHs.

 The HIP_TRANSFORM contains the single encryption and integrity
 transform selected by the Initiator, that will be used to protect the
 HI exchange. The chosen transform MUST correspond to one offered by
 the Responder in the R1. All implementations MUST support the AES
 transform [18].

 The Initiator's HI MAY be encrypted using the HIP_TRANSFORM
 encryption algorithm. The keying material is derived from the
 Diffie-Hellman exchanged as defined in Section 6.5.

 The ECHO_RESPONSE contains the unmodified Opaque data copied from the
 corresponding ECHO_REQUEST parameter. The ECHO_RESPONSE can be
 either covered by the HMAC and SIGNATURE or not covered. In the
 former case, the ECHO_RESPONSE gets Type number 961, in the latter it
 is 63425.

 The HMAC is calculated over whole HIP envelope, excluding any
 parameters after the HMAC, as described in Section 6.4.1. The

Moskowitz, et al. Expires September 3, 2006 [Page 56]

Internet-Draft Host Identity Protocol March 2006

 Responder MUST validate the HMAC.

 The signature is calculated over whole HIP envelope, excluding any
 parameters after the HIP_SIGNATURE, as described in Section 5.2.11.
 The Responder MUST validate this signature. It MAY use either the HI
 in the packet or the HI acquired by some other means.

5.3.4. R2 - the Second HIP Responder Packet

 The HIP header values for the R2 packet:

 Header:
 Packet Type = 4
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP (HMAC_2, HIP_SIGNATURE))

 Valid control bits: none

 The HMAC_2 is calculated over whole HIP envelope, with Responder's
 HOST_ID parameter concatenated with the HIP envelope. The HOST_ID
 parameter is removed after the HMAC calculation. The procedure is
 described in 8.3.1.

 The signature is calculated over whole HIP envelope.

 The Initiator MUST validate both the HMAC and the signature.

5.3.5. UPDATE - the HIP Update Packet

 Support for the UPDATE packet is MANDATORY.

 The HIP header values for the UPDATE packet:

 Header:
 Packet Type = 16
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP ([SEQ, ACK,] HMAC, HIP_SIGNATURE))

 Valid control bits: None

 The UPDATE packet contains mandatory HMAC and HIP_SIGNATURE
 parameters, and other optional parameters.

Moskowitz, et al. Expires September 3, 2006 [Page 57]

Internet-Draft Host Identity Protocol March 2006

 The UPDATE packet contains zero or one SEQ parameter. The presence
 of a SEQ parameter indicates that the receiver MUST ack the UPDATE.
 An UPDATE that does not contain a SEQ parameter is simply an ACK of a
 previous UPDATE and itself MUST not be acked.

 An UPDATE packet contains zero or one ACK parameters. The ACK
 parameter echoes the SEQ sequence number of the UPDATE packet being
 acked. A host MAY choose to ack more than one UPDATE packet at a
 time; e.g., the ACK may contain the last two SEQ values received, for
 robustness to ack loss. ACK values are not cumulative; each received
 unique SEQ value requires at least one corresponding ACK value in
 reply. Received ACKs that are redundant are ignored.

 The UPDATE packet may contain both a SEQ and an ACK parameter. In
 this case, the ACK is being piggybacked on an outgoing UPDATE. In
 general, UPDATEs carrying SEQ SHOULD be acked upon completion of the
 processing of the UPDATE. A host MAY choose to hold the UPDATE
 carrying ACK for a short period of time to allow for the possibility
 of piggybacking the ACK parameter, in a manner similar to TCP delayed
 acknowledgments.

 A sender MAY choose to forego reliable transmission of a particular
 UPDATE (e.g., it becomes overcome by events). The semantics are such
 that the receiver MUST acknowledge the UPDATE but the sender MAY
 choose to not care about receiving the ACK.

 UPDATEs MAY be retransmitted without incrementing SEQ. If the same
 subset of parameters is included in multiple UPDATEs with different
 SEQs, the host MUST ensure that receiver processing of the parameters
 multiple times will not result in a protocol error.

5.3.6. NOTIFY - the HIP Notify Packet

 The NOTIFY packet is OPTIONAL. The NOTIFY packet MAY be used to
 provide information to a peer. Typically, NOTIFY is used to indicate
 some type of protocol error or negotiation failure. NOTIFY packets
 are unacknowledged.

 The HIP header values for the NOTIFY packet:

 Header:
 Packet Type = 17
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT, or zero if unknown

 IP (HIP (<NOTIFY>i, [HOST_ID,] HIP_SIGNATURE))

 Valid control bits: None

Moskowitz, et al. Expires September 3, 2006 [Page 58]

Internet-Draft Host Identity Protocol March 2006

 The NOTIFY packet is used to carry one or more NOTIFY parameters.

5.3.7. CLOSE - the HIP Association Closing Packet

 The HIP header values for the CLOSE packet:

 Header:
 Packet Type = 18
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REQUEST, HMAC, HIP_SIGNATURE))

 Valid control bits: none

 The sender MUST include an ECHO_REQUEST used to validate CLOSE_ACK
 received in response, and both an HMAC and a signature (calculated
 over the whole HIP envelope).

 The receiver peer MUST validate both the HMAC and the signature if it
 has a HIP association state, and MUST reply with a CLOSE_ACK
 containing an ECHO_REPLY corresponding to the received ECHO_REQUEST.

5.3.8. CLOSE_ACK - the HIP Closing Acknowledgment Packet

 The HIP header values for the CLOSE_ACK packet:

 Header:
 Packet Type = 19
 SRC HIT = Sender's HIT
 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REPLY, HMAC, HIP_SIGNATURE))

 Valid control bits: none

 The sender MUST include both an HMAC and signature (calculated over
 the whole HIP envelope).

 The receiver peer MUST validate both the HMAC and the signature.

5.4. ICMP Messages

 When a HIP implementation detects a problem with an incoming packet,
 and it either cannot determine the identity of the sender of the
 packet or does not have any existing HIP association with the sender
 of the packet, it MAY respond with an ICMP packet. Any such replies

Moskowitz, et al. Expires September 3, 2006 [Page 59]

Internet-Draft Host Identity Protocol March 2006

 MUST be rate limited as described in [4]. In most cases, the ICMP
 packet will have the Parameter Problem type (12 for ICMPv4, 4 for
 ICMPv6), with the Pointer field pointing to the field that caused the
 ICMP message to be generated.

5.4.1. Invalid Version

 If a HIP implementation receives a HIP packet that has an
 unrecognized HIP version number, it SHOULD respond, rate limited,
 with an ICMP packet with type Parameter Problem, the Pointer pointing
 to the VER./RES. byte in the HIP header.

5.4.2. Other Problems with the HIP Header and Packet Structure

 If a HIP implementation receives a HIP packet that has other
 unrecoverable problems in the header or packet format, it MAY
 respond, rate limited, with an ICMP packet with type Parameter
 Problem, the Pointer pointing to the field that failed to pass the
 format checks. However, an implementation MUST NOT send an ICMP
 message if the Checksum fails; instead, it MUST silently drop the
 packet.

5.4.3. Invalid Puzzle Solution

 If a HIP implementation receives an I2 packet that has an invalid
 puzzle solution, the behavior depends on the underlying version of
 IP. If IPv6 is used, the implementation SHOULD respond with an ICMP
 packet with type Parameter Problem, the Pointer pointing to the
 beginning of the Puzzle solution #J field in the SOLUTION payload in
 the HIP message.

 If IPv4 is used, the implementation MAY respond with an ICMP packet
 with the type Parameter Problem, copying enough of bytes from the I2
 message so that the SOLUTION parameter fits into the ICMP message,
 the Pointer pointing to the beginning of the Puzzle solution #J
 field, as in the IPv6 case. Note, however, that the resulting ICMPv4
 message exceeds the typical ICMPv4 message size as defined in [2].

5.4.4. Non-existing HIP Association

 If a HIP implementation receives a CLOSE, or UPDATE packet, or any
 other packet whose handling requires an existing association, that
 has either a Receiver or Sender HIT that does not match with any
 existing HIP association, the implementation MAY respond, rate
 limited, with an ICMP packet with the type Parameter Problem, the
 Pointer pointing to the beginning of the first HIT that does not
 match.

Moskowitz, et al. Expires September 3, 2006 [Page 60]

Internet-Draft Host Identity Protocol March 2006

 A host MUST NOT reply with such an ICMP if it receives any of the
 following messages: I1, R2, I2, R2, and NOTIFY. When introducing new
 packet types, a specification SHOULD define the appropriate rules for
 sending or not sending this kind of ICMP replies.

Moskowitz, et al. Expires September 3, 2006 [Page 61]

Internet-Draft Host Identity Protocol March 2006

6. Packet Processing

 Each host is assumed to have a single HIP protocol implementation
 that manages the host's HIP associations and handles requests for new
 ones. Each HIP association is governed by a conceptual state
 machine, with states defined above in Section 4.4. The HIP
 implementation can simultaneously maintain HIP associations with more
 than one host. Furthermore, the HIP implementation may have more
 than one active HIP association with another host; in this case, HIP
 associations are distinguished by their respective HITs. It is not
 possible to have more than one HIP association between any given pair
 of HITs. Consequently, the only way for two hosts to have more than
 one parallel association is to use different HITs, at least at one
 end.

