
Homenet Working Group M. Stenberg
Internet-Draft
Intended status: Standards Track S. Barth
Expires: July 9, 2015
 January 5, 2015

Distributed Node Consensus Protocol
draft-ietf-homenet-dncp-00

Abstract

 This document describes the Distributed Node Consensus Protocol
 (DNCP), a generic state synchronization protocol which uses Trickle
 and Merkle trees. DNCP is transport agnostic and leaves some of the
 details to be specified in profiles, which define actual
 implementable DNCP based protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 9, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Stenberg & Barth Expires July 9, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Distributed Node Consensus Protocol January 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 3
3. Terminology . 3
4. Data Model . 5
5. Operation . 6
5.1. Trickle-Driven Status Update Messages 6
5.2. Processing of Received Messages 7
5.3. Adding and Removing Peers 8
5.4. Purging Unreachable Nodes 8

6. Keep-Alive Extension . 9
6.1. Data Model Additions 9
6.2. Periodic Keep-Alive Messages 9
6.3. Received Message Processing Additions 10
6.4. Neighbor Removal . 10

7. Protocol Messages . 10
7.1. Short Network State Update Message 11
7.2. Long Network State Update Message 11
7.3. Network State Request Message 11
7.4. Node Data Request Message 12
7.5. Node Data Reply Message 12

8. Type-Length-Value Objects 12
8.1. Request TLVs . 13
8.1.1. Request Network State TLV 13
8.1.2. Request Node Data TLV 13

8.2. Data TLVs . 14
8.2.1. Node Connection TLV 14
8.2.2. Network State TLV 14
8.2.3. Node State TLV 14
8.2.4. Node Data TLV . 15
8.2.5. Neighbor TLV (within Node Data TLV) 16
8.2.6. Keep-Alive Interval TLV (within Node Data TLV) . . . 16

8.3. Custom TLV (within/without Node Data TLV) 17
9. Security and Trust Management 17
9.1. Pre-Shared Key Based Trust Method 17
9.2. PKI Based Trust Method 17
9.3. Certificate Based Trust Consensus Method 18
9.3.1. Trust Verdicts 18
9.3.2. Trust Cache . 19
9.3.3. Announcement of Verdicts 19
9.3.4. Bootstrap Ceremonies 20

10. DNCP Profile-Specific Definitions 21
11. Security Considerations 23
12. IANA Considerations . 23

Stenberg & Barth Expires July 9, 2015 [Page 2]

Internet-Draft Distributed Node Consensus Protocol January 2015

13. References . 24
13.1. Normative references 24
13.2. Informative references 24

Appendix A. Some Outstanding Issues 25
Appendix B. Some Obvious Questions and Answers 25
Appendix C. Changelog . 25
Appendix D. Draft Source . 26
Appendix E. Acknowledgements 26

 Authors' Addresses . 26

1. Introduction

 DNCP is designed to provide a way for nodes to publish data
 consisting of an ordered set of TLV (Type-Length-Value) tuples, and
 to receive the data published by all other reachable DNCP nodes.

 DNCP has relatively few requirements for the underlying transport; it
 requires some way of transmitting either unicast datagram or stream
 data to a DNCP peer, and if used in multicast mode, a way of sending
 multicast datagrams. If security is desired and one of the built-in
 security methods is to be used, support for some TLS-derived
 transport scheme, such as TLS [RFC5246] on top of TCP, or DTLS
 [RFC6347] on top of UDP, is also required.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Terminology

 DNCP profile is a definition of a set of rules and values listed in
Section 10 specifying the behavior of a DNCP based protocol, such as

 the used transport method. For readability, any DNCP profile
 specific parameters with a profile-specific fixed value are prefixed
 with DNCP_.

 DNCP node is a single node which runs a protocol based on a DNCP
 profile.

 DNCP network is a set of DNCP nodes running the same DNCP profile
 that can reach each other, either via learned shared connections in
 the underlying network, or using each other's addresses learned via
 other means. As DNCP exchanges are bidirectional, DNCP nodes
 connected via only unidirectional links are not considered connected.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Stenberg & Barth Expires July 9, 2015 [Page 3]

Internet-Draft Distributed Node Consensus Protocol January 2015

 Node identifier is an opaque fixed-length identifier of
 DNCP_NODE_IDENTIFIER_LENGTH bytes which uniquely identifies a DNCP
 node within a DNCP network.

 Link indicates a link-layer media over which directly connected nodes
 can communicate.

 Interface indicates a port of a node that is connected to a
 particular link.

 Connection denotes a locally configured use of DNCP on a DNCP node,
 that is attached either to an interface, to a specific remote unicast
 address to be contacted, or to a range of remote unicast addresses
 that are allowed to contact.

 Connection identifier is a 32-bit opaque value, which identifies a
 particular connection of that particular DNCP node. The value 0 is
 reserved for DNCP and sub-protocol purposes in the TLVs, and MUST NOT
 be used to identify an actual connection. This definition is in sync
 with [RFC3493], as the non-zero small positive integers should
 comfortably fit within 32 bits.

 (DNCP) peer refers to another DNCP node with which a DNCP node
 communicates directly on a particular connection.

