
Network Working Group M. Nakhjiri
Internet-Draft Motorola
Expires: August 28, 2008 Y. Ohba
 Toshiba
 February 25, 2008

Derivation, delivery and management of EAP based keys for handover and
re-authentication

draft-ietf-hokey-key-mgm-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 28, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document describes a framework and a mechanism for deliverying
 usage specific root keys (USRK and DSUSRK), derived as part of an EAP
 EMSK hierarchy, and delivered from a server to an intended third
 party key holder. The framework description includes different
 scenarios for key delivery, depending on the type of keys being
 delivered. It also includes, specification of derivation of keys

Nakhjiri & Ohba Expires August 28, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft HOKEY Key Distribution Exchange February 2008

 required for security protection of key requests and delivery
 signaling. The mechanism description includes the definition for a
 three-party key distribution exchange (KDE) protocol.

Table of Contents

1. Introduction and Problem statement 3
2. Terminology . 4
3. Key Delivery Architecture 5
3.1. Three Party Key Distribution Exchange (KDE) 7
3.2. Derivation of keys protecting the KDE 10

 3.3. Specification of context and scope for distributed keys . 11
3.4. Automated key management for KIts and KCts 11
3.5. Key distribution exchange scenarios 12

4. KDE Message Format . 13
4.1. Message Syntax . 14
4.2. Message Encoding . 17

5. Security Considerations 17
5.1. Security Association between Server and Third Party . . . 17
5.2. Replay Protection . 18
5.3. Distribution of Duplicate Kpt 18

6. IANA consideration . 18
7. Acknowledgements . 19
8. References . 19
8.1. Normative References 19
8.2. Informative references 20

Appendix A. KDE Transport . 20
A.1. KDE Transport over UDP 20
A.2. KDE Transport over AAA 20

 Authors' Addresses . 21
 Intellectual Property and Copyright Statements 22

Nakhjiri & Ohba Expires August 28, 2008 [Page 2]

Internet-Draft HOKEY Key Distribution Exchange February 2008

1. Introduction and Problem statement

 The ability of Extensible Authentication Protocol (EAP) framework
 [RFC3748] in incorporating desired authentication methods and
 generating master session keys (MSK and EMSK) [I-D.ietf-eap-keying]
 has led to the idea of using MSK and/or EMSK for bootstrapping
 further keys for a variety of security mechanisms. Especially, the
 MSK has been widely used for bootstrapping the wireless link security
 associations between the peer and the network attachment points.
 Issues arising from the use of MSK and the current bootstrapping
 methods when it comes to mobility performance and security are
 described in [I-D.ietf-hokey-reauth-ps]. Thus new efforts are under
 way to use EMSK instead of MSK for bootstrapping of keys for future
 use cases [I-D.ietf-hokey-emsk-hierarchy], [I-D.ietf-hokey-erx]. For
 instance [I-D.ietf-hokey-emsk-hierarchy] defines ways to create usage
 specific root keys (USRK) for bootstrapping security of a specific
 use case. [I-D.ietf-hokey-emsk-hierarchy] also defines ways to
 create domain specific root keys for bootstrapping security of a set
 of services within a domain.

 Along with those lines, this document on the other hand provides a
 specification of a mechanism for secure delivery of such EMSK child
 keys from the EAP server, holding the EMSK, to the intended third
 party destinations. This is to address the following concerns:

 1. EAP authentication is a 2 party protocol executed between an EAP
 peer and an EAP server and the EMSK is only generated and held at
 these two parties [I-D.ietf-eap-keying], while USRK and DSUSRK
 are also generated only by these two parties, but they typically
 need to be stored and utilized at third party key holders (e.g.
 AAA servers/entities) that are logically or even physically
 separate from the EAP server or peer. For instance, handover
 keying and re-authentication service requires distribution of
 keys a variety of intermediaries. This would mean these root
 keys need to be delivered to these third party key holders (KH)
 in a secure manner, while considering the requirements stated in
 [RFC4962]

 2. EAP authentication and EMSK generation process is oblivious to
 the service and authorization requests following the initial EAP
 authentication. Thus at the time of EAP authentication, the EAP
 parties do not have access to the input data required for
 creation of the USRK or DSUSRK [I-D.ietf-hokey-emsk-hierarchy].
 Such input data is typically acquired and delivered to a server
 (the EAP server or DSR-KH) at a later stage. The server then
 performs the derivation function, followed by a secure delivery
 of the resulting keys to these third party key holders.