 The processing of packets depends on the state of the HIP
 association(s) with respect to the authenticated or apparent
 originator of the packet. A HIP implementation determines whether it
 has an active association with the originator of the packet based on
 the HITs. In the case of user data carried in a specific transport
 format, the transport format document specifies how the incoming
 packets are matched with the active associations.

6.1. Processing Outgoing Application Data

 In a HIP host, an application can send application level data using
 an identifier specified via the underlying API. The API can be a
 backwards compatible API (see [28]), using identifiers that look
 similar to IP addresses, or a completely new API, providing enhanced
 services related to Host Identities. Depending on the HIP
 implementation, the identifier provided to the application may be
 different; it can be e.g. a HIT or an IP address.

 The exact format and method for transferring the data from the source
 HIP host to the destination HIP host is defined in the corresponding
 transport format document. The actual data is transferred in the
 network using the appropriate source and destination IP addresses.

 In this document, conceptual processing rules are defined only for
 the base case where both hosts have only single usable IP addresses;
 the multi-address multi-homing case will be specified separately.

 The following conceptual algorithm describes the steps that are
 required for handling outgoing datagrams destined to a HIT.

 1. If the datagram has a specified source address, it MUST be a HIT.
 If it is not, the implementation MAY replace the source address
 with a HIT. Otherwise it MUST drop the packet.

Moskowitz, et al. Expires September 3, 2006 [Page 62]

Internet-Draft Host Identity Protocol March 2006

 2. If the datagram has an unspecified source address, the
 implementation must choose a suitable source HIT for the
 datagram.

 3. If there is no active HIP association with the given < source,
 destination > HIT pair, one must be created by running the base
 exchange. While waiting for the base exchange to complete, the
 implementation SHOULD queue at least one packet per HIP
 association to be formed, and it MAY queue more than one.

 4. Once there is an active HIP association for the given < source,
 destination > HIT pair, the outgoing datagram is passed to
 transport handling. The possible transport formats are defined
 in separate documents, of which the ESP transport format for HIP
 is mandatory for all HIP implementations.

 5. Before sending the packet, the HITs in the datagram are replaced
 with suitable IP addresses. For IPv6, the rules defined in [16]
 SHOULD be followed. Note that this HIT-to-IP-address conversion
 step MAY also be performed at some other point in the stack,
 e.g., before wrapping the packet into the output format.

6.2. Processing Incoming Application Data

 The following conceptual algorithm describes the incoming datagram
 handling when HITs are used at the receiving host as application
 level identifiers. More detailed steps for processing packets are
 defined in corresponding transport format documents.

 1. The incoming datagram is mapped to an existing HIP association,
 typically using some information from the packet. For example,
 such mapping may be based on ESP Security Parameter Index (SPI).

 2. The specific transport format is unwrapped, in a way depending on
 the transport format, yielding a packet that looks like a
 standard (unencrypted) IP packet. If possible, this step SHOULD
 also verify that the packet was indeed (once) sent by the remote
 HIP host, as identified by the HIP association.

 3. The IP addresses in the datagram are replaced with the HITs
 associated with the HIP association. Note that this IP-address-
 to-HIT conversion step MAY also be performed at some other point
 in the stack.

 4. The datagram is delivered to the upper layer. Demultiplexing the
 datagram the right upper layer socket is based on the HITs.

Moskowitz, et al. Expires September 3, 2006 [Page 63]

Internet-Draft Host Identity Protocol March 2006

6.3. Solving the Puzzle

 This subsection describes the puzzle solving details.

 In R1, the values I and K are sent in network byte order. Similarly,
 in I2 the values I and J are sent in network byte order. The SHA-1
 hash is created by concatenating, in network byte order, the
 following data, in the following order:

 64-bit random value I, in network byte order, as appearing in R1
 and I2.

 128-bit Initiator HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.

 128-bit Responder HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.

 64-bit random value J, in network byte order, as appearing in I2.

 In order to be a valid response puzzle, the K low-order bits of the
 resulting PHASH digest must be zero.

 Notes:

 i) The length of the data to be hashed is 48 bytes.

 ii) All the data in the hash input MUST be in network byte order.

 iii) The order of the Initiator and Responder HITs are different
 in the R1 and I2 packets, see Section 5.1. Care must be taken to
 copy the values in right order to the hash input.

 The following procedure describes the processing steps involved,
 assuming that the Responder chooses to precompute the R1 packets:

 Precomputation by the Responder:
 Sets up the puzzle difficulty K.
 Creates a signed R1 and caches it.

 Responder:
 Selects a suitable cached R1.
 Generates a random number I.
 Sends I and K in an R1.
 Saves I and K for a Delta time.

Moskowitz, et al. Expires September 3, 2006 [Page 64]

Internet-Draft Host Identity Protocol March 2006

 Initiator:
 Generates repeated attempts to solve the puzzle until a matching J
 is found:
 Ltrunc(PHASH(I | HIT-I | HIT-R | J), K) == 0
 Sends I and J in an I2.

 Responder:
 Verifies that the received I is a saved one.
 Finds the right K based on I.
 Computes V := Ltrunc(PHASH(I | HIT-I | HIT-R | J), K)
 Rejects if V != 0
 Accept if V == 0

6.4. HMAC and SIGNATURE Calculation and Verification

 The following subsections define the actions for processing HMAC,
 HIP_SIGNATURE and HIP_SIGNATURE_2 parameters.

6.4.1. HMAC Calculation

 The following process applies both to the HMAC and HMAC_2 parameters.
 When processing HMAC_2, the difference is that the HMAC calculation
 includes a pseudo HOST_ID field containing the Responder's
 information as sent in the R1 packet earlier.

 Both the Initiator and the Responder should take some care when
 verifying or calculating the HMAC_2. Specifically, the Responder
 should preserve other parameters than the HOST_ID when sending the
 R2. Also, the Initiator has to preserve the HOST_ID exactly as it
 was received in the R1 packet.

 The HMAC parameter is defined in Section 5.2.9 and HMAC_2 parameter
 in Section 5.2.10. HMAC calculation and verification process:

 Packet sender:

 1. Create the HIP packet, without the HMAC or any possible
 HIP_SIGNATURE or HIP_SIGNATURE_2 parameters.

 2. In case of HMAC_2 calculation, add a HOST_ID (Responder)
 parameter to the packet.

 3. Calculate the Length field in the HIP header.

 4. Compute the HMAC.

Moskowitz, et al. Expires September 3, 2006 [Page 65]

Internet-Draft Host Identity Protocol March 2006

 5. In case of HMAC_2, remove the HOST_ID parameter from the packet.

 6. Add the HMAC parameter to the packet and any HIP_SIGNATURE or
 HIP_SIGNATURE_2 parameters that may follow.

 7. Recalculate the Length field in the HIP header.

 Packet receiver:

 1. Verify the HIP header Length field.

 2. Remove the HMAC or HMAC_2 parameter, and if the packet contains
 any HIP_SIGNATURE or HIP_SIGNATURE_2 fields, remove them too,
 saving the contents if they will be needed later.

 3. In case of HMAC_2, build and add a HOST_ID parameter (with
 Responder information) to the packet. The HOST_ID parameter
 should be identical to the one previously received from the
 Responder.

 4. Recalculate the HIP packet length in the HIP header and clear the
 Checksum field (set it to all zeros).

 5. Compute the HMAC and verify it against the received HMAC.

 6. In case of HMAC_2, remove the HOST_ID parameter from the packet
 before further processing.

6.4.2. Signature Calculation

 The following process applies both to the HIP_SIGNATURE and
 HIP_SIGNATURE_2 parameters. When processing HIP_SIGNATURE_2, the
 only difference is that instead of HIP_SIGNATURE parameter, the
 HIP_SIGNATURE_2 parameter is used, and the Initiator's HIT and PUZZLE
 Opaque and Random #I fields are cleared (set to all zeros) before
 computing the signature. The HIP_SIGNATURE parameter is defined in

Section 5.2.11 and the HIP_SIGNATURE_2 parameter in Section 5.2.12.

 Signature calculation and verification process:

 Packet sender:

 1. Create the HIP packet without the HIP_SIGNATURE parameter or any
 parameters that follow the HIP_SIGNATURE parameter.

 2. Calculate the Length field and zero the Checksum field in the HIP
 header.

Moskowitz, et al. Expires September 3, 2006 [Page 66]

Internet-Draft Host Identity Protocol March 2006

 3. Compute the signature.

 4. Add the HIP_SIGNATURE parameter to the packet.

 5. Add any parameters that follow the HIP_SIGNATURE parameter.

 6. Recalculate the Length field in the HIP header, and calculate the
 Checksum field.

 Packet receiver:

 1. Verify the HIP header Length field.

 2. Save the contents of the HIP_SIGNATURE parameter and any
 parameters following the HIP_SIGNATURE parameter and remove them
 from the packet.