 Node data is a set of TLVs published by a node in the DNCP network.

 Node state is a set of metadata attributes for node data. It
 includes a sequence number for versioning, a hash value for comparing
 and a timestamp indicating the time passed since its last
 publication. The hash function and the number of bits used are
 defined in the DNCP profile.

 Network state (hash) is a hash value which represents the current
 state of the network. The hash function and the number of bits used
 are defined in the DNCP profile. Whenever any node is added, removed
 or changes its published node data this hash value changes as well.
 It is calculated over the hash values of each reachable nodes' node
 data in ascending order of the respective node identifier.

 Effective (trust) verdict for a certificate is defined as the verdict
 with the highest priority within the set of verdicts announced for
 the certificate in the DNCP network.

https://datatracker.ietf.org/doc/html/rfc3493

Stenberg & Barth Expires July 9, 2015 [Page 4]

Internet-Draft Distributed Node Consensus Protocol January 2015

4. Data Model

 A DNCP node has:

 o A timestamp indicating the most recent neighbor graph traversal
 described in Section 5.4.

 A DNCP node has for every DNCP node in the DNCP network:

 o A node identifier, which uniquely identifies the node.

 o The node data, an ordered set of TLV tuples published by that
 particular node. This set of TLVs has a well-defined order based
 on ascending binary content (including TLV type and length). This
 facilitates linear time state delta processing.

 o The latest update sequence number, a 32 bit number that is
 incremented any time the TLV set is published. For comparison
 purposes, a looping comparison should be used to avoid problems in
 case of overflow. An example would be: a < b <=> (a - b) % 2^32 &
 2^31 != 0.

 o The relative time (in milliseconds) since the current TLV data set
 with the current update sequence number was published. It is also
 a 32 bit number on the wire. If this number is close to overflow
 (greater than 2^32-2^16), a node MUST re-publish its TLVs even if
 there is no change to avoid overflow of the value. In other
 words, absent any other changes, the TLV set MUST be re-published
 roughly every 49 days.

 o A timestamp identifying the time it was last reachable based on
 neighbor graph traversal described in Section 5.4.

 Additionally, a DNCP node has a set of connections for which DNCP is
 configured to be used. For each such connection, a node has:

 o A connection identifier.

 o An interface, a unicast address of a DNCP peer it should connect
 with, or a range of addresses from which DNCP peers are allowed to
 connect.

 o A Trickle [RFC6206] instance with parameters I, T, and c.

 For each DNCP peer detected on a connection, a DNCP node has:

 o The node identifier of the DNCP peer.

https://datatracker.ietf.org/doc/html/rfc6206

Stenberg & Barth Expires July 9, 2015 [Page 5]

Internet-Draft Distributed Node Consensus Protocol January 2015

 o The connection identifier of the DNCP peer.

 o The most recent address used by the DNCP peer (in an authenticated
 message, if security is enabled).

5. Operation

 The DNCP protocol consists of Trickle [RFC6206] driven unicast or
 multicast status messages which indicate the current status of shared
 TLV data, and additional unicast message exchanges which ensure DNCP
 peer reachability and synchronize the data when necessary.

 If DNCP is to be used on a multicast-capable interface, as opposed to
 only point-to-point using unicast, a datagram-based transport which
 supports multicast SHOULD be defined in the DNCP profile to be used
 for the messages to be sent to the whole link. As this is used only
 to identify potential new DNCP nodes, and to notify that an unicast
 exchange should be triggered, the multicast transport does not have
 to be particularly secure.

5.1. Trickle-Driven Status Update Messages

 Each node MUST send either a Long Network State Update message
 (Section 7.2) or a Short Network State Update message (Section 7.1)
 every time the connection-specific Trickle algorithm [RFC6206]
 instance indicates that an update should be sent. The destination
 address of the message should be multicast in case of an interface
 which is multicast-capable, or the unicast address of the remote
 party in case of a point-to-point connection. By default, Long
 Network State Update messages SHOULD be used, but if it is defined as
 undesirable for some case by the DNCP profile, Short Network State
 Update message MUST be sent instead. This may be useful to avoid
 fragmenting packets to multicast destinations, or for security
 reasons.

 A Trickle state MUST be maintained separately for each connection.
 The Trickle state for all connections is considered inconsistent and
 reset if and only if the locally calculated network state hash
 changes. This occurs either due to a change in the local node's own
 node data, or due to receipt of more recent data from another node.

 The Trickle algorithm has 3 parameters; Imin, Imax and k. Imin and
 Imax represent the minimum and maximum values for I, which is the
 time interval during which at least k Trickle updates must be seen on
 a connection to prevent local state transmission. The actual
 suggested Trickle algorithm parameters are DNCP profile specific, as
 described in Section 10.

https://datatracker.ietf.org/doc/html/rfc6206
https://datatracker.ietf.org/doc/html/rfc6206

Stenberg & Barth Expires July 9, 2015 [Page 6]

Internet-Draft Distributed Node Consensus Protocol January 2015

5.2. Processing of Received Messages

 This section describes how received messages are processed. The DNCP
 profile may specify criteria based on which received messages are
 ignored. Any 'reply' mentioned in the steps below denotes sending of
 the specified message via unicast to the originator of the message
 being processed. If the reply was caused by a multicast message and
 sent to a link with shared bandwidth it SHOULD be delayed by a random
 timespan in [0, Imin/2].