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4962

Nakhjiri & Ohba Expires August 28, 2008 [Page 3]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 One purpose of this document is to show how the required input data
 for root key derivation can be delivered to the server, and how the
 generated key material is delivered to the third party key holder in
 a secure manner. The specification also includes derivation of key
 material required for secure delivery and channel binding procedures
 for these key materials to ensure that not only the keys are not
 exposed to unintended parties during delivery, but also the scope and
 usage context for the key is properly understood and agreed upon by
 the initial parties.

 Another purpose of this document is to provide exact syntax for a
 three-party key distribution exchange (KDE) protocol, a protocol used
 for delivering USRK and and DSUSRK from a server to a third-party.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 USRK: Usage Specific Root key. A root key generated from EMSK and
 is used for a specific usage that is authorized for a peer,
 following an EAP authentication. USRK is domain independent.

 USR-KH: USRK holder. The USR-KH is responsible for receiving,
 holding and protection of the USRK derived directly from EMSK.

 DSRK: Domain Specific Root key. A root key generated from EMSK and
 is used within a specific domain that EAP-authenticated peer is
 authorized to receive services from or roam into. DSRK is usage
 independent.

 DSR-KH: DSRK holder. The DSRK holder is responsible for receiving,
 holding and protection of the DSRK derived directly from EMSK.

 DSUSRK: Domain Specific Usage Specific Root key. A root key
 generated from DSRK and is used for a specific usage within a
 specific domain that an EAP-authenticated peer is authorized to
 receive services from. DSUSRK is both usage and domain dependent.

 DSUSR-KH: DSRK holder. The DSUSRK holder is responsible for
 receiving, holding and protection of the DSUSRK.

 IK and CK: Integrity and cipher keys, used to protect the key
 delivery signaling between the peer and the EAP server. These two
 keys are some times referred to as key delivery keys.

https://datatracker.ietf.org/doc/html/rfc2119

Nakhjiri & Ohba Expires August 28, 2008 [Page 4]

Internet-Draft HOKEY Key Distribution Exchange February 2008

3. Key Delivery Architecture

 The EAP server is only responsible for performing EAP authentication
 and is not expected to be involved in any service authorization
 decisions, neither is the EAP server aware of the future service
 requests at the time of authentication. The authorization decisions
 based on the user service profile and provisioning of services
 including support for service security is expected to happen by third
 parties, such as AAA servers or service servers. When EAP-based
 keying is used, such servers will cache and use the USRKs, DSRKs or
 DSUSRKs, generated from EMSK, as root keys for derivation of further
 keys to secure the services they are providing. Thus they are
 considered third party key holders (KH) with respect to the initial
 two EAP parties (EAP peer and server). However, since EMSK cannot be
 exported from EAP server, such third parties need to request the EAP
 server to generate the relevant root key (USRK) from the EMSK and
 deliver the requested key to them. The third party needs to provide
 the required input data to be used along with the pseudo random
 function (PRF) to the EAP server to generate the requested key. The
 following types of top level key holders can be envisioned:

 USRK holder (USR-KH): An entity acting as a recipient and then
 holder of the usage specific root key (USRK). The USR-KH is
 possibly responsible for derivation and distribution of any child
 keys derived from USRK for that specific usage. It is possible
 that this USR-KH server is not physically disjunct from the EAP
 server but is simply considered as a separate logic to off-load
 the EAP server from the need to handle usage specific services,
 such as HOKEY service. However, to keep the security
 specifications generic here, we assume that USR-KH and EAP server
 are physically separate and specify the delivery of USRK from EAP
 server to USR-KH accordingly.

 DSRK holder (DSR-KH): An entity acting as a recipient and then
 holder of the domain specific root key (DSRK). The DSR-KH is
 responsible for derivation and distribution of any child keys
 derived from DSRK for that specific domain. The most likely
 realization of DSR-KH is a AAA server in the corresponding domain,
 responsible for setting the policies for usage of DSRK within the
 domain.

 DSUSRK holder (DSUSR-KH): An entity acting as a recipient and then
 holder of the domain specific and usage specific root key (DSUSRK)
 delivered from the EAP server. The DSUSR-KH is possibly
 responsible for derivation and distribution of any child keys
 derived from DSUSRK for that specific domain and usage. The most
 likely realization of DSUSR-KH is a AAA server in the
 corresponding domain, responsible for the service offered within

Nakhjiri & Ohba Expires August 28, 2008 [Page 5]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 the domain for the specific usage at hand.

