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Copyright Notice
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Abstract

   This memo specifies the details of the Host Identity Protocol (HIP).
   HIP allows consenting hosts to securely establish and maintain shared
   IP-layer state, allowing separation of the identifier and locator
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   roles of IP addresses, thereby enabling continuity of communications
   across IP address changes.  HIP is based on a Sigma-compliant Diffie-
   Hellman key exchange, using public-key identifiers from a new Host
   Identity name space for mutual peer authentication.  The protocol is
   designed to be resistant to Denial-of-Service (DoS) and Man-in-the-
   middle (MitM) attacks, and when used together with another suitable
   security protocol, such as Encapsulated Security Payload (ESP), it
   provides integrity protection and optional encryption for upper layer
   protocols, suchs as TCP and UDP.  Discussion related to this document
   is going on at the IETF HIP Working Group mailing list.
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1.  Introduction

   This memo specifies the details of the Host Identity Protocol (HIP).
   A high-level description of the protocol and the underlying
   architectural thinking is available in the separate HIP architecture
   description [26].  Briefly, the HIP architecture proposes an
   alternative to the dual use of IP addresses as "locators" (routing
   labels) and "identifiers" (endpoint, or host, identifiers).  In HIP,
   public cryptographic keys, of a public/private key pair, are used as
   Host Identifiers, to which higher ayer protocols are bound instead of
   an IP address.  By using public keys (and their representations) as
   host identifiers, dynamic changes to IP address sets can be directly
   authenticated between hosts and if desired, strong authentication
   between hosts at the TCP/IP stack level can be obtained.

   This memo specifies the base HIP protocol ("base exchange") used
   between hosts to establish an IP-layer communications context, called
   HIP association, prior to communications.  It also defines a packet
   format and procedures for updating an active HIP association.  Other
   elements of the HIP architecture are specified in other documents,
   including how HIP can be combined with a variant of the Encapsulating
   Security Payload (ESP) for integrity protection and optional
   encryption, mobility and multi-homing extensions to HIP, extensions
   to the Domain Name System (DNS) for storing Host Identities there,
   proposals on added HIP-related infrastructure into the networks, and
   techniques for NAT traversal.

1.1.  A New Name Space and Identifiers

   The Host Identity Protocol introduces a new name space, the Host
   Identity name space.  Some ramifications of this new namespace are
   explained in the HIP architecture description [26].

   There are two main representations of the Host Identity, the full
   Host Identifier (HI) and the Host Identity Tag (HIT The HI is a
   public key and directly represents the Identity.  Since there are
   different public key algorithms that can be used with different key
   lengths, the HI is not good for use as a packet identifier, or as an
   index into the various operational tables needed to support HIP.
   Consequently, a hash of the HI, the Host Identity Tag (HIT), becomes
   the operational representation.  It is 128 bits long and is used in
   the HIP payloads and to index the corresponding state in the end
   hosts.  The HIT has an important security property in that it is
   self-certifying (see Section 3).

1.2.  The HIP Base Exchange

   The HIP base exchange is a two-party cryptographic protocol used to
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   establish communications context between hosts.  The base exchange is
   a Sigma-compliant [30] four packet exchange.  The first party is
   called the Initiator and the second party the Responder.  The four-
   packet design helps to make HIP DoS resilient.  The protocol
   exchanges Diffie-Hellman keys in the 2nd and 3rd packets, and
   authenticates the parties in the 3rd and 4th packets.  Additionally,
   the Responder starts a puzzle exchange in the 2nd packet, with the
   Initiator completing it in the 3rd packet before the Responder stores
   any state from the exchange.

   The exchange can use the Diffie-Hellman output to encrypt the Host
   Identity of the Initiator in packet 3 (although Aura et al. [29]
   notes that such operation may interfere with packet-inspecting
   middleboxes), or the Host Identity may instead be sent unencrypted.
   The Responder's Host Identity is not protected.  It should be noted,
   however, that both the Initiator's and the Responder's HITs are
   transported as such (in cleartext) in the packets, allowing an
   eavesdropper with a priori knowledge about the parties to verify
   their identities.

   Data packets start to flow after the 4th packet.  The 3rd and 4th HIP
   packets may carry a data payload in the future.  However, the details
   of this are to be defined later as more implementation experience is
   gained.

   An existing HIP association can be updated using the update mechanism
   defined in this document, and when the association is no longer
   needed, it can be closed using the defined closing mechanism.

   Finally, HIP is designed as an end-to-end authentication and key
   establishment protocol, to be used with Encapsulated Security Payload
   (ESP) [24] and other end-to-end security protocols.  The base
   protocol lacks the details for security association management and
   much of the fine-grained policy control found in Internet Key
   Exchange IKE RFC2409 [7] that allows IKE to support complex gateway
   policies.  Thus, HIP is not a replacement for IKE.

1.3.  Memo structure

   The rest of this memo is structured as follows.  Section 2 defines
   the central keywords, notation, and terms used throughout the rest of
   the document.  Section 3 defines the structure of the Host Identity
   and its various representations.  Section 4 gives an overview of the
   HIP base exchange protocol.  Section 5 and Section 6 define the
   detail packet formats and rules for packet processing.  Finally,

Section 7, Section 8, and Section 9 discuss policy, security, and
   IANA considerations, respectively.

https://datatracker.ietf.org/doc/html/rfc2409
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2.  Terms and Definitions

2.1.  Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [5].

2.2.  Notation

   [x]  indicates that x is optional.

   {x}  indicates that x is encrypted.

   X(y)  indicates that y is a parameter of X.

   <x>i  indicates that x exists i times.

   -->  signifies "Initiator to Responder" communication (requests).

   <--  signifies "Responder to Initiator" communication (replies).

   |  signifies concatenation of information-- e.g.  X | Y is the
      concatenation of X with Y.

   Ltrunc (SHA-1(), K)  denotes the lowest order K bits of the SHA-1
      result.

2.3.  Definitions

   Unused Association Lifetime (UAL):  Implementation-specific time for
      which, if no packet is sent or received for this time interval, a
      host MAY begin to tear down an active association.

   Maximum Segment Lifetime (MSL):  Maximum time that a TCP segment is
      expected to spend in the network.

   Exchange Complete (EC):  Time that the host spends at the R2-SENT
      before it moves to ESTABLISHED state.  The time is n * I2
      retransmission timeout, where n ~ I2_RETRIES_MAX.

   HIT Hash Algorithm:  hash algorithm used to generate a Host Identity
      Tag (HIT) from the Host Identity public key.  Currently SHA-1 [25]
      is used.

https://datatracker.ietf.org/doc/html/rfc2119
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   Puzzle Hash Algorithm (PHASH):  hash algorithm used to calculate the
      puzzle hash.  The algorithm is the same as is used to generate the
      Responder's HIT.

   Opportunistic mode:  HIP base exchange where the Responder's HIT is
      not a priori known to the Initiator.

Moskowitz, et al.       Expires September 3, 2006               [Page 8]
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3.  Host Identifier (HI) and its Representations

   In this section, the properties of the Host Identifier and Host
   Identifier Tag are discussed, and the exact format for them is
   defined.  In HIP, public key of an asymmetric key pair is used as the
   Host Identifier (HI).  Correspondingly, the host itself is defined as
   the entity that holds the private key from the key pair.  See the HIP
   architecture specification [26] for more details about the difference
   between an identity and the corresponding identifier.

   HIP implementations MUST support the Rivest Shamir Adelman (RSA) [15]
   public key algorithm, and SHOULD support the Digital Signature
   Algorithm (DSA) [13] algorithm; other algorithms MAY be supported.

   A hashed encoding of the HI, the Host Identity Tag (HIT), is used in
   protocols to represent the Host Identity.  The HIT is 128 bits long
   and has the following three key properties: i) it is the same length
   as an IPv6 address and can be used in address-sized fields in APIs
   and protocols, ii) it is self-certifying (i.e., given a HIT, it is
   computationally hard to find a Host Identity key that matches the
   HIT), and iii) the probability of HIT collision between two hosts is
   very low.

   Carrying HIs and HITs in the header of user data packets would
   increase the overhead of packets.  Thus, it is not expected that they
   are carried in every packet, but other methods are used to map the
   data packets to the corresponding HIs.  In some cases, this makes it
   possible to use HIP without any additional headers in the user data
   packets.  For example, if ESP is used to protect data traffic, the
   Security Parameter Index (SPI) carried in the ESP header, can be used
   to map the encrypted data packet to the correct HIP association.

3.1.  Host Identity Tag (HIT)

   The Host Identity Tag is a 128 bits long value -- a hashed encoding
   of the Host Identifier.  There are two advantages of using a hashed
   encoding over the actual Host Identity public key in protocols.
   Firstly, its fixed length makes for easier protocol coding and also
   better manages the packet size cost of this technology.  Secondly, it
   presents a consistent format to the protocol whatever underlying
   identity technology is used.

   "A Non-Routable IPv6 Prefix for Keyed Hash Identifiers" [22] has been
   specified to store 128-bit hash based identifier called Keyed Hash
   Identifier (KHI) under an 8-bit prefix, proposed to be allocated from
   the IPv6 address block 1000::/4.  The Host Identity Tag is a KHI
   valid for the Context ID [22] value for HIP, 0xF0EF F02F BFF4 3D0F
   E793 0C3C 6E61 74EA (The tag value has been generated randomly by the
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   editor of this specification.)  The following figure shows, for
   informal purposes only, the format of a HIT specified by [22], and
   used in this document:

                                                                  1
       0                                                          2

0 1 2 3 4 5 6 7 8  ...                                     7
      +-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Prefix      |             Hash                           |
      +-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Prefix (8 bits) - Fixed prefix, TBD (0x11, TO BE DISCUSSED), as
      defined per [22].

      Encoding (120 bits) - Encoding of the public key and KHI context
      identifier as defined per [22].

   Additional values for the prefix (including different hash
   algorithms, or other information) may be defined in the future.  A
   host may receive a HIT for which it does not understand the prefix.
   In such a case, it will not be able to check the mapping between HI
   and HIT.

3.2.  Generating a HIT from a HI

   The HIT MUST be generated according to the KHI generation method
   described in [22] using a context ID value of 0xF0EF F02F BFF4 3D0F
   E793 0C3C 6E61 74EA, and an input encoding the Host Identity field
   (see Section 5.2.8) present in a HIP payload packet.

   For Identities that are either RSA or DSA public keys, this input
   consists of the public key encoding as specified in the corresponding
   DNSSEC document, taking the algorithm specific portion of the RDATA
   part of the KEY RR.  There is currently only two defined public key
   algorithms: RSA and DSA.  Hence, either of the following applies:

      The RSA public key is encoded as defined in RFC3110 [15] Section
2, taking the exponent length (e_len), exponent (e) and modulus

      (n) fields concatenated.  The length (n_len) of the modulus (n)
      can be determined from the total HI Length and the preceding HI
      fields including the exponent (e).  Thus, the data to be hashed
      has the same length as the HI.  The fields MUST be encoded in
      network byte order, as defined in RFC3110 [15].

      The DSA public key is encoded as defined in RFC2536 [13] Section
2, taking the fields T, Q, P, G, and Y, concatenated.  Thus, the

      data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T octets long,

https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc2536
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      where T is the size parameter as defined in RFC2536 [13].  The
      size parameter T, affecting the field lengths, MUST be selected as
      the minimum value that is long enough to accommodate P, G, and Y.
      The fields MUST be encoded in network byte order, as defined in

RFC2536 [13].

   In Appendix B the public key encoding generation process is
   illustrated using pseudo-code.

Moskowitz, et al.       Expires September 3, 2006              [Page 11]

https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536


Internet-Draft           Host Identity Protocol               March 2006

4.  Protocol Overview

   The following material is an overview of the HIP protocol operation,
   and does not contain all details of the packet formats or the packet
   processing steps.  Section 5 and Section 6 describe in more detail
   the packet formats and packet processing steps, respectively, and are
   normative in case of any conflicts with this section.

   The protocol number for Host Identity Protocol will be assigned by
   IANA.  For testing purposes, the protocol number 253 is currently
   used.  This number has been reserved by IANA for experimental use
   (see [19]).

   The HIP payload (Section 5.1) header could be carried in every IP
   datagram.  However, since HIP headers are relatively large (40
   bytes), it is desirable to 'compress' the HIP header so that the HIP
   header only occurs in control packets used to establish or change HIP
   association state.  The actual method for header 'compression' and
   for matching data packets with existing HIP associations (if any) is
   defined in separate documents, describing transport formats and
   methods.  All HIP implementations MUST implement, at minimum, the ESP
   transport format for HIP [24].

4.1.  Creating a HIP Association

   By definition, the system initiating a HIP exchange is the Initiator,
   and the peer is the Responder.  This distinction is forgotten once
   the base exchange completes, and either party can become the
   Initiator in future communications.

   The HIP base exchange serves to manage the establishment of state
   between an Initiator and a Responder.  The first packet, I1,
   initiates the exchange, and the last three packets, R1, I2, and R2,
   constitute a standard authenticated Diffie-Hellman key exchange for
   session key generation.  During the Diffie-Hellman key exchange, a
   piece of keying material is generated.  The HIP association keys are
   drawn from this keying material.  If other cryptographic keys are
   needed, e.g., to be used with ESP, they are expected to be drawn from
   the same keying material.

   The Initiator first sends a trigger packet, I1, to the Responder.
   The packet contains only the HIT of the Initiator and possibly the
   HIT of the Responder, if it is known.  Note that in some cases it may
   be possible to replace this trigger packet by some other form of a
   trigger, in which case the protocol starts with the Responder sending
   the R1 packet.

   The second packet, R1, starts the actual exchange.  It contains a
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   puzzle-- a cryptographic challenge that the Initiator must solve
   before continuing the exchange.  The level of difficulty of the
   puzzle can be adjusted based on level of trust with the Initiator,
   current load, or other factors.  In addition, the R1 contains the
   initial Diffie-Hellman parameters and a signature, covering part of
   the message.  Some fields are left outside the signature to support
   pre-created R1s.

   In the I2 packet, the Initiator must display the solution to the
   received puzzle.  Without a correct solution, the I2 message is
   discarded.  The I2 also contains a Diffie-Hellman parameter that
   carries needed information for the Responder.  The packet is signed
   by the sender.

   The R2 packet finalizes the base exchange.  The packet is signed.

   The base exchange is illustrated below.  The term "key" refers to the
   host identity public key, and "sig" represents a signature using such
   a key.  The packets contain other parameters not shown in this
   figure.

       Initiator                              Responder

                    I1: trigger exchange
                  -------------------------->
                                              select pre-computed R1
                    R1: puzzle, D-H, key, sig
                  <-------------------------
    check sig                                 remain stateless
    solve puzzle
                  I2: solution, D-H, {key}, sig
                  -------------------------->
    compute D-H                               check puzzle
                                              check sig
                            R2: sig
                  <--------------------------
    check sig                                 compute D-H

4.1.1.  HIP Puzzle Mechanism

   The purpose of the HIP puzzle mechanism is to protect the Responder
   from a number of denial-of-service threats.  It allows the Responder
   to delay state creation until receiving I2.  Furthermore, the puzzle
   allows the Responder to use a fairly cheap calculation to check that
   the Initiator is "sincere" in the sense that it has churned CPU
   cycles in solving the puzzle.
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   The Puzzle mechanism has been explicitly designed to give space for
   various implementation options.  It allows a Responder implementation
   to completely delay session specific state creation until a valid I2
   is received.  In such a case a correctly formatted I2 can be rejected
   only once the Responder has checked its validity by computing one
   hash function.  On the other hand, the design also allows a Responder
   implementation to keep state about received I1s, and match the
   received I2s against the state, thereby allowing the implementation
   to avoid the computational cost of the hash function.  The drawback
   of this latter approach is the requirement of creating state.
   Finally, it also allows an implementation to use other combinations
   of the space-saving and computation-saving mechanisms.

   One possible way for a Responder to remain stateless but drop most
   spoofed I2s is to base the selection of the puzzle on some function
   over the Initiator's Host Identity.  The idea is that the Responder
   has a (perhaps varying) number of pre-calculated R1 packets, and it
   selects one of these based on the information carried in I1.  When
   the Responder then later receives I2, it checks that the puzzle in
   the I2 matches with the puzzle sent in the R1, thereby making it
   impractical for the attacker to first exchange one I1/R1, and then
   generate a large number of spoofed I2s that seemingly come from
   different IP addresses or use different HITs.  The method does not
   protect from an attacker that uses fixed IP addresses and HITs,
   though.  Against such an attacker a viable approach may be to create
   a piece of local state, and remember that the puzzle check has
   previously failed.  See Appendix A for one possible implementation.
   Implementations SHOULD include sufficient randomness to the algorithm
   so that algorithm complexity attacks become impossible [31].

   The Responder can set the puzzle difficulty for Initiator, based on
   its level of trust of the Initiator.  The Responder SHOULD use
   heuristics to determine when it is under a denial-of-service attack,
   and set the puzzle difficulty value K appropriately; see below.

4.1.2.  Puzzle exchange

   The Responder starts the puzzle exchange when it receives an I1.  The
   Responder supplies a random number I, and requires the Initiator to
   find a number J. To select a proper J, the Initiator must create the
   concatenation of I, the HITs of the parties, and J, and take a SHA-1
   hash over this concatenation.  The lowest order K bits of the result
   MUST be zeros.  The value K sets the difficulty of the puzzle.

   To generate a proper number J, the Initiator will have to generate a
   number of Js until one produces the hash target of zero.  The
   Initiator SHOULD give up after exceeding the puzzle lifetime in the
   PUZZLE parameter (Section 5.2.4).  The Responder needs to re-create
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   the concatenation of I, the HITs, and the provided J, and compute the
   hash once to prove that the Initiator did its assigned task.