 3. Recalculate the HIP packet Length in the HIP header and clear the
 Checksum field (set it to all zeros).

 4. Compute the signature and verify it against the received
 signature.

 The verification can use either the HI received from a HIP packet,
 the HI from a DNS query, if the FQDN has been received in the HOST_ID
 packet, or one received by some other means.

6.5. HIP KEYMAT Generation

 HIP keying material is derived from the Diffie-Hellman Kij produced
 during the HIP base exchange. The Initiator has Kij during the
 creation of the I2 packet, and the Responder has Kij once it receives
 the I2 packet. This is why I2 can already contain encrypted
 information.

 The KEYMAT is derived by feeding Kij and the HITs into the following
 operation; the | operation denotes concatenation.

 KEYMAT = K1 | K2 | K3 | ...
 where

 K1 = SHA-1(Kij | sort(HIT-I | HIT-R) | I | J | 0x01)
 K2 = SHA-1(Kij | K1 | 0x02)
 K3 = SHA-1(Kij | K2 | 0x03)
 ...
 K255 = SHA-1(Kij | K254 | 0xff)
 K256 = SHA-1(Kij | K255 | 0x00)
 etc.

Moskowitz, et al. Expires September 3, 2006 [Page 67]

Internet-Draft Host Identity Protocol March 2006

 Sort(HIT-I | HIT-R) is defined as the network byte order
 concatenation of the two HITs, with the smaller HIT preceding the
 larger HIT, resulting from the numeric comparison of the two HITs
 interpreted as positive (unsigned) 128-bit integers in network byte
 order.

 I and J values are from the puzzle and its solution that were
 exchanged in R1 and I2 messages when this HIP association was set up.
 Both hosts have to store I and J values for the HIP association for
 future use.

 The initial keys are drawn sequentially in the order that is
 determined by the numeric comparison of the two HITs, with comparison
 method described in the previous paragraph. HOST_g denotes the host
 with the greater HIT value, and HOST_l the host with the lower HIT
 value.

 The drawing order for initial keys:

 HIP-gl encryption key for HOST_g's outgoing HIP packets

 HIP-gl integrity (HMAC) key for HOST_g's outgoing HIP packets

 HIP-lg encryption key (currently unused) for HOST_l's outgoing HIP
 packets

 HIP-lg integrity (HMAC) key for HOST_l's outgoing HIP packets

 The number of bits drawn for a given algorithm is the "natural" size
 of the keys. For the mandatory algorithms, the following sizes
 apply:

 AES 128 bits

 SHA-1 160 bits

 NULL 0 bits

6.6. Initiation of a HIP Exchange

 An implementation may originate a HIP exchange to another host based
 on a local policy decision, usually triggered by an application
 datagram, in much the same way that an IPsec IKE key exchange can
 dynamically create a Security Association. Alternatively, a system
 may initiate a HIP exchange if it has rebooted or timed out, or
 otherwise lost its HIP state, as described in Section 4.5.4.

 The implementation prepares an I1 packet and sends it to the IP

Moskowitz, et al. Expires September 3, 2006 [Page 68]

Internet-Draft Host Identity Protocol March 2006

 address that corresponds to the peer host. The IP address of the
 peer host may be obtained via conventional mechanisms, such as DNS
 lookup. The I1 contents are specified in Section 5.3.1. The
 selection of which host identity to use, if a host has more than one
 to choose from, is typically a policy decision.

 The following steps define the conceptual processing rules for
 initiating a HIP exchange:

 1. The Initiator gets the Responder's HIT and one or more addresses
 either from a DNS lookup of the Responder's FQDN, from some other
 repository, or from a local table. If the Initiator does not
 know the Responder's HIT, it may attempt opportunistic mode by
 using NULL (all zeros) as the Responder's HIT.

 2. The Initiator sends an I1 to one of the Responder's addresses.
 The selection of which address to use is a local policy decision.

 3. Upon sending an I1, the sender shall transition to state I1-SENT,
 start a timer whose timeout value should be larger than the
 worst-case anticipated RTT, and shall increment a timeout counter
 associated with the I1.

 4. Upon timeout, the sender SHOULD retransmit the I1 and restart the
 timer, up to a maximum of I1_RETRIES_MAX tries.

6.6.1. Sending Multiple I1s in Parallel

 For the sake of minimizing the session establishment latency, an
 implementation MAY send the same I1 to more than one of the
 Responder's addresses. However, it MUST NOT send to more than three
 (3) addresses in parallel. Furthermore, upon timeout, the
 implementation MUST refrain from sending the same I1 packet to
 multiple addresses. These limitations are placed order to avoid
 congestion of the network, and potential DoS attacks that might
 happen, e.g., because someone claims to have hundreds or thousands of
 addresses.

 As the Responder is not guaranteed to distinguish the duplicate I1's
 it receives at several of its addresses (because it avoids to store
 states when it answers back an R1), the Initiator may receive several
 duplicate R1's.

 The Initiator SHOULD then select the initial preferred destination
 address using the source address of the selected received R1, and use
 the preferred address as a source address for the I2. Processing
 rules for received R1s are discussed in Section 6.8.

Moskowitz, et al. Expires September 3, 2006 [Page 69]

Internet-Draft Host Identity Protocol March 2006

6.6.2. Processing Incoming ICMP Protocol Unreachable Messages

 A host may receive an ICMP Destination Protocol Unreachable message
 as a response to sending an HIP I1 packet. Such a packet may be an
 indication that the peer does not support HIP, or it may be an
 attempt to launch an attack by making the Initiator believe that the
 Responder does not support HIP.

 When a system receives an ICMP Destination Protocol Unreachable
 message while it is waiting for an R1, it MUST NOT terminate the
 wait. It MAY continue as if it had not received the ICMP message,
 and send a few more I1s. Alternatively, it MAY take the ICMP message
 as a hint that the peer most probably does not support HIP, and
 return to state UNASSOCIATED earlier than otherwise. However, at
 minimum, it MUST continue waiting for an R1 for a reasonable time
 before returning to UNASSOCIATED.

6.7. Processing Incoming I1 Packets

 An implementation SHOULD reply to an I1 with an R1 packet, unless the
 implementation is unable or unwilling to setup a HIP association. If
 the implementation is unable to setup a HIP association, the host
 SHOULD send an ICMP Destination Protocol Unreachable,
 Administratively Prohibited, message to the I1 source address. If
 the implementation is unwilling to setup a HIP association, the host
 MAY ignore the I1. This latter case may occur during a DoS attack
 such as an I1 flood.

 The implementation MUST be able to handle a storm of received I1
 packets, discarding those with common content that arrive within a
 small time delta.

 A spoofed I1 can result in an R1 attack on a system. An R1 sender
 MUST have a mechanism to rate limit R1s to an address.

 It is RECOMMENDED that the HIP state machine does not transition upon
 sending an R1.

 The following steps define the conceptual processing rules for
 responding to an I1 packet:

 1. The Responder MUST check that the Responder HIT in the received
 I1 is either one of its own HITs, or NULL.

 2. If the Responder is in ESTABLISHED state, the Responder MAY
 respond to this with an R1 packet, prepare to drop existing SAs
 and stay at ESTABLISHED state.

Moskowitz, et al. Expires September 3, 2006 [Page 70]

Internet-Draft Host Identity Protocol March 2006

 3. If the Responder is in I1-SENT state, it must make a comparison
 between the sender's HIT and its own HIT. If the sender's HIT is
 greater than its own HIT, it should drop the I1 and stay at I1-
 SENT. If the sender's HIT is smaller than its own HIT, it should
 send R1 and stay at I1-SENT. The HIT comparison goes similarly
 as in Section 6.5.

 4. If the implementation chooses to respond to the I1 with an R1
 packet, it creates a new R1 or selects a precomputed R1 according
 to the format described in Section 5.3.2.

 5. The R1 MUST contain the received Responder HIT, unless the
 received HIT is NULL, in which case the Responder SHOULD select a
 HIT that is constructed with the MUST algorithm in Section 3,
 which is currently RSA. Other than that, selecting the HIT is a
 local policy matter.

 6. The Responder sends the R1 to the source IP address of the I1
 packet.

6.7.1. R1 Management

 All compliant implementations MUST produce R1 packets. An R1 packet
 MAY be precomputed. An R1 packet MAY be reused for time Delta T,
 which is implementation dependent. R1 information MUST not be
 discarded until Delta S after T. Time S is the delay needed for the
 last I2 to arrive back to the Responder.

 An implementation MAY keep state about received I1s and match the
 received I2s against the state, as discussed in Section 4.1.1.

6.7.2. Handling Malformed Messages

 If an implementation receives a malformed I1 message, it SHOULD NOT
 respond with a NOTIFY message, as such practice could open up a
 potential denial-of-service danger. Instead, it MAY respond with an
 ICMP packet, as defined in Section 5.4.