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | EAP server |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 / | \
 / | \
 USRK1 / | USRK2 \ USRK3
 (ABC) / | (XYZ) \(DSRK1)
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+-+
 | USR-KH1 | | USR-KH2 | | DSR-KH1 |
 | HOKEY server | | XYZ server| +-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+ |
 +-+-+-+-+-+-+-+
 | Domain 1 |
 | DSUSR-KH |
 |(home domain |
 |HOKEY server)|
 +-+-+-+-+-+-+-+

 +-+-+-+-+-+-+
 | peer |
 +-+-+-+-+-+-+

 Figure 1: Key delivery for various EMSK child key cateories

 As one can see, depending on the type of key being delivered,
 different third party key holders are involved. Each of the top
 level key holders (USR-KH, DSR-KH has a interface with the EAP
 server, for delivering usage specific (and/or domain specific) input
 data needed for root key generation (USRK, DSRK) to the EAP server
 and receiving the resulting root key from the EAP server. The
 DSUSR-KH is considered a second-level key holder and has an interface
 with DSR-KH.

 Regardless of the type of key being delivered, the model for EAP
 based key derivation and delivery interface can be generalized as a 3
 party key distribution model, since EAP authentication method
 signaling and the following EMSK generation is performed between the
 peer and the EAP server in a manner that is almost transparent to all
 intermediaries, while the EMSK is used to derive the top level root
 keys and deliver those to a third party key holder, such as USR-KH or
 DSR-KH.

Nakhjiri & Ohba Expires August 28, 2008 [Page 6]

Internet-Draft HOKEY Key Distribution Exchange February 2008

3.1. Three Party Key Distribution Exchange (KDE)

 In the following we describe the generic mechanism for a three- party
 key distribution exchange (KDE), where a key is distributed from a
 network server (with parent key holder) to a third party. The
 following shows a generic trust model for the key distribution
 mechanism to the third party. The peer (P) and a parent key holder,
 called "server" (S) in this model share a parent key (Kps) and a set
 of security associations (SA1) for integrity and privacy protection
 of signaling between the peer and the server (KIps and KCps). The
 goal of the keying solution is to use the parent key (Kps) and
 generate a child key (Kpt) to be shared between the peer and the
 third party intermediary (T). The peer is able to generate Kpt, but
 Kpt needs to be distributed to a third party intermediary (T). The
 goal of this section is to provide a the general description of the
 KDE (key distribution exchange) for distribution of Kpt from S to T.
 We also assume that the server (S) and the third party (T) share a
 similar set security association, SA2 (KIts, KCts).

 +-+-+-+-+ +-+-+-+-+-+-+-+
 | | shared SA1 | |
 | |------------------------------| server |
 | Peer | | KH |
 +-+-+-+-+ +-+-+-+-+-+-+-+
 |
 +-+-+-+-+-+-+ V
 | 3 rd party| | SA2 (Kpt)
 | KH | ----------|
 +-+-+-+-+-+-+

 Figure 2: Distribution of a child key from a parent key key holder to
 a 3rd party child key key holder

 The key distribution exchange described here meets the requirements
 for such 3-party lay-out, providing channel binding and avoids the
 lying intermediary scenario. The exchange proposed below is to
 perform a channel binding and avoid the lying intermediary scenario.
 The description below can be carried over a generic transport and
 thus is independent of the exact type of protocol that is used.

 The key distribution to a third-party basically consists of 1
 exchange, i.e. 2 messages between the peer and the server. However,
 in most scenarios each message traverses through the intermediary,
 i.e. Over two logical hops (peer-third party) and (third party-
 server) even though the exchange seems to consist of 4 logical
 messages. It should be noted that the information in message 0 is
 typically conveyed as an advertisement through other means and hence
 message 0 is optional.

Nakhjiri & Ohba Expires August 28, 2008 [Page 7]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 peer Third party server
 ----- -------- -------
 | KDE0*(TID, SID, DID*, KT) | |
 |<----------------------------| |
 | KDE1 (PRT) | KDE2 (TRT) |
 |---------------------------->|------------------->|
 | KDE4 (SAT) | KDE3 (TOK) |
 |<----------------------------|<-------------------|

 (*) optional

 Figure 3: Handover using EAP-HR

 KDE message 0 (optional): Third party sends its own identifier
 (TID), the Server ID (SID), the Domain ID (DID) and the KT (Key
 Type) to peer. These identifiers need to be recognizable by the
 server S and when AAA signaling is used may be carried as AAA
 attributes. KT is used for uniquely identifying the type of the
 key. DID is used to create domain specific keys or to assist in
 key distribution. DID is not included when the KT is other than 0
 (DSRK) or 2 (DS-rRK).

 KDE message 1: Peer sends a peer request token (PRT) to the third
 party including the TID reported by the third party and a
 freshness value. The contents of PRT are detailed below.

 KDE message 2: Third party uses the PRT and creates a third party
 request token (TRT) and sends it to the server. The contents of
 TRT are detailed below.