 Upon receipt of:

 Short Network State Update (Section 7.1): If the network state
 hash within the message differs from the locally calculated
 network state hash, the receiver MUST reply with a Network State
 Request message (Section 7.3).

 Long Network State Update (Section 7.2):

 * If the network state hash within the message matches the
 locally calculated network state hash, stop processing.

 * Otherwise the receiver MUST identify nodes for which local
 information is outdated (local update sequence number is lower
 than that within the message), potentially incorrect (local
 update sequence number matches but the hash of the node data
 TLV differs) or missing.

 * If any such nodes are identified, the receiver MUST reply with
 one or more Node Data Request message(s) (Section 7.4)
 containing Request Node Data TLV(s) (Section 8.1.2) for the
 corresponding nodes.

 Network State Request (Section 7.3): the receiver MUST reply with
 a Long Network State Update (Section 7.2).

 Node Data Request (Section 7.4): the receiver MUST reply with the
 requested data in a Node Data Reply message (Section 7.5).
 Optionally - if specified by the DNCP profile - multiple replies
 MAY be sent in order to e.g. keep size of each datagram within the
 PMTU to the destination. However these replies must be valid
 stand-alone Node Data Reply messages, with the full state for the
 particular nodes.

 Node Data Reply (Section 7.5): If the message contains Node State
 TLVs that are more recent than the local state (the received TLV
 has a higher update sequence number, the node data TLV hash
 differs from the local one, or local data is missing altogether),

Stenberg & Barth Expires July 9, 2015 [Page 7]

Internet-Draft Distributed Node Consensus Protocol January 2015

 and if the message also contains corresponding Node Data TLVs, the
 receiver MUST update its locally stored state.

 If a message containing Node State TLVs (Section 8.2.3) is received
 with the node identifier matching the local node identifier and a
 higher update sequence number than its current local value, or the
 same update sequence number and a different hash, the node SHOULD re-
 publish its own node data with an update sequence number 1000 higher
 than the received one. This may occur normally once due to the local
 node restarting, and not storing the most recently used update
 sequence number. If this occurs more than once, the DNCP profile
 should provide guidance on how to handle these situations as it
 indicates the existence of a second active node on the network with
 the same node identifier.

5.3. Adding and Removing Peers

 When receiving a message on a connection from an unknown peer:

 If it is a unicast message, the remote node MUST be added as a
 peer on the connection and a Neighbor TLV (Section 8.2.5) MUST be
 created for it.

 If it is a multicast message, the remote node SHOULD be sent a
 (possibly rate-limited) unicast Network State Request Message
 (Section 7.3).

 If keep-alives are NOT sent by the peer (either DNCP profile does not
 specify the use of keep-alives, or the particular peer chooses not to
 send keep-alive messages), some other means MUST be employed to
 ensure a DNCP peer is present, and when the peer is no longer
 present, the Neighbor TLV and the local DNCP peer state MUST be
 removed.

5.4. Purging Unreachable Nodes

 When a Neighbor TLV or a whole node is added or removed, the neighbor
 graph SHOULD be traversed for each node following the bidirectional
 neighbor relationships. These are identified by looking for Neighbor
 TLVs on both nodes, that have the other node's identifier in the
 neighbor node identifier, and local and neighbor connection
 identifiers swapped. Each node reached should be marked currently
 reachable.

 DNCP nodes MUST be either purged immediately when not marked
 reachable in a particular graph traversal, or eventually after they
 have not been marked reachable within DNCP_GRACE_INTERVAL. During
 the grace period, the nodes that were not marked reachable in the

Stenberg & Barth Expires July 9, 2015 [Page 8]

Internet-Draft Distributed Node Consensus Protocol January 2015

 most recent graph traversal MUST NOT be used for calculation of the
 network state hash, be provided to any applications that need to use
 the whole TLV graph, or be provided to remote nodes.

6. Keep-Alive Extension

 The Trickle-driven messages provide a mechanism for handling of new
 peer detection (if applicable) on a connection, as well as state
 change notifications. Another mechanism may be needed to get rid of
 old, no longer valid DNCP peers if the transport or lower layers do
 not provide one.

 If keep-alives are not specified in the DNCP profile, the rest of
 this section MUST be ignored.

 A DNCP profile MAY specify either per-connection or per-peer keep-
 alive support. This document specifies only per-connection keep-
 alive, thus if per-peer support is required either a lower layer
 mechanism or a definition within the profile is required.

6.1. Data Model Additions

 The following additions to the Data Model (Section 4) are needed to
 support keep-alive:

 Each node MUST have a timestamp which indicates the last time a
 Network State TLV (Section 8.2.2) was sent for each connection, i.e.
 on an interface or to the point-to-point peer(s).

 Each node MUST have for each peer:

 o Last consistent state timestamp: a timestamp which indicates the
 last time a consistent Network State TLV (Section 8.2.2) was
 received from the peer. When adding a new peer, it should be
 initialized to the current time.