   To prevent pre-computation attacks, the Responder MUST select the
   number I in such a way that the Initiator cannot guess it.
   Furthermore, the construction MUST allow the Responder to verify that
   the value was indeed selected by it and not by the Initiator.  See

Appendix A for an example on how to implement this.

   Using the Opaque data field in an ECHO_REQUEST parameter
   (Section 5.2.17), the Responder can include some data in R1 that the
   Initiator must copy unmodified in the corresponding I2 packet.  The
   Responder can generate the Opaque data in various ways; e.g. using
   the sent I, some secret, and possibly other related data.  Using this
   same secret, received I in I2 packet and possible other data, the
   Receiver can verify that it has itself sent the I to the Initiator.
   The Responder MUST change such a secret periodically.

   It is RECOMMENDED that the Responder generates a new puzzle and a new
   R1 once every few minutes.  Furthermore, it is RECOMMENDED that the
   Responder remembers an old puzzle at least 2*lifetime seconds after
   it has been deprecated.  These time values allow a slower Initiator
   to solve the puzzle while limiting the usability that an old, solved
   puzzle has to an attacker.

   NOTE: The protocol developers explicitly considered whether R1 should
   include a timestamp in order to protect the Initiator from replay
   attacks.  The decision was to NOT include a timestamp.

   NOTE: The protocol developers explicitly considered whether a memory
   bound function should be used for the puzzle instead of a CPU bound
   function.  The decision was not to use memory bound functions.  At
   the time of the decision the idea of memory bound functions was
   relatively new and their IPR status were unknown.  Once there is more
   experience about memory bound functions and once their IPR status is
   better known, it may be reasonable to reconsider this decision.

4.1.3.  Authenticated Diffie-Hellman Protocol

   The packets R1, I2, and R2 implement a standard authenticated Diffie-
   Hellman exchange.  The Responder sends its public Diffie-Hellman key
   and its public authentication key, i.e., its host identity, in R1.
   The signature in R1 allows the Initiator to verify that the R1 has
   been once generated by the Responder.  However, since it is
   precomputed and therefore does not cover all of the packet, it does
   not protect from replay attacks.

   When the Initiator receives an R1, it computes the Diffie-Hellman
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   session key.  It creates a HIP association using keying material from
   the session key (see Section 6.5), and may use the association to
   encrypt its public authentication key, i.e., host identity.  The
   resulting I2 contains the Initiator's Diffie-Hellman key and its
   (optionally encrypted) public authentication key.  The signature in
   I2 covers all of the packet.

   The Responder extracts the Initiator Diffie-Hellman public key from
   the I2, computes the Diffie-Hellman session key, creates a
   corresponding HIP association, and decrypts the Initiator's public
   authentication key.  It can then verify the signature using the
   authentication key.

   The final message, R2, is needed to protect the Initiator from replay
   attacks.

4.1.4.  HIP Replay Protection

   The HIP protocol includes the following mechanisms to protect against
   malicious replays.  Responders are protected against replays of I1
   packets by virtue of the stateless response to I1s with presigned R1
   messages.  Initiators are protected against R1 replays by a
   monotonically increasing "R1 generation counter" included in the R1.
   Responders are protected against replays or false I2s by the puzzle
   mechanism (Section 4.1.1 above), and optional use of opaque data.
   Hosts are protected against replays to R2s and UPDATEs by use of a
   less expensive HMAC verification preceding HIP signature
   verification.

   The R1 generation counter is a monotonically increasing 64-bit
   counter that may be initialized to any value.  The scope of the
   counter MAY be system-wide but SHOULD be per host identity, if there
   is more than one local host identity.  The value of this counter
   SHOULD be kept across system reboots and invocations of the HIP base
   exchange.  This counter indicates the current generation of puzzles.
   Implementations MUST accept puzzles from the current generation and
   MAY accept puzzles from earlier generations.  A system's local
   counter MUST be incremented at least as often as every time old R1s
   cease to be valid, and SHOULD never be decremented, lest the host
   expose its peers to the replay of previously generated, higher
   numbered R1s.  Also, the R1 generation counter MUST NOT roll over; if
   the counter is about to become exhausted, the corresponding HI must
   be abandoned and replaced with a new one.

   A host may receive more than one R1, either due to sending multiple
   I1s (Section 6.6.1) or due to a replay of an old R1.  When sending
   multiple I1s, an initiator SHOULD wait for a small amount of time
   after the first R1 reception to allow possibly multiple R1s to
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   arrive, and it SHOULD respond to an R1 among the set with the largest
   R1 generation counter.  If an Initiator is processing an R1 or has
   already sent an I2 (still waiting for R2) and it receives another R1
   with a larger R1 generation counter, it MAY elect to restart R1
   processing with the fresher R1, as if it were the first R1 to arrive.

   Upon conclusion of an active HIP association with another host, the
   R1 generation counter associated with the peer host SHOULD be
   flushed.  A local policy MAY override the default flushing of R1
   counters on a per-HIT basis.  The reason for recommending the
   flushing of this counter is that there may be hosts where the R1
   generation counter (occasionally) decreases; e.g., due to hardware
   failure.

4.1.5.  Refusing a HIP Exchange

   A HIP aware host may choose not to accept a HIP exchange.  If the
   host's policy is to only be an Initiator, it should begin its own HIP
   exchange.  A host MAY choose to have such a policy since only the
   Initiator HI is protected in the exchange.  There is a risk of a race
   condition if each host's policy is to only be an Initiator, at which
   point the HIP exchange will fail.

   If the host's policy does not permit it to enter into a HIP exchange
   with the Initiator, it should send an ICMP 'Destination Unreachable,
   Administratively Prohibited' message.  A more complex HIP packet is
   not used here as it actually opens up more potential DoS attacks than
   a simple ICMP message.

4.2.  Updating a HIP Association

   A HIP association between two hosts may need to be updated over time.
   Examples include the need to rekey expiring user data security
   associations, add new security associations, or change IP addresses
   associated with hosts.  The UPDATE packet is used for those and other
   similar purposes.  This document only specifies the UPDATE packet
   format and basic processing rules, with mandatory parameters.  The
   actual usage is defined in separate specifications.

   HIP provides a general purpose UPDATE packet, which can carry
   multiple HIP parameters, for updating the HIP state between two
   peers.  The UPDATE mechanism has the following properties:

      UPDATE messages carry a monotonically increasing sequence number
      and are explicitly acknowledged by the peer.  Lost UPDATEs or
      acknowledgments may be recovered via retransmission.  Multiple
      UPDATE messages may be outstanding under certain circumstances.
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      UPDATE is protected by both HMAC and HIP_SIGNATURE parameters,
      since processing UPDATE signatures alone is a potential DoS attack
      against intermediate systems.

      UPDATE packets are explicitly acknowledged by the use of an
      acknowledgment parameter that echoes an individual sequence number
      received from the peer.  A single UPDATE packet may contain both a
      sequence number and one or more acknowledgment numbers (i.e.,
      piggybacked acknowledgment(s) for the peer's UPDATE).

   The UPDATE packet is defined in Section 5.3.5.

4.3.  Error Processing

   HIP error processing behavior depends on whether there exists an
   active HIP association or not.  In general, if an HIP association
   exists between the sender and receiver of a packet causing an error
   condition, the receiver SHOULD respond with a NOTIFY packet.  On the
   other hand, if there are no existing HIP associations between the
   sender and receiver, or the receiver cannot reasonably determine the
   identity of the sender, the receiver MAY respond with a suitable ICMP
   message; see Section 5.4 for more details.

   The HIP protocol and state machine is designed to recover from one of
   the parties crashing and losing its state.  The following scenarios
   describe the main use cases covered by the design.

      No prior state between the two systems.

         The system with data to send is the Initiator.  The process
         follows the standard four packet base exchange, establishing
         the HIP association.

      The system with data to send has no state with the receiver, but
      the receiver has a residual HIP association.

         The system with data to send is the Initiator.  The Initiator
         acts as in no prior state, sending I1 and getting R1.  When the
         Responder receives a valid I2, the old association is
         'discovered' and deleted, and the new association is
         established.

      The system with data to send has an HIP association, but the
      receiver does not.

         The system sends data on the outbound user data security
         association.  The receiver 'detects' the situation when it
         receives a user data packet that it cannot match to any HIP
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         association.  The receiving host MUST discard this packet.
         Optionally, the receiving host MAY send an ICMP packet with the
         Parameter Problem type to inform about non-existing HIP
         association (see Section 5.4), and it MAY initiate a new HIP
         negotiation.  However, responding with these optional
         mechanisms is implementation or policy dependent.

4.4.  HIP State Machine

   The HIP protocol itself has little state.  In the HIP base exchange,
   there is an Initiator and a Responder.  Once the SAs are established,
   this distinction is lost.  If the HIP state needs to be re-
   established, the controlling parameters are which peer still has
   state and which has a datagram to send to its peer.  The following
   state machine attempts to capture these processes.

   The state machine is presented in a single system view, representing
   either an Initiator or a Responder.  There is not a complete overlap
   of processing logic here and in the packet definitions.  Both are
   needed to completely implement HIP.

   Implementors must understand that the state machine, as described
   here, is informational.  Specific implementations are free to
   implement the actual functions differently.  Section 6 describes the
   packet processing rules in more detail.  This state machine focuses
   on the HIP I1, R1, I2, and R2 packets only.  Other states may be
   introduced by mechanisms in other specifications (such as mobility
   and multihoming).
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4.4.1.  HIP States

   +---------------------+---------------------------------------------+
   | State               | Explanation                                 |
   +---------------------+---------------------------------------------+
   | UNASSOCIATED        | State machine start                         |
   |                     |                                             |
   | I1-SENT             | Initiating base exchange                    |
   |                     |                                             |
   | I2-SENT             | Waiting to complete base exchange           |
   |                     |                                             |
   | R2-SENT             | Waiting to complete base exchange           |
   |                     |                                             |
   | ESTABLISHED         | HIP association established                 |
   |                     |                                             |
   | CLOSING             | HIP association closing, no data can be     |
   |                     | sent                                        |
   |                     |                                             |
   | CLOSED              | HIP association closed, no data can be sent |
   |                     |                                             |
   | E-FAILED            | HIP exchange failed                         |
   +---------------------+---------------------------------------------+

4.4.2.  HIP State Processes

   System behaviour in state UNASSOCIATED, Table 2.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | User data to send,  | Send I1 and go to I1-SENT                   |
   | requiring a new HIP |                                             |
   | association         |                                             |
   |                     |                                             |
   | Receive I1          | Send R1 and stay at UNASSOCIATED            |
   |                     |                                             |
   | Receive I2, process | If successful, send R2 and go to R2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at UNASSOCIATED               |
   |                     |                                             |
   | Receive user data   | Optionally send ICMP as defined in          |
   | for unknown HIP     | Section 5.4 and stay at UNASSOCIATED        |
   | association         |                                             |
   |                     |                                             |
   | Receive CLOSE       | Optionally send ICMP Parameter Problem and  |
   |                     | stay at UNASSOCIATED                        |
   |                     |                                             |
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   | Receive ANYOTHER    | Drop and stay at UNASSOCIATED               |
   +---------------------+---------------------------------------------+

   Table 2: UNASSOCIATED - Start state

   System behaviour in state I1-SENT, Table 3.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Receive I1          | If the local HIT is smaller than the peer   |
   |                     | HIT, drop I1 and stay at I1-SENT            |
   |                     |                                             |
   |                     | If the local HIT is greater than the peer   |
   |                     | HIT, send R1 and stay at I1_SENT            |
   |                     |                                             |
   | Receive I2, process | If successful, send R2 and go to R2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at I1-SENT                    |
   |                     |                                             |
   | Receive R1, process | If successful, send I2 and go to I2-SENT    |
   |                     |                                             |
   |                     | If fail, go to E-FAILED                     |
   |                     |                                             |
   | Receive ANYOTHER    | Drop and stay at I1-SENT                    |
   |                     |                                             |
   | Timeout, increment  | If counter is less than I1_RETRIES_MAX,     |
   | timeout counter     | send I1 and stay at I1-SENT                 |
   |                     |                                             |
   |                     | If counter is greater than I1_RETRIES_MAX,  |
   |                     | go to E-FAILED                              |
   +---------------------+---------------------------------------------+

   Table 3: I1-SENT - Initiating HIP
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   System behaviour in state I2-SENT, Table 4.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Receive I1          | Send R1 and stay at I2-SENT                 |
   |                     |                                             |
   | Receive R1, process | If successful, send I2 and cycle at I2-SENT |
   |                     |                                             |
   |                     | If fail, stay at I2-SENT                    |
   |                     |                                             |
   | Receive I2, process | If successful and local HIT is smaller than |
   |                     | the peer HIT, drop I2 and stay at I2-SENT   |
   |                     |                                             |
   |                     | If succesful and local HIT is greater than  |
   |                     | the peer HIT, send R2 and go to R2-SENT     |
   |                     |                                             |
   |                     | If fail, stay at I2-SENT                    |
   |                     |                                             |
   | Receive R2, process | If successful, go to ESTABLISHED            |
   |                     |                                             |
   |                     | If fail, go to E-FAILED                     |
   |                     |                                             |
   | Receive ANYOTHER    | Drop and stay at I2-SENT                    |
   |                     |                                             |
   | Timeout, increment  | If counter is less than I2_RETRIES_MAX,     |
   | timeout counter     | send I2 and stay at I2-SENT                 |
   |                     |                                             |
   |                     | If counter is greater than I2_RETRIES_MAX,  |
   |                     | go to E-FAILED                              |
   +---------------------+---------------------------------------------+

   Table 4: I2-SENT - Waiting to finish HIP
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   System behaviour in state R2-SENT, Table 5.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Receive I1          | Send R1 and stay at R2-SENT                 |
   |                     |                                             |
   | Receive I2, process | If successful, send R2 and cycle at R2-SENT |
   |                     |                                             |
   |                     | If fail, stay at R2-SENT                    |
   |                     |                                             |
   | Receive R1          | Drop and stay at R2-SENT                    |
   |                     |                                             |
   | Receive R2          | Drop and stay at R2-SENT                    |
   |                     |                                             |
   | Receive data or     | Move to ESTABLISHED                         |
   | UPDATE              |                                             |
   |                     |                                             |
   | Exchange Complete   | Move to ESTABLISHED                         |
   | Timeout             |                                             |
   +---------------------+---------------------------------------------+

   Table 5: R2-SENT - Waiting to finish HIP
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   System behaviour in state ESTABLISHED, Table 6.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Receive I1          | Send R1 and stay at ESTABLISHED             |
   |                     |                                             |
   | Receive I2, process | If successful, send R2, drop old HIP        |
   | with puzzle and     | association, establish a new HIP            |
   | possible Opaque     | association, go to R2-SENT                  |
   | data verification   |                                             |
   |                     |                                             |
   |                     | If fail, stay at ESTABLISHED                |
   |                     |                                             |
   | Receive R1          | Drop and stay at ESTABLISHED                |
   |                     |                                             |
   | Receive R2          | Drop and stay at ESTABLISHED                |
   |                     |                                             |
   | Receive user data   | Process and stay at ESTABLISHED             |
   | for HIP association |                                             |
   |                     |                                             |
   | No packet           | Send CLOSE and go to CLOSING                |
   | sent/received       |                                             |
   | during UAL minutes  |                                             |
   |                     |                                             |
   | Receive CLOSE,      | If successful, send CLOSE_ACK and go to     |
   | process             | CLOSED                                      |
   |                     |                                             |
   |                     | If fail, stay at ESTABLISHED                |
   +---------------------+---------------------------------------------+

   Table 6: ESTABLISHED - HIP association established
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   System behaviour in state CLOSING, Table 7.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | User data to send,  | Send I1 and stay at CLOSING                 |
   | requires the        |                                             |
   | creation of another |                                             |
   | incarnation of the  |                                             |
   | HIP association     |                                             |
   |                     |                                             |
   | Receive I1          | Send R1 and stay at CLOSING                 |
   |                     |                                             |
   | Receive I2, process | If successful, send R2 and go to R2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at CLOSING                    |
   |                     |                                             |
   | Receive R1, process | If successful, send I2 and go to I2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at CLOSING                    |
   |                     |                                             |
   | Receive CLOSE,      | If successful, send CLOSE_ACK, discard      |
   | process             | state and go to CLOSED                      |
   |                     |                                             |
   |                     | If fail, stay at CLOSING                    |
   |                     |                                             |
   | Receive CLOSE_ACK,  | If successful, discard state and go to      |
   | process             | UNASSOCIATED                                |
   |                     |                                             |
   |                     | If fail, stay at CLOSING                    |
   |                     |                                             |
   | Receive ANYOTHER    | Drop and stay at CLOSING                    |
   |                     |                                             |
   | Timeout, increment  | If timeout sum is less than UAL+MSL         |
   | timeout sum, reset  | minutes, retransmit CLOSE and stay at       |
   | timer               | CLOSING                                     |
   |                     |                                             |
   |                     | If timeout sum is greater than UAL+MSL      |
   |                     | minutes, go to UNASSOCIATED                 |
   +---------------------+---------------------------------------------+

   Table 7: CLOSING - HIP association  has not been used for UAL minutes
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   System behaviour in state CLOSED, Table 8.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Datagram to send,   | Send I1, and stay at CLOSED                 |
   | requires the        |                                             |
   | creation of another |                                             |
   | incarnation of the  |                                             |
   | HIP association     |                                             |
   |                     |                                             |
   | Receive I1          | Send R1 and stay at CLOSED                  |
   |                     |                                             |
   | Receive I2, process | If successful, send R2 and go to R2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at CLOSED                     |
   |                     |                                             |
   | Receive R1, process | If successful, send I2 and go to I2-SENT    |
   |                     |                                             |
   |                     | If fail, stay at CLOSED                     |
   |                     |                                             |
   | Receive CLOSE,      | If successful, send CLOSE_ACK, stay at      |
   | process             | CLOSED                                      |
   |                     |                                             |
   |                     | If fail, stay at CLOSED                     |
   |                     |                                             |
   | Receive CLOSE_ACK,  | If successful, discard state and go to      |
   | process             | UNASSOCIATED                                |
   |                     |                                             |
   |                     | If fail, stay at CLOSED                     |
   |                     |                                             |
   | Receive ANYOTHER    | Drop and stay at CLOSED                     |
   |                     |                                             |
   | Timeout (UAL+2MSL)  | Discard state and go to UNASSOCIATED        |
   +---------------------+---------------------------------------------+

   Table 8: CLOSED - CLOSE_ACK sent,  resending CLOSE_ACK if necessary
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   System behaviour in state E-FAILED, Table 9.

