
Host Identity Protocol M. Komu
Internet-Draft Helsinki Institute for Information
Expires: May 25, 2007 Technology
 November 21, 2006

Native Application Programming Interfaces for SHIM Layer Prococols
draft-ietf-hip-native-api-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.
 This document may not be modified, and derivative works of it may not
 be created, except to publish it as an RFC and to translate it into
 languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 25, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document proposes extensions to the current networking APIs for
 protocols based on identifier/locator split. Currently, the document
 focuses on HIP, but the extensions can be used also by other
 protocols similar "shim" layer protocols. Using the API extensions,
 new SHIM aware applications can gain a better control of the SHIM

Komu Expires May 25, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Native SHIM APIs November 2006

 layer and endpoint identifiers. For example, the applications can
 query and set SHIM related attributes, or specify their own endpoint
 identifiers for a host. In addition, a new indirection element
 called endpoint descriptor is defined for SHIM aware applications.

Komu Expires May 25, 2007 [Page 2]

Internet-Draft Native SHIM APIs November 2006

1. Introduction

 The extensions defined in this draft can be used also by other
 protocols based on the identifier/locator split. For example, SHIM6
 and BTNS are possible such candidates. Related WG API drafts are

draft-sugimoto-multihome-shim-api and [6]. However, this draft
 currently focuses on HIP.

 Host Identity Protocol proposes a new cryptographic namespace and a
 new layer to the TCP/IP architecture. Applications can see these new
 changes in the networking stacks with varying degrees of visibility.
 [5] discusses the lowest levels of visibility in which applications
 are either completely or partially unaware of HIP. In this document,
 we discuss about the highest level of visibility. The applications
 are completely HIP aware and are given more control over the HIP
 layer and identifiers. The applications are allowed to query and
 configure security related attributes and even specify their own Host
 Identifiers.

 Legacy HIP applications can already use a variety of identifiers,
 like LSIs, HITs and IP addresses as described in [5]. The varying
 number of identifiers can be all be used for HIP based networking in
 a easily deployable way. The proposed extensions could be as well
 based on one of the existing formats, like HITs or public keys, but
 they have their own problems. For example, the HIT format may change
 in the future, and long, variable length public keys are not directly
 applicable the current sockets API. In addition, there may be a need
 for another new layer in the future, such as session layer, and
 choosing any of the existing identifier formats may introduce
 additional deployment problems for a new layer. We therefore propose
 a new, generalized identifier called the endpoint descriptor (ED).
 The ED acts as a handle to the actual identifier that separates
 application layer indentifiers from the lower layer identifiers.

https://datatracker.ietf.org/doc/html/draft-sugimoto-multihome-shim-api

Komu Expires May 25, 2007 [Page 3]

Internet-Draft Native SHIM APIs November 2006

2. Design Architecture

 In this section, the native SHIM API design is described from an
 architectural point of view. We introduce the ED concept, which is a
 central idea in the API. We describe the layering and namespace
 models along with the socket bindings. We conclude the discussion
 with a description of the endpoint identifier resolution mechanism.

2.1. Endpoint Descriptor

 The representation of endpoints is hidden from the applications. The
 ED is a ``handle'' to a HI. A given ED serves as a pointer to the
 corresponding HI entry in the HI database of the host. It should be
 noticed that the ED cannot be used as a referral that is passed from
 one host to another because it has only local significance.

2.2. Layering Model

 The application layer accesses the transport layer via the socket
 interface. The application layer uses the traditional TCP/IP IPv4 or
 IPv6 interface, or the new native SHIM API interface provided by the
 socket layer. The layering model is illustrated in Figure 1. For
 simplicity, the IPsec layer has been excluded from the figure.

 +--------------------------------+
 Application Layer | Application |
 +----------+----------+----------+
 Socket Layer | IPv4 API | IPv6 API | SHIM API |
 +----------+----+-----+----------+
 Transport Layer | TCP | UDP |
 +---------------+----------------+
 SHIM Layer | HIP and other SHIMs |
 +---------------+----------------+
 Network Layer | IPv4 | IPv6 |
 +---------------+----------------+
 Link Layer | Ethernet | Etc |
 +---------------+----------------+

 Figure 1

 The SHIM layer is as a shim/wedge layer between the transport and
 network layers. The datagrams delivered between the transport and
 network layers are intercepted in the SHIM layer to see if the
 datagrams are SHIM related and require SHIM intervention.