 KDE message 3: Server sends the Kpt to third party wrapped inside a
 token called Key Token (TOK). The TOK carries a Server
 Authorization Token (SAT) destined for the peer, carrying
 assurance for the peer that the server has sent the key Kpt to the
 properly identified third party (identified by TID).

 KDE message 4: The third party extracts the SAT from the server and
 forwards it to the peer. The successful receipt of message 4 by
 peer means that the third party has successfully verified
 integrity of message 3 and decrypted Kpt.

 {X}K: X encrypted with key K

 Int[K, X]: X || MIC (K, X), where MIC Message Integrity Code over X
 with key K.

Nakhjiri & Ohba Expires August 28, 2008 [Page 8]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 PRT : Int[KIps, (SEQps, PID, TID, SID, DID*, KT, KN_KIps)]

 PRT (Peer Request Token) carries a sequence number (SEQps), the
 identities of the peer (PID), the server (SID), the third party
 (TID) and the domain (DID), the KT (Key Type) and the name of KIps
 along with the signature. The signature is called the peer
 request authenticator (PRA). KIps is a symmetric key shared
 between peer and Server for signing and identified by KN_KIps.
 SEQps is a sequence number generated by the peer and maintained
 between the peer and server. The initial sequence number starts
 from one (1). When the sequence number wraps up, then SA1 MUST be
 deleted and any KDE message MUST NOT be generated or processed
 thereafter. DID is not included when KT is other than 0 (DSRK) or
 or 2 (DS-rRK).

 TRT : Int[KIts, (Nt, PID, TID, PRT)]

 TRT (Third party Request Token) carries the token from the peer
 along with the third party and peer IDs and a signature for
 integrity protection. KIts is the shared key used for signing
 purposes. Nt is a nonce generated by the third party. Providing
 third party identifier both explicitly by the third party and both
 implicitly through PRT allows the server to detect a lying third
 party.

 TOK : Int[KIts, (Nt+1, PID, TID, SID, DID*, KT, {Kpt, KN_Kpt,
 KL_Kpt}KCts, SAT)]

 TOK(Key Token) carries the key to be distributed to the third
 party (Kpt) wrapped with an encryption key (KCts). KL_Kx is the
 key lifetime for key Kx.

 SAT : Int[KIps,(SEQps+1, PID, TID, SID, DID*, KN_Kpt, KL_Kpt,
 KN_KIps)]

 SAT (Server Authorization Token) carries assurance (in form of
 signature on the incremented nonce value) for the peer that the
 server has sent the key Kpt to the properly identified third party
 (identified by TID). DID is not included when KT is other than 0
 (DSRK) or 2 (DS-rRK).

 The exchange proposed above can avoid the lying intermediary
 scenario, as follows: if an intermediary decided to announce two
 different identifiers to the peer versus to the server, e.g. a down
 link ID to the peer (DTID) and a different uplink ID to the server
 (UTID). The peer uses DTID in its token towards the server, while
 the intermediary uses its UTID in its token to the server. Server
 must use the UTID from PRT to calculate the MIC in TRT and if there

Nakhjiri & Ohba Expires August 28, 2008 [Page 9]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 is a match, then the server can verify that DTID and UTID are the
 same as the TID and proceed with generating and provisioning of Kpt,
 otherwise the server MUST return a failure code instead of generating
 an Kpt.

3.2. Derivation of keys protecting the KDE

 As shown in the generic description of the key distribution exchange,
 to protect the exchange, at least one (or two) keys are required to
 protect the exchange. These keys are an integrity and a cipher key.
 These keys are generated from the EMSK hierarchy themselves.
 However, as discussed when enumerating the various KDE use case
 scenarios, the KDE can and need to be used in many different
 scenarios for delivering keys. Depending on the key that is being
 delivered, the integrity and cipher keys can be generated at
 different levels of the key hierarchy as well. For instance to
 protect the KDE performed to deliver a USRK, these two keys are
 generated directly from EMSK.

 KDRK
 |
 +----+---+
 | |
 CK IK

 Figure 4: Key delivery keys as EMSK Child keys

 Cipher key (CK) and Integrity Key (IK) are used to protect KDE for
 delivery of USRKs and DSUSRKs. CK and IK are generated from KDRK
 (Key Distribution Root Key) which is either EMSK or DSRK in the use
 cases described in this document. When KDRK is EMSK, CK and IK are
 defined as USRKs. When KDRK is DSRK, CK and IK are defined as
 DSUSRKs. The lengthes of CK and IK depends on actual integrity and
 encryption algorithms in use.

 If KDRK is the EMSK, then CK and IK are defined using the USRK
 derivation algorithm defined in [I-D.ietf-hokey-emsk-hierarchy] as
 follows:

 IK = USRK(usage="kde-integrity-key@ietf.org", length)

 CK = USRK(usage="kde-cipher-key@ietf.org", length)

 USRK(usage, length) is the USRK key derivation function with the
 usage and key length specified in the first and second parameters,
 respectively.