6.2. Periodic Keep-Alive Messages

 For every connection that a keep-alive is specified for in the DNCP
 profile, the connection-specific keep-alive interval MUST be
 maintained. By default, it is DNCP_KEEPALIVE_INTERVAL. If there is
 a local value that is preferred for that for any reason
 (configuration, energy conservation, media type, ..), it should be
 substituted instead. If non-default keep-alive interval is used on
 any connection, a DNCP node MUST publish appropriate Keep-Alive
 Interval TLV(s) (Section 8.2.6).

Stenberg & Barth Expires July 9, 2015 [Page 9]

Internet-Draft Distributed Node Consensus Protocol January 2015

 If no traffic containing a Network State TLV (Section 8.2.2) has been
 sent to a particular connection within the connection-specific keep-
 alive interval, a Long Network State Update message (Section 7.2) or
 a Short Network State Update message (Section 7.1) MUST be sent on
 that connection. The type of message should be chosen based on the
 considerations in Section 5.1. When such a message is sent, a new
 Trickle transmission time 't' in [I/2, I] MUST be randomly chosen.

6.3. Received Message Processing Additions

 If the received message contains a Network State TLV (Section 8.2.2)
 which is consistent with the locally calculated network state hash,
 the Last consistent state timestamp for the peer MUST be updated.

6.4. Neighbor Removal

 For every peer on every connection, the connection-specific keep-
 alive interval must be calculated by looking for Keep-Alive Interval
 TLVs (Section 8.2.6) published by the node, and if none exist, using
 the default value of DNCP_KEEPALIVE_INTERVAL. If the peer's last
 consistent state timestamp has not been updated for at least
 DNCP_KEEPALIVE_MULTIPLIER times the peer's connection-specific keep-
 alive interval, the Neighbor TLV for that peer and the local DNCP
 peer state MUST be removed.

7. Protocol Messages

 For point-to-point exchanges, DNCP can run across datagram-based or
 reliable ordered stream-based transports. If a stream-based
 transport is used, a 32-bit length-value in network byte order is
 sent before each message to indicate the number of bytes the
 following message consists of.

 DNCP messages are encoded as a concatenated sequence of Type-Length-
 Value objects (Section 8). In order to facilitate fast comparing of
 local state with that in a received message update, all TLVs in every
 encoding scope (either within the message itself, or within a
 container TLV) MUST be placed in ascending order based on the binary
 comparison of both TLV header and value. By design, the TLVs which
 MUST be present have the lowest available type values, ensuring they
 will naturally occur at the start of the Protocol Message, resembling
 a fixed format header.

 DNCP profiles MAY add additional TLVs to the message specified here,
 or even define additional messages as needed.

Stenberg & Barth Expires July 9, 2015 [Page 10]

Internet-Draft Distributed Node Consensus Protocol January 2015

7.1. Short Network State Update Message

 The Short Network State Update Message is used to announce the
 sender's view of the network state using multicast.

 The following TLVs MUST be present:

 o One Node Connection TLV (Section 8.2.1) identifying the
 originating node and connection.

 o One Network State TLV (Section 8.2.2) containing the network state
 hash as calculated by the sender.

 The Short Network Status update message MUST NOT contain any Node
 State TLV(s) (Section 8.2.3).

7.2. Long Network State Update Message

 The Long Network State Update Message is used to announce the
 sender's view of the network state and all node states using
 multicast or unicast.

 The following TLVs MUST be present:

 o One Node Connection TLV (Section 8.2.1) identifying the
 originating node and connection.

 o One Network State TLV (Section 8.2.2) containing the network state
 hash as calculated by the sender.

 o One or more Node State TLVs (Section 8.2.3) containing the node
 state of DNCP nodes as currently known to the sender.

 The Long Network State Update message MUST include the corresponding
 Node State TLV (Section 8.2.3) for each Node Data TLV used to
 calculate the network state hash.

7.3. Network State Request Message

 The Network State Request message is used to request the recipient's
 view of the network state and all node states currently known to it.

 The following TLVs MUST be present:

 o One Node Connection TLV (Section 8.2.1) identifying the
 originating node and connection.

Stenberg & Barth Expires July 9, 2015 [Page 11]

Internet-Draft Distributed Node Consensus Protocol January 2015

 o One Request Network State TLV (Section 8.1.1) indicating the type
 of request.

7.4. Node Data Request Message

 The Node Data Request message is used to request the node state and
 data of one or more DNCP nodes in the network.

 The following TLVs MUST be present:

 o One Node Connection TLV (Section 8.2.1) identifying the
 originating node and connection.

 o One or more Request Node Data TLVs (Section 8.1.2) indicating the
 nodes for which state and data is requested.

7.5. Node Data Reply Message

 The Node Data Request message is used to provide the node data of one
 or more DNCP nodes in the network.

 The following TLVs MUST be present:

 o One Node Connection TLV (Section 8.2.1) identifying the
 originating node and connection.

 o One or more Node State TLV (Section 8.2.3) and Node Data TLV
 (Section 8.2.4) pairs with matching node identifiers for each node
 previously requested in a Node Data Request message (Section 7.4).