Komu Expires May 25, 2007 [Page 4]

Internet-Draft Native SHIM APIs November 2006

2.3. Namespace Model

 The namespace model is shown in from HIP view point. The namespace
 identifiers are described in this section.

 +-------------------+-----------------------+
 | Layer | Identifier |
 +-------------------+-----------------------+
 | User Interface | FQDN |
 | | |
 | Application Layer | ED, port and protocol |
 | | |
 | Transport Layer | HI, port |
 | | |
 | SHIM Layer | HI |
 | | |
 | Network Layer | IP address |
 +-------------------+-----------------------+

 Table 1

 People prefer human-readable names when referring to network
 entities. The most commonly used identifier in the User Interface is
 the FQDN, but there are also other ways to name network entities.
 The FQDN format is still the preferred UI level identifier in the
 context of the native SHIM API.

 In the current API, connection associations in the application layer
 are uniquely distinguished by the source IP address, destination IP
 address, source port, destination port, and protocol. HIP changes
 this model by using HIT in the place of IP addresses. The HIP model
 is further expanded in the native HIP API model by using ED instead
 of HITs. Now, the application layer uses source ED, destination ED,
 source port, destination port, and transport protocol type, to
 distinguish between the different connection associations.

 Basically, the difference between the application and transport layer
 identifiers is that the transport layer uses HIs instead of EDs. The
 TLI is named with source HI, destination HI, source port, and
 destination port at the transport layer.

 Correspondingly, the HIP layer uses HIs as identifiers. The HIP
 security associations are based on source HI and destination HI
 pairs.

 The network layer uses IP addresses, i.e., locators, for routing
 purposes. The network layer interacts with the HIP layer to exchange
 information about changes in the local interfaces addresses and peer

Komu Expires May 25, 2007 [Page 5]

Internet-Draft Native SHIM APIs November 2006

 addresses.

2.4. Socket Bindings

 A HIP based SHIM socket is associated with one source and one
 destination ED, along with their port numbers and protocol type. The
 relationship between a socket and ED is a many-to-one one. Multiple
 EDs can be associated with a single HI. Further, the source HI is
 associated with a set of network interfaces at the local host. The
 destination HI, in turn, is associated with a set of destination
 addresses of the peer. The socket bindings are visualized in
 Figure 2.

 1 +---------+ * 1 +--------+ * * +-----------+
 +---+ Src EID +------+ Src HI +------+ Src Iface |
 +--------+ * | +---------+ * 1 +--------+ +-----------+
 | HIP +------+
 | |
 | Socket +------+
 +--------+ * | +---------+ * 1 +--------+ * * +-----------+
 +---+ Dst EID +------+ Dst HI +------+ Dst IP |
 1 +---------+ * 1 +--------+ +-----------+

 Figure 2

 The relationship between a source ED and a source HI is always a
 many-to-one one. However, there are two refinements to the
 relationship. First, a listening socket is allowed to accept
 connections from all local HIs of the host. Second, the
 opportunistic mode allows the base exchange to be initiated to an
 unknown destination HI. In a way, the relationship between the local
 ED and local HI is a many-to-undefined relationship momentarily in
 both of the cases, but once the connection is established, the ED
 will be permanently associated with a certain HI.

 The DNS based endpoint discovery mechanism is illustrated in
 Figure 3. The application calls the resolver (step a.) to resolve an
 FQDN (step b.). The DNS server responds with a EID and a set of
 locators (step c.). The resolver does not directly pass the EID and
 the locators to the application, but sends them to the SHIM module
 (step d.). Finally, the resolver receives an ED from the SHIM module
 (step e.) and passes the ED to the application (step f.).

Komu Expires May 25, 2007 [Page 6]

Internet-Draft Native SHIM APIs November 2006

 +----------+
 | |
 | DNS |
 | |
 +----------+
 ^ |
 b. <FQDN> | | c. <EID, locator>
 | v
 +-------------+ a. <FQDN> +----------+
 | |----------->| |
 | Application | | Resolver |
 | |<-----------| |
 +-------------+ f. <ED> +----------+
 ^ |
 e. <ED> | | d. <EID, locator>
 | v
 +----------+
 | |
 | SHIM |
 | |
 +----------+

 Figure 3

 The application can also receive multiple EDs from the resolver when
 the FQDN is associated with multiple EIDs. The endpoint discovery
 mechanism is still almost the same. The difference is that the DNS
 returns a set of EIDs (along with the associated locators) to the
 resolver. The resolver sends all of them to the SHIM module and
 receives a set of EDs in return, each ED corresponding to a single
 HI. Finally, the EDs are sent to the application.