 If KDRK is the DSRK for domain="example.net", then CK and IK are

Nakhjiri & Ohba Expires August 28, 2008 [Page 10]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 defined using the DSUSRK derivation algorithm defined in
 [I-D.ietf-hokey-emsk-hierarchy] as follows:

 IK = DSUSRK(usage="kde-integrity-key@ietf.org", domain, length)

 CK = DSUSRK(usage="kde-cipher-key@ietf.org", domain, length)

 DSUSRK(usage, domain, length) is the DSUSRK key derivation function
 with the usage, domain and key length specified in the first, second
 and third parameters, respectively.

 If KDRK is other than the EMSK or DSRK, then CK and IK are defined
 using the KDF defined in [I-D.ietf-hokey-emsk-hierarchy] as follows:

 IK = KDF(KDRK, "kde-integrity-key@ietf.org" + length)

 CK = KDF(KDRK, "kde-cipher-key@ietf.org" + length)

 In this case, the IK and CK names are defined as SHA-1-64(KDRK-name +
 "kde-integrity-key@ietf.org") and SHA-1-64(KDRK-name +
 "kde-cipher@ietf.org"), respectively, where SHA-1-64 is the first 64-
 octet of SHA-1.

3.3. Specification of context and scope for distributed keys

 The key lifetime of each distributed key MUST NOT be greater than
 that of its parent key.

 The key context of each distributed key is determined by the sequence
 of KTs in the key hierarchy. When a DSRK is being delivered and the
 DSRK applies to only a specific set of services, the service types
 may need to be carried as part of context for the key. Carrying such
 a specific set of services are outside the scope of this document.

 The key scope of each distributed key is determined by the sequence
 of (PID, SID, TID, DID, KT)-tuples in the key hierarchy.

3.4. Automated key management for KIts and KCts

 KIts and KCts require automated key management [RFC4107] since these
 are long-term session keys used by more than two parties. Kerberos
 [RFC4120] MAY be used as an automated key management protocol for
 distributing KIts and KCts. If there is no direct trust relationship
 between the third-party and the server, then inter-realm Kerberos MAY
 be used to create a direct trust relationship between the third-party
 and the server from a chain of trust relationships.

 Note that the automated key management mechanism described above is

https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/rfc4120

Nakhjiri & Ohba Expires August 28, 2008 [Page 11]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 not required if hop-by-hop security is used for protecting KDE
 messages. See Section 5 for more discussion.

3.5. Key distribution exchange scenarios

 As mentioned earlier, EMSK can be used to generate any of the USRKs,
 DSRKs and DSUSRKs. The following scenarios can be envisioned for
 distribution of a key to a 3rd party. All scenarios assume the peer
 and the EAP server have mutually authenticated to each other using an
 EAP method and have generated an EMSK. Since the EAP server
 performing EAP method authentication and EMSK generation resides in
 peer's home domain, for practical purposes, for the mechanisms
 described in this document, the USR-KH MUST reside in this domain.
 Note that other key distribution scenarios may also be possible since
 the key distribution protocol is designed to be generic.

 Scenario 1: EAP server to USR-KH: In this scenario, an EAP server
 delivers a USRK to a USR-KH. The trigger and mechanism for key
 delivery may involve a specific request from the peer and another
 intermediary (such as authenticator). In the case of HOKEY re-
 authentication service, a DSRK or an rRK is distributed.

 Scenario 2: DSR-KH to DSUSR-KH: In this scenario, a DSR-KH in a
 specific domain delivers keying material to the DSUSR-KH in the
 same domain. In the case of HOKEY re-authentication service, a
 DS-rRK is distributed.

 The mapping between the protocol parameters in each scenario to the
 protocol parameters of the KDE protocol defined in Section 3.1 is
 given below, where IK_X and CK_X are IK and CK derived from key X,
 respectively. The keyName-NAI is defined in [I-D.ietf-hokey-erx].