   +---------------------+---------------------------------------------+
   | Trigger             | Action                                      |
   +---------------------+---------------------------------------------+
   | Wait for            | Go to UNASSOCIATED. Re-negotiation is       |
   | implementation      | possible after moving to UNASSOCIATED       |
   | specific time       | state.                                      |
   +---------------------+---------------------------------------------+

   Table 9: E-FAILED - HIP failed  to establish association with peer

4.4.3.  Simplified HIP State Diagram

   The following diagram shows the major state transitions.  Transitions
   based on received packets implicitly assume that the packets are
   successfully authenticated or processed.
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                                +-+        +---------------------------+
           I1 received, send R1 | |        |                           |
                                | v        v                           |
            Datagram to send  +--------------+  I2 received, send R2   |
              +---------------| UNASSOCIATED |---------------+         |
              |               +--------------+               |         |
              v                                              |         |
         +---------+  I2 received, send R2                   |         |
   +---->| I1-SENT |---------------------------------------+ |         |
   |     +---------+                                       | |         |
   |          |                 +------------------------+ | |         |
   |          | R1 received,    | I2 received, send R2   | | |         |
   |          v send I2         |                        v v v         |
   |     +---------+            |                   +---------+        |
   |  +->| I2-SENT |------------+                   | R2-SENT |<----+  |
   |  |  +---------+                                +---------+     |  |
   |  |          |                                     |            |  |
   |  |          |                                 data|            |  |
   |  |receive   |                                   or|            |  |
   |  |R1, send  |                           EC timeout| receive I2,|  |
   |  |I2        |R2 received +--------------+         |     send R2|  |
   |  |          +----------->| ESTABLISHED  |<-------+|            |  |
   |  |                       +--------------+                      |  |
   |  |                         |    |     |                        |  |
   |  |            +------------+    |     +------------------------+  |
   |  |        recv|                 |                              |  |
   |  |      CLOSE,|   No packet sent|                              |  |
   |  |        send|   /received for |                              |  |
   |  |   CLOSE_ACK|   UAL min, send |                              |  |
   |  |            |           CLOSE |    +---------+<-+ timeout    |  |
   |  |            |                 +--->| CLOSING |--+ (UAL+MSL)  |  |
   |  |            |                      +---------+    retransmit |  |
   +--|------------|----------------------+ | |  | |     CLOSE      |  |
   |  +------------|------------------------+ |  | +----------------+  |
   |  |            |              +-----------+  +------------------|--+
   |  |            +------------+ | receive CLOSE,   CLOSE_ACK      |  |
   |  |                         | | send CLOSE_ACK   received or    |  |
   |  |                         v v                  timeout        |  |
   |  |                        +--------+            (UAL+MSL)      |  |
   |  +------------------------| CLOSED |---------------------------+  |
   +---------------------------+--------+------------------------------+
   Datagram to send                 ^ |            timeout (UAL+2MSL),
                                    +-+            move to UNASSOCIATED
                                 CLOSE received,
                                 send CLOSE_ACK
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4.5.  User Data Considerations

4.5.1.  TCP and UDP Pseudo-header Computation for User Data

   When computing TCP and UDP checksums on user data packets that flow
   through sockets bound to HITs, the IPv6 pseudo-header format [11]
   MUST be used, even if the actual addresses on the packet are IPv4
   addresses.  Additionally, the HITs MUST be used in the place of the
   IPv6 addresses in the IPv6 pseudo-header.  Note that the pseudo-
   header for actual HIP payloads is computed differently; see

Section 5.1.1.

4.5.2.  Sending Data on HIP Packets

   A future version of this document may define how to include user data
   on various HIP packets.  However, currently the HIP header is a
   terminal header, and not followed by any other headers.

4.5.3.  Transport Formats

   The actual data transmission format, used for user data after the HIP
   base exchange, is not defined in this document.  Such transport
   formats and methods are described in separate specifications.  All
   HIP implementations MUST implement, at minimum, the ESP transport
   format for HIP [24].

   When new transport formats are defined, they get the type value from
   the HIP Transform type value space 2048 - 4095.  The order in which
   the transport formats are presented in the R1 packet, is the
   preferred order.  The last of the transport formats MUST be ESP
   transport format, represented by the ESP_TRANSFORM parameter.

4.5.4.  Reboot and SA Timeout Restart of HIP

   Simulating a loss of state is a potential DoS attack.  The following
   process has been crafted to manage state recovery without presenting
   a DoS opportunity.

   If a host reboots or the HIP association times out, it has lost its
   HIP state.  If the host that lost state has a datagram to send to the
   peer, it simply restarts the HIP base exchange.  After the base
   exchange has completed, the Initiator can create a new SA and start
   sending data.  The peer does not reset its state until it receives a
   valid I2 HIP packet.

   If a system receives a user data packet that cannot be matched to any
   existing HIP association, it is possible that it has lost the state
   and its peer has not.  It MAY send an ICMP packet with the Parameter
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   Problem type, the Pointer pointing to the referred HIP-related
   association information.  Reacting to such traffic depends on the
   implementation and the environment where the implementation is used.

   If the host, that apparently has lost its state, decides to restart
   the HIP base exchange, it sends an I1 packet to the peer.  After the
   base exchange has been completed successfully, the Initiator can
   create a new HIP association and the peer drops its OLD SA and
   creates a new one.

4.6.  Certificate Distribution

   HIP base specification does not define how to use certificates or how
   to transfer them between hosts.  These functions are defined in a
   separate specification.  A parameter type value, meant to be used for
   carrying certificates, is reserved, though: CERT, Type 768; see

Section 5.2.
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5.  Packet Formats

5.1.  Payload Format

   All HIP packets start with a fixed header.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Next Header   | Header Length |0| Packet Type |  VER. | RES.|1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Checksum             |           Controls            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Sender's Host Identity Tag (HIT)               |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Receiver's Host Identity Tag (HIT)              |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   /                        HIP Parameters                         /
   /                                                               /
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The HIP header is logically an IPv6 extension header.  However, this
   document does not describe processing for Next Header values other
   than decimal 59, IPPROTO_NONE, the IPv6 no next header value.  Future
   documents MAY do so.  However, current implementations MUST ignore
   trailing data if an unimplemented Next Header value is received.

   The Header Length field contains the length of the HIP Header and HIP
   parameters in 8 bytes units, excluding the first 8 bytes.  Since all
   HIP headers MUST contain the sender's and receiver's HIT fields, the
   minimum value for this field is 4, and conversely, the maximum length
   of the HIP Parameters field is (255*8)-32 = 2008 bytes.  Note: this
   sets an additional limit for sizes of parameters included in the
   Parameters field, independent of the individual parameter maximum
   lengths.

   The Packet Type indicates the HIP packet type.  The individual packet
   types are defined in the relevant sections.  If a HIP host receives a
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   HIP packet that contains an unknown packet type, it MUST drop the
   packet.

   The HIP Version is four bits.  The current version is 1.  The version
   number is expected to be incremented only if there are incompatible
   changes to the protocol.  Most extensions can be handled by defining
   new packet types, new parameter types, or new controls.

   The following three bits are reserved for future use.  They MUST be
   zero when sent, and they SHOULD be ignored when handling a received
   packet.

   The two fixed bits in the header are reserved for potential SHIM6
   compatibility [27].  For implementations adhering (only) to this
   specification, they MUST be set as shown when sending and MUST be
   ignored when receiving.  This is to ensure optimal forward
   compatibility.  Note that implementations that implement other
   compatible specifications in addition to this specification, the
   corresponding rules may well be different.  For example, in the case
   that the forthcoming SHIM6 protocol happens to be compatible with
   this specification, an implementation that implements both this
   specification and the SHIM6 protocol may need to check these bits in
   order to determine how to handle the packet.

   The HIT fields are always 128 bits (16 bytes) long.

5.1.1.  Checksum

   Since the checksum covers the source and destination addresses in the
   IP header, it must be recomputed on HIP-aware NAT devies.

   If IPv6 is used to carry the HIP packet, the pseudo-header [11]
   contains the source and destination IPv6 addresses, HIP packet length
   in the pseudo-header length field, a zero field, and the HIP protocol
   number (see Section 4) in the Next Header field.  The length field is
   in bytes and can be calculated from the HIP header length field: (HIP
   Header Length + 1) * 8.

   In case of using IPv4, the IPv4 UDP pseudo header format [1] is used.
   In the pseudo header, the source and destination addresses are those
   used in the IP header, the zero field is obviously zero, the protocol
   is the HIP protocol number (see Section 4), and the length is
   calculated as in the IPv6 case.

5.1.2.  HIP Controls

   The HIP Controls section conveys information about the structure of
   the packet and capabilities of the host.
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   The following fields have been defined:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | | | | | | | | | | | | | | | |A|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   A - Anonymous:  If this is set, the sender's HI in this packet is
      anonymous, i.e., one not listed in a directory.  Anonymous HIs
      SHOULD NOT be stored.  This control is set in packets R1 and/or
      I2.  The peer receiving an anonymous HI may choose to refuse it.

   The rest of the fields are reserved for future use and MUST be set to
   zero on sent packets and ignored on received packets.

5.1.3.  HIP Fragmentation Support

   A HIP implementation must support IP fragmentation / reassembly.
   Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
   fragment generation is REQUIRED to be implemented in IPv4 (IPv4
   stacks and networks will usually do this by default) and RECOMMENDED
   to be implemented in IPv6.  In IPv6 networks, the minimum MTU is
   larger, 1280 bytes, than in IPv4 networks.  The larger MTU size is
   usually sufficient for most HIP packets, and therefore fragment
   generation may not be needed.  If a host expects to send HIP packets
   that are larger than the minimum IPv6 MTU, it MUST implement fragment
   generation even for IPv6.

   In IPv4 networks, HIP packets may encounter low MTUs along their
   routed path.  Since HIP does not provide a mechanism to use multiple
   IP datagrams for a single HIP packet, support for path MTU discovery
   does not bring any value to HIP in IPv4 networks.  HIP-aware NAT
   devices MUST perform any IPv4 reassembly/fragmentation.

   All HIP implementations MUST employ a reassembly algorithm that is
   sufficiently resistant to DoS attacks.

5.2.  HIP Parameters

   The HIP Parameters are used to carry the public key associated with
   the sender's HIT, together with related security and other
   information.  They consist of ordered parameters, encoded in TLV
   format.

   The following parameter types are currently defined.



Moskowitz, et al.       Expires September 3, 2006              [Page 33]



Internet-Draft           Host Identity Protocol               March 2006

   +------------------+-------+----------+-----------------------------+
   | TLV              | Type  | Length   | Data                        |
   +------------------+-------+----------+-----------------------------+
   | R1_COUNTER       | 128   | 12       | System Boot Counter         |
   |                  |       |          |                             |
   | PUZZLE           | 257   | 12       | K and Random #I             |
   |                  |       |          |                             |
   | SOLUTION         | 321   | 20       | K, Random #I and puzzle     |
   |                  |       |          | solution J                  |
   |                  |       |          |                             |
   | SEQ              | 385   | 4        | Update packet ID number     |
   |                  |       |          |                             |
   | ACK              | 449   | variable | Update packet ID number     |
   |                  |       |          |                             |
   | DIFFIE_HELLMAN   | 513   | variable | public key                  |
   |                  |       |          |                             |
   | HIP_TRANSFORM    | 577   | variable | HIP Encryption and          |
   |                  |       |          | Integrity Transform         |
   |                  |       |          |                             |
   | ENCRYPTED        | 641   | variable | Encrypted part of I2 packet |
   |                  |       |          |                             |
   | HOST_ID          | 705   | variable | Host Identity with Fully    |
   |                  |       |          | Qualified Domain Name or    |
   |                  |       |          | NAI                         |
   |                  |       |          |                             |
   | CERT             | 768   | variable | HI Certificate; used to     |
   |                  |       |          | transfer certificates.      |
   |                  |       |          | Usage defined in a separate |
   |                  |       |          | document.                   |
   |                  |       |          |                             |
   | NOTIFY           | 832   | variable | Informational data          |
   |                  |       |          |                             |
   | ECHO_REQUEST     | 897   | variable | Opaque data to be echoed    |
   |                  |       |          | back; under signature       |
   |                  |       |          |                             |
   | ECHO_RESPONSE    | 961   | variable | Opaque data echoed back;    |
   |                  |       |          | under signature             |
   |                  |       |          |                             |
   | HMAC             | 61505 | 20       | HMAC based message          |
   |                  |       |          | authentication code, with   |
   |                  |       |          | key material from           |
   |                  |       |          | HIP_TRANSFORM               |
   |                  |       |          |                             |
   | HMAC_2           | 61569 | 20       | HMAC based message          |
   |                  |       |          | authentication code, with   |
   |                  |       |          | key material from           |
   |                  |       |          | HIP_TRANSFORM               |
   |                  |       |          |                             |
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   | HIP_SIGNATURE_2  | 61633 | variable | Signature of the R1 packet  |
   |                  |       |          |                             |
   | HIP_SIGNATURE    | 61697 | variable | Signature of the packet     |
   |                  |       |          |                             |
   | ECHO_REQUEST     | 63661 | variable | Opaque data to be echoed    |
   |                  |       |          | back; after signature       |
   |                  |       |          |                             |
   | ECHO_RESPONSE    | 63425 | variable | Opaque data echoed back;    |
   |                  |       |          | after signature             |
   +------------------+-------+----------+-----------------------------+

   Because the ordering (from lowest to highest) of HIP parameters is
   strictly enforced (see Section 5.2.1), the parameter type values for
   existing parameters have been spaced to allow for future protocol
   extensions.  Parameters numbered between 0-1023 are used in HIP
   handshake and update procedures and are covered by signatures.
   Parameters numbered between 1024-2047 are reserved.  Parameters
   numbered between 2048-4095 are used for parameters related to HIP
   transform types.  Parameters numbered between 4096 and (2^16 - 2^12)
   61439 are reserved.  Parameters numbered between 61440-62463 are used
   for signatures and signed MACs.  Parameters numbered between 62464-
   63487 are used for parameters that fall outside of the signed area of
   the packet.  Parameters numbered between 63488-64511 are used for
   rendezvous and other relaying services.  Parameters numbered between
   64512-65535 are reserved.

5.2.1.  TLV Format

   The TLV-encoded parameters are described in the following
   subsections.  The type-field value also describes the order of these
   fields in the packet, except for type values from 2048 to 4095 which
   are reserved for new transport forms.  The parameters MUST be
   included in the packet such that their types form an increasing
   order.  If the order does not follow this rule, the packet is
   considered to be malformed and it MUST be discarded.

   Parameters using type values from 2048 up to 4095 are transport
   formats.  Currently, one transport format is defined: the ESP
   transport format [24].  The order of these parameters does not follow
   the order of their type value, but they are put in the packet in
   order of preference.  The first of the transport formats it the most
   preferred, and so on.

   All of the TLV parameters have a length (including Type and Length
   fields) which is a multiple of 8 bytes.  When needed, padding MUST be
   added to the end of the parameter so that the total length becomes a
   multiple of 8 bytes.  This rule ensures proper alignment of data.  If
   padding is added, the Length field MUST NOT include the padding.  Any
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   added padding bytes MUST be zeroed by the sender, and their values
   SHOULD NOT be checked by the receiver.

   Consequently, the Length field indicates the length of the Contents
   field (in bytes).  The total length of the TLV parameter (including
   Type, Length, Contents, and Padding) is related to the Length field
   according to the following formula:

   Total Length = 11 + Length - (Length + 3) % 8;

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type            |C|             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      /                          Contents                             /
      /                                               +-+-+-+-+-+-+-+-+
      |                                               |    Padding    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         Type code for the parameter. 16 bits long, C-bit
                   being part of the Type code.
        C          Critical.  One if this parameter is critical, and
                   MUST be recognized by the recipient, zero otherwise.
                   The C bit is considered to be a part of the Type
                   field. Consequently, critical parameters are always
                   odd and non-critical ones have an even value.
      Length       Length of the Contents, in bytes.
      Contents     Parameter specific, defined by Type
      Padding      Padding, 0-7 bytes, added if needed

   Critical parameters MUST be recognized by the recipient.  If a
   recipient encounters a critical parameter that it does not recognize,
   it MUST NOT process the packet any further.  It MAY send an ICMP or
   NOTIFY, as defined in Section 4.3.

   Non-critical parameters MAY be safely ignored.  If a recipient
   encounters a non-critical parameter that it does not recognize, it
   SHOULD proceed as if the parameter was not present in the received
   packet.