Komu Expires May 25, 2007 [Page 7]

Internet-Draft Native SHIM APIs November 2006

3. Interface Syntax and Description

 In this section, we describe the native SHIM API using the syntax of
 the C programming language and present only the ``external''
 interfaces and data structures that are visible to the applications.
 We limit the description to those interfaces and data structures that
 are either modified or completely new, because the native SHIM API is
 otherwise identical to the sockets API [1].

3.1. Data Structures

 We introduce a new protocol family, PF_SHIM, for the sockets API.
 The AF_SHIM constant is an alias for it. The use of the PF_SHIM
 constant is mandatory with the socket function if the native SHIM API
 is to be used in the application. The PF_SHIM constant is given as
 the first argument (domain) to the socket function.

 The ED abstraction is realized in the sockaddr_ed structure, which is
 shown in figure Figure 4. The family of the socket, ed_family, is
 set to PF_SHIM. The port number ed_port is two octets and the ED
 value ed_val is four octets. The ED value is just an opaque number
 to the application. The application should not try to associate it
 directly to a EID or even compare it to other ED values, because
 there are separate functions for those purposes. The ED family is
 stored in host byte order. The port and the ED value are stored in
 network byte order.

 struct sockaddr_ed {
 unsigned short int ed_family;
 in_port_t ed_port;
 sa_ed_t ed_val;
 }

 Figure 4

 The ed_val field is usually set by special native SHIM API functions,
 which are described in the following section. However, three special
 macros can be used to directly set a value into the ed_val field.
 The macros are SHIM_ED_ANY, SHIM_ED_ANY_PUB and SHIM_ED_ANY_ANON.
 They denote an ED value associated with a wildcard HI of any, public,
 or anonymous type. They are useful to a ``server'' application that
 is willing to accept connections to all of the HIs of the host. The
 macros correspond to the sockets API macros INADDR_ANY and
 IN6ADDR_ANY_INIT, but they are applicable on the SHIM layer. It
 should be noted that only one process at a time can bind with the
 SHIM_ED_*ANY macro on a certain port to avoid ambiguous bindings.

 The native SHIM API has a new resolver function which is used for

Komu Expires May 25, 2007 [Page 8]

Internet-Draft Native SHIM APIs November 2006

 querying both endpoint identifiers and locators. The resolver
 introduces a new data structure, which is used both as the input and
 output argument for the resolver. We reuse the existing resolver
 datastructure shown in Figure 5.

 struct addrinfo {
 int ai_flags; /* e.g. AI_ED */
 int ai_family; /* e.g. PF_SHIM */
 int ai_socktype; /* e.g. SOCK_STREAM */
 int ai_protocol; /* usually just zero */
 size_t ai_addrlen; /* length of the endpoint */
 struct sockaddr *ai_addr; /* endpoint socket address */
 char *ai_canonname; /* canon. name of the host */
 struct addrinfo *ai_next; /* next endpoint */
 };

 Figure 5

 In addrinfo structures, the family field is set to PF_SHIM when the
 socket address structure contains an ED that refers to a SHIM
 identifier, such as HI.

 The flags in the addrinfo structure control the behavior of the
 resolver and describe the attributes of the endpoints and locators:

 o The flag AI_ED must be set, or otherwise the resolver does not
 return EDs to guarantee that legacy applications won't break.
 When AI_ED is set, the resolver returns a linked list which
 contains first the sockaddr_ed structures for SHIM identifiers if
 any was found. After that, any other type of socket addresses are
 returned.

 o When querying local identifiers, the AI_ED_ANON flag forces the
 resolver to query only local anonymous identifiers. The default
 action is first to resolve the public endpoints and then the
 anonymous endpoints.

 o Some applications may prefer configuring the locators manually and
 can set the AI_ED_NOLOCATORS flag to prohibit the resolver from
 resolving any locators.

 o The AI_ED_ANY, AI_ED_ANY_PUB and AI_ED_ANY_ANON flags cause the
 resolver to output only a single socket address containing an ED
 that would be received using the corresponding SHIM_ED_*ANY macro.

 o The getaddrinfo resolver does not return IP addresses belonging to
 a SHIM rendezvous server unless AI_ED is defined. AI_ED_RVS, can
 appear both in the input and output arguments of the resolver. In

Komu Expires May 25, 2007 [Page 9]

Internet-Draft Native SHIM APIs November 2006

 the input, it can be used for resolving only rendezvous server
 addresses. On the output, it denotes that the address is a
 rendezvous rather than end-point address.