8. Type-Length-Value Objects

 Each TLV is encoded as a 2 byte type field, followed by a 2 byte
 length field (of the value, excluding header; 0 means no value)
 followed by the value itself (if any). Both type and length fields
 in the header as well as all integer fields inside the value - unless
 explicitly stated otherwise - are represented in network byte order.
 Zero padding bytes MUST be added up to the next 4 byte boundary if
 the length is not divisible by 4. These padding bytes MUST NOT be
 included in the length field.

Stenberg & Barth Expires July 9, 2015 [Page 12]

Internet-Draft Distributed Node Consensus Protocol January 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value |
 | (variable # of bytes) |
 +-+

 For example, type=123 (0x7b) TLV with value 'x' (120 = 0x78) is
 encoded as: 007B 0001 7800 0000.

 Notation:

 .. = octet string concatenation operation.

 H(x) = non-cryptographic hash function specified by DNCP profile.

8.1. Request TLVs

8.1.1. Request Network State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: REQ-NETWORK-STATE (2) | Length: 0 |
 +-+

 This TLV is used to identify a Network State Request message
 (Section 7.3).

8.1.2. Request Node Data TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: REQ-NODE-DATA (3) | Length: >0 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 | |
 +-+

 This TLV is used within a Node Data Request message (Section 7.4) to
 request node state and node data for the node with matching node
 identifier, if any, to be included in a subsequent Node Data Reply
 message (Section 7.5).

Stenberg & Barth Expires July 9, 2015 [Page 13]

Internet-Draft Distributed Node Consensus Protocol January 2015

8.2. Data TLVs

8.2.1. Node Connection TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NODE-CONNECTION (1) | Length: > 4 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Connection Identifier |
 +-+

 This TLV identifies both the local node's node identifier, as well as
 the particular connection identifier. It MUST be sent in all
 messages.

8.2.2. Network State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NETWORK-STATE (10) | Length: > 0 |
 +-+
 | H(H(node data TLV 1) .. [...] .. H(node data TLV N)) |
 | (length fixed in DNCP profile) |
 ...
 +-+

 This TLV contains the current locally calculated network state hash.
 The network state hash is derived by calculating the hash value for
 each currently reachable node's Node Data TLV, concatenating said
 hash values based on the ascending order of their corresponding node
 identifiers, and hashing the resulting concatenated hash values.

8.2.3. Node State TLV

Stenberg & Barth Expires July 9, 2015 [Page 14]

Internet-Draft Distributed Node Consensus Protocol January 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NODE-STATE (11) | Length: > 8 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Update Sequence Number |
 +-+
 | Milliseconds since Origination |
 +-+
 | H(node data TLV) |
 | (length fixed in DNCP profile) |
 ...
 +-+

 This TLV represents the local node's knowledge about the published
 state of a node in the DNCP network identified by the node identifier
 field in the TLV.

 The whole network should have roughly same idea about the time since
 origination of any particular published state. Therefore every node,
 including the originating one, MUST increment the time whenever it
 needs to send a Node State TLV for an already published Node Data
 TLV. This age value is not included within the Node Data TLV,
 however, as that is immutable and used to detect changes in the
 network state.

8.2.4. Node Data TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NODE-DATA (12) | Length: > 4 |
 +-+
 | node identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Update Sequence Number |
 +-+
 | Nested TLVs containing node information |

Stenberg & Barth Expires July 9, 2015 [Page 15]

Internet-Draft Distributed Node Consensus Protocol January 2015

8.2.5. Neighbor TLV (within Node Data TLV)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NEIGHBOR (13) | Length: > 8 |
 +-+
 | neighbor node identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Neighbor Connection Identifier |
 +-+
 | Local Connection Identifier |
 +-+

 This TLV indicates that the node in question vouches that the
 specified neighbor is reachable by it on the specified local
 connection. The presence of this TLV at least guarantees that the
 node publishing it has received traffic from the neighbor recently.
 For guaranteed up-to-date bidirectional reachability, the existence
 of both nodes' matching Neighbor TLVs should be checked.

8.2.6. Keep-Alive Interval TLV (within Node Data TLV)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: KEEP-ALIVE-INTERVAL (14)| Length: 8 |
 +-+
 | Connection Identifier |
 +-+
 | Interval |
 +-+

 This TLV indicates a non-default interval being used to send keep-
 alive messages specified in Section 6.

 Connection identifier is used to identify the particular connection
 for which the interval applies. If 0, it applies for ALL connections
 for which no specific TLV exists.

 Interval specifies the interval in milliseconds at which the node
 sends keep-alives. A value of zero means no keep-alives are sent at
 all; in that case, some lower layer mechanism that ensures presence
 of nodes MUST be available and used.

Stenberg & Barth Expires July 9, 2015 [Page 16]

Internet-Draft Distributed Node Consensus Protocol January 2015

8.3. Custom TLV (within/without Node Data TLV)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: CUSTOM-DATA (15) | Length: > 0 |
 +-+
 | H(URI) |
 | (length fixed in DNCP profile) |
 +-+
 | Opaque Data |

 This TLV can be used to contain anything; the URI used should be
 under control of the author of that specification. For example:

 V = H('http://example.com/author/json-for-dncp') .. '{"cool": "json
 extension!"}'

 or

 V = H('mailto:author@example.com') .. '{"cool": "json extension!"}'

9. Security and Trust Management

 If specified in the DNCP profile, either DTLS [RFC6347] or TLS
 [RFC5246] may be used to authenticate and encrypt either some (if
 specified optional in the profile), or all unicast traffic. The
 following methods for establishing trust are defined, but it is up to
 the DNCP profile to specify which ones may, should or must be
 supported.