5.2.2.  Defining New Parameters

   Future specifications may define new parameters as needed.  When
   defining new parameters, care must be taken to ensure that the
   parameter type values are appropriate and leave suitable space for
   other future extensions.  One must remember that the parameters MUST
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   always be arranged in the increasing order by type code, thereby
   limiting the order of parameters (see Section 5.2.1).

   The following rules must be followed when defining new parameters.

   1.  The low order bit C of the Type code is used to distinguish
       between critical and non-critical parameters.

   2.  A new parameter may be critical only if an old recipient ignoring
       it would cause security problems.  In general, new parameters
       SHOULD be defined as non-critical, and expect a reply from the
       recipient.

   3.  If a system implements a new critical parameter, it MUST provide
       the ability to configure the associated feature off, such that
       the critical parameter is not sent at all.  The configuration
       option must be well documented.  By default, sending of such a
       new critical parameter SHOULD be off.  In other words, the
       management interface MUST allow vanilla standards-only mode as a
       default configuration setting, and MAY allow new critical
       payloads to be configured on (and off).

   4.  See section Section 9 for allocation rules regarding type codes.

5.2.3.  R1_COUNTER

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Reserved, 4 bytes                                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | R1 generation counter, 8 bytes                                |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           128
      Length         12
      R1 generation
      counter        The current generation of valid puzzles

   The R1_COUNTER parameter contains an 64-bit unsigned integer in
   network byte order, indicating the current generation of valid
   puzzles.  The sender is supposed to increment this counter
   periodically.  It is RECOMMENDED that the counter value is
   incremented at least as often as old PUZZLE values are deprecated so
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   that SOLUTIONs to them are no longer accepted.

   The R1_COUNTER parameter is optional.  It SHOULD be included in the
   R1 (in which case it is covered by the signature), and if present in
   the R1, it MAY be echoed (including the Reserved field verbatim) by
   the Initiator in the I2.

5.2.4.  PUZZLE

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | K, 1 byte     |    Lifetime   |        Opaque, 2 bytes        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Random # I, 8 bytes                                           |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           257
      Length         12
      K              K is the number of verified bits
      Lifetime       Puzzle lifetime 2^(value-32) seconds
      Opaque         Data set by the Responder, indexing the puzzle
      Random #I      random number

   Random #I is represented as 64-bit integer, K and Lifetime as 8-bit
   integer, all in network byte order.

   The PUZZLE parameter contains the puzzle difficulty K and a 64-bit
   puzzle random integer #I. The Puzzle Lifetime indicates the time
   during which the puzzle solution is valid, and sets a time limit
   which should not be exceeded by the Initiator while it attempts to
   solve the puzzle.  The lifetime is indicated as a power of 2 using
   the formula 2^(Lifetime-32) seconds.  A puzzle MAY be augmented with
   an ECHO_REQUEST parameter included in the R1; the contents of the
   ECHO_REQUEST are then echoed back in the ECHO_RESPONSE, allowing the
   Responder to use the included information as a part of its puzzle
   processing.

   The Opaque and Random #I field are not covered by the HIP_SIGNATURE_2
   parameter.
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5.2.5.  SOLUTION

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | K, 1 byte     |   Reserved    |        Opaque, 2 bytes        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Random #I, 8 bytes                                            |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Puzzle solution #J, 8 bytes                                   |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           321
      Length         20
      K              K is the number of verified bits
      Reserved       zero when sent, ignored when received
      Opaque         copied unmodified from the received PUZZLE
                     parameter
      Random #I      random number
      Puzzle solution
      #J             random number

   Random #I, and Random #J are represented as 64-bit integers, K as an
   8-bit integer, all in network byte order.

   The SOLUTION parameter contains a solution to a puzzle.  It also
   echoes back the random difficulty K, the Opaque field, and the puzzle
   integer #I.
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5.2.6.  DIFFIE_HELLMAN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Group ID    |               Public Value                    /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |            padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           513
      Length         length in octets, excluding Type, Length, and
                     padding
      Group ID       defines values for p and g
      Public Value   the sender's public Diffie-Hellman key

   The following Group IDs have been defined:

      Group                            Value
      Reserved                         0
      384-bit group                    1
      OAKLEY well known group 1        2
      1536-bit MODP group              3
      3072-bit MODP group              4
      6144-bit MODP group              5
      8192-bit MODP group              6

   The MODP Diffie-Hellman groups are defined in [17].  The OAKLEY group
   is defined in [8].  The OAKLEY well known group 5 is the same as the
   1536-bit MODP group.

   A HIP implementation MUST support Group IDs 1 and 3.  The 384-bit
   group can be used when lower security is enough (e.g. web surfing)
   and when the equipment is not powerful enough (e.g. some PDAs).
   Equipment powerful enough SHOULD implement also group ID 5.  The 384-
   bit group is defined in Appendix D.

   To avoid unnecessary failures during the base exchange, the rest of
   the groups SHOULD be implemented in hosts where resources are
   adequate.
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5.2.7.  HIP_TRANSFORM

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Transform-ID #1      |       Transform-ID #2         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Transform-ID #n      |             Padding           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           577
      Length         length in octets, excluding Type, Length, and
                     padding
      Transform-ID   Defines the HIP Suite to be used

   The following Suite-IDs are defined ([21],[10]):

         Suite-ID                          Value

         RESERVED                          0
         AES-CBC with HMAC-SHA1            1
         3DES-CBC with HMAC-SHA1           2
         3DES-CBC with HMAC-MD5            3
         BLOWFISH-CBC with HMAC-SHA1       4
         NULL-ENCRYPT with HMAC-SHA1       5
         NULL-ENCRYPT with HMAC-MD5        6

   There MUST NOT be more than six (6) HIP Suite-IDs in one HIP
   transform parameter.  The limited number of transforms sets the
   maximum size of HIP_TRANSFORM parameter.  The HIP_TRANSFORM parameter
   MUST contain at least one of the mandatory Suite-IDs.

   The Responder lists supported and desired Suite-IDs in order of
   preference in the R1, up to the maximum of six Suite-IDs.  In the I2,
   the Initiator MUST choose and insert only one of the corresponding
   Suite-IDs that will be used for generating the I2.

   Mandatory implementations: AES-CBC with HMAC-SHA1 and NULL-ENCRYPTION
   with HMAC-SHA1.
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5.2.8.  HOST_ID

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          HI Length            |DI-type|      DI Length        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Host Identity                         /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |         Domain Identifier     /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                                               |    Padding    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type              705
      Length            length in octets, excluding Type, Length, and
                        Padding
      HI Length         Length of the Host Identity in octets
      DI-type           type of the following Domain Identifier field
      DI Length         length of the FQDN or NAI in octets
      Host Identity     actual host identity
      Domain Identifier the identifier of the sender

   The Host Identity is represented in RFC2535 [12] format.  The
   algorithms used in RDATA format are the following:

         Algorithms       Values

         RESERVED         0
         DSA              3 [RFC2536] (RECOMMENDED)
         RSA              5 [RFC3110] (REQUIRED)

   The following DI-types have been defined:

          Type                    Value
          none included           0
          FQDN                    1
          NAI                     2

          FQDN            Fully Qualified Domain Name, in binary format.
          NAI             Network Access Identifier
   [23]

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110
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   The format for the FQDN is defined in RFC1035 [3] Section 3.1.

   If there is no Domain Identifier, i.e. the DI-type field is zero,
   also the DI Length field is set to zero.

5.2.9.  HMAC

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                             HMAC                              |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           61505
      Length         20
      HMAC           160 low order bits of the HMAC computed over the
                     HIP packet, excluding the HMAC parameter and any
                     following parameters, such as HIP_SIGNATURE,
                     HIP_SIGNATURE_2, ECHO_REQUEST, or ECHO_RESPONSE.
                     The checksum field MUST be set to zero
                     and the HIP header length in the HIP common header
                     MUST be calculated not to cover any excluded
                     parameters when the HMAC is calculated.

   The HMAC calculation and verification process is presented in
Section 6.4.1

5.2.10.  HMAC_2

   The parameter structure is the same as in Section 5.2.9.  The fields
   are:

https://datatracker.ietf.org/doc/html/rfc1035
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      Type           61569
      Length         20
      HMAC           160 low order bits of the HMAC computed over the
                     HIP packet, excluding the HMAC parameter and any
                     following parameters such as HIP_SIGNATURE,
                     HIP_SIGNATURE_2, ECHO_REQUEST, or ECHO_RESPONSE,
                     and including an additional sender's
                     HOST_ID parameter during the HMAC calculation.  The
                     checksum field MUST be set to zero and the HIP
                     header length in the HIP common header MUST be
                     calculated not to cover any excluded parameters
                     when the HMAC is calculated.

   The HMAC calculation and verification process is presented in
Section 6.4.1

5.2.11.  HIP_SIGNATURE

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    SIG alg    |                  Signature                    /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |             Padding           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           61697
      Length         length in octets, excluding Type, Length, and
                     Padding
      SIG alg        Signature algorithm
      Signature      the signature is calculated over the HIP packet,
                     excluding the HIP_SIGNATURE parameter and any
                     parameters that follow the HIP_SIGNATURE parameter.
                     The checksum field MUST be set to zero, and the HIP
                     header length in the HIP common header MUST be
                     calculated only to the beginning of the
                     HIP_SIGNATURE parameter when the signature is
                     calculated.

   The signature algorithms are defined in Section 5.2.8.  The signature
   in the Signature field is encoded using the proper method depending
   on the signature algorithm (e.g. according to [15] in case of RSA, or
   according to [13] in case of DSA).

   The HIP_SIGNATURE calculation and verification process is presented
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   in Section 6.4.2

5.2.12.  HIP_SIGNATURE_2

   The parameter structure is the same as in Section 5.2.11.  The fields
   are:

      Type           61633
      Length         length in octets, excluding Type, Length, and
                     Padding
      SIG alg        Signature algorithm
      Signature      the signature is calculated over the HIP R1 packet,
                     excluding the HIP_SIGNATURE_2 parameter and any
                     parameters that follow.  Initiator's HIT, checksum
                     field, and the Opaque and Random #I fields in the
                     PUZZLE parameter MUST be set to zero while
                     computing the HIP_SIGNATURE_2 signature.  Further,
                     the HIP packet length in the HIP header MUST be
                     calculated to the beginning of the HIP_SIGNATURE_2
                     parameter when the signature is calculated.

   Zeroing the Initiator's HIT makes it possible to create R1 packets
   beforehand to minimize the effects of possible DoS attacks.  Zeroing
   the I and Opaque fields allows these fields to be populated
   dynamically on precomputed R1s.

   Signature calculation and verification follows the process in
Section 6.4.2.

5.2.13.  SEQ

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Update ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           385
      Length         4
      Update ID      32-bit sequence number

   The Update ID is an unsigned quantity, initialized by a host to zero
   upon moving to ESTABLISHED state.  The Update ID has scope within a
   single HIP association, and not across multiple associations or
   multiple hosts.  The Update ID is incremented by one before each new
   UPDATE that is sent by the host; the first UPDATE packet originated



Moskowitz, et al.       Expires September 3, 2006              [Page 45]



Internet-Draft           Host Identity Protocol               March 2006

   by a host has an Update ID of 0.

5.2.14.  ACK

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       peer Update ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type            449
      Length          variable (multiple of 4)
      peer Update ID  32-bit sequence number corresponding to the
                      Update ID being acked.

   The ACK parameter includes one or more Update IDs that have been
   received from the peer.  The Length field identifies the number of
   peer Update IDs that are present in the parameter.
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5.2.15.  ENCRYPTED

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              IV                               /
      /                                                               /
      /                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               /
      /                        Encrypted data                         /
      /                                                               /
      /                               +-------------------------------+
      /                               |            Padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           641
      Length         length in octets, excluding Type, Length, and
                     Padding
      Reserved       zero when sent, ignored when received
      IV             Initialization vector, if needed, otherwise
                     nonexistent.  The length of the IV is inferred from
                     the HIP transform.
      Encrypted      The data is encrypted using an encryption algorithm
      data           as defined in HIP transform.
      Padding        Any Padding, if necessary, to make the parameter a
                     multiple of 8 bytes.

   The ENCRYPTED parameter encapsulates another parameter, the encrypted
   data, which is also in TLV format.  Consequently, the first fields in
   the encapsulated parameter(s) are Type and Length, allowing the
   contents to be easily parsed after decryption.

   Both the ENCRYPTED parameter and the encapsulated parameter(s) MUST
   be padded.  The padding needed for the ENCRYPTED parameter is
   referred as the "outer" padding.  Correspondingly, the padding for
   the parameter(s) encapsulated within the ENCRYPTED parameter is
   referred as the "inner" padding.

   The inner padding follows exactly the rules of Section 5.2.1.  The
   outer padding also follows the same rules but with an exception.
   Namely, some algorithms require that the data to be encrypted must be
   a multiple of the cipher algorithm block size.  In this case, the
   outer padding MUST include extra padding, as specified by the
   encryption algorithm.  The size of the extra padding is selected so
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   that the length of the ENCRYPTED is the minimum value that is both
   multiple of eight and the cipher block size.  The encryption
   algorithm may specify padding bytes other than zero; for example, AES
   [32] uses the PKCS5 padding scheme [14] (see section 6.1.1) where the
   remaining n bytes to fill the block each have the value n.

   Note that the length of the cipher suite output may be smaller or
   larger than the length of the data to be encrypted, since the
   encryption process may compress the data or add additional padding to
   the data.

5.2.16.  NOTIFY

   The NOTIFY parameter is used to transmit informational data, such as
   error conditions and state transitions, to a HIP peer.  A NOTIFY
   parameter may appear in the NOTIFY packet type.  The use of the
   NOTIFY parameter in other packet types is for further study.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Reserved             |      Notify Message Type      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               /
      /                   Notification data                           /
      /                                               +---------------+
      /                                               |     Padding   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           832
      Length         length in octets, excluding Type, Length, and
                     Padding
      Reserved       zero when sent, ignored when received
      Notify Message Specifies the type of notification
      Type
      Notification   Informational or error data transmitted in addition
      Data           to the Notify Message Type.  Values for this field
                     are type specific (see below).
      Padding        Any Padding, if necessary, to make the parameter a
                     multiple of 8 bytes.

   Notification information can be error messages specifying why an SA
   could not be established.  It can also be status data that a process
   managing an SA database wishes to communicate with a peer process.
   The table below lists the Notification messages and their
   corresponding values.



Moskowitz, et al.       Expires September 3, 2006              [Page 48]



Internet-Draft           Host Identity Protocol               March 2006

   To avoid certain types of attacks, a Responder SHOULD avoid sending a
   NOTIFY to any host with which it has not successfully verified a
   puzzle solution.

   Types in the range 0 - 16383 are intended for reporting errors.  An
   implementation that receives a NOTIFY error parameter in response to
   a request packet (e.g., I1, I2, UPDATE), SHOULD assume that the
   corresponding request has failed entirely.  Unrecognized error types
   MUST be ignored except that they SHOULD be logged.

   Notify payloads with status types MUST be ignored if not recognized.

      NOTIFY PARAMETER - ERROR TYPES           Value
      ------------------------------           -----

      UNSUPPORTED_CRITICAL_PARAMETER_TYPE        1

         Sent if the parameter type has the "critical" bit set and the
         parameter type is not recognized.  Notification Data contains
         the two octet parameter type.

      INVALID_SYNTAX                             7

         Indicates that the HIP message received was invalid because
         some type, length, or value was out of range or because the
         request was rejected for policy reasons.  To avoid a denial of
         service attack using forged messages, this status may only be
         returned for packets whose HMAC (if present) and SIGNATURE have
         been verified.  This status MUST be sent in response to any
         error not covered by one of the other status types, and should
         not contain details to avoid leaking information to someone
         probing a node.  To aid debugging, more detailed error
         information SHOULD be written to a console or log.

      NO_DH_PROPOSAL_CHOSEN                     14

         None of the proposed group IDs was acceptable.

      INVALID_DH_CHOSEN                         15

         The D-H Group ID field does not correspond to one offered
         by the Responder.

      NO_HIP_PROPOSAL_CHOSEN                    16

         None of the proposed HIP Transform crypto suites was
         acceptable.
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      INVALID_HIP_TRANSFORM_CHOSEN              17

         The HIP Transform crypto suite does not correspond to
         one offered by the Responder.

      AUTHENTICATION_FAILED                     24

         Sent in response to a HIP signature failure, except when
         the signature verification fails in a NOTIFY message.

      CHECKSUM_FAILED                           26

         Sent in response to a HIP checksum failure.

      HMAC_FAILED                               28

         Sent in response to a HIP HMAC failure.

      ENCRYPTION_FAILED                         32

         The Responder could not successfully decrypt the
         ENCRYPTED parameter.

      INVALID_HIT                               40

         Sent in response to a failure to validate the peer's
         HIT from the corresponding HI.

      BLOCKED_BY_POLICY                         42

         The Responder is unwilling to set up an association
         for some policy reason (e.g. received HIT is NULL
         and policy does not allow opportunistic mode).

      SERVER_BUSY_PLEASE_RETRY                  44

         The Responder is unwilling to set up an association
         as it is suffering under some kind of overload and
         has chosen to shed load by rejecting your request.
         You may retry if you wish, however you MUST find
         another (different) puzzle solution for any such
         retries.  Note that you may need to obtain a new
         puzzle with a new I1/R1 exchange.

      I2_ACKNOWLEDGEMENT                        46

         The Responder has received your I2 but had to queue
         the I2 for processing.  The puzzle was correctly solved
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         and the Responder is willing to set up an association
         but has currently a number of I2s in processing queue.
         R2 will be sent after the I2 has been processed.