Nakhjiri & Ohba Expires August 28, 2008 [Page 12]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 +------------+-------------+-------------+
 | KDE Param. | Scenario 1 | Scenario 2 |
 +------------+-------------+-------------+
 | PID | keyName-NAI |
 +------------+-------------+-------------+
 | SID |EAP Server ID| DSR-KH ID |
 +------------+-------------+-------------+
 | TID | USR-KH ID | DSUSR-KH ID |
 +------------+-------------+-------------+
 | Kpt | USRK | DSUSRK |
 +------------+-------------+-------------+
 | KIps | IK_EMSK | IK_DSRK |
 +------------+-------------+-------------+
 | KCps | CK_EMSK | CK_DSRK |
 +------------+-------------+-------------+
 | KIts | Any pre-existing key |
 +------------+---------------------------+
 | KCts | Any pre-existing key |
 +------------+---------------------------+

 The key distribution exchanges for some of the above scenarios can be
 recursively combined into a single 1.5-roundtrip exchange. For
 example, a combined key distribution exchange for Scenarios 1 and 2
 is illustrated in Figure 5 where KDE[1-4] and KDE'[1-4] are messages
 for Scenarios 1 and 2, respectively.

 peer DSUSR-KH DSR-KH EAP Server
 ----- -------- ------- -----
 | KDE1 | KDE1 | KDE2 |
 | KDE1' | KDE2' | |
 |------------------>|---------------->|--------------->|
 | KDE4 | KDE4 | KDE3 |
 | KDE4' | KDE3' | |
 |<------------------|<--------------- |<---------------|
 | | | |

 Figure 5: Combined Message Exchange

4. KDE Message Format

 The format of KDE messages is defined here in terms of Abstract
 Syntax Notation One (ASN.1) [X680], which provides a syntax for
 specifying both the abstract layout of protocol messages as well as
 their encodings.

Nakhjiri & Ohba Expires August 28, 2008 [Page 13]

Internet-Draft HOKEY Key Distribution Exchange February 2008

4.1. Message Syntax

 The syntax of KDE messages is defined here in terms of Abstract
 Syntax Notation One (ASN.1) [X680], which provides a syntax for
 specifying both the abstract layout of protocol messages as well as
 their encodings.

 -- OID for KDE
 HokeyKdeV1 {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) hokey(to be assigned by IANA)
 kde-v1(1)
 } DEFINITIONS AUTOMATIC TAGS ::= BEGIN

 -- OID arc for HOKEY KDE
 --
 -- This OID may be used to identify HOKEY KDE messages
 -- encapsulated in other protocols.
 --
 -- This OID also designates the OID arc for HOKEY KDE-related OIDs.
 --
 id-hokey-kde-v1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) hokey(to be assigned by IANA)
 kde-v1(1)
 }

 UInt32 ::= INTEGER (0..4294967295)
 -- unsigned 32 bit values

 KDE-PDU ::= SEQUENCE {
 version INTEGER (1..255)
 -- Version of KDE protocol (=1 in this document)
 payload KDE-Payload
 -- Payload of KDE message
 }

 -- A payload contains one or more KDE messages.

 -- The payload contains one or more KDE messages. Two or more KDE
 -- messsage are allowed to support combined exchange.
 KDE-Payload ::= SEQUENCE OF {
 CHOICE {
 kde0 KDE0 -- KDE0
 kde1 KDE1, -- KDE1
 kde2 KDE2, -- KDE2
 kde3 KDE3, -- KDE3
 kde4 KDE4 -- KDE4

Nakhjiri & Ohba Expires August 28, 2008 [Page 14]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 }
 }

 KDE0 ::= SEQUENCE {
 tid OCTET STRING, -- Third-party ID
 sid OCTET STRING, -- Server ID
 did OCTET STRING OPTIONAL, -- Domain ID
 keytype INTEGER(0..255)
 -- Key Type of Kpt (IANA assigned value)
 }

 KDE1 ::= SEQUENCE {
 prt PRT -- Peer Request Token
 }

 KDE2 ::= SEQUENCE {
 trt TRT -- Third Party Request Token
 }

 KDE3 ::= SEQUENCE {
 tot TOT -- Key Token
 }

 KDE4 ::= SEQUENCE {
 tot SAT -- Server Authorization Token
 }

 -- PRT (Peer Request Token)
 PRT ::= SEQUENCE {
 seq Uint32, -- Sequence Number (intial value is 1)
 pid OCTET STRING, -- Peer ID
 tid OCTET STRING, -- Third-party ID
 sid OCTET STRING, -- Server ID
 did OCTET STRING OPTIONAL,
 -- Domain ID
 keytype INTEGER(0..255)
 -- Key Type of Kpt (IANA assigned value)
 kips-name OCTET STRING, -- Key name of KIps
 integrity-data IntegrityData
 -- Integrity protection with KIps
 }

 -- TRT (Third party Request Token)
 TRT ::= SEQUENCE {
 tnonce Uint32 -- Third-party Nonce
 pid OCTET STRING, -- Peer ID
 tid OCTET STRING, -- Third-party ID
 prt PRT

Nakhjiri & Ohba Expires August 28, 2008 [Page 15]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 }