6.8. Processing Incoming R1 Packets

 A system receiving an R1 MUST first check to see if it has sent an I1
 to the originator of the R1 (i.e., it is in state I1-SENT). If so,
 it SHOULD process the R1 as described below, send an I2, and go to
 state I2-SENT, setting a timer to protect the I2. If the system is
 in state I2-SENT, it MAY respond to an R1 if the R1 has a larger R1
 generation counter; if so, it should drop its state due to processing
 the previous R1 and start over from state I1-SENT. If the system is
 in any other state with respect to that host, it SHOULD silently drop

Moskowitz, et al. Expires September 3, 2006 [Page 71]

Internet-Draft Host Identity Protocol March 2006

 the R1.

 When sending multiple I1s, an Initiator SHOULD wait for a small
 amount of time after the first R1 reception to allow possibly
 multiple R1s to arrive, and it SHOULD respond to an R1 among the set
 with the largest R1 generation counter.

 The following steps define the conceptual processing rules for
 responding to an R1 packet:

 1. A system receiving an R1 MUST first check to see if it has sent
 an I1 to the originator of the R1 (i.e., it has a HIP
 association that is in state I1-SENT and that is associated with
 the HITs in the R1. IP addresses in the received R1 packet
 SHOULD be ignored and the match SHOULD be based on HITs only).
 If so, it should process the R1 as described below. Note that
 when the connection was initialized in opportunistic mode, HITs
 cannot be used, but the Initiator must rely on the Responder's
 IP address in the received R1 packet.

 2. Otherwise, if the system is in any other state than I1-SENT or
 I2-SENT with respect to the HITs included in the R1, it SHOULD
 silently drop the R1 and remain in the current state.

 3. If the HIP association state is I1-SENT or I2-SENT, the received
 Initiator's HIT MUST correspond to the HIT used in the original,
 I1 and the Responder's HIT MUST correspond to the one used,
 unless the I1 contained a NULL HIT.

 4. The system SHOULD validate the R1 signature before applying
 further packet processing, according to Section 5.2.12.

 5. If the HIP association state is I1-SENT, and multiple valid R1s
 are present, the system SHOULD select from among the R1s with
 the largest R1 generation counter.

 6. If the HIP association state is I2-SENT, the system MAY reenter
 state I1-SENT and process the received R1 if it has a larger R1
 generation counter than the R1 responded to previously.

 7. The R1 packet may have the A bit set -- in this case, the system
 MAY choose to refuse it by dropping the R1 and returning to
 state UNASSOCIATED. The system SHOULD consider dropping the R1
 only if it used a NULL HIT in I1. If the A bit is set, the
 Responder's HIT is anonymous and should not be stored.

 8. The system SHOULD attempt to validate the HIT against the
 received Host Identity.

Moskowitz, et al. Expires September 3, 2006 [Page 72]

Internet-Draft Host Identity Protocol March 2006

 9. The system MUST store the received R1 generation counter for
 future reference.

 10. The system attempts to solve the puzzle in R1. The system MUST
 terminate the search after exceeding the remaining lifetime of
 the puzzle. If the puzzle is not successfully solved, the
 implementation may either resend I1 within the retry bounds or
 abandon the HIP exchange.

 11. The system computes standard Diffie-Hellman keying material
 according to the public value and Group ID provided in the
 DIFFIE_HELLMAN parameter. The Diffie-Hellman keying material
 Kij is used for key extraction as specified in Section 6.5. If
 the received Diffie-Hellman Group ID is not supported, the
 implementation may either resend I1 within the retry bounds or
 abandon the HIP exchange.

 12. The system selects the HIP transform from the choices presented
 in the R1 packet and uses the selected values subsequently when
 generating and using encryption keys, and when sending the I2.
 If the proposed alternatives are not acceptable to the system,
 it may either resend I1 within the retry bounds or abandon the
 HIP exchange.

 13. The system initializes the remaining variables in the associated
 state, including Update ID counters.

 14. The system prepares and sends an I2, as described in
Section 5.3.3.

 15. The system SHOULD start a timer whose timeout value should be
 larger than the worst-case anticipated RTT, and MUST increment a
 timeout counter associated with the I2. The sender SHOULD
 retransmit the I2 upon a timeout and restart the timer, up to a
 maximum of I2_RETRIES_MAX tries.

 16. If the system is in state I1-SENT, it shall transition to state
 I2-SENT. If the system is in any other state, it remains in the
 current state.

6.8.1. Handling Malformed Messages

 If an implementation receives a malformed R1 message, it MUST
 silently drop the packet. Sending a NOTIFY or ICMP would not help,
 as the sender of the R1 typically doesn't have any state. An
 implementation SHOULD wait for some more time for a possible good R1,
 after which it MAY try again by sending a new I1 packet.

Moskowitz, et al. Expires September 3, 2006 [Page 73]

Internet-Draft Host Identity Protocol March 2006

6.9. Processing Incoming I2 Packets

 Upon receipt of an I2, the system MAY perform initial checks to
 determine whether the I2 corresponds to a recent R1 that has been
 sent out, if the Responder keeps such state. For example, the sender
 could check whether the I2 is from an address or HIT that has
 recently received an R1 from it. The R1 may have had Opaque data
 included that was echoed back in the I2. If the I2 is considered to
 be suspect, it MAY be silently discarded by the system.

 Otherwise, the HIP implementation SHOULD process the I2. This
 includes validation of the puzzle solution, generating the Diffie-
 Hellman key, decrypting the Initiator's Host Identity, verifying the
 signature, creating state, and finally sending an R2.

 The following steps define the conceptual processing rules for
 responding to an I2 packet:

 1. The system MAY perform checks to verify that the I2 corresponds
 to a recently sent R1. Such checks are implementation
 dependent. See Appendix A for a description of an example
 implementation.

 2. The system MUST check that the Responder's HIT corresponds to
 one of its own HITs.

 3. If the system is in the R2-SENT state, it MAY check if the newly
 received I2 is similar to the one that triggered moving to R2-
 SENT. If so, it MAY retransmit a previously sent R2, reset the
 R2-SENT timer, and stay in R2-SENT.

 4. If the system is in the I2-SENT state, it makes a comparison
 between its local and sender's HITs (similarly as in

Section 6.5). If the local HIT is smaller than the sender's
 HIT, it should drop the I2 packet. Otherwise, the system should
 process the received I2 packet.

 5. To avoid the possibility to end up with different session keys
 due to symmetric operation of the peer nodes, the Diffie-Hellman
 key, I, and J selection is also based on the HIT comparison. If
 the local HIT is smaller than the peer HIT, the system uses peer
 Diffie-Hellman key and nonce I from the R1 packet received
 earlier. The local Diffie-Hellman key and nonce J are taken
 from the I2 packet sent to the peer earlier. Otherwise, it uses
 peer Diffie-Hellman key and nonce J from the just arrived I2.
 The local Diffie-Hellman key and nonce I are the ones that it
 sent ealier in the R1 packet.

Moskowitz, et al. Expires September 3, 2006 [Page 74]

Internet-Draft Host Identity Protocol March 2006

 6. If the system is in any other state than R2-SENT, it SHOULD
 check that the echoed R1 generation counter in I2 is within the
 acceptable range. Implementations MUST accept puzzles from the
 current generation and MAY accept puzzles from earlier
 generations. If the newly received I2 is outside the accepted
 range, the I2 is stale (perhaps replayed) and SHOULD be dropped.

 7. The system MUST validate the solution to the puzzle by computing
 the hash described in Section 5.3.3 using the same hash
 algorithm used to generate the Responder's HIT.

 8. The I2 MUST have a single value in the HIP_TRANSFORM parameter,
 which MUST match one of the values offered to the Initiator in
 the R1 packet.

 9. The system must derive Diffie-Hellman keying material Kij based
 on the public value and Group ID in the DIFFIE_HELLMAN
 parameter. This key is used to derive the HIP association keys,
 as described in Section 6.5. If the Diffie-Hellman Group ID is
 unsupported, the I2 packet is silently dropped.

 10. The encrypted HOST_ID decrypted by the Initiator encryption key
 defined in Section 6.5. If the decrypted data is not a HOST_ID
 parameter, the I2 packet is silently dropped.

 11. The implementation SHOULD also verify that the Initiator's HIT
 in the I2 corresponds to the Host Identity sent in the I2.

 12. The system MUST verify the HMAC according to the procedures in
Section 5.2.9.

 13. The system MUST verify the HIP_SIGNATURE according to
Section 5.2.11 and Section 5.3.3.

 14. If the checks above are valid, then the system proceeds with
 further I2 processing; otherwise, it discards the I2 and remains
 in the same state.

 15. The I2 packet may have the A bit set -- in this case, the system
 MAY choose to refuse it by dropping the I2 and returning to
 state UNASSOCIATED. If the A bit is set, the Initiator's HIT is
 anonymous and should not be stored.

 16. The system initializes the remaining variables in the associated
 state, including Update ID counters.

 17. Upon successful processing of an I2 in states UNASSOCIATED, I1-
 SENT, I2-SENT, and R2-SENT, an R2 is sent and the state machine

Moskowitz, et al. Expires September 3, 2006 [Page 75]

Internet-Draft Host Identity Protocol March 2006

 transitions to state R2-SENT.

 18. Upon successful processing of an I2 in state ESTABLISHED, the
 old HIP association is dropped and a new one is installed, an R2
 is sent, and the state machine transitions to R2-SENT.