      NOTIFY MESSAGES - STATUS TYPES           Value
      ------------------------------           -----

      (None defined at present)

5.2.17.  ECHO_REQUEST

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Opaque data (variable length)                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         63661 or 897
      Length       variable
      Opaque data  Opaque data, supposed to be meaningful only to the
                   node that sends ECHO_REQUEST and receives a
                   corresponding ECHO_RESPONSE.

   The ECHO_REQUEST parameter contains an opaque blob of data that the
   sender wants to get echoed back in the corresponding reply packet.

   The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
   purpose where a node wants to carry some state in a request packet
   and get it back in a response packet.  The ECHO_REQUEST MAY be
   covered by the HMAC and SIGNATURE.  This is dictated by the Type
   field selected for the parameter; Type 897 ECHO_REQUEST is covered
   and Type 63661 is not covered.  A HIP packet can contain only one
   ECHO_REQUEST parameter.
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5.2.18.  ECHO_RESPONSE

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Opaque data (variable length)                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         63425 or 961
      Length       variable
      Opaque data  Opaque data, copied unmodified from the ECHO_REQUEST
                   parameter that triggered this response.

   The ECHO_RESPONSE parameter contains an opaque blob of data that the
   sender of the ECHO_REQUEST wants to get echoed back.  The opaque data
   is copied unmodified from the ECHO_REQUEST parameter.

   The ECHO_REQUEST and ECHO_RESPONSE parameters MAY be used for any
   purpose where a node wants to carry some state in a request packet
   and get it back in a response packet.  The ECHO_RESPONSE MAY be
   covered by the HMAC and SIGNATURE.  This is dictated by the Type
   field selected for the parameter; Type 961 ECHO_RESPONSE is covered
   and Type 63425 is not.

5.3.  HIP Packets

   There are eight basic HIP packets (see Table 11).  Four are for the
   HIP base exchange, one is for updating, one is for sending
   notifications, and two for closing a HIP association.
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    +-------------+---------------------------------------------------+
    | Packet type | Packet name                                       |
    +-------------+---------------------------------------------------+
    | 1           | I1 - the HIP Initiator Packet                     |
    |             |                                                   |
    | 2           | R1 - the HIP Responder Packet                     |
    |             |                                                   |
    | 3           | I2 - the Second HIP Initiator Packet              |
    |             |                                                   |
    | 4           | R2 - the Second HIP Responder Packet              |
    |             |                                                   |
    | 16          | UPDATE - the HIP Update Packet                    |
    |             |                                                   |
    | 17          | NOTIFY - the HIP Notify Packet                    |
    |             |                                                   |
    | 18          | CLOSE - the HIP Association Closing Packet        |
    |             |                                                   |
    | 19          | CLOSE_ACK - the HIP Closing Acknowledgment Packet |
    +-------------+---------------------------------------------------+

               Table 11: HIP packets and packet type numbers

   Packets consist of the fixed header as described in Section 5.1,
   followed by the parameters.  The parameter part, in turn, consists of
   zero or more parameter coded parameters.

   In addition to the base packets, other packets types will be defined
   later in separate specifications.  For example, support for mobility
   and multi-homing is not included in this specification.

   See Notation (Section 2.2) for used operations.

   In the future, an OPTIONAL upper layer payload MAY follow the HIP
   header.  The Next Header field in the header indicates if there is
   additional data following the HIP header.  The HIP packet, however,
   MUST NOT be fragmented.  This limits the size of the possible
   additional data in the packet.

5.3.1.  I1 - the HIP Initiator Packet

   The HIP header values for the I1 packet:

      Header:
        Packet Type = 1
        SRC HIT = Initiator's HIT
        DST HIT = Responder's HIT, or NULL

      IP ( HIP () )
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   The I1 packet contains only the fixed HIP header.

   Valid control bits: none

   The Initiator gets the Responder's HIT either from a DNS lookup of
   the Responder's FQDN, from some other repository, or from a local
   table.  If the Initiator does not know the Responder's HIT, it may
   attempt opportunistic mode by using NULL (all zeros) as the
   Responder's HIT.  If the Initiator sends a NULL as the Responder's
   HIT, it MUST be able to handle all MUST and SHOULD algorithms from

Section 3, which are currently RSA and DSA.

   Since this packet is so easy to spoof even if it were signed, no
   attempt is made to add to its generation or processing cost.

   Implementations MUST be able to handle a storm of received I1
   packets, discarding those with common content that arrive within a
   small time delta.

5.3.2.  R1 - the HIP Responder Packet

   The HIP header values for the R1 packet:

      Header:
        Packet Type = 2
        SRC HIT = Responder's HIT
        DST HIT = Initiator's HIT

      IP ( HIP ( [ R1_COUNTER, ]
                 PUZZLE,
                 DIFFIE_HELLMAN,
                 HIP_TRANSFORM,
                 HOST_ID,
                 [ ECHO_REQUEST, ]
                 HIP_SIGNATURE_2 )
                 [, ECHO_REQUEST ])

   Valid control bits: A

   If the Responder HI is an anonymous one, the A control MUST be set.

   The Initiator HIT MUST match the one received in I1.  If the
   Responder has multiple HIs, the Responder HIT used MUST match
   Initiator's request.  If the Initiator used opportunistic mode, the
   Responder may select freely among its HIs.

   The R1 generation counter is used to determine the currently valid
   generation of puzzles.  The value is increased periodically, and it
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   is RECOMMENDED that it is increased at least as often as solutions to
   old puzzles are no longer accepted.

   The Puzzle contains a random #I and the difficulty K. The difficulty
   K is the number of bits that the Initiator must get zero in the
   puzzle.  The random #I is not covered by the signature and must be
   zeroed during the signature calculation, allowing the sender to
   select and set the #I into a pre-computed R1 just prior sending it to
   the peer.

   The Diffie-Hellman value is ephemeral, but can be reused over a
   number of connections.  In fact, as a defense against I1 storms, an
   implementation MAY use the same Diffie-Hellman value for a period of
   time, for example, 15 minutes.  By using a small number of different
   puzzles for a given Diffie-Hellman value, the R1 packets can be pre-
   computed and delivered as quickly as I1 packets arrive.  A scavenger
   process should clean up unused DHs and puzzles.

   The HIP_TRANSFORM contains the encryption and integrity algorithms
   supported by the Responder to protect the HI exchange, in the order
   of preference.  All implementations MUST support the AES [18] with
   HMAC-SHA-1-96 [6].

   The ECHO_REQUEST contains data that the sender wants to receive
   unmodified in the corresponding response packet in the ECHO_RESPONSE
   parameter.  The ECHO_REQUEST can be either covered by the signature,
   or it can be left out from it.  In the first case, the ECHO_REQUEST
   gets Type number 897 and in the latter case 63661.

   The signature is calculated over the whole HIP envelope, after
   setting the Initiator HIT, header checksum as well as the Opaque
   field and the Random #I in the PUZZLE parameter temporarily to zero,
   and excluding any parameters that follow the signature, as described
   in Section 5.2.12.  This allows the Responder to use precomputed R1s.
   The Initiator SHOULD validate this signature.  It SHOULD check that
   the Responder HI received matches with the one expected, if any.

5.3.3.  I2 - the Second HIP Initiator Packet

   The HIP header values for the I2 packet:
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      Header:
        Type = 3
        SRC HIT = Initiator's HIT
        DST HIT = Responder's HIT

      IP ( HIP ( [R1_COUNTER,]
                 SOLUTION,
                 DIFFIE_HELLMAN,
                 HIP_TRANSFORM,
                 ENCRYPTED { HOST_ID } or HOST_ID,
                 [ ECHO_RESPONSE ,]
                 HMAC,
                 HIP_SIGNATURE
                 [, ECHO_RESPONSE] ) )

   Valid control bits: A

   The HITs used MUST match the ones used previously.

   If the Initiator HI is an anonymous one, the A control MUST be set.

   The Initiator MAY include an unmodified copy of the R1_COUNTER
   parameter received in the corresponding R1 packet into the I2 packet.

   The Solution contains the random # I from R1 and the computed # J.
   The low order K bits of the PHASH(I | ... | J) MUST be zero.

   The Diffie-Hellman value is ephemeral.  If precomputed, a scavenger
   process should clean up unused DHs.

   The HIP_TRANSFORM contains the single encryption and integrity
   transform selected by the Initiator, that will be used to protect the
   HI exchange.  The chosen transform MUST correspond to one offered by
   the Responder in the R1.  All implementations MUST support the AES
   transform [18].

   The Initiator's HI MAY be encrypted using the HIP_TRANSFORM
   encryption algorithm.  The keying material is derived from the
   Diffie-Hellman exchanged as defined in Section 6.5.

   The ECHO_RESPONSE contains the unmodified Opaque data copied from the
   corresponding ECHO_REQUEST parameter.  The ECHO_RESPONSE can be
   either covered by the HMAC and SIGNATURE or not covered.  In the
   former case, the ECHO_RESPONSE gets Type number 961, in the latter it
   is 63425.

   The HMAC is calculated over whole HIP envelope, excluding any
   parameters after the HMAC, as described in Section 6.4.1.  The
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   Responder MUST validate the HMAC.

   The signature is calculated over whole HIP envelope, excluding any
   parameters after the HIP_SIGNATURE, as described in Section 5.2.11.
   The Responder MUST validate this signature.  It MAY use either the HI
   in the packet or the HI acquired by some other means.

5.3.4.  R2 - the Second HIP Responder Packet

   The HIP header values for the R2 packet:

      Header:
        Packet Type = 4
        SRC HIT = Responder's HIT
        DST HIT = Initiator's HIT

      IP ( HIP ( HMAC_2, HIP_SIGNATURE ) )

   Valid control bits: none

   The HMAC_2 is calculated over whole HIP envelope, with Responder's
   HOST_ID parameter concatenated with the HIP envelope.  The HOST_ID
   parameter is removed after the HMAC calculation.  The procedure is
   described in 8.3.1.

   The signature is calculated over whole HIP envelope.

   The Initiator MUST validate both the HMAC and the signature.

5.3.5.  UPDATE - the HIP Update Packet

   Support for the UPDATE packet is MANDATORY.

   The HIP header values for the UPDATE packet:

      Header:
        Packet Type = 16
        SRC HIT = Sender's HIT
        DST HIT = Recipient's HIT

      IP ( HIP ( [SEQ, ACK, ] HMAC, HIP_SIGNATURE ) )

   Valid control bits: None

   The UPDATE packet contains mandatory HMAC and HIP_SIGNATURE
   parameters, and other optional parameters.
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   The UPDATE packet contains zero or one SEQ parameter.  The presence
   of a SEQ parameter indicates that the receiver MUST ack the UPDATE.
   An UPDATE that does not contain a SEQ parameter is simply an ACK of a
   previous UPDATE and itself MUST not be acked.

   An UPDATE packet contains zero or one ACK parameters.  The ACK
   parameter echoes the SEQ sequence number of the UPDATE packet being
   acked.  A host MAY choose to ack more than one UPDATE packet at a
   time; e.g., the ACK may contain the last two SEQ values received, for
   robustness to ack loss.  ACK values are not cumulative; each received
   unique SEQ value requires at least one corresponding ACK value in
   reply.  Received ACKs that are redundant are ignored.

   The UPDATE packet may contain both a SEQ and an ACK parameter.  In
   this case, the ACK is being piggybacked on an outgoing UPDATE.  In
   general, UPDATEs carrying SEQ SHOULD be acked upon completion of the
   processing of the UPDATE.  A host MAY choose to hold the UPDATE
   carrying ACK for a short period of time to allow for the possibility
   of piggybacking the ACK parameter, in a manner similar to TCP delayed
   acknowledgments.

   A sender MAY choose to forego reliable transmission of a particular
   UPDATE (e.g., it becomes overcome by events).  The semantics are such
   that the receiver MUST acknowledge the UPDATE but the sender MAY
   choose to not care about receiving the ACK.

   UPDATEs MAY be retransmitted without incrementing SEQ.  If the same
   subset of parameters is included in multiple UPDATEs with different
   SEQs, the host MUST ensure that receiver processing of the parameters
   multiple times will not result in a protocol error.

5.3.6.  NOTIFY - the HIP Notify Packet

   The NOTIFY packet is OPTIONAL.  The NOTIFY packet MAY be used to
   provide information to a peer.  Typically, NOTIFY is used to indicate
   some type of protocol error or negotiation failure.  NOTIFY packets
   are unacknowledged.

   The HIP header values for the NOTIFY packet:

      Header:
        Packet Type = 17
        SRC HIT = Sender's HIT
        DST HIT = Recipient's HIT, or zero if unknown

      IP ( HIP (<NOTIFY>i, [HOST_ID, ] HIP_SIGNATURE) )

   Valid control bits: None
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   The NOTIFY packet is used to carry one or more NOTIFY parameters.

5.3.7.  CLOSE - the HIP Association Closing Packet

   The HIP header values for the CLOSE packet:

      Header:
        Packet Type = 18
        SRC HIT = Sender's HIT
        DST HIT = Recipient's HIT

      IP ( HIP ( ECHO_REQUEST, HMAC, HIP_SIGNATURE ) )

   Valid control bits: none

   The sender MUST include an ECHO_REQUEST used to validate CLOSE_ACK
   received in response, and both an HMAC and a signature (calculated
   over the whole HIP envelope).

   The receiver peer MUST validate both the HMAC and the signature if it
   has a HIP association state, and MUST reply with a CLOSE_ACK
   containing an ECHO_REPLY corresponding to the received ECHO_REQUEST.

5.3.8.  CLOSE_ACK - the HIP Closing Acknowledgment Packet

   The HIP header values for the CLOSE_ACK packet:

      Header:
        Packet Type = 19
        SRC HIT = Sender's HIT
        DST HIT = Recipient's HIT

      IP ( HIP ( ECHO_REPLY, HMAC, HIP_SIGNATURE ) )

   Valid control bits: none

   The sender MUST include both an HMAC and signature (calculated over
   the whole HIP envelope).

   The receiver peer MUST validate both the HMAC and the signature.

5.4.  ICMP Messages

   When a HIP implementation detects a problem with an incoming packet,
   and it either cannot determine the identity of the sender of the
   packet or does not have any existing HIP association with the sender
   of the packet, it MAY respond with an ICMP packet.  Any such replies
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   MUST be rate limited as described in [4].  In most cases, the ICMP
   packet will have the Parameter Problem type (12 for ICMPv4, 4 for
   ICMPv6), with the Pointer field pointing to the field that caused the
   ICMP message to be generated.

5.4.1.  Invalid Version

   If a HIP implementation receives a HIP packet that has an
   unrecognized HIP version number, it SHOULD respond, rate limited,
   with an ICMP packet with type Parameter Problem, the Pointer pointing
   to the VER./RES. byte in the HIP header.

5.4.2.  Other Problems with the HIP Header and Packet Structure

   If a HIP implementation receives a HIP packet that has other
   unrecoverable problems in the header or packet format, it MAY
   respond, rate limited, with an ICMP packet with type Parameter
   Problem, the Pointer pointing to the field that failed to pass the
   format checks.  However, an implementation MUST NOT send an ICMP
   message if the Checksum fails; instead, it MUST silently drop the
   packet.

5.4.3.  Invalid Puzzle Solution

   If a HIP implementation receives an I2 packet that has an invalid
   puzzle solution, the behavior depends on the underlying version of
   IP.  If IPv6 is used, the implementation SHOULD respond with an ICMP
   packet with type Parameter Problem, the Pointer pointing to the
   beginning of the Puzzle solution #J field in the SOLUTION payload in
   the HIP message.

   If IPv4 is used, the implementation MAY respond with an ICMP packet
   with the type Parameter Problem, copying enough of bytes from the I2
   message so that the SOLUTION parameter fits into the ICMP message,
   the Pointer pointing to the beginning of the Puzzle solution #J
   field, as in the IPv6 case.  Note, however, that the resulting ICMPv4
   message exceeds the typical ICMPv4 message size as defined in [2].

5.4.4.  Non-existing HIP Association

   If a HIP implementation receives a CLOSE, or UPDATE packet, or any
   other packet whose handling requires an existing association, that
   has either a Receiver or Sender HIT that does not match with any
   existing HIP association, the implementation MAY respond, rate
   limited, with an ICMP packet with the type Parameter Problem, the
   Pointer pointing to the beginning of the first HIT that does not
   match.
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   A host MUST NOT reply with such an ICMP if it receives any of the
   following messages: I1, R2, I2, R2, and NOTIFY.  When introducing new
   packet types, a specification SHOULD define the appropriate rules for
   sending or not sending this kind of ICMP replies.
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6.  Packet Processing

   Each host is assumed to have a single HIP protocol implementation
   that manages the host's HIP associations and handles requests for new
   ones.  Each HIP association is governed by a conceptual state
   machine, with states defined above in Section 4.4.  The HIP
   implementation can simultaneously maintain HIP associations with more
   than one host.  Furthermore, the HIP implementation may have more
   than one active HIP association with another host; in this case, HIP
   associations are distinguished by their respective HITs.  It is not
   possible to have more than one HIP association between any given pair
   of HITs.  Consequently, the only way for two hosts to have more than
   one parallel association is to use different HITs, at least at one
   end.

   The processing of packets depends on the state of the HIP
   association(s) with respect to the authenticated or apparent
   originator of the packet.  A HIP implementation determines whether it
   has an active association with the originator of the packet based on
   the HITs.  In the case of user data carried in a specific transport
   format, the transport format document specifies how the incoming
   packets are matched with the active associations.