 -- TOK (Key Token)
 TOK ::= SEQUENCE {
 tnonce Uint32 -- Third-party Nonce+1
 pid OCTET STRING, -- Peer ID
 tid OCTET STRING, -- Third-party ID
 sid OCTET STRING, -- Server ID
 did OCTET STRING OPTIONAL,
 -- Domain ID
 keytype INTEGER(0..255)
 -- Key Type of Kpt (IANA assigned value)
 enc-kpt EnctyptedData
 -- Kpt and its name and lifetime encrypted with KCts
 sat SAT,
 integrity-data IntegrityData
 -- Integrity protection with KIts
 }

 -- SAT (Server Authorization Token)
 SAT ::= SEQUENCE {
 seq Uint32, -- Sequence Number + 1
 pid OCTET STRING, -- Peer ID
 tid OCTET STRING, -- Third-party ID
 sid OCTET STRING, -- Server ID
 did OCTET STRING OPTIONAL,
 -- Domain ID
 kpt-name OCTET STRING, -- Key name of Kpt
 kpt-lifetime Uint32 -- Lifetime of Kpt in seconds
 kps-name OCTET STRING, -- Key name of Kps
 integrity-data IntegrityData
 -- Integrity protection with KIps
 }

 -- Integrity Data
 IntegrityData ::= SEQUENCE {
 integrity-algorithm IntegirityAlgorithm, -- integrity algorithm
 mac OCTET_STRING -- message authentication code
 }

 -- Encrypted Data
 EncryptedData ::= SEQUENCE {
 encryption-algorithm EncryptionAlgorithm, -- encryption algorithm
 cipher OCTET_STRING -- encrypted data
 }

 -- Encryption algorithm. The data contains an IKEv2 Transform ID of
 -- Transform Type 1 [RFC4306] for the encryption algorithm. All KDE

https://datatracker.ietf.org/doc/html/rfc4306

Nakhjiri & Ohba Expires August 28, 2008 [Page 16]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 -- implementations MUST support ENCR_AES_CBC [RFC3602]. It is allowed
 -- to use null encryption (ENCR_NULL) for KDE2 and KDE3 in the case
 -- where hop-by-hop security between third party and server is
 -- acceptable.
 EncryptionAlgorithm ::= UInt32

 -- Integrith algorithm. The data contains an IKEv2 Transform ID of
 -- Transform Type 3 [RFC4306] for the integrity algorithm. All KDE
 -- implementations MUST support AUTH_HMAC_SHA1_160 (7) [RFC4595].
 -- It is allowed to use a null integrity mechanism (NONE) for
 -- for KDE2 and KDE3 in the case where hop-by-hop security between
 -- third party and server is acceptable.

 IntegrityAlgorithm ::= UInt32

 END

4.2. Message Encoding

 The default encoding of KDE protocol messages shall obey the PER
 (Packed Encoding Rules) of ASN.1 as described in [X691]. A KDE
 transport protocol may specify other ASN.1 encoding method.

5. Security Considerations

5.1. Security Association between Server and Third Party

 The key distribution mechanism described in this document is designed
 to work with both end-to-end and hop-by-hop security association
 between a server and a third party.

 When end-to-end security is used, the key distribution mechanism
 assumes existence of a direct trust relationship between the server
 and the third party key holder. When such a direct trust
 relationship may be dynamically created from a chain of transitive
 trust relationships with the use of inter-realm Kerberos to
 distribute KIts and KCts as described in Section 3.4. Therefore, the
 key distribution method described in this document eliminates the
 need for hop-by-hop security associations along the transitive trust
 relationship.

 When hop-by-hop security is used, no integrity protection and
 encryption is provided within the KDE protocol. A null encryption
 algorithm (ENCR_NULL) and a null integrity protection (NONE) are
 specified in KDE. In this case, underlying transport protocol
 security such as IPsec and (D)TLS MUST be used instead. The use of

https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4595

Nakhjiri & Ohba Expires August 28, 2008 [Page 17]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 hop-by-hop security implies that an intermediary on each hop can
 access the distributed key material. Hence the use of hop-by-hop
 security SHOULD be limited to an environment where an intermediary is
 trusted not to use the distributed key material.

5.2. Replay Protection

 The KDE protocol defines two freshness values to provide replay
 protection. Sequence numbers generated by peer and maintained by
 peer and server provide anti-replay for KDE messages 1, 2 and 4.
 Nonces generated by third-party provide anti-replay for KDE message
 3.

5.3. Distribution of Duplicate Kpt

 If a Kpt is a USRK or a DSUSRK, it should be sufficient that
 distribution of the Kpt happens only once during the lifetime of it's
 root key, i.e., EMSK. Nevertheless, a peer may attempt to execute
 the KDE protocol multiple times via the same third party with
 specifying the same parameters in KDE message 1 except for sequence
 number, for some reason such as loss of key state due to temporal
 disconnection from the network. The server may accept such an
 attempt and distribute a copy of the same Kpt back to the third
 party, given that the lifetime of the Kpt (KL_Kpt) is recomputed such
 that the key expiration time of the Kpt will not change for all
 copies of the same Kpt.