9.1. Pre-Shared Key Based Trust Method

 A PSK-based trust model is a simple security management mechanism
 that allows an administrator to deploy devices to an existing network
 by configuring them with a pre-defined key, similar to the
 configuration of an administrator password or WPA-key. Although
 limited in nature it is useful to provide a user-friendly security
 mechanism for smaller networks.

9.2. PKI Based Trust Method

 A PKI-based trust-model enables more advanced management capabilities
 at the cost of increased complexity and bootstrapping effort. It
 however allows trust to be managed in a centralized manner and is
 therefore useful for larger networks with a need for an authoritative
 trust management.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Stenberg & Barth Expires July 9, 2015 [Page 17]

Internet-Draft Distributed Node Consensus Protocol January 2015

9.3. Certificate Based Trust Consensus Method

 The certificate-based consensus model is designed to be a compromise
 between trust management effort and flexibility. It is based on
 X.509-certificates and allows each DNCP node to provide a verdict on
 any other certificate and a consensus is found to determine whether a
 node using this certificate or any certificate signed by it is to be
 trusted.

 The current effective trust verdict for any certificate is defined as
 the one with the highest priority from all verdicts announced for
 said certificate at the time.

9.3.1. Trust Verdicts

 Trust Verdicts are statements of DNCP nodes about the trustworthiness
 of X.509-certificates. There are 5 possible verdicts in order of
 ascending priority:

 0 Neutral : no verdict exists but the DNCP network should determine
 one.

 1 Cached Trust : the last known effective verdict was Configured or
 Cached Trust.

 2 Cached Distrust : the last known effective verdict was Configured
 or Cached Distrust.

 3 Configured Trust : trustworthy based upon an external ceremony or
 configuration.

 4 Configured Distrust : not trustworthy based upon an external
 ceremony or configuration.

 Verdicts are differentiated in 3 groups:

 o Configured verdicts are used to announce explicit verdicts a node
 has based on any external trust bootstrap or predefined relation a
 node has formed with a given certificate.

 o Cached verdicts are used to retain the last known trust state in
 case all nodes with configured verdicts about a given certificate
 have been disconnected or turned off.

 o The Neutral verdict is used to announce a new node intending to
 join the network so a final verdict for it can be found.

Stenberg & Barth Expires July 9, 2015 [Page 18]

Internet-Draft Distributed Node Consensus Protocol January 2015

 The current effective trust verdict for any certificate is defined as
 the one with the highest priority within the set of verdicts +
 announced for the certificate in the DNCP network. A node MUST be
 trusted for participating in the DNCP network if and only if the
 current effective verdict for its own certificate or any one in its
 certificate hierarchy is (Cached or Configured) Trust and none of the
 certificates in its hierarchy have an effective verdict of (Cached or
 Configured) Distrust. In case a node has a configured verdict, which
 is different from the current effective verdict for a certificate,
 the current effective verdict takes precedence in deciding
 trustworthiness. Despite that, the node still retains and announces
 its configured verdict.

9.3.2. Trust Cache

 Each node SHOULD maintain a trust cache containing the current
 effective trust verdicts for all certificates currently announced in
 the DNCP network. This cache is used as a backup of the last known
 state in case there is no node announcing a configured verdict for a
 known certificate. It SHOULD be saved to a non-volatile memory at
 reasonable time intervals to survive a reboot or power outage.

 Every time a node (re)joins the network or detects the change of an
 effective trust verdict for any certificate, it will synchronize its
 cache, i.e. store new effective verdicts overwriting any previously
 cached verdicts. Configured verdicts are stored in the cache as
 their respective cached counterparts. Neutral verdicts are never
 stored and do not override existing cached verdicts.

9.3.3. Announcement of Verdicts

 A node SHOULD always announce any configured trust verdicts it has
 established by itself, and it MUST do so if announcing the configured
 trust verdict leads to a change in the current effective verdict for
 the respective certificate. In absence of configured verdicts, it
 MUST announce cached trust verdicts it has stored in its trust cache,
 if one of the following conditions applies:

 o The stored verdict is Cached Trust and the current effective
 verdict for the certificate is Neutral or does not exist.

 o The stored verdict is Cached Distrust and the current effective
 verdict for the certificate is Cached Trust.

 A node rechecks these conditions whenever it detects changes of
 announced trust verdicts anywhere in the network.

Stenberg & Barth Expires July 9, 2015 [Page 19]

Internet-Draft Distributed Node Consensus Protocol January 2015

 Upon encountering a node with a hierarchy of certificates for which
 there is no effective verdict, a node adds a Neutral Trust-Verdict-
 TLV to its node data for all certificates found in the hierarchy, and
 publishes it until an effective verdict different from Neutral can be
 found for any of the certificates, or a reasonable amount of time (10
 minutes is suggested) with no reaction and no further authentication
 attempts has passed. Such verdicts SHOULD also be limited in rate
 and number to prevent denial-of-service attacks.