6.1.  Processing Outgoing Application Data

   In a HIP host, an application can send application level data using
   an identifier specified via the underlying API.  The API can be a
   backwards compatible API (see [28]), using identifiers that look
   similar to IP addresses, or a completely new API, providing enhanced
   services related to Host Identities.  Depending on the HIP
   implementation, the identifier provided to the application may be
   different; it can be e.g. a HIT or an IP address.

   The exact format and method for transferring the data from the source
   HIP host to the destination HIP host is defined in the corresponding
   transport format document.  The actual data is transferred in the
   network using the appropriate source and destination IP addresses.

   In this document, conceptual processing rules are defined only for
   the base case where both hosts have only single usable IP addresses;
   the multi-address multi-homing case will be specified separately.

   The following conceptual algorithm describes the steps that are
   required for handling outgoing datagrams destined to a HIT.

   1.  If the datagram has a specified source address, it MUST be a HIT.
       If it is not, the implementation MAY replace the source address
       with a HIT.  Otherwise it MUST drop the packet.
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   2.  If the datagram has an unspecified source address, the
       implementation must choose a suitable source HIT for the
       datagram.

   3.  If there is no active HIP association with the given < source,
       destination > HIT pair, one must be created by running the base
       exchange.  While waiting for the base exchange to complete, the
       implementation SHOULD queue at least one packet per HIP
       association to be formed, and it MAY queue more than one.

   4.  Once there is an active HIP association for the given < source,
       destination > HIT pair, the outgoing datagram is passed to
       transport handling.  The possible transport formats are defined
       in separate documents, of which the ESP transport format for HIP
       is mandatory for all HIP implementations.

   5.  Before sending the packet, the HITs in the datagram are replaced
       with suitable IP addresses.  For IPv6, the rules defined in [16]
       SHOULD be followed.  Note that this HIT-to-IP-address conversion
       step MAY also be performed at some other point in the stack,
       e.g., before wrapping the packet into the output format.

6.2.  Processing Incoming Application Data

   The following conceptual algorithm describes the incoming datagram
   handling when HITs are used at the receiving host as application
   level identifiers.  More detailed steps for processing packets are
   defined in corresponding transport format documents.

   1.  The incoming datagram is mapped to an existing HIP association,
       typically using some information from the packet.  For example,
       such mapping may be based on ESP Security Parameter Index (SPI).

   2.  The specific transport format is unwrapped, in a way depending on
       the transport format, yielding a packet that looks like a
       standard (unencrypted) IP packet.  If possible, this step SHOULD
       also verify that the packet was indeed (once) sent by the remote
       HIP host, as identified by the HIP association.

   3.  The IP addresses in the datagram are replaced with the HITs
       associated with the HIP association.  Note that this IP-address-
       to-HIT conversion step MAY also be performed at some other point
       in the stack.

   4.  The datagram is delivered to the upper layer.  Demultiplexing the
       datagram the right upper layer socket is based on the HITs.
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6.3.  Solving the Puzzle

   This subsection describes the puzzle solving details.

   In R1, the values I and K are sent in network byte order.  Similarly,
   in I2 the values I and J are sent in network byte order.  The SHA-1
   hash is created by concatenating, in network byte order, the
   following data, in the following order:

      64-bit random value I, in network byte order, as appearing in R1
      and I2.

      128-bit Initiator HIT, in network byte order, as appearing in the
      HIP Payload in R1 and I2.

      128-bit Responder HIT, in network byte order, as appearing in the
      HIP Payload in R1 and I2.

      64-bit random value J, in network byte order, as appearing in I2.

   In order to be a valid response puzzle, the K low-order bits of the
   resulting PHASH digest must be zero.

   Notes:

      i) The length of the data to be hashed is 48 bytes.

      ii) All the data in the hash input MUST be in network byte order.

      iii) The order of the Initiator and Responder HITs are different
      in the R1 and I2 packets, see Section 5.1.  Care must be taken to
      copy the values in right order to the hash input.

   The following procedure describes the processing steps involved,
   assuming that the Responder chooses to precompute the R1 packets:

   Precomputation by the Responder:
      Sets up the puzzle difficulty K.
      Creates a signed R1 and caches it.

   Responder:
      Selects a suitable cached R1.
      Generates a random number I.
      Sends I and K in an R1.
      Saves I and K for a Delta time.
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   Initiator:
      Generates repeated attempts to solve the puzzle until a matching J
      is found:
      Ltrunc( PHASH( I | HIT-I | HIT-R | J ), K ) == 0
      Sends I and J in an I2.

   Responder:
      Verifies that the received I is a saved one.
      Finds the right K based on I.
      Computes V := Ltrunc( PHASH( I | HIT-I | HIT-R | J ), K )
      Rejects if V != 0
      Accept if V == 0

6.4.  HMAC and SIGNATURE Calculation and Verification

   The following subsections define the actions for processing HMAC,
   HIP_SIGNATURE and HIP_SIGNATURE_2 parameters.

6.4.1.  HMAC Calculation

   The following process applies both to the HMAC and HMAC_2 parameters.
   When processing HMAC_2, the difference is that the HMAC calculation
   includes a pseudo HOST_ID field containing the Responder's
   information as sent in the R1 packet earlier.

   Both the Initiator and the Responder should take some care when
   verifying or calculating the HMAC_2.  Specifically, the Responder
   should preserve other parameters than the HOST_ID when sending the
   R2.  Also, the Initiator has to preserve the HOST_ID exactly as it
   was received in the R1 packet.

   The HMAC parameter is defined in Section 5.2.9 and HMAC_2 parameter
   in Section 5.2.10.  HMAC calculation and verification process:

   Packet sender:

   1.  Create the HIP packet, without the HMAC or any possible
       HIP_SIGNATURE or HIP_SIGNATURE_2 parameters.

   2.  In case of HMAC_2 calculation, add a HOST_ID (Responder)
       parameter to the packet.

   3.  Calculate the Length field in the HIP header.

   4.  Compute the HMAC.
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   5.  In case of HMAC_2, remove the HOST_ID parameter from the packet.

   6.  Add the HMAC parameter to the packet and any HIP_SIGNATURE or
       HIP_SIGNATURE_2 parameters that may follow.

   7.  Recalculate the Length field in the HIP header.

   Packet receiver:

   1.  Verify the HIP header Length field.

   2.  Remove the HMAC or HMAC_2 parameter, and if the packet contains
       any HIP_SIGNATURE or HIP_SIGNATURE_2 fields, remove them too,
       saving the contents if they will be needed later.

   3.  In case of HMAC_2, build and add a HOST_ID parameter (with
       Responder information) to the packet.  The HOST_ID parameter
       should be identical to the one previously received from the
       Responder.

   4.  Recalculate the HIP packet length in the HIP header and clear the
       Checksum field (set it to all zeros).

   5.  Compute the HMAC and verify it against the received HMAC.

   6.  In case of HMAC_2, remove the HOST_ID parameter from the packet
       before further processing.

6.4.2.  Signature Calculation

   The following process applies both to the HIP_SIGNATURE and
   HIP_SIGNATURE_2 parameters.  When processing HIP_SIGNATURE_2, the
   only difference is that instead of HIP_SIGNATURE parameter, the
   HIP_SIGNATURE_2 parameter is used, and the Initiator's HIT and PUZZLE
   Opaque and Random #I fields are cleared (set to all zeros) before
   computing the signature.  The HIP_SIGNATURE parameter is defined in

Section 5.2.11 and the HIP_SIGNATURE_2 parameter in Section 5.2.12.

   Signature calculation and verification process:

   Packet sender:

   1.  Create the HIP packet without the HIP_SIGNATURE parameter or any
       parameters that follow the HIP_SIGNATURE parameter.

   2.  Calculate the Length field and zero the Checksum field in the HIP
       header.
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   3.  Compute the signature.

   4.  Add the HIP_SIGNATURE parameter to the packet.

   5.  Add any parameters that follow the HIP_SIGNATURE parameter.

   6.  Recalculate the Length field in the HIP header, and calculate the
       Checksum field.

   Packet receiver:

   1.  Verify the HIP header Length field.

   2.  Save the contents of the HIP_SIGNATURE parameter and any
       parameters following the HIP_SIGNATURE parameter and remove them
       from the packet.

   3.  Recalculate the HIP packet Length in the HIP header and clear the
       Checksum field (set it to all zeros).

   4.  Compute the signature and verify it against the received
       signature.

   The verification can use either the HI received from a HIP packet,
   the HI from a DNS query, if the FQDN has been received in the HOST_ID
   packet, or one received by some other means.

6.5.  HIP KEYMAT Generation

   HIP keying material is derived from the Diffie-Hellman Kij produced
   during the HIP base exchange.  The Initiator has Kij during the
   creation of the I2 packet, and the Responder has Kij once it receives
   the I2 packet.  This is why I2 can already contain encrypted
   information.

   The KEYMAT is derived by feeding Kij and the HITs into the following
   operation; the | operation denotes concatenation.

    KEYMAT = K1 | K2 | K3 | ...
          where

    K1   = SHA-1( Kij | sort(HIT-I | HIT-R) | I | J | 0x01 )
    K2   = SHA-1( Kij | K1 | 0x02 )
    K3   = SHA-1( Kij | K2 | 0x03 )
    ...
    K255 = SHA-1( Kij | K254 | 0xff )
    K256 = SHA-1( Kij | K255 | 0x00 )
    etc.
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   Sort(HIT-I | HIT-R) is defined as the network byte order
   concatenation of the two HITs, with the smaller HIT preceding the
   larger HIT, resulting from the numeric comparison of the two HITs
   interpreted as positive (unsigned) 128-bit integers in network byte
   order.

   I and J values are from the puzzle and its solution that were
   exchanged in R1 and I2 messages when this HIP association was set up.
   Both hosts have to store I and J values for the HIP association for
   future use.

   The initial keys are drawn sequentially in the order that is
   determined by the numeric comparison of the two HITs, with comparison
   method described in the previous paragraph.  HOST_g denotes the host
   with the greater HIT value, and HOST_l the host with the lower HIT
   value.

   The drawing order for initial keys:

      HIP-gl encryption key for HOST_g's outgoing HIP packets

      HIP-gl integrity (HMAC) key for HOST_g's outgoing HIP packets

      HIP-lg encryption key (currently unused) for HOST_l's outgoing HIP
      packets

      HIP-lg integrity (HMAC) key for HOST_l's outgoing HIP packets

   The number of bits drawn for a given algorithm is the "natural" size
   of the keys.  For the mandatory algorithms, the following sizes
   apply:

   AES 128 bits

   SHA-1 160 bits

   NULL 0 bits

6.6.  Initiation of a HIP Exchange

   An implementation may originate a HIP exchange to another host based
   on a local policy decision, usually triggered by an application
   datagram, in much the same way that an IPsec IKE key exchange can
   dynamically create a Security Association.  Alternatively, a system
   may initiate a HIP exchange if it has rebooted or timed out, or
   otherwise lost its HIP state, as described in Section 4.5.4.

   The implementation prepares an I1 packet and sends it to the IP
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   address that corresponds to the peer host.  The IP address of the
   peer host may be obtained via conventional mechanisms, such as DNS
   lookup.  The I1 contents are specified in Section 5.3.1.  The
   selection of which host identity to use, if a host has more than one
   to choose from, is typically a policy decision.

   The following steps define the conceptual processing rules for
   initiating a HIP exchange:

   1.  The Initiator gets the Responder's HIT and one or more addresses
       either from a DNS lookup of the Responder's FQDN, from some other
       repository, or from a local table.  If the Initiator does not
       know the Responder's HIT, it may attempt opportunistic mode by
       using NULL (all zeros) as the Responder's HIT.

   2.  The Initiator sends an I1 to one of the Responder's addresses.
       The selection of which address to use is a local policy decision.

   3.  Upon sending an I1, the sender shall transition to state I1-SENT,
       start a timer whose timeout value should be larger than the
       worst-case anticipated RTT, and shall increment a timeout counter
       associated with the I1.

   4.  Upon timeout, the sender SHOULD retransmit the I1 and restart the
       timer, up to a maximum of I1_RETRIES_MAX tries.

6.6.1.  Sending Multiple I1s in Parallel

   For the sake of minimizing the session establishment latency, an
   implementation MAY send the same I1 to more than one of the
   Responder's addresses.  However, it MUST NOT send to more than three
   (3) addresses in parallel.  Furthermore, upon timeout, the
   implementation MUST refrain from sending the same I1 packet to
   multiple addresses.  These limitations are placed order to avoid
   congestion of the network, and potential DoS attacks that might
   happen, e.g., because someone claims to have hundreds or thousands of
   addresses.

   As the Responder is not guaranteed to distinguish the duplicate I1's
   it receives at several of its addresses (because it avoids to store
   states when it answers back an R1), the Initiator may receive several
   duplicate R1's.

   The Initiator SHOULD then select the initial preferred destination
   address using the source address of the selected received R1, and use
   the preferred address as a source address for the I2.  Processing
   rules for received R1s are discussed in Section 6.8.
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6.6.2.  Processing Incoming ICMP Protocol Unreachable Messages

   A host may receive an ICMP Destination Protocol Unreachable message
   as a response to sending an HIP I1 packet.  Such a packet may be an
   indication that the peer does not support HIP, or it may be an
   attempt to launch an attack by making the Initiator believe that the
   Responder does not support HIP.

   When a system receives an ICMP Destination Protocol Unreachable
   message while it is waiting for an R1, it MUST NOT terminate the
   wait.  It MAY continue as if it had not received the ICMP message,
   and send a few more I1s.  Alternatively, it MAY take the ICMP message
   as a hint that the peer most probably does not support HIP, and
   return to state UNASSOCIATED earlier than otherwise.  However, at
   minimum, it MUST continue waiting for an R1 for a reasonable time
   before returning to UNASSOCIATED.

6.7.  Processing Incoming I1 Packets

   An implementation SHOULD reply to an I1 with an R1 packet, unless the
   implementation is unable or unwilling to setup a HIP association.  If
   the implementation is unable to setup a HIP association, the host
   SHOULD send an ICMP Destination Protocol Unreachable,
   Administratively Prohibited, message to the I1 source address.  If
   the implementation is unwilling to setup a HIP association, the host
   MAY ignore the I1.  This latter case may occur during a DoS attack
   such as an I1 flood.

   The implementation MUST be able to handle a storm of received I1
   packets, discarding those with common content that arrive within a
   small time delta.

   A spoofed I1 can result in an R1 attack on a system.  An R1 sender
   MUST have a mechanism to rate limit R1s to an address.

   It is RECOMMENDED that the HIP state machine does not transition upon
   sending an R1.

   The following steps define the conceptual processing rules for
   responding to an I1 packet:

   1.  The Responder MUST check that the Responder HIT in the received
       I1 is either one of its own HITs, or NULL.

   2.  If the Responder is in ESTABLISHED state, the Responder MAY
       respond to this with an R1 packet, prepare to drop existing SAs
       and stay at ESTABLISHED state.
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   3.  If the Responder is in I1-SENT state, it must make a comparison
       between the sender's HIT and its own HIT.  If the sender's HIT is
       greater than its own HIT, it should drop the I1 and stay at I1-
       SENT.  If the sender's HIT is smaller than its own HIT, it should
       send R1 and stay at I1-SENT.  The HIT comparison goes similarly
       as in Section 6.5.

   4.  If the implementation chooses to respond to the I1 with an R1
       packet, it creates a new R1 or selects a precomputed R1 according
       to the format described in Section 5.3.2.

   5.  The R1 MUST contain the received Responder HIT, unless the
       received HIT is NULL, in which case the Responder SHOULD select a
       HIT that is constructed with the MUST algorithm in Section 3,
       which is currently RSA.  Other than that, selecting the HIT is a
       local policy matter.

   6.  The Responder sends the R1 to the source IP address of the I1
       packet.

6.7.1.  R1 Management

   All compliant implementations MUST produce R1 packets.  An R1 packet
   MAY be precomputed.  An R1 packet MAY be reused for time Delta T,
   which is implementation dependent.  R1 information MUST not be
   discarded until Delta S after T. Time S is the delay needed for the
   last I2 to arrive back to the Responder.

   An implementation MAY keep state about received I1s and match the
   received I2s against the state, as discussed in Section 4.1.1.

6.7.2.  Handling Malformed Messages

   If an implementation receives a malformed I1 message, it SHOULD NOT
   respond with a NOTIFY message, as such practice could open up a
   potential denial-of-service danger.  Instead, it MAY respond with an
   ICMP packet, as defined in Section 5.4.

6.8.  Processing Incoming R1 Packets

   A system receiving an R1 MUST first check to see if it has sent an I1
   to the originator of the R1 (i.e., it is in state I1-SENT).  If so,
   it SHOULD process the R1 as described below, send an I2, and go to
   state I2-SENT, setting a timer to protect the I2.  If the system is
   in state I2-SENT, it MAY respond to an R1 if the R1 has a larger R1
   generation counter; if so, it should drop its state due to processing
   the previous R1 and start over from state I1-SENT.  If the system is
   in any other state with respect to that host, it SHOULD silently drop



Moskowitz, et al.       Expires September 3, 2006              [Page 71]



Internet-Draft           Host Identity Protocol               March 2006

   the R1.

   When sending multiple I1s, an Initiator SHOULD wait for a small
   amount of time after the first R1 reception to allow possibly
   multiple R1s to arrive, and it SHOULD respond to an R1 among the set
   with the largest R1 generation counter.