6. IANA consideration

 This document defines a new SMI Security for Mechanism Code for
 hokey(to be assigned by IANA).

 This document defines a new SMI Security for Mechanism hokey Code for
 kde-v1(1).

 This document defines new usage labels, such as those used in
 generation of CK and IK. The corresponding labels, i.e.,
 "kde-cipher-key@ietf.org" for CK and "kde-integrity-key@ietf.org" for
 IK, need to be assigned numerical values by IANA.

 The Key Type namespace is used to identify the type of Kpt. The range
 of values 0 - 65,535 are for permanent, standard message types,
 allocated by IETF Consensus [IANA]. This document defines the values
 0 (DSRK), 1 (rRK) and 2 (DS-rRK).

Nakhjiri & Ohba Expires August 28, 2008 [Page 18]

Internet-Draft HOKEY Key Distribution Exchange February 2008

7. Acknowledgements

 The author would like to thank Dan Harkins, Chunqiang Li, Rafael
 Marin Lopez and Charles Clancy for their valuable contributions to
 the formation of the KDE.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

 [I-D.ietf-hokey-emsk-hierarchy]
 Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
 "Specification for the Derivation of Root Keys from an
 Extended Master Session Key (EMSK)",

draft-ietf-hokey-emsk-hierarchy-04 (work in progress),
 February 2008.

 [I-D.ietf-hokey-erx]
 Narayanan, V. and L. Dondeti, "EAP Extensions for EAP Re-
 authentication Protocol (ERP)", draft-ietf-hokey-erx-12
 (work in progress), February 2008.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management",

BCP 132, RFC 4962, July 2007.

 [X680] "Abstract Syntax Notation One (ASN.1): Specification of
 Basic Notation, ITU-T Recommendation X.680 (2002).",

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/draft-ietf-hokey-emsk-hierarchy-04
https://datatracker.ietf.org/doc/html/draft-ietf-hokey-erx-12
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4072
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962

Nakhjiri & Ohba Expires August 28, 2008 [Page 19]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 July 2002.

 [X691] "Abstract Syntax Notation One (ASN.1): ASN.1 encoding
 rules: Specification of Packed Encoding Rules (PER), ITU-T
 Recommendation X.691 (2002).", July 2002.

 [IANA] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

8.2. Informative references

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [I-D.ietf-eap-keying]
 Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

draft-ietf-eap-keying-22 (work in progress),
 November 2007.

 [I-D.ietf-hokey-reauth-ps]
 Clancy, C., Nakhjiri, M., Narayanan, V., and L. Dondeti,
 "Handover Key Management and Re-authentication Problem
 Statement", draft-ietf-hokey-reauth-ps-09 (work in
 progress), February 2008.

Appendix A. KDE Transport

A.1. KDE Transport over UDP

 This section defines UDP transport of KDE. A well-known port number
 (to be assigned by IANA) is assigned for KDE.

 For any KDE-PDU sent in response to another KDE-PDU received from the
 other peer, the source port is set to the well-known port number (to
 be assigned by IANA) assigned for KDE and the destination port is
 copied from the source port of the received KDE-PDU. For other KDE-
 PDUs, both the source and destination port numbers are set to the
 well-known port number (to be assigned by IANA) assigned for KDE.

A.2. KDE Transport over AAA

 When KDE messages are carried in AAA protocols, they are carried in a
 RADIUS attribute or a corresponding Diameter AVP. The RADIUS
 attribute for KDE is defined as follows:

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/draft-ietf-eap-keying-22
https://datatracker.ietf.org/doc/html/draft-ietf-hokey-reauth-ps-09

Nakhjiri & Ohba Expires August 28, 2008 [Page 20]

Internet-Draft HOKEY Key Distribution Exchange February 2008

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | KDE-PDU ...
 +-+

 Figure 6: RADIUS Attribute for KDE

 Type

 IANA-TBD for KDE

 Length

 >=4

 KDE-PDU

 One KDE-PDU is included.

Authors' Addresses

 Madjid Nakhjiri
 Motorola

 Email: madjid.nakhjiri@motorola.com

 Yoshihiro Ohba
 Toshiba

 Email: yohba@tari.toshiba.com

Nakhjiri & Ohba Expires August 28, 2008 [Page 21]

Internet-Draft HOKEY Key Distribution Exchange February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Nakhjiri & Ohba Expires August 28, 2008 [Page 22]