 Application specified endpoint identifiers are essentially private
 keys. To support application specified identifiers in the API, we
 introduce new data structures for storing the private keys. The
 private keys need an uniform format so that they can be easily used
 in the API calls. The keys are stored in the endpoint structures as
 shown in figure Figure 6.

 struct endpoint {
 se_length_t length;
 se_family_t family;
 };
 struct endpoint_hip {
 se_length_t length;
 se_family_t family; /* EF_HI in the case of HIP */
 se_hip_flags_t flags;
 union {
 struct hip_host_id host_id;
 hit_t hit;
 } id;
 };

 Figure 6

 The endpoint structure represents a generic endpoint and the
 endpoint_hip structure represents a HIP specific endpoint. The
 family field distinguishes whether the identifier is HIP or other
 protocol related. The HIP endpoint is public by default unless
 SHIM_ENDPOINT_FLAG_ANON flag is set in the structure to anonymize the
 endpoint. The id union contains the HI in the host_id member in the
 format specified in [3]. If the key is private, the material is
 appended to the host_id with the length adjusted accordingly. The
 flag SHIM_ENDPOINT_FLAG_PRIVATE is also set. The hit member of the
 union is used only when the SHIM_ENDPOINT_FLAG_HIT flag is set.

3.2. Functions

 In this section, some existing sockets API functions are reintroduced
 along with their additions. Also, some new auxiliary functions are
 defined.

3.2.1. Resolver Interface

 The native SHIM API does not introduce changes to the interface
 syntax of the primitive sockets API functions bind, connect, send,

Komu Expires May 25, 2007 [Page 10]

Internet-Draft Native SHIM APIs November 2006

 sendto, sendmsg, recv, recvfrom, and recvmsg. However, the
 application usually calls the functions with sockaddr_ed structures
 instead of sockaddr_in or sockaddr_in6 structures. The source of the
 sockaddr_ed structures in the native SHIM API is the resolver
 function getaddrinfo [2] which is shown in Figure 7.

 int getaddrinfo(const char *nodename,
 const char *servname,
 const struct addrinfo *hints,
 struct addrinfo **res)
 void free_addrinfo(struct addrinfo *res)

 Figure 7

 The getaddrinfo function takes the nodename, servname, and hints as
 its input arguments. It places the result of the query into the res
 argument. The return value is zero on success, or a non-zero error
 value on error. The nodename argument specifies the host name to be
 resolved; a NULL argument denotes the local host. The servname
 parameter sets the port number to be set in the socket addresses in
 the res output argument. Both the nodename and servname cannot be
 NULL.

 The output argument res is dynamically allocated by the resolver.
 The application must free res argument with the free_addrinfo
 function. The res argument contains a linked list of the resolved
 endpoints. The input argument hints acts like a filter that defines
 the attributes required from the resolved endpoints. For example,
 setting the flag SHIM_ENDPOINT_FLAG_ANON in the hints forces the
 resolver to return only anonymous endpoints in the output argument
 res. A NULL hints argument indicates that any kind of endpoints are
 acceptable.

3.2.2. Application Specified Identities

 Application specified local and peer endpoints can be retrieved from
 files using the function shown in Figure 8. The function
 shim_endpoint_load_pem is used for retrieving a private or public key
 from a given file filename. The file must be in PEM encoded format.
 The result is allocated dynamically and stored into the endpoint
 argument. The return value of the function is zero on success, or a
 non-zero error value on failure. The result is deallocated with the
 free system call.

 int shim_endpoint_pem_load(const char *filename,
 struct endpoint **endpoint)

Komu Expires May 25, 2007 [Page 11]

Internet-Draft Native SHIM APIs November 2006

 Figure 8

 The endpoint structure cannot be used directly in the sockets API
 function calls. The application must convert the endpoint into an ED
 first. Local endpoints are converted with the getlocaled function
 and peer endpoints with getpeered function. The functions are
 illustrated in Figure 9.

 struct sockaddr_ed *getlocaled(const struct endpoint *endpoint,
 const char *servname,
 const struct addrinfo *addrs,
 const struct if_nameindex *ifaces,
 int flags)
 struct sockaddr_ed *getpeered(const struct endpoint *endpoint,
 const char *servname,
 const struct addrinfo *addrs,
 int flags)

 Figure 9

 The result of the conversion, an ED socket address, is returned by
 both of the functions. A failure in the conversion causes a NULL
 return value to be returned and the errno to be set accordingly. The
 caller of the functions is responsible of freeing the returned socket
 address structure.