   The following steps define the conceptual processing rules for
   responding to an R1 packet:

   1.   A system receiving an R1 MUST first check to see if it has sent
        an I1 to the originator of the R1 (i.e., it has a HIP
        association that is in state I1-SENT and that is associated with
        the HITs in the R1.  IP addresses in the received R1 packet
        SHOULD be ignored and the match SHOULD be based on HITs only).
        If so, it should process the R1 as described below.  Note that
        when the connection was initialized in opportunistic mode, HITs
        cannot be used, but the Initiator must rely on the Responder's
        IP address in the received R1 packet.

   2.   Otherwise, if the system is in any other state than I1-SENT or
        I2-SENT with respect to the HITs included in the R1, it SHOULD
        silently drop the R1 and remain in the current state.

   3.   If the HIP association state is I1-SENT or I2-SENT, the received
        Initiator's HIT MUST correspond to the HIT used in the original,
        I1 and the Responder's HIT MUST correspond to the one used,
        unless the I1 contained a NULL HIT.

   4.   The system SHOULD validate the R1 signature before applying
        further packet processing, according to Section 5.2.12.

   5.   If the HIP association state is I1-SENT, and multiple valid R1s
        are present, the system SHOULD select from among the R1s with
        the largest R1 generation counter.

   6.   If the HIP association state is I2-SENT, the system MAY reenter
        state I1-SENT and process the received R1 if it has a larger R1
        generation counter than the R1 responded to previously.

   7.   The R1 packet may have the A bit set -- in this case, the system
        MAY choose to refuse it by dropping the R1 and returning to
        state UNASSOCIATED.  The system SHOULD consider dropping the R1
        only if it used a NULL HIT in I1.  If the A bit is set, the
        Responder's HIT is anonymous and should not be stored.

   8.   The system SHOULD attempt to validate the HIT against the
        received Host Identity.
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   9.   The system MUST store the received R1 generation counter for
        future reference.

   10.  The system attempts to solve the puzzle in R1.  The system MUST
        terminate the search after exceeding the remaining lifetime of
        the puzzle.  If the puzzle is not successfully solved, the
        implementation may either resend I1 within the retry bounds or
        abandon the HIP exchange.

   11.  The system computes standard Diffie-Hellman keying material
        according to the public value and Group ID provided in the
        DIFFIE_HELLMAN parameter.  The Diffie-Hellman keying material
        Kij is used for key extraction as specified in Section 6.5.  If
        the received Diffie-Hellman Group ID is not supported, the
        implementation may either resend I1 within the retry bounds or
        abandon the HIP exchange.

   12.  The system selects the HIP transform from the choices presented
        in the R1 packet and uses the selected values subsequently when
        generating and using encryption keys, and when sending the I2.
        If the proposed alternatives are not acceptable to the system,
        it may either resend I1 within the retry bounds or abandon the
        HIP exchange.

   13.  The system initializes the remaining variables in the associated
        state, including Update ID counters.

   14.  The system prepares and sends an I2, as described in
Section 5.3.3.

   15.  The system SHOULD start a timer whose timeout value should be
        larger than the worst-case anticipated RTT, and MUST increment a
        timeout counter associated with the I2.  The sender SHOULD
        retransmit the I2 upon a timeout and restart the timer, up to a
        maximum of I2_RETRIES_MAX tries.

   16.  If the system is in state I1-SENT, it shall transition to state
        I2-SENT.  If the system is in any other state, it remains in the
        current state.

6.8.1.  Handling Malformed Messages

   If an implementation receives a malformed R1 message, it MUST
   silently drop the packet.  Sending a NOTIFY or ICMP would not help,
   as the sender of the R1 typically doesn't have any state.  An
   implementation SHOULD wait for some more time for a possible good R1,
   after which it MAY try again by sending a new I1 packet.
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6.9.  Processing Incoming I2 Packets

   Upon receipt of an I2, the system MAY perform initial checks to
   determine whether the I2 corresponds to a recent R1 that has been
   sent out, if the Responder keeps such state.  For example, the sender
   could check whether the I2 is from an address or HIT that has
   recently received an R1 from it.  The R1 may have had Opaque data
   included that was echoed back in the I2.  If the I2 is considered to
   be suspect, it MAY be silently discarded by the system.

   Otherwise, the HIP implementation SHOULD process the I2.  This
   includes validation of the puzzle solution, generating the Diffie-
   Hellman key, decrypting the Initiator's Host Identity, verifying the
   signature, creating state, and finally sending an R2.

   The following steps define the conceptual processing rules for
   responding to an I2 packet:

   1.   The system MAY perform checks to verify that the I2 corresponds
        to a recently sent R1.  Such checks are implementation
        dependent.  See Appendix A for a description of an example
        implementation.

   2.   The system MUST check that the Responder's HIT corresponds to
        one of its own HITs.

   3.   If the system is in the R2-SENT state, it MAY check if the newly
        received I2 is similar to the one that triggered moving to R2-
        SENT.  If so, it MAY retransmit a previously sent R2, reset the
        R2-SENT timer, and stay in R2-SENT.

   4.   If the system is in the I2-SENT state, it makes a comparison
        between its local and sender's HITs (similarly as in

Section 6.5).  If the local HIT is smaller than the sender's
        HIT, it should drop the I2 packet.  Otherwise, the system should
        process the received I2 packet.

   5.   To avoid the possibility to end up with different session keys
        due to symmetric operation of the peer nodes, the Diffie-Hellman
        key, I, and J selection is also based on the HIT comparison.  If
        the local HIT is smaller than the peer HIT, the system uses peer
        Diffie-Hellman key and nonce I from the R1 packet received
        earlier.  The local Diffie-Hellman key and nonce J are taken
        from the I2 packet sent to the peer earlier.  Otherwise, it uses
        peer Diffie-Hellman key and nonce J from the just arrived I2.
        The local Diffie-Hellman key and nonce I are the ones that it
        sent ealier in the R1 packet.
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   6.   If the system is in any other state than R2-SENT, it SHOULD
        check that the echoed R1 generation counter in I2 is within the
        acceptable range.  Implementations MUST accept puzzles from the
        current generation and MAY accept puzzles from earlier
        generations.  If the newly received I2 is outside the accepted
        range, the I2 is stale (perhaps replayed) and SHOULD be dropped.

   7.   The system MUST validate the solution to the puzzle by computing
        the hash described in Section 5.3.3 using the same hash
        algorithm used to generate the Responder's HIT.

   8.   The I2 MUST have a single value in the HIP_TRANSFORM parameter,
        which MUST match one of the values offered to the Initiator in
        the R1 packet.

   9.   The system must derive Diffie-Hellman keying material Kij based
        on the public value and Group ID in the DIFFIE_HELLMAN
        parameter.  This key is used to derive the HIP association keys,
        as described in Section 6.5.  If the Diffie-Hellman Group ID is
        unsupported, the I2 packet is silently dropped.

   10.  The encrypted HOST_ID decrypted by the Initiator encryption key
        defined in Section 6.5.  If the decrypted data is not a HOST_ID
        parameter, the I2 packet is silently dropped.

   11.  The implementation SHOULD also verify that the Initiator's HIT
        in the I2 corresponds to the Host Identity sent in the I2.

   12.  The system MUST verify the HMAC according to the procedures in
Section 5.2.9.

   13.  The system MUST verify the HIP_SIGNATURE according to
Section 5.2.11 and Section 5.3.3.

   14.  If the checks above are valid, then the system proceeds with
        further I2 processing; otherwise, it discards the I2 and remains
        in the same state.

   15.  The I2 packet may have the A bit set -- in this case, the system
        MAY choose to refuse it by dropping the I2 and returning to
        state UNASSOCIATED.  If the A bit is set, the Initiator's HIT is
        anonymous and should not be stored.

   16.  The system initializes the remaining variables in the associated
        state, including Update ID counters.

   17.  Upon successful processing of an I2 in states UNASSOCIATED, I1-
        SENT, I2-SENT, and R2-SENT, an R2 is sent and the state machine
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        transitions to state R2-SENT.

   18.  Upon successful processing of an I2 in state ESTABLISHED, the
        old HIP association is dropped and a new one is installed, an R2
        is sent, and the state machine transitions to R2-SENT.

   19.  Upon transitioning to R2-SENT, start a timer.  Move to
        ESTABLISHED if some data has been received on the incoming HIP
        association, or an UPDATE packet has been received (or some
        other packet that indicates that the peer has moved to
        ESTABLISHED).  If the timer expires (allowing for maximal
        retransmissions of I2s), move to UNASSOCIATED.

6.9.1.  Handling Malformed Messages

   If an implementation receives a malformed I2 message, the behavior
   SHOULD depend on how much checks the message has already passed.  If
   the puzzle solution in the message has already been checked, the
   implementation SHOULD report the error by responding with a NOTIFY
   packet.  Otherwise the implementation MAY respond with an ICMP
   message as defined in Section 5.4.

6.10.  Processing Incoming R2 Packets

   An R2 received in states UNASSOCIATED, I1-SENT, or ESTABLISHED
   results in the R2 being dropped and the state machine staying in the
   same state.  If an R2 is received in state I2-SENT, it SHOULD be
   processed.

   The following steps define the conceptual processing rules for
   incoming R2 packet:

   1.  The system MUST verify that the HITs in use correspond to the
       HITs that were received in R1.

   2.  The system MUST verify the HMAC_2 according to the procedures in
Section 5.2.10.

   3.  The system MUST verify the HIP signature according to the
       procedures in Section 5.2.11.

   4.  If any of the checks above fail, there is a high probability of
       an ongoing man-in-the-middle or other security attack.  The
       system SHOULD act accordingly, based on its local policy.

   5.  If the system is in any other state than I2-SENT, the R2 is
       silently dropped.
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   6.  Upon successful processing of the R2, the state machine moves to
       state ESTABLISHED.

6.11.  Sending UPDATE Packets

   A host sends an UPDATE packet when it wants to update some
   information related to a HIP association.  There are a number of
   likely situations, e.g. mobility management and rekeying of an
   existing ESP Security Association.  The following paragraphs define
   the conceptual rules for sending an UPDATE packet to the peer.
   Additional steps can be defined in other documents where the UPDATE
   packet is used.

   The system first determines whether there are any outstanding UPDATE
   messages that may conflict with the new UPDATE message under
   consideration.  When multiple UPDATEs are outstanding (not yet
   acknowledged), the sender must assume that such UPDATEs may be
   processed in an arbitrary order.  Therefore, any new UPDATEs that
   depend on a previous outstanding UPDATE being successfully received
   and acknowledged MUST be postponed until reception of the necessary
   ACK(s) occurs.  One way to prevent any conflicts is to only allow one
   outstanding UPDATE at a time, but allowing multiple UPDATEs may
   improve the performance of mobility and multihoming protocols.

   1.  The first UPDATE packet is sent with Update ID of zero.
       Otherwise, the system increments its own Update ID value by one
       before continuing the below steps.

   2.  The system creates an UPDATE packet that contains a SEQ parameter
       with the current value of Update ID.  The UPDATE packet may also
       include an ACK of the peer's Update ID found in a received UPDATE
       SEQ parameter, if any.

   3.  The system sends the created UPDATE packet and starts an UPDATE
       timer.  The default value for the timer is 2 * RTT estimate.  If
       multiple UPDATEs are outstanding, multiple timers are in effect.

   4.  If the UPDATE timer expires, the UPDATE is resent.  The UPDATE
       can be resent UPDATE_RETRY_MAX times.  The UPDATE timer SHOULD be
       exponentially backed off for subsequent retransmissions.  If no
       acknowledgment is received from the peer after UPDATE_RETRY_MAX
       times, the HIP association is considered to be broken and the
       state machine should move from state ESTABLISHED to state CLOSING
       as depicted in Section 4.4.3.  The UPDATE timer is cancelled upon
       receiving an ACK from the peer that acknowledges receipt of the
       UPDATE.
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6.12.  Receiving UPDATE Packets

   When a system receives an UPDATE packet, its processing depends on
   the state of the HIP association and the presence of and values of
   the SEQ and ACK parameters.  Typically, an UPDATE message also
   carries optional parameters whose handling is defined in separate
   documents.

   For each association, the peer's next expected in-sequence Update ID
   ("peer Update ID") is stored.  Initially, this value is zero.  Update
   ID comparisons of "less than" and "greater than" are performed with
   respect to a circular sequence number space.

   The sender may send multiple outstanding UPDATE messages.  These
   messages are processed in the order in which they are received at the
   receiver (i.e., no resequencing is performed).  When processing
   UPDATEs out-of-order, the receiver MUST keep track of which UPDATEs
   were previously processed, so that duplicates or retransmissions are
   ACKed and not reprocessed.  A receiver MAY choose to define a receive
   window of Update IDs that it is willing to process at any given time,
   and discard received UPDATEs falling outside of that window.

   1.  If there is no corresponding HIP association, the implementation
       MAY reply with an ICMP Parameter Problem, as specified in

Section 5.4.4.

   2.  If the association is in the ESTABLISHED state and the SEQ (but
       not ACK) parameter is present, the UPDATE is processed and
       replied as described in Section 6.12.1.

   3.  If the association is in the ESTABLISHED state and the ACK (but
       not SEQ) parameter is present, the UPDATE is processed as
       described in Section 6.12.2.

   4.  If the association is in the ESTABLISHED state and there is both
       an ACK and SEQ in the UPDATE, the ACK is first processed as
       described in Section 6.12.2 and then the rest of the UPDATE is
       processed as described in Section 6.12.1.

6.12.1.  Handling a SEQ parameter in a received UPDATE message

   1.  If the Update ID in the received SEQ is not the next in sequence
       Update ID and is greater than the receiver's window for new
       UPDATEs, the packet MUST be dropped.

   2.  If the Update ID in the received SEQ corresponds to an UPDATE
       that has recently been processed, the packet is treated as a
       retransmission.  The HMAC verification (next step) MUST NOT be
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       skipped.  (A byte-by-byte comparison of the received and a stored
       packet would be OK, though.)  It is recommended that a host cache
       UPDATE packets sent with ACKs to avoid the cost of generating a
       new ACK packet to respond to a replayed UPDATE.  The system MUST
       acknowledge, again, such (apparent) UPDATE message
       retransmissions but SHOULD also consider rate-limiting such
       retransmission responses to guard against replay attacks.

   3.  The system MUST verify the HMAC in the UPDATE packet.  If the
       verification fails, the packet MUST be dropped.

   4.  The system MAY verify the SIGNATURE in the UPDATE packet.  If the
       verification fails, the packet SHOULD be dropped and an error
       message logged.

   5.  If a new SEQ parameter is being processed, the parameters in the
       UPDATE are then processed.  The system MUST record the Update ID
       in the received SEQ parameter, for replay protection.

   6.  An UPDATE acknowledgement packet with ACK parameter is prepared
       and sent to the peer.  This ACK parameter may be included in a
       separate UPDATE or piggybacked in an UPDATE with SEQ parameter,
       as described in Section Section 5.3.5.  The ACK parameter MAY
       acknowledge more than one of the peer's Update IDs.

6.12.2.  Handling an ACK Parameter in a Received UPDATE Packet

   1.  The sequence number reported in the ACK must match with an
       earlier sent UPDATE packet that has not already been
       acknowledged.  If no match is found or if the ACK does not
       acknowledge a new UPDATE, the packet MUST either be dropped if no
       SEQ parameter is present, or the processing steps in

Section 6.12.1 are followed.

   2.  The system MUST verify the HMAC in the UPDATE packet.  If the
       verification fails, the packet MUST be dropped.

   3.  The system MAY verify the SIGNATURE in the UPDATE packet.  If the
       verification fails, the packet SHOULD be dropped and an error
       message logged.

   4.  The corresponding UPDATE timer is stopped (see Section 6.11) so
       that the now acknowledged UPDATE is no longer retransmitted.  If
       multiple UPDATEs are newly acknowledged, multiple timers are
       stopped.
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6.13.  Processing NOTIFY Packets

   Processing NOTIFY packets is OPTIONAL.  If processed, any errors
   noted by the NOTIFY parameter SHOULD be taken into account by the HIP
   state machine (e.g., by terminating a HIP handshake), and the error
   SHOULD be logged.

6.14.  Processing CLOSE Packets

   When the host receives a CLOSE message it responds with a CLOSE_ACK
   message and moves to CLOSED state.  (The authenticity of the CLOSE
   message is verified using both HMAC and SIGNATURE).  This processing
   applies whether or not the HIP association state is CLOSING in order
   to handle CLOSE messages from both ends crossing in flight.

   The HIP association is not discarded before the host moves from the
   UNASSOCIATED state.

   Once the closing process has started, any need to send data packets
   will trigger creating and establishing of a new HIP association,
   starting with sending an I1.

   If there is no corresponding HIP association, the CLOSE packet is
   dropped.

6.15.  Processing CLOSE_ACK Packets

   When a host receives a CLOSE_ACK message it verifies that it is in
   CLOSING or CLOSED state and that the CLOSE_ACK was in response to the
   CLOSE (using the included ECHO_REPLY in response to the sent
   ECHO_REQUEST).

   The CLOSE_ACK uses HMAC and SIGNATURE for verification.  The state is
   discarded when the state changes to UNASSOCIATED and, after that, the
   host MAY respond with an ICMP Parameter Problem to an incoming CLOSE
   message (See Section 5.4.4).

6.16.  Dropping HIP Associations

   A HIP implementation is free to drop a HIP association at any time,
   based on its own policy.  If a HIP host decides to drop a HIP
   association, it deletes the corresponding HIP state, including the
   keying material.  The implementation MUST also drop the peer's R1
   generation counter value, unless a local policy explicitly defines
   that the value of that particular host is stored.  An implementation
   MUST NOT store R1 generation counters by default, but storing R1
   generation counter values, if done, MUST be configured by explicit
   HITs.
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7.  HIP Policies

   There are a number of variables that will influence the HIP exchanges
   that each host must support.  All HIP implementations MUST support
   more than one simultaneous HIs, at least one of which SHOULD be
   reserved for anonymous usage.  Although anonymous HIs will be rarely
   used as Responder HIs, they will be common for Initiators.  Support
   for more than two HIs is RECOMMENDED.