 Trust verdicts are announced using Trust-Verdict TLVs:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: Trust-Verdict (16) | Length: 37-100 |
 +-+
 | Verdict | (reserved) |
 +-+
 | |
 | |
 | |
 | SHA-256 Fingerprint |
 | |
 | |
 | |
 | |
 +-+
 | Common Name |

 Verdict represents the numerical index of the verdict.

 (reserved) is reserved for future additions and MUST be set to 0
 when creating TLVs and ignored when parsing them.

 SHA-256 Fingerprint contains the SHA-256 [RFC6234] hash value of
 the certificate in DER-format.

 Common Name contains the variable-length (1-64 bytes) common name
 of the certificate. Final byte MUST have value of 0.

9.3.4. Bootstrap Ceremonies

 The following non-exhaustive list of methods describes possible ways
 to establish trust relationships between DNCP nodes and node
 certificates. Trust establishment is a two-way process in which the
 existing network must trust the newly added node and the newly added
 node must trust at least one of its neighboring nodes. It is
 therefore necessary that both the newly added node and an already

https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires July 9, 2015 [Page 20]

Internet-Draft Distributed Node Consensus Protocol January 2015

 trusted node perform such a ceremony to successfully introduce a node
 into the DNCP network. In all cases an administrator MUST be
 provided with external means to identify the node belonging to a
 certificate based on its fingerprint and a meaningful common name.

9.3.4.1. Trust by Identification

 A node implementing certificate-based trust MUST provide an interface
 to retrieve the current set of effective trust verdicts, fingerprints
 and names of all certificates currently known and set configured
 trust verdicts to be announced. Alternatively it MAY provide a
 companion DNCP node or application with these capabilities with which
 it has a pre-established trust relationship.

9.3.4.2. Preconfigured Trust

 A node MAY be preconfigured to trust a certain set of node or CA
 certificates. However such trust relationships MUST NOT result in
 unwanted or unrelated trust for nodes not intended to be run inside
 the same network (e.g. all other devices by the same manufacturer).

9.3.4.3. Trust on Button Press

 A node MAY provide a physical or virtual interface to put one or more
 of its internal network interfaces temporarily into a mode in which
 it trusts the certificate of the first DNCP node it can successfully
 establish a connection with.

9.3.4.4. Trust on First Use

 A node which is not associated with any other DNCP node MAY trust the
 certificate of the first DNCP node it can successfully establish a
 connection with. This method MUST NOT be used when the node has
 already associated with any other DNCP node.

10. DNCP Profile-Specific Definitions

 Each DNCP profile MUST define following:

 o How the messages are secured:

 * Not at all,

 * optionally or always with the TLS scheme defined here using one
 or more of the methods, or

 * with something else.

Stenberg & Barth Expires July 9, 2015 [Page 21]

Internet-Draft Distributed Node Consensus Protocol January 2015

 Given that links with DNCP nodes can be sufficiently secured or
 isolated it is possible to run DNCP in a secure manner without
 using any form of authentication or encryption.

 o Unicast and optionally multicast transport protocol(s) to be used.
 If TLS scheme within this document is to be used security, TLS or
 DTLS support for at least the unicast transport protocol is
 mandatory.

 o Transport protocols' parameters such as port numbers to be used,
 or multicast address to be used. Unicast, multicast, and secure
 unicast may each require different parameters, if applicable.

 o When receiving messages, what sort of messages are dropped, as
 specified in Section 5.2.

 o What is the criteria for sending Trickle-based Long Network State
 Update message (Section 7.2) on an interface or to a DNCP peer.

 o How to deal with node identifier collision as described in
Section 5.2. Main options are either for one or both nodes to

 assign new node identifiers to themselves, or to notify someone
 about a fatal error condition in the DNCP network.

 o Imin, Imax and k ranges to be suggested for implementations to be
 used in the Trickle algorithm. The Trickle algorithm does not
 require these to be same across all implementations for it to
 work, but similar orders of magnitude helps implementations of a
 DNCP profile to behave more consistently and to facilitate
 estimation of lower and upper bounds for behavior of the network.

 o Hash function H(x) to be used, and how many bits of the input are
 actually used. The chosen hash function is used to handle both
 hashing of node specific data, and network state hash, which is a
 hash of node specific data hashes. SHA-256 defined in [RFC6234]
 is the recommended default choice.

 o DNCP_NODE_IDENTIFIER_LENGTH: The fixed length of a node identifier
 (in bytes).

 o DNCP_GRACE_INTERVAL: How long node data for unreachable nodes is
 kept.

 o Whether to send keep-alives, and if so, on an interface, using
 multicast, or directly using unicast to peers. Keep-alive has
 also associated parameters:

https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires July 9, 2015 [Page 22]

Internet-Draft Distributed Node Consensus Protocol January 2015

 * DNCP_KEEPALIVE_INTERVAL: How often keep-alive messages are to
 be sent by default (if enabled).

 * DNCP_KEEPALIVE_MULTIPLIER: How many times the
 DNCP_KEEPALIVE_INTERVAL (or peer-supplied keep-alive interval
 value) a node may not be heard from to be considered still
 valid.