 The application can retrieve the endpoint argument e.g. with the
 shim_endpoint_load_pem function. If the endpoint is NULL, the system
 selects an arbitrary EID and associates it with the ED value of the
 return value.

 The servname argument is the service string. The function converts
 it to a numeric port number and fills the port number into the
 returned ED socket structure for the convenience of the application.

 The addrs argument defines the initial IP addresses of the local host
 or peer host. The argument is a pointer to a linked list of addrinfo
 structures containing the initial addresses of the peer. The list
 pointer can be obtained with a getaddrinfo [2] function call. A NULL
 pointer indicates that the application trusts the host to already
 know the locators of the peer. We recommend that a NULL pointer is
 not given to the getpeered function to ensure reachability with the
 peer.

 The getlocaled function accepts also a list of network interface
 indexes in the ifaces argument. The list can be obtained with the
 if_nameindex [2] function call. A NULL list pointer indicates all
 the interfaces of the local host. Both the IP addresses and

Komu Expires May 25, 2007 [Page 12]

Internet-Draft Native SHIM APIs November 2006

 interfaces can be combined to select a specific address from a
 specific interface.

 The last argument is the flags. The following flags are valid only
 for the getlocaled function:

 o Flags SHIM_ED_REUSE_UID, SHIM_ED_REUSE_GID and SHIM_ED_REUSE_ANY
 allow the EID (e.g. a large private key) to be reused for
 processes with the same UID, GID or any UID as the calling
 process.

 o Flags SHIM_ED_IPV4 and SHIM_ED_IPV6 can be used for limiting the
 address family scope of the local interface.

 It should noticed that the SHIM_ED_ANY, SHIM_ED_ANY_PUB and
 SHIM_ED_ANY_ANON macros can be implemented as calls to the getlocaled
 call with a NULL endpoint, NULL interface, NULL address argument and
 the flag corresponding to the macro name set.

3.2.3. Querying Endpoint Related Information

 The getlocaled and getpeered functions have also their reverse
 counterparts. Given an ED, the getlocaledinfo and getpeeredinfo
 functions search for the EID (e.g. a HI) and the current set of
 locators associated with the ED. The first argument is the ED to be
 searched for. The functions write the results of the search, the HIs
 and locators, to the rest of the function arguments. The function
 interfaces are depicted in Figure 10. The caller of the functions is
 responsible for freeing the memory reserved for the search results.

 int getlocaledinfo(const struct sockaddr_ed *my_ed,
 struct endpoint **endpoint,
 struct addrinfo **addrs,
 struct if_nameindex **ifaces)
 int getpeeredinfo(const struct sockaddr_ed *peer_ed,
 struct endpoint **endpoint,
 struct addrinfo **addrs)

 Figure 10

 The getlocaledinfo and getpeeredinfo functions are especially useful
 for an advanced application that receives multiple EDs from the
 resolver. The advanced application can query the properties of the
 EDs using getlocaledinfo and getpeeredinfo functions and select the
 ED that matches the desired properties.

Komu Expires May 25, 2007 [Page 13]

Internet-Draft Native SHIM APIs November 2006

3.2.4. Socket Options

 Reading and writing of SHIM socket options is done using getsockopt
 and setsockopt functions. The first argument, the level, must be
 specified as SOL_SHIM.

 A number of SHIM socket option names are listed in Table 2. The
 length of the option must be natural word size of the underlying
 processor, typically 32 or 64 bits. The purpose of the option value
 must be interpreted in context of the protocol specifications [3]
 [4].

 Some of the socket options must be set before the hosts have
 established connection. The implementation may refuse to accept the
 option when there is already an existing connection and dynamic
 renegotiation of the option is not possible. In addition, the SHIM
 may return an error value if the corresponding SHIM protocol does not
 support the given option.