   Many Initiators would want to use a different HI for different
   Responders.  The implementations SHOULD provide for an ACL of
   Initiator HIT to Responder HIT.  This ACL SHOULD also include
   preferred transform and local lifetimes.

   The value of K used in the HIP R1 packet can also vary by policy.  K
   should never be greater than 20, but for trusted partners it could be
   as low as 0.

   Responders would need a similar ACL, representing which hosts they
   accept HIP exchanges, and the preferred transform and local
   lifetimes.  Wildcarding SHOULD be supported for this ACL also.
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8.  Security Considerations

   HIP is designed to provide secure authentication of hosts.  HIP also
   attempts to limit the exposure of the host to various denial-of-
   service and man-in-the-middle (MitM) attacks.  In so doing, HIP
   itself is subject to its own DoS and MitM attacks that potentially
   could be more damaging to a host's ability to conduct business as
   usual.

   Denial-of-service attacks take advantage of the cost of start of
   state for a protocol on the Responder compared to the 'cheapness' on
   the Initiator.  HIP makes no attempt to increase the cost of the
   start of state on the Initiator, but makes an effort to reduce the
   cost to the Responder.  This is done by having the Responder start
   the 3-way exchange instead of the Initiator, making the HIP protocol
   4 packets long.  In doing this, packet 2 becomes a 'stock' packet
   that the Responder MAY use many times.  The duration of use is a
   paranoia versus throughput concern.  Using the same Diffie-Hellman
   values and random puzzle #I has some risk.  This risk needs to be
   balanced against a potential storm of HIP I1 packets.

   This shifting of the start of state cost to the Initiator in creating
   the I2 HIP packet, presents another DoS attack.  The attacker spoofs
   the I1 HIP packet and the Responder sends out the R1 HIP packet.
   This could conceivably tie up the 'Initiator' with evaluating the R1
   HIP packet, and creating the I2 HIP packet.  The defense against this
   attack is to simply ignore any R1 packet where a corresponding I1 was
   not sent.

   A second form of DoS attack arrives in the I2 HIP packet.  Once the
   attacking Initiator has solved the puzzle, it can send packets with
   spoofed IP source addresses with either invalid encrypted HIP payload
   component or a bad HIP signature.  This would take resources in the
   Responder's part to reach the point to discover that the I2 packet
   cannot be completely processed.  The defense against this attack is
   after N bad I2 packets, the Responder would discard any I2s that
   contain the given Initiator HIT.  Thus will shut down the attack.
   The attacker would have to request another R1 and use that to launch
   a new attack.  The Responder could up the value of K while under
   attack.  On the downside, valid I2s might get dropped too.

   A third form of DoS attack is emulating the restart of state after a
   reboot of one of the partners.  A host restarting would send an I1 to
   a peer, which would respond with an R1 even if it were in the
   ESTABLISHED state.  If the I1 were spoofed, the resulting R1 would be
   received unexpectedly by the spoofed host and would be dropped, as in
   the first case above.
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   A fourth form of DoS attack is emulating the end of state.  HIP
   relies on timers plus a CLOSE/CLOSE_ACK handshake to explicitly
   signals the end of a state.  Because both CLOSE and CLOSE_ACK
   messages contain an HMAC, an outsider cannot close a connection.  The
   presence of an additional SIGNATURE allows middle-boxes to inspect
   these messages and discard the associated state (for e.g.,
   firewalling, SPI-based NATing, etc.).  However, the optional behavior
   of replying to CLOSE with an ICMP Parameter Problem packet (as
   described in Section 5.4.4) might allow an IP spoofer sending CLOSE
   messages to launch reflection attacks.

   A fifth form of DoS attack is replaying R1s to cause the Initiator to
   solve stale puzzles and become out of synchronization with the
   Responder.  The R1 generation counter is a monotonically increasing
   counter designed to protect against this attack, as described in
   section Section 4.1.4.

   Man-in-the-middle attacks are difficult to defend against, without
   third-party authentication.  A skillful MitM could easily handle all
   parts of HIP; but HIP indirectly provides the following protection
   from a MitM attack.  If the Responder's HI is retrieved from a signed
   DNS zone, a certificate, or through some other secure means, the
   Initiator can use this to validate the R1 HIP packet.

   Likewise, if the Initiator's HI is in a secure DNS zone, a trusted
   certificate, or otherwise securely available, the Responder can
   retrieve it after it gets the I2 HIP packet and validate that.
   However, since an Initiator may choose to use an anonymous HI, it
   knowingly risks a MitM attack.  The Responder may choose not to
   accept a HIP exchange with an anonymous Initiator.

   If an Initiator wants to use opportunistic mode, it is vulnerable to
   man-in-the-middle attacks.  Furthermore, the available HI types are
   limited to the MUST implement algorithms, as per Section 3.  Hence,
   if a future specification deprecates the current MUST implement
   algorithm(s) and replaces it (them) with some new one(s), backward
   compatibility cannot be preserved.

   Since not all hosts will ever support HIP, ICMP 'Destination Protocol
   Unreachable' are to be expected and present a DoS attack.  Against an
   Initiator, the attack would look like the Responder does not support
   HIP, but shortly after receiving the ICMP message, the Initiator
   would receive a valid R1 HIP packet.  Thus to protect from this
   attack, an Initiator should not react to an ICMP message until a
   reasonable delta time to get the real Responder's R1 HIP packet.  A
   similar attack against the Responder is more involved.  First an ICMP
   message is expected if the I1 was a DoS attack and the real owner of
   the spoofed IP address does not support HIP.  The Responder SHOULD



Moskowitz, et al.       Expires September 3, 2006              [Page 83]



Internet-Draft           Host Identity Protocol               March 2006

   NOT act on this ICMP message to remove the minimal state from the R1
   HIP packet (if it has one), but wait for either a valid I2 HIP packet
   or the natural timeout of the R1 HIP packet.  This is to allow for a
   sophisticated attacker that is trying to break up the HIP exchange.
   Likewise, the Initiator should ignore any ICMP message while waiting
   for an R2 HIP packet, deleting state only after a natural timeout.
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9.  IANA Considerations

   This document specifies the IP protocol number 253 to be used with
   Host Identity Protocol during the experimental phase.  This number
   has been reserved by IANA for experimental use (see [19].

   This document defines a new 128-bit value under the CGA Message Type
   namespace [20], 0xF0EF F02F BFF4 3D0F E793 0C3C 6E61 74EA.

   This document also creates a set of new name spaces.  These are
   described below.

   Packet Type

      The 7-bit Packet Type field in a HIP protocol packet describes the
      type of a HIP protocol message.  It is defined in Section 5.1.
      The current values are defined in Section 5.3.1 through

Section 5.3.8 and are listed below:

      *  I1 is 1.

      *  R1 is 2.

      *  I2 is 3.

      *  R2 is 4.

      *  UPDATE is 16.

      *  NOTIFY is 17.

      *  CLOSE is 18.

      *  CLOSE_ACK is 19.

      New values are assigned through IETF Consensus [9].

   HIP Version

      The four bit Version field in a HIP protocol packet describes the
      version of the HIP protocol.  It is defined in Section 5.1.  The
      only currently defined value is 1.  New values are assigned
      through IETF Consensus.

   Parameter Type

      The 16 bit Type field in a HIP parameters describes the type of
      the parameter.  It is defined in Section 5.2.1.  The current
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      values are defined in Section 5.2.3 through Section 5.2.18 and are
      listed below:

      *  R1_COUNTER is 128.

      *  PUZZLE is 257.

      *  SOLUTION is 321.

      *  SEQ is 385.

      *  ACK is 449.

      *  DIFFIE_HELLMAN is 513.

      *  HIP_TRANSFORM is 577.

      *  ENCRYPTED is 641.

      *  HOST_ID is 705.

      *  CERT is 768.

      *  NOTIFY is 832.

      *  ECHO_REQUEST is 897.

      *  ECHO_RESPONSE is 961.

      *  HMAC is 61505.

      *  HMAC_2 is 61569.

      *  HIP_SIGNATURE_2 is 61633.

      *  HIP_SIGNATURE is 61697.

      *  ECHO_REQUEST is 63661.

      *  ECHO_RESPONSE is 63425.

      The type codes 0 through 1023 and 61440 through 65535 are reserved
      for future base protocol extensions, and are assigned through IETF
      Consensus.

      The type codes 32768 through 49141 are reserved for
      experimentation and private use.  Types SHOULD be selected in a
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      random fashion from this range, thereby reducing the probability
      of collisions.  A method employing genuine randomness (such as
      flipping a coin) SHOULD be used.

      All other type codes are assigned through First Come First Served,
      with Specification Required [9].

   Group ID

      The eight bit Group ID values appear in the DIFFIE_HELLMAN
      parameter, defined in Section 5.2.6.  The currently defined values
      are listed below:

      *  384-bit group is 1.

      *  OAKLEY well known group 1 is 2.

      *  1536-bit MODP group is 3.

      *  3072-bit MODP group is 4.

      *  6144-bit MODP group is 5.

      *  8192-bit MODP group is 6.

      *  Value 0 is reserved.

      New values either from the reserved or unassigned space are
      assigned through IETF Consensus.

   Suite ID

      The 16 bit Suite ID values in a HIP_TRANSFORM parameter are
      defined in Section 5.2.7.  The currently defined values are listed
      below:

      *  AES-CBC with HMAC-SHA1 is 1.

      *  3DES-CBC with HMAC-SHA1 is 2.

      *  3DES-CBC with HMAC-MD5 is 3.

      *  BLOWFISH-CBC with HMAC-SHA1 is 4.

      *  NULL-ENCRYPT with HMAC-SHA1 is 5.

      *  NULL-ENCRYPT with HMAC-MD5 is 6.
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      *  Value 0 is reserved.

      New values either from the reserved or unassigned space are
      assigned through IETF Consensus.

   DI-Type

      The four bit DI-Type values in a HOST_ID parameter are defined in
Section 5.2.8.  The currently defined values are listed below:

      *  None included is 0.

      *  FQDN is 1.

      *  NAI is 2.

      New values are assigned through IETF Consensus.

   Notify Message Type

      The 16 bit Notify Message Type field in a NOTIFY parameter is
      defined in Section 5.2.16.  The currently defined values are
      listed below:

      *  UNSUPPORTED_CRITICAL_PARAMETER_TYPE is 1.

      *  INVALID_SYNTAX is 7.

      *  NO_DH_PROPOSAL_CHOSEN is 14.

      *  INVALID_DH_CHOSEN is 15.

      *  NO_HIP_PROPOSAL_CHOSEN is 16.

      *  INVALID_HIP_TRANSFORM_CHOSEN is 17.

      *  AUTHENTICATION_FAILED is 24.

      *  CHECKSUM_FAILED is 26.

      *  HMAC_FAILED is 28.

      *  ENCRYPTION_FAILED is 32.

      *  INVALID_HIT is 40.

      *  BLOCKED_BY_POLICY is 42.
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      *  SERVER_BUSY_PLEASE_RETRY is 44.

      New values are assigned through First Come First Served, with
      Specification Required.
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Appendix A.  Using Responder Puzzles

   As mentioned in Section 4.1.1, the Responder may delay state creation
   and still reject most spoofed I2s by using a number of pre-calculated
   R1s and a local selection function.  This appendix defines one
   possible implementation in detail.  The purpose of this appendix is
   to give the implementors an idea on how to implement the mechanism.
   If the implementation is based on this appendix, it MAY contain some
   local modification that makes an attacker's task harder.

   The Responder creates a secret value S, that it regenerates
   periodically.  The Responder needs to remember two latest values of
   S. Each time the S is regenerated, R1 generation counter value is
   incremented by one.

   The Responder generates a pre-signed R1 packet.  The signature for
   pre-generated R1s must be recalculated when the Diffie-Hellman key is
   recomputed or when the R1_COUNTER value changes due to S value
   regeneration.

   When the Initiator sends the I1 packet for initializing a connection,
   the Responder gets the HIT and IP address from the packet, and
   generates an I-value for the puzzle.  The I value is set to the pre-
   signed R1 packet.

        I value calculation:
        I = Ltrunc( PHASH ( S | HIT-I | HIT-R | IP-I | IP-R ), 64)

   The PHASH algorithm is the same that is used to generate the
   Responder's HIT value.

   From an incoming I2 packet, the Responder gets the required
   information to validate the puzzle: HITs, IP addresses, and the
   information of the used S value from the R1_COUNTER.  Using these
   values, the Responder can regenerate the I, and verify it against the
   I received in the I2 packet.  If the I values match, it can verify
   the solution using I, J, and difficulty K. If the I values do not
   match, the I2 is dropped.

        puzzle_check:
        V := Ltrunc( PHASH( I2.I | I2.hit_i | I2.hit_r | I2.J ), K )
        if V != 0, drop the packet

   If the puzzle solution is correct, the I and J values are stored for
   later use.  They are used as input material when keying material is
   generated.

   The Responder SHOULD NOT keep state about failed puzzle solutions.
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Appendix B.  Generating a HIT from a HI

   The following pseudo-codes illustrate the process to generate a
   public key encoding from a HI for both RSA and DSA.

   The symbol := denotes assignment; the symbol += denotes appending.
   The pseudo-function encode_in_network_byte_order takes two
   parameters, an integer (bignum) and a length in bytes, and returns
   the integer encoded into a byte string of the given length.

   switch ( HI.algorithm )
   {

   case RSA:
    buffer := encode_in_network_byte_order ( HI.RSA.e_len,
              ( HI.RSA.e_len > 255 ) ? 3 : 1 )
    buffer += encode_in_network_byte_order ( HI.RSA.e, HI.RSA.e_len )
    buffer += encode_in_network_byte_order ( HI.RSA.n, HI.RSA.n_len )
    break;

   case DSA:
    buffer := encode_in_network_byte_order ( HI.DSA.T , 1 )
    buffer += encode_in_network_byte_order ( HI.DSA.Q , 20 )
    buffer += encode_in_network_byte_order ( HI.DSA.P , 64 +
                                             8 * HI.DSA.T )
    buffer += encode_in_network_byte_order ( HI.DSA.G , 64 +
                                             8 * HI.DSA.T )
    buffer += encode_in_network_byte_order ( HI.DSA.Y , 64 +
                                             8 * HI.DSA.T )
    break;

   }



Moskowitz, et al.       Expires September 3, 2006              [Page 95]



Internet-Draft           Host Identity Protocol               March 2006

Appendix C.  Example Checksums for HIP Packets

   The HIP checksum for HIP packets is specified in Section 6.1.2.
   Checksums for TCP and UDP packets running over HIP-enabled security
   associations are specified in Section 3.5.  The examples below use IP
   addresses of 192.168.0.1 and 192.168.0.2 (and their respective IPv4-
   compatible IPv6 formats), and HITs with the first two bits "01"
   followed by 124 zeroes followed by a decimal 1 or 2, respectively.

C.1.  IPv6 HIP Example (I1)

      Source Address:                 ::192.168.0.1
      Destination Address:            ::192.168.0.2
      Upper-Layer Packet Length:      40              0x28
      Next Header:                    253             0xfd
      Payload Protocol:               59              0x3b
      Header Length:                  4               0x4
      Packet Type:                    1               0x1
      Version:                        1               0x1
      Reserved:                       1               0x1
      Control:                        0               0x0
      Checksum:                       8046            0x1f6e
      Sender's HIT  :                 1100::1
      Receiver's HIT:                 1100::2

C.2.  IPv4 HIP Packet (I1)

   The IPv4 checksum value for the same example I1 packet is the same as
   the IPv6 checksum (since the checksums due to the IPv4 and IPv6
   pseudo-header components are the same).

C.3.  TCP Segment

   Regardless of whether IPv6 or IPv4 is used, the TCP and UDP sockets
   use the IPv6 pseudo-header format [11], with the HITs used in place
   of the IPv6 addresses.
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      Sender's HIT:                   1100::0001
      Receiver's HIT:                 1100::0002
      Upper-Layer Packet Length:      20              0x14
      Next Header:                    6               0x06
      Source port:                    65500           0xffdc
      Destination port:               22              0x0016
      Sequence number:                1               0x00000001
      Acknowledgment number:          0               0x00000000
      Header length:                  20              0x14
      Flags:                          SYN             0x02
      Window size:                    65535           0xffff
      Checksum:                       60301           0xeb8d
      Urgent pointer:                 0               0x0000

        0x0000:  6000 0000 0014 0640 1100 0000 0000 0000
        0x0010:  0000 0000 0000 0002 1100 0000 0000 0000
        0x0020:  0000 0000 0000 0002 ffdc 0016 0000 0001
        0x0030:  0000 0000 5002 ffff 8deb 0000
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Appendix D.  384-bit Group

   This 384-bit group is defined only to be used with HIP.  NOTE: The
   security level of this group is very low!  The encryption may be
   broken in a very short time, even real-time.  It should be used only
   when the host is not powerful enough (e.g. some PDAs) and when
   security requirements are low (e.g. during normal web surfing).

   This prime is: 2^384 - 2^320 - 1 + 2^64 * { [ 2^254 pi] + 5857 }

   Its hexadecimal value is:

       FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
       29024E08 8A67CC74 020BBEA6 3B13B202 FFFFFFFF FFFFFFFF

   The generator is: 2.
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