 19. Upon transitioning to R2-SENT, start a timer. Move to
 ESTABLISHED if some data has been received on the incoming HIP
 association, or an UPDATE packet has been received (or some
 other packet that indicates that the peer has moved to
 ESTABLISHED). If the timer expires (allowing for maximal
 retransmissions of I2s), move to UNASSOCIATED.

6.9.1. Handling Malformed Messages

 If an implementation receives a malformed I2 message, the behavior
 SHOULD depend on how much checks the message has already passed. If
 the puzzle solution in the message has already been checked, the
 implementation SHOULD report the error by responding with a NOTIFY
 packet. Otherwise the implementation MAY respond with an ICMP
 message as defined in Section 5.4.

6.10. Processing Incoming R2 Packets

 An R2 received in states UNASSOCIATED, I1-SENT, or ESTABLISHED
 results in the R2 being dropped and the state machine staying in the
 same state. If an R2 is received in state I2-SENT, it SHOULD be
 processed.

 The following steps define the conceptual processing rules for
 incoming R2 packet:

 1. The system MUST verify that the HITs in use correspond to the
 HITs that were received in R1.

 2. The system MUST verify the HMAC_2 according to the procedures in
Section 5.2.10.

 3. The system MUST verify the HIP signature according to the
 procedures in Section 5.2.11.

 4. If any of the checks above fail, there is a high probability of
 an ongoing man-in-the-middle or other security attack. The
 system SHOULD act accordingly, based on its local policy.

 5. If the system is in any other state than I2-SENT, the R2 is
 silently dropped.

Moskowitz, et al. Expires September 3, 2006 [Page 76]

Internet-Draft Host Identity Protocol March 2006

 6. Upon successful processing of the R2, the state machine moves to
 state ESTABLISHED.

6.11. Sending UPDATE Packets

 A host sends an UPDATE packet when it wants to update some
 information related to a HIP association. There are a number of
 likely situations, e.g. mobility management and rekeying of an
 existing ESP Security Association. The following paragraphs define
 the conceptual rules for sending an UPDATE packet to the peer.
 Additional steps can be defined in other documents where the UPDATE
 packet is used.

 The system first determines whether there are any outstanding UPDATE
 messages that may conflict with the new UPDATE message under
 consideration. When multiple UPDATEs are outstanding (not yet
 acknowledged), the sender must assume that such UPDATEs may be
 processed in an arbitrary order. Therefore, any new UPDATEs that
 depend on a previous outstanding UPDATE being successfully received
 and acknowledged MUST be postponed until reception of the necessary
 ACK(s) occurs. One way to prevent any conflicts is to only allow one
 outstanding UPDATE at a time, but allowing multiple UPDATEs may
 improve the performance of mobility and multihoming protocols.

 1. The first UPDATE packet is sent with Update ID of zero.
 Otherwise, the system increments its own Update ID value by one
 before continuing the below steps.

 2. The system creates an UPDATE packet that contains a SEQ parameter
 with the current value of Update ID. The UPDATE packet may also
 include an ACK of the peer's Update ID found in a received UPDATE
 SEQ parameter, if any.

 3. The system sends the created UPDATE packet and starts an UPDATE
 timer. The default value for the timer is 2 * RTT estimate. If
 multiple UPDATEs are outstanding, multiple timers are in effect.

 4. If the UPDATE timer expires, the UPDATE is resent. The UPDATE
 can be resent UPDATE_RETRY_MAX times. The UPDATE timer SHOULD be
 exponentially backed off for subsequent retransmissions. If no
 acknowledgment is received from the peer after UPDATE_RETRY_MAX
 times, the HIP association is considered to be broken and the
 state machine should move from state ESTABLISHED to state CLOSING
 as depicted in Section 4.4.3. The UPDATE timer is cancelled upon
 receiving an ACK from the peer that acknowledges receipt of the
 UPDATE.

Moskowitz, et al. Expires September 3, 2006 [Page 77]

Internet-Draft Host Identity Protocol March 2006

6.12. Receiving UPDATE Packets

 When a system receives an UPDATE packet, its processing depends on
 the state of the HIP association and the presence of and values of
 the SEQ and ACK parameters. Typically, an UPDATE message also
 carries optional parameters whose handling is defined in separate
 documents.

 For each association, the peer's next expected in-sequence Update ID
 ("peer Update ID") is stored. Initially, this value is zero. Update
 ID comparisons of "less than" and "greater than" are performed with
 respect to a circular sequence number space.

 The sender may send multiple outstanding UPDATE messages. These
 messages are processed in the order in which they are received at the
 receiver (i.e., no resequencing is performed). When processing
 UPDATEs out-of-order, the receiver MUST keep track of which UPDATEs
 were previously processed, so that duplicates or retransmissions are
 ACKed and not reprocessed. A receiver MAY choose to define a receive
 window of Update IDs that it is willing to process at any given time,
 and discard received UPDATEs falling outside of that window.

 1. If there is no corresponding HIP association, the implementation
 MAY reply with an ICMP Parameter Problem, as specified in

Section 5.4.4.

 2. If the association is in the ESTABLISHED state and the SEQ (but
 not ACK) parameter is present, the UPDATE is processed and
 replied as described in Section 6.12.1.

 3. If the association is in the ESTABLISHED state and the ACK (but
 not SEQ) parameter is present, the UPDATE is processed as
 described in Section 6.12.2.

 4. If the association is in the ESTABLISHED state and there is both
 an ACK and SEQ in the UPDATE, the ACK is first processed as
 described in Section 6.12.2 and then the rest of the UPDATE is
 processed as described in Section 6.12.1.

6.12.1. Handling a SEQ parameter in a received UPDATE message

 1. If the Update ID in the received SEQ is not the next in sequence
 Update ID and is greater than the receiver's window for new
 UPDATEs, the packet MUST be dropped.

 2. If the Update ID in the received SEQ corresponds to an UPDATE
 that has recently been processed, the packet is treated as a
 retransmission. The HMAC verification (next step) MUST NOT be

Moskowitz, et al. Expires September 3, 2006 [Page 78]

Internet-Draft Host Identity Protocol March 2006

 skipped. (A byte-by-byte comparison of the received and a stored
 packet would be OK, though.) It is recommended that a host cache
 UPDATE packets sent with ACKs to avoid the cost of generating a
 new ACK packet to respond to a replayed UPDATE. The system MUST
 acknowledge, again, such (apparent) UPDATE message
 retransmissions but SHOULD also consider rate-limiting such
 retransmission responses to guard against replay attacks.

 3. The system MUST verify the HMAC in the UPDATE packet. If the
 verification fails, the packet MUST be dropped.

 4. The system MAY verify the SIGNATURE in the UPDATE packet. If the
 verification fails, the packet SHOULD be dropped and an error
 message logged.

 5. If a new SEQ parameter is being processed, the parameters in the
 UPDATE are then processed. The system MUST record the Update ID
 in the received SEQ parameter, for replay protection.

 6. An UPDATE acknowledgement packet with ACK parameter is prepared
 and sent to the peer. This ACK parameter may be included in a
 separate UPDATE or piggybacked in an UPDATE with SEQ parameter,
 as described in Section Section 5.3.5. The ACK parameter MAY
 acknowledge more than one of the peer's Update IDs.

6.12.2. Handling an ACK Parameter in a Received UPDATE Packet

 1. The sequence number reported in the ACK must match with an
 earlier sent UPDATE packet that has not already been
 acknowledged. If no match is found or if the ACK does not
 acknowledge a new UPDATE, the packet MUST either be dropped if no
 SEQ parameter is present, or the processing steps in

Section 6.12.1 are followed.

 2. The system MUST verify the HMAC in the UPDATE packet. If the
 verification fails, the packet MUST be dropped.

 3. The system MAY verify the SIGNATURE in the UPDATE packet. If the
 verification fails, the packet SHOULD be dropped and an error
 message logged.

 4. The corresponding UPDATE timer is stopped (see Section 6.11) so
 that the now acknowledged UPDATE is no longer retransmitted. If
 multiple UPDATEs are newly acknowledged, multiple timers are
 stopped.

Moskowitz, et al. Expires September 3, 2006 [Page 79]

Internet-Draft Host Identity Protocol March 2006

6.13. Processing NOTIFY Packets

 Processing NOTIFY packets is OPTIONAL. If processed, any errors
 noted by the NOTIFY parameter SHOULD be taken into account by the HIP
 state machine (e.g., by terminating a HIP handshake), and the error
 SHOULD be logged.

6.14. Processing CLOSE Packets

 When the host receives a CLOSE message it responds with a CLOSE_ACK
 message and moves to CLOSED state. (The authenticity of the CLOSE
 message is verified using both HMAC and SIGNATURE). This processing
 applies whether or not the HIP association state is CLOSING in order
 to handle CLOSE messages from both ends crossing in flight.

 The HIP association is not discarded before the host moves from the
 UNASSOCIATED state.

 Once the closing process has started, any need to send data packets
 will trigger creating and establishing of a new HIP association,
 starting with sending an I1.