 Multihoming related socket options are defined in
draft-sugimoto-multihome-shim-api. It also specifies an event driven

 API for application, which can be used for listening for changes in
 locators.

https://datatracker.ietf.org/doc/html/draft-sugimoto-multihome-shim-api

Komu Expires May 25, 2007 [Page 14]

Internet-Draft Native SHIM APIs November 2006

 +-----------------------------------+-------------------------------+
 | Socket Options | Purpose |
 +-----------------------------------+-------------------------------+
SO_SHIM_CHALLENGE_SIZE	Puzzle challenge size
SO_SHIM_SHIM_TRANSFORMS	Integer array of the
	preferred SHIM transforms
SO_SHIM_ESP_TRANSFORMS	Integer array of the
	preferred ESP transforms
SO_SHIM_DH_GROUP_IDS	Integer array of the
	preferred Diffie-Hellman
	group IDs
SO_SHIM_SA_LIFETIME	Preferred IPsec SA lifetime
	in seconds
SO_SHIM_CTRL_RETRANS_INIT_TIMEOUT	SHIM initial retransmission
	timeout for SHIM control
	packets
SO_SHIM_CTRL_RETRANS_INTERVAL	SHIM retransmission interval
	in seconds
SO_SHIM_CTRL_RETRANS_ATTEMPTS	Number of retransmission
	attempts
SO_SHIM_AF_FAMILY	The preferred IP address
	family. The default family is
	AF_ANY.
SO_SHIM_PIGGYPACK	If set to one, HIP
	piggy-packing to TCP packets
	is used. Zero if
	piggy-packing must not be
	used.
SO_SHIM_OPPORTUNISTIC	Try SHIM in opportunistic
	mode when only the locators
	of the peer are known.
SO_SHIM_NAT_TRAVERSAL	Enable NAT traversal mode for
	SHIM.
 +-----------------------------------+-------------------------------+

 Table 2

Komu Expires May 25, 2007 [Page 15]

Internet-Draft Native SHIM APIs November 2006

4. IANA Considerations

 No IANA considerations.

Komu Expires May 25, 2007 [Page 16]

Internet-Draft Native SHIM APIs November 2006

5. Security Considerations

 To be done.

Komu Expires May 25, 2007 [Page 17]

Internet-Draft Native SHIM APIs November 2006

6. Acknowledgements

 Jukka Ylitalo and Pekka Nikander have contributed many ideas, time
 and effort to the native HIP API. Thomas Henderson, Kristian Slavov,
 Julien Laganier, Jaakko Kangasharju, Mika Kousa, Jan Melen, Andrew
 McGregor, Sasu Tarkoma, Lars Eggert, Joe Touch, Antti Jaervinen and
 Anthony Joseph have also provided valuable ideas and feedback.

Komu Expires May 25, 2007 [Page 18]

Internet-Draft Native SHIM APIs November 2006

7. References

7.1. Normative References

 [1] Institute of Electrical and Electronics Engineers, "IEEE Std.
 1003.1-2001 Standard for Information Technology - Portable
 Operating System Interface (POSIX)", Dec 2001.

 [2] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC 3493,
 February 2003.

 [3] Moskowitz, R., "Host Identity Protocol", draft-ietf-hip-base-06
 (work in progress), June 2006.

 [4] Nikander, P., "End-Host Mobility and Multihoming with the Host
 Identity Protocol", draft-ietf-hip-mm-03 (work in progress),
 March 2006.

 [5] Henderson, T. and P. Nikander, "Using HIP with Legacy
 Applications", draft-henderson-hip-applications-03 (work in
 progress), May 2006.

7.2. Informative References

 [6] Richardson, M. and B. Sommerfeld, "Requirements for an IPsec
 API", draft-ietf-btns-ipsec-apireq-00 (work in progress),
 April 2006.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/draft-ietf-hip-base-06
https://datatracker.ietf.org/doc/html/draft-ietf-hip-mm-03
https://datatracker.ietf.org/doc/html/draft-henderson-hip-applications-03
https://datatracker.ietf.org/doc/html/draft-ietf-btns-ipsec-apireq-00

Komu Expires May 25, 2007 [Page 19]

Internet-Draft Native SHIM APIs November 2006

Author's Address

 Miika Komu
 Helsinki Institute for Information Technology
 Tammasaarenkatu 3
 Helsinki
 Finland

 Phone: +358503841531
 Fax: +35896949768
 Email: miika@iki.fi
 URI: http://www.iki.fi/miika/

http://www.iki.fi/miika/

Komu Expires May 25, 2007 [Page 20]

Internet-Draft Native SHIM APIs November 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Komu Expires May 25, 2007 [Page 21]