11. Security Considerations

 DNCP profiles may use multicast to indicate DNCP state changes and
 for keep-alive purposes. However, no actual data TLVs will be sent
 across that channel. Therefore an attacker may only learn hash
 values of the state within DNCP and may be able to trigger unicast
 synchronization attempts between nodes on a local link this way. A
 DNCP node should therefore rate-limit its reactions to multicast
 packets.

 When using DNCP to bootstrap a network, PKI based solutions may have
 issues when validating certificates due to potentially unavailable
 accurate time, or due to inability to use the network to either check
 Certifcate Revocation Lists or perform on-line validation.

 The Certificate-based trust consensus mechanism defined in this
 document allows for a consenting revocation, however in case of a
 compromised device the trust cache may be poisoned before the actual
 revocation happens allowing the distrusted device to rejoin the
 network using a different identity. Stopping such an attack might
 require physical intervention and flushing of the trust caches.

12. IANA Considerations

 IANA should set up a registry for DNCP TLV types, with the following
 initial contents:

 0: Reserved (should not happen on wire)

 1: Node connection

 2: Request network state

 3: Request node data

 4-9: Reserved for DNCP profile use

 10: Network state

 11: Node state

Stenberg & Barth Expires July 9, 2015 [Page 23]

Internet-Draft Distributed Node Consensus Protocol January 2015

 12: Node data

 13: Neighbor

 14: Keep-alive interval

 15: Custom

 16: Trust-Verdict

 17-31: Reserved for future DNCP versions.

 192-255: Reserved for per-implementation experimentation. The nodes
 using TLV types in this range SHOULD use e.g. Custom TLV to identify
 each other and therefore eliminate potential conflict caused by
 potential different use of same TLV numbers.

 For the rest of the values (32-191, 256-65535), policy of 'standards
 action' should be used.

13. References

13.1. Normative references

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, March 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

13.2. Informative references

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC

3493, February 2003.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6206
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires July 9, 2015 [Page 24]

Internet-Draft Distributed Node Consensus Protocol January 2015

Appendix A. Some Outstanding Issues

 Should per-peer keep-alives be specified here? They are essentially
 constant unicast keep-alives, as opposed to unicast OR multicast per-
 connection ones are.

Appendix B. Some Obvious Questions and Answers

 Q: Should there be nested container syntax that is actually self-
 describing? (i.e. type flag that indicates container, no body except
 sub-TLVs?)

 A: Not for now, but perhaps valid design.. TBD.

 Q: Add third case for multicast - 'medium' network state, which is
 'long' one, but partial?

 A: Drops typical convergence on large networks 5->3 packets, at
 expense of some specification/implementation complexity. However, as
 anything else than short network state leaks information via
 multicast, it does not seem worth it as secure protocols probably
 want to prevent multicast sending of anything else than short network
 state in any case.

 Q: 32-bit connection id?

 A: Here, it would save 32 bits per neighbor if it was 16 bits (and
 less is not realistic). However, TLVs defined elsewhere would not
 seem to even gain that much on average. 32 bits is also used for
 ifindex in various operating systems, making for simpler
 implementation.

 Q: Why not doing (performance thing X, Y or Z)?

 A: This is designed mostly to be minimal (only timers Trickle ones;
 everything triggered by Trickle-driven messages or local state
 changes). However, feel free to suggest better (even more minimal)
 design which works.

Appendix C. Changelog

draft-stenberg-homenet-dncp-00: Split from pre-version of draft-ietf-
homenet-hncp-03 generic parts. Changes that affect implementations:

 o TLVs were renumbered.

 o TLV length does not include header (=-4). This facilitates e.g.
 use of DHCPv6 option parsing libraries (same encoding), and

https://datatracker.ietf.org/doc/html/draft-stenberg-homenet-dncp-00
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-hncp-03
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-hncp-03

Stenberg & Barth Expires July 9, 2015 [Page 25]

Internet-Draft Distributed Node Consensus Protocol January 2015

 reduces complexity (no need to handle error values of length less
 than 4).

 o Trickle is reset only when locally calculated network state hash
 is changes, not as remote different network state hash is seen.
 This prevents e.g. attacks by multicast with one multicast packet
 to force Trickle reset on every interface of every node on a link.

 o Instead of 'ping', use 'keep-alive' (optional) for dead peer
 detection. Different message used!

Appendix D. Draft Source

 As usual, this draft is available at https://github.com/fingon/ietf-
drafts/ in source format (with nice Makefile too). Feel free to send

 comments and/or pull requests if and when you have changes to it!

Appendix E. Acknowledgements

 Thanks to Ole Troan, Pierre Pfister, Mark Baugher, Mark Townsley,
 Juliusz Chroboczek and Jiazi Yi for their contributions to the draft.

Authors' Addresses

 Markus Stenberg
 Helsinki 00930
 Finland

 Email: markus.stenberg@iki.fi

 Steven Barth
 Halle 06114
 Germany

 Email: cyrus@openwrt.org

https://github.com/fingon/ietf-drafts/
https://github.com/fingon/ietf-drafts/

Stenberg & Barth Expires July 9, 2015 [Page 26]