 If there is no corresponding HIP association, the CLOSE packet is
 dropped.

6.15. Processing CLOSE_ACK Packets

 When a host receives a CLOSE_ACK message it verifies that it is in
 CLOSING or CLOSED state and that the CLOSE_ACK was in response to the
 CLOSE (using the included ECHO_REPLY in response to the sent
 ECHO_REQUEST).

 The CLOSE_ACK uses HMAC and SIGNATURE for verification. The state is
 discarded when the state changes to UNASSOCIATED and, after that, the
 host MAY respond with an ICMP Parameter Problem to an incoming CLOSE
 message (See Section 5.4.4).

6.16. Dropping HIP Associations

 A HIP implementation is free to drop a HIP association at any time,
 based on its own policy. If a HIP host decides to drop a HIP
 association, it deletes the corresponding HIP state, including the
 keying material. The implementation MUST also drop the peer's R1
 generation counter value, unless a local policy explicitly defines
 that the value of that particular host is stored. An implementation
 MUST NOT store R1 generation counters by default, but storing R1
 generation counter values, if done, MUST be configured by explicit
 HITs.

Moskowitz, et al. Expires September 3, 2006 [Page 80]

Internet-Draft Host Identity Protocol March 2006

7. HIP Policies

 There are a number of variables that will influence the HIP exchanges
 that each host must support. All HIP implementations MUST support
 more than one simultaneous HIs, at least one of which SHOULD be
 reserved for anonymous usage. Although anonymous HIs will be rarely
 used as Responder HIs, they will be common for Initiators. Support
 for more than two HIs is RECOMMENDED.

 Many Initiators would want to use a different HI for different
 Responders. The implementations SHOULD provide for an ACL of
 Initiator HIT to Responder HIT. This ACL SHOULD also include
 preferred transform and local lifetimes.

 The value of K used in the HIP R1 packet can also vary by policy. K
 should never be greater than 20, but for trusted partners it could be
 as low as 0.

 Responders would need a similar ACL, representing which hosts they
 accept HIP exchanges, and the preferred transform and local
 lifetimes. Wildcarding SHOULD be supported for this ACL also.

Moskowitz, et al. Expires September 3, 2006 [Page 81]

Internet-Draft Host Identity Protocol March 2006

8. Security Considerations

 HIP is designed to provide secure authentication of hosts. HIP also
 attempts to limit the exposure of the host to various denial-of-
 service and man-in-the-middle (MitM) attacks. In so doing, HIP
 itself is subject to its own DoS and MitM attacks that potentially
 could be more damaging to a host's ability to conduct business as
 usual.

 Denial-of-service attacks take advantage of the cost of start of
 state for a protocol on the Responder compared to the 'cheapness' on
 the Initiator. HIP makes no attempt to increase the cost of the
 start of state on the Initiator, but makes an effort to reduce the
 cost to the Responder. This is done by having the Responder start
 the 3-way exchange instead of the Initiator, making the HIP protocol
 4 packets long. In doing this, packet 2 becomes a 'stock' packet
 that the Responder MAY use many times. The duration of use is a
 paranoia versus throughput concern. Using the same Diffie-Hellman
 values and random puzzle #I has some risk. This risk needs to be
 balanced against a potential storm of HIP I1 packets.

 This shifting of the start of state cost to the Initiator in creating
 the I2 HIP packet, presents another DoS attack. The attacker spoofs
 the I1 HIP packet and the Responder sends out the R1 HIP packet.
 This could conceivably tie up the 'Initiator' with evaluating the R1
 HIP packet, and creating the I2 HIP packet. The defense against this
 attack is to simply ignore any R1 packet where a corresponding I1 was
 not sent.

 A second form of DoS attack arrives in the I2 HIP packet. Once the
 attacking Initiator has solved the puzzle, it can send packets with
 spoofed IP source addresses with either invalid encrypted HIP payload
 component or a bad HIP signature. This would take resources in the
 Responder's part to reach the point to discover that the I2 packet
 cannot be completely processed. The defense against this attack is
 after N bad I2 packets, the Responder would discard any I2s that
 contain the given Initiator HIT. Thus will shut down the attack.
 The attacker would have to request another R1 and use that to launch
 a new attack. The Responder could up the value of K while under
 attack. On the downside, valid I2s might get dropped too.

 A third form of DoS attack is emulating the restart of state after a
 reboot of one of the partners. A host restarting would send an I1 to
 a peer, which would respond with an R1 even if it were in the
 ESTABLISHED state. If the I1 were spoofed, the resulting R1 would be
 received unexpectedly by the spoofed host and would be dropped, as in
 the first case above.

Moskowitz, et al. Expires September 3, 2006 [Page 82]

Internet-Draft Host Identity Protocol March 2006

 A fourth form of DoS attack is emulating the end of state. HIP
 relies on timers plus a CLOSE/CLOSE_ACK handshake to explicitly
 signals the end of a state. Because both CLOSE and CLOSE_ACK
 messages contain an HMAC, an outsider cannot close a connection. The
 presence of an additional SIGNATURE allows middle-boxes to inspect
 these messages and discard the associated state (for e.g.,
 firewalling, SPI-based NATing, etc.). However, the optional behavior
 of replying to CLOSE with an ICMP Parameter Problem packet (as
 described in Section 5.4.4) might allow an IP spoofer sending CLOSE
 messages to launch reflection attacks.

 A fifth form of DoS attack is replaying R1s to cause the Initiator to
 solve stale puzzles and become out of synchronization with the
 Responder. The R1 generation counter is a monotonically increasing
 counter designed to protect against this attack, as described in
 section Section 4.1.4.

 Man-in-the-middle attacks are difficult to defend against, without
 third-party authentication. A skillful MitM could easily handle all
 parts of HIP; but HIP indirectly provides the following protection
 from a MitM attack. If the Responder's HI is retrieved from a signed
 DNS zone, a certificate, or through some other secure means, the
 Initiator can use this to validate the R1 HIP packet.

 Likewise, if the Initiator's HI is in a secure DNS zone, a trusted
 certificate, or otherwise securely available, the Responder can
 retrieve it after it gets the I2 HIP packet and validate that.
 However, since an Initiator may choose to use an anonymous HI, it
 knowingly risks a MitM attack. The Responder may choose not to
 accept a HIP exchange with an anonymous Initiator.

 If an Initiator wants to use opportunistic mode, it is vulnerable to
 man-in-the-middle attacks. Furthermore, the available HI types are
 limited to the MUST implement algorithms, as per Section 3. Hence,
 if a future specification deprecates the current MUST implement
 algorithm(s) and replaces it (them) with some new one(s), backward
 compatibility cannot be preserved.

 Since not all hosts will ever support HIP, ICMP 'Destination Protocol
 Unreachable' are to be expected and present a DoS attack. Against an
 Initiator, the attack would look like the Responder does not support
 HIP, but shortly after receiving the ICMP message, the Initiator
 would receive a valid R1 HIP packet. Thus to protect from this
 attack, an Initiator should not react to an ICMP message until a
 reasonable delta time to get the real Responder's R1 HIP packet. A
 similar attack against the Responder is more involved. First an ICMP
 message is expected if the I1 was a DoS attack and the real owner of
 the spoofed IP address does not support HIP. The Responder SHOULD

Moskowitz, et al. Expires September 3, 2006 [Page 83]

Internet-Draft Host Identity Protocol March 2006

 NOT act on this ICMP message to remove the minimal state from the R1
 HIP packet (if it has one), but wait for either a valid I2 HIP packet
 or the natural timeout of the R1 HIP packet. This is to allow for a
 sophisticated attacker that is trying to break up the HIP exchange.
 Likewise, the Initiator should ignore any ICMP message while waiting
 for an R2 HIP packet, deleting state only after a natural timeout.

Moskowitz, et al. Expires September 3, 2006 [Page 84]

Internet-Draft Host Identity Protocol March 2006

9. IANA Considerations

 This document specifies the IP protocol number 253 to be used with
 Host Identity Protocol during the experimental phase. This number
 has been reserved by IANA for experimental use (see [19].

 This document defines a new 128-bit value under the CGA Message Type
 namespace [20], 0xF0EF F02F BFF4 3D0F E793 0C3C 6E61 74EA.

 This document also creates a set of new name spaces. These are
 described below.

 Packet Type

 The 7-bit Packet Type field in a HIP protocol packet describes the
 type of a HIP protocol message. It is defined in Section 5.1.
 The current values are defined in Section 5.3.1 through

Section 5.3.8 and are listed below:

 * I1 is 1.

 * R1 is 2.

 * I2 is 3.

 * R2 is 4.

 * UPDATE is 16.

 * NOTIFY is 17.

 * CLOSE is 18.

 * CLOSE_ACK is 19.

 New values are assigned through IETF Consensus [9].

 HIP Version

 The four bit Version field in a HIP protocol packet describes the
 version of the HIP protocol. It is defined in Section 5.1. The
 only currently defined value is 1. New values are assigned
 through IETF Consensus.

 Parameter Type

 The 16 bit Type field in a HIP parameters describes the type of
 the parameter. It is defined in Section 5.2.1. The current

Moskowitz, et al. Expires September 3, 2006 [Page 85]

Internet-Draft Host Identity Protocol March 2006

 values are defined in Section 5.2.3 through Section 5.2.18 and are
 listed below:

 * R1_COUNTER is 128.

 * PUZZLE is 257.

 * SOLUTION is 321.

 * SEQ is 385.

 * ACK is 449.

 * DIFFIE_HELLMAN is 513.

 * HIP_TRANSFORM is 577.

 * ENCRYPTED is 641.

 * HOST_ID is 705.

 * CERT is 768.

 * NOTIFY is 832.

 * ECHO_REQUEST is 897.

 * ECHO_RESPONSE is 961.

 * HMAC is 61505.

 * HMAC_2 is 61569.

 * HIP_SIGNATURE_2 is 61633.

 * HIP_SIGNATURE is 61697.

 * ECHO_REQUEST is 63661.

 * ECHO_RESPONSE is 63425.

 The type codes 0 through 1023 and 61440 through 65535 are reserved
 for future base protocol extensions, and are assigned through IETF
 Consensus.

 The type codes 32768 through 49141 are reserved for
 experimentation and private use. Types SHOULD be selected in a

Moskowitz, et al. Expires September 3, 2006 [Page 86]

Internet-Draft Host Identity Protocol March 2006

 random fashion from this range, thereby reducing the probability
 of collisions. A method employing genuine randomness (such as
 flipping a coin) SHOULD be used.

 All other type codes are assigned through First Come First Served,
 with Specification Required [9].

 Group ID

 The eight bit Group ID values appear in the DIFFIE_HELLMAN
 parameter, defined in Section 5.2.6. The currently defined values
 are listed below:

 * 384-bit group is 1.

 * OAKLEY well known group 1 is 2.

 * 1536-bit MODP group is 3.

 * 3072-bit MODP group is 4.

 * 6144-bit MODP group is 5.

 * 8192-bit MODP group is 6.

 * Value 0 is reserved.

 New values either from the reserved or unassigned space are
 assigned through IETF Consensus.

 Suite ID

 The 16 bit Suite ID values in a HIP_TRANSFORM parameter are
 defined in Section 5.2.7. The currently defined values are listed
 below:

 * AES-CBC with HMAC-SHA1 is 1.

 * 3DES-CBC with HMAC-SHA1 is 2.

 * 3DES-CBC with HMAC-MD5 is 3.

 * BLOWFISH-CBC with HMAC-SHA1 is 4.

 * NULL-ENCRYPT with HMAC-SHA1 is 5.

 * NULL-ENCRYPT with HMAC-MD5 is 6.

Moskowitz, et al. Expires September 3, 2006 [Page 87]

Internet-Draft Host Identity Protocol March 2006

 * Value 0 is reserved.

 New values either from the reserved or unassigned space are
 assigned through IETF Consensus.

 DI-Type

 The four bit DI-Type values in a HOST_ID parameter are defined in
Section 5.2.8. The currently defined values are listed below:

 * None included is 0.

 * FQDN is 1.

 * NAI is 2.

 New values are assigned through IETF Consensus.

 Notify Message Type

 The 16 bit Notify Message Type field in a NOTIFY parameter is
 defined in Section 5.2.16. The currently defined values are
 listed below:

 * UNSUPPORTED_CRITICAL_PARAMETER_TYPE is 1.

 * INVALID_SYNTAX is 7.

 * NO_DH_PROPOSAL_CHOSEN is 14.

 * INVALID_DH_CHOSEN is 15.

 * NO_HIP_PROPOSAL_CHOSEN is 16.

 * INVALID_HIP_TRANSFORM_CHOSEN is 17.

 * AUTHENTICATION_FAILED is 24.

 * CHECKSUM_FAILED is 26.

 * HMAC_FAILED is 28.

 * ENCRYPTION_FAILED is 32.

 * INVALID_HIT is 40.

 * BLOCKED_BY_POLICY is 42.

Moskowitz, et al. Expires September 3, 2006 [Page 88]

Internet-Draft Host Identity Protocol March 2006

 * SERVER_BUSY_PLEASE_RETRY is 44.

 New values are assigned through First Come First Served, with
 Specification Required.

Moskowitz, et al. Expires September 3, 2006 [Page 89]

Internet-Draft Host Identity Protocol March 2006

10. Acknowledgments

 The drive to create HIP came to being after attending the MALLOC
 meeting at the 43rd IETF meeting. Baiju Patel and Hilarie Orman
 really gave the original author, Bob Moskowitz, the assist to get HIP
 beyond 5 paragraphs of ideas. It has matured considerably since the
 early drafts thanks to extensive input from IETFers. Most
 importantly, its design goals are articulated and are different from
 other efforts in this direction. Particular mention goes to the
 members of the NameSpace Research Group of the IRTF. Noel Chiappa
 provided the framework for LSIs and Keith Moore the impetus to
 provide resolvability. Steve Deering provided encouragement to keep
 working, as a solid proposal can act as a proof of ideas for a
 research group.

 Many others contributed; extensive security tips were provided by
 Steve Bellovin. Rob Austein kept the DNS parts on track. Paul
 Kocher taught Bob Moskowitz how to make the puzzle exchange expensive
 for the Initiator to respond, but easy for the Responder to validate.
 Bill Sommerfeld supplied the Birthday concept, which later evolved
 into the R1 generation counter, to simplify reboot management. Erik
 Nordmark supplied CLOSE-mechanism for closing connections. Rodney
 Thayer and Hugh Daniels provide extensive feedback. In the early
 times of this draft, John Gilmore kept Bob Moskowitz challenged to
 provide something of value.

 During the later stages of this document, when the editing baton was
 transfered to Pekka Nikander, the input from the early implementors
 were invaluable. Without having actual implementations, this
 document would not be on the level it is now.

 In the usual IETF fashion, a large number of people have contributed
 to the actual text or ideas. The list of these people include Jeff
 Ahrenholz, Francis Dupont, Derek Fawcus, George Gross, Andrew
 McGregor, Julien Laganier, Miika Komu, Mika Kousa, Jan Melen, Henrik
 Petander, Michael Richardson, Tim Shepard, Jorma Wall, and Jukka
 Ylitalo. Our apologies to anyone whose name is missing.

 Once the HIP Working Group was founded in early 2004, a number of
 changes were introduced through the working group process. Most
 notably, the original draft was split in two, one containing the base
 exchange and the other one defining how to use ESP. Some
 modifications to the protocol proposed by Aura et al. [29] were added
 at a later stage.

Moskowitz, et al. Expires September 3, 2006 [Page 90]

Internet-Draft Host Identity Protocol March 2006

11. References

11.1. Normative References

 [1] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [2] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [3] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [4] Conta, A. and S. Deering, "Internet Control Message Protocol
 (ICMPv6) for the Internet Protocol Version 6 (IPv6)", RFC 1885,
 December 1995.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP
 and AH", RFC 2404, November 1998.

 [7] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.

 [8] Orman, H., "The OAKLEY Key Determination Protocol", RFC 2412,
 November 1998.

 [9] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [10] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms",
RFC 2451, November 1998.

 [11] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [12] Eastlake, D., "Domain Name System Security Extensions",
RFC 2535, March 1999.

 [13] Eastlake, D., "DSA KEYs and SIGs in the Domain Name System
 (DNS)", RFC 2536, March 1999.

 [14] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1885
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2898

Moskowitz, et al. Expires September 3, 2006 [Page 91]

Internet-Draft Host Identity Protocol March 2006

 [15] Eastlake, D., "RSA/SHA-1 SIGs and RSA KEYs in the Domain Name
 System (DNS)", RFC 3110, May 2001.

 [16] Draves, R., "Default Address Selection for Internet Protocol
 version 6 (IPv6)", RFC 3484, February 2003.

 [17] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

 [18] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
 Algorithm and Its Use with IPsec", RFC 3602, September 2003.

 [19] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692, January 2004.

 [20] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, March 2005.

 [21] Schiller, J., "Cryptographic Algorithms for use in the Internet
 Key Exchange Version 2", draft-ietf-ipsec-ikev2-algorithms-05
 (work in progress), April 2004.

 [22] Nikander, P., "A Non-Routable IPv6 Prefix for Keyed Hash
 Identifiers (KHI)", draft-laganier-ipv6-khi-00 (work in
 progress), September 2005.

 [23] Aboba, B., "The Network Access Identifier",
draft-ietf-radext-rfc2486bis-06 (work in progress), July 2005.

 [24] Jokela, P., "Using ESP transport format with HIP",
draft-ietf-hip-esp-01 (work in progress), October 2005.

 [25] NIST, "FIPS PUB 180-1: Secure Hash Standard", April 1995.

11.2. Informative References

 [26] Moskowitz, R. and P. Nikander, "Host Identity Protocol
 Architecture", draft-ietf-hip-arch-03 (work in progress),
 August 2005.

 [27] Bagnulo, M. and E. Nordmark, "Level 3 multihoming shim
 protocol", draft-ietf-shim6-proto-03 (work in progress),
 December 2005.

 [28] Henderson, T. and P. Nikander, "Using HIP with Legacy
 Applications", draft-henderson-hip-applications-01 (work in
 progress), July 2005.

https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/bcp82
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-algorithms-05
https://datatracker.ietf.org/doc/html/draft-laganier-ipv6-khi-00
https://datatracker.ietf.org/doc/html/draft-ietf-radext-rfc2486bis-06
https://datatracker.ietf.org/doc/html/draft-ietf-hip-esp-01
https://datatracker.ietf.org/doc/html/draft-ietf-hip-arch-03
https://datatracker.ietf.org/doc/html/draft-ietf-shim6-proto-03
https://datatracker.ietf.org/doc/html/draft-henderson-hip-applications-01

Moskowitz, et al. Expires September 3, 2006 [Page 92]

Internet-Draft Host Identity Protocol March 2006

 [29] Aura, T., Nagarajan, A., and A. Gurtov, "Analysis of the HIP
 Base Exchange Protocol", in Proceedings of 10th Australasian
 Conference on Information Security and Privacy, July 2003.

 [30] Krawczyk, H., "SIGMA: The 'SIGn-and-MAc' Approach to
 Authenticated Diffie-Hellman and Its Use in the IKE-Protocols",
 in Proceedings of CRYPTO 2003, pages 400-425, August 2003.

 [31] Crosby, SA. and DS. Wallach, "Denial of Service via Algorithmic
 Complexity Attacks", in Proceedings of Usenix Security
 Symposium 2003, Washington, DC., August 2003.

 [32] NIST, "FIPS PUB 197: Advanced Encryption Standard", Nov 2001.

Moskowitz, et al. Expires September 3, 2006 [Page 93]

Internet-Draft Host Identity Protocol March 2006

Appendix A. Using Responder Puzzles

 As mentioned in Section 4.1.1, the Responder may delay state creation
 and still reject most spoofed I2s by using a number of pre-calculated
 R1s and a local selection function. This appendix defines one
 possible implementation in detail. The purpose of this appendix is
 to give the implementors an idea on how to implement the mechanism.
 If the implementation is based on this appendix, it MAY contain some
 local modification that makes an attacker's task harder.

 The Responder creates a secret value S, that it regenerates
 periodically. The Responder needs to remember two latest values of
 S. Each time the S is regenerated, R1 generation counter value is
 incremented by one.

 The Responder generates a pre-signed R1 packet. The signature for
 pre-generated R1s must be recalculated when the Diffie-Hellman key is
 recomputed or when the R1_COUNTER value changes due to S value
 regeneration.

 When the Initiator sends the I1 packet for initializing a connection,
 the Responder gets the HIT and IP address from the packet, and
 generates an I-value for the puzzle. The I value is set to the pre-
 signed R1 packet.

 I value calculation:
 I = Ltrunc(PHASH (S | HIT-I | HIT-R | IP-I | IP-R), 64)

 The PHASH algorithm is the same that is used to generate the
 Responder's HIT value.

 From an incoming I2 packet, the Responder gets the required
 information to validate the puzzle: HITs, IP addresses, and the
 information of the used S value from the R1_COUNTER. Using these
 values, the Responder can regenerate the I, and verify it against the
 I received in the I2 packet. If the I values match, it can verify
 the solution using I, J, and difficulty K. If the I values do not
 match, the I2 is dropped.

 puzzle_check:
 V := Ltrunc(PHASH(I2.I | I2.hit_i | I2.hit_r | I2.J), K)
 if V != 0, drop the packet

 If the puzzle solution is correct, the I and J values are stored for
 later use. They are used as input material when keying material is
 generated.

 The Responder SHOULD NOT keep state about failed puzzle solutions.

Moskowitz, et al. Expires September 3, 2006 [Page 94]

Internet-Draft Host Identity Protocol March 2006

Appendix B. Generating a HIT from a HI

 The following pseudo-codes illustrate the process to generate a
 public key encoding from a HI for both RSA and DSA.

 The symbol := denotes assignment; the symbol += denotes appending.
 The pseudo-function encode_in_network_byte_order takes two
 parameters, an integer (bignum) and a length in bytes, and returns
 the integer encoded into a byte string of the given length.

 switch (HI.algorithm)
 {

 case RSA:
 buffer := encode_in_network_byte_order (HI.RSA.e_len,
 (HI.RSA.e_len > 255) ? 3 : 1)
 buffer += encode_in_network_byte_order (HI.RSA.e, HI.RSA.e_len)
 buffer += encode_in_network_byte_order (HI.RSA.n, HI.RSA.n_len)
 break;

 case DSA:
 buffer := encode_in_network_byte_order (HI.DSA.T , 1)
 buffer += encode_in_network_byte_order (HI.DSA.Q , 20)
 buffer += encode_in_network_byte_order (HI.DSA.P , 64 +
 8 * HI.DSA.T)
 buffer += encode_in_network_byte_order (HI.DSA.G , 64 +
 8 * HI.DSA.T)
 buffer += encode_in_network_byte_order (HI.DSA.Y , 64 +
 8 * HI.DSA.T)
 break;

 }

Moskowitz, et al. Expires September 3, 2006 [Page 95]

Internet-Draft Host Identity Protocol March 2006

Appendix C. Example Checksums for HIP Packets

 The HIP checksum for HIP packets is specified in Section 6.1.2.
 Checksums for TCP and UDP packets running over HIP-enabled security
 associations are specified in Section 3.5. The examples below use IP
 addresses of 192.168.0.1 and 192.168.0.2 (and their respective IPv4-
 compatible IPv6 formats), and HITs with the first two bits "01"
 followed by 124 zeroes followed by a decimal 1 or 2, respectively.

C.1. IPv6 HIP Example (I1)

 Source Address: ::192.168.0.1
 Destination Address: ::192.168.0.2
 Upper-Layer Packet Length: 40 0x28
 Next Header: 253 0xfd
 Payload Protocol: 59 0x3b
 Header Length: 4 0x4
 Packet Type: 1 0x1
 Version: 1 0x1
 Reserved: 1 0x1
 Control: 0 0x0
 Checksum: 8046 0x1f6e
 Sender's HIT : 1100::1
 Receiver's HIT: 1100::2

C.2. IPv4 HIP Packet (I1)

 The IPv4 checksum value for the same example I1 packet is the same as
 the IPv6 checksum (since the checksums due to the IPv4 and IPv6
 pseudo-header components are the same).

C.3. TCP Segment

 Regardless of whether IPv6 or IPv4 is used, the TCP and UDP sockets
 use the IPv6 pseudo-header format [11], with the HITs used in place
 of the IPv6 addresses.

Moskowitz, et al. Expires September 3, 2006 [Page 96]

Internet-Draft Host Identity Protocol March 2006

 Sender's HIT: 1100::0001
 Receiver's HIT: 1100::0002
 Upper-Layer Packet Length: 20 0x14
 Next Header: 6 0x06
 Source port: 65500 0xffdc
 Destination port: 22 0x0016
 Sequence number: 1 0x00000001
 Acknowledgment number: 0 0x00000000
 Header length: 20 0x14
 Flags: SYN 0x02
 Window size: 65535 0xffff
 Checksum: 60301 0xeb8d
 Urgent pointer: 0 0x0000

 0x0000: 6000 0000 0014 0640 1100 0000 0000 0000
 0x0010: 0000 0000 0000 0002 1100 0000 0000 0000
 0x0020: 0000 0000 0000 0002 ffdc 0016 0000 0001
 0x0030: 0000 0000 5002 ffff 8deb 0000

Moskowitz, et al. Expires September 3, 2006 [Page 97]

Internet-Draft Host Identity Protocol March 2006

Appendix D. 384-bit Group

 This 384-bit group is defined only to be used with HIP. NOTE: The
 security level of this group is very low! The encryption may be
 broken in a very short time, even real-time. It should be used only
 when the host is not powerful enough (e.g. some PDAs) and when
 security requirements are low (e.g. during normal web surfing).

 This prime is: 2^384 - 2^320 - 1 + 2^64 * { [2^254 pi] + 5857 }

 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B13B202 FFFFFFFF FFFFFFFF

 The generator is: 2.

Moskowitz, et al. Expires September 3, 2006 [Page 98]

Internet-Draft Host Identity Protocol March 2006

Authors' Addresses

 Robert Moskowitz
 ICSAlabs, a Division of TruSecure Corporation
 1000 Bent Creek Blvd, Suite 200
 Mechanicsburg, PA
 USA

 Email: rgm@icsalabs.com

 Pekka Nikander
 Ericsson Research NomadicLab
 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 Email: pekka.nikander@nomadiclab.com

 Petri Jokela
 Ericsson Research NomadicLab
 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 Email: petri.jokela@nomadiclab.com

 Thomas R. Henderson
 The Boeing Company
 P.O. Box 3707
 Seattle, WA
 USA

 Email: thomas.r.henderson@boeing.com

Moskowitz, et al. Expires September 3, 2006 [Page 99]

Internet-Draft Host Identity Protocol March 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Moskowitz, et al. Expires September 3, 2006 [Page 100]

