
Homenet Working Group M. Stenberg
Internet-Draft
Intended status: Standards Track S. Barth
Expires: January 4, 2016
 July 3, 2015

Distributed Node Consensus Protocol
draft-ietf-homenet-dncp-07

Abstract

 This document describes the Distributed Node Consensus Protocol
 (DNCP), a generic state synchronization protocol which uses Trickle
 and Merkle trees. DNCP leaves some details unspecified or provides
 alternative options. Therefore, only profiles which specify those
 missing parts define actual implementable DNCP-based protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Stenberg & Barth Expires January 4, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Distributed Node Consensus Protocol July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
2.1. Requirements Language 6

3. Overview . 6
4. Operation . 7
4.1. Merkle Tree . 7
4.2. Data Transport . 7
4.3. Trickle-Driven Status Updates 8
4.4. Processing of Received TLVs 9
4.5. Adding and Removing Peers 11
4.6. Data Liveliness Validation 12

5. Data Model . 13
6. Optional Extensions . 14
6.1. Keep-Alives . 14
6.1.1. Data Model Additions 15
6.1.2. Per-Endpoint Periodic Keep-Alives 15
6.1.3. Per-Peer Periodic Keep-Alives 16
6.1.4. Received TLV Processing Additions 16
6.1.5. Neighbor Removal 16

6.2. Support For Dense Broadcast Links 16
6.3. Node Data Fragmentation 17

7. Type-Length-Value Objects 18
7.1. Request TLVs . 19
7.1.1. Request Network State TLV 19
7.1.2. Request Node State TLV 19

7.2. Data TLVs . 19
7.2.1. Node Endpoint TLV 19
7.2.2. Network State TLV 20
7.2.3. Node State TLV 20

7.3. Data TLVs within Node State TLV 21
7.3.1. Fragment Count TLV 21
7.3.2. Neighbor TLV . 22
7.3.3. Keep-Alive Interval TLV 22

8. Security and Trust Management 23
8.1. Pre-Shared Key Based Trust Method 23
8.2. PKI Based Trust Method 23
8.3. Certificate Based Trust Consensus Method 23
8.3.1. Trust Verdicts 24
8.3.2. Trust Cache . 25
8.3.3. Announcement of Verdicts 25
8.3.4. Bootstrap Ceremonies 26

9. DNCP Profile-Specific Definitions 27
10. Security Considerations 29

Stenberg & Barth Expires January 4, 2016 [Page 2]

Internet-Draft Distributed Node Consensus Protocol July 2015

11. IANA Considerations . 29
12. References . 30
12.1. Normative references 30
12.2. Informative references 30

Appendix A. Alternative Modes of Operation 30
A.1. Read-only Operation 30
A.2. Forwarding Operation 31

Appendix B. Some Questions and Answers [RFC Editor: please
 remove] . 31

Appendix C. Changelog [RFC Editor: please remove] 31
Appendix D. Draft Source [RFC Editor: please remove] 33
Appendix E. Acknowledgements 33

 Authors' Addresses . 33

1. Introduction

 DNCP is designed to provide a way for each participating node to
 publish a set of TLV (Type-Length-Value) tuples, and to provide a
 shared and common view about the data published by every currently or
 recently bidirectionally reachable DNCP node in a network.

 For state synchronization a Merkle tree is used. It is formed by
 first calculating a hash for the dataset, called node data, published
 by each node, and then calculating another hash over those node data
 hashes. The single resulting hash, called network state hash, is
 transmitted using the Trickle algorithm [RFC6206] to ensure that all
 nodes share the same view of the current state of the published data
 within the network. The use of Trickle with only short network state
 hashes sent infrequently (in steady state) makes DNCP very thrifty
 when updates happen rarely.

 For maintaining liveliness of the topology and the data within it, a
 combination of Trickled network state, keep-alives, and "other" means
 of ensuring reachability are used. The core idea is that if every
 node ensures its neighbors are present, transitively, the whole
 network state also stays up-to-date.

 DNCP is most suitable for data that changes only infrequently to gain
 the maximum benefit from using Trickle. As the network of nodes, or
 the rate of data changes grows over a given time interval, Trickle is
 eventually used less and less and the benefit of using DNCP
 diminishes. In these cases Trickle just provides extra complexity
 within the specification and little added value. If constant rapid
 state changes are needed, the preferable choice is to use an
 additional point-to-point channel whose address or locator is
 published using DNCP.

https://datatracker.ietf.org/doc/html/rfc6206

Stenberg & Barth Expires January 4, 2016 [Page 3]

Internet-Draft Distributed Node Consensus Protocol July 2015

2. Terminology

 DNCP profile a definition of the set of rules and values
 defining the behavior of a fully specified,
 implementable protocol which uses DNCP. The DNCP
 profile specifies transport method to be used,
 which optional parts of the DNCP specification are
 required by that particular protocol, and various
 parameters and optional behaviors. In this
 document any parameter that a DNCP profile
 specifies is prefixed with DNCP_. Contents of a
 DNCP profile are specified in Section 9.

 DNCP-based a protocol which provides a DNCP profile, and
 protocol potentially much more, e.g., protocol-specific TLVs
 and guidance on how they should be used.
 DNCP node a single node which runs a DNCP-based protocol.

 Link a link-layer media over which directly connected
 nodes can communicate.
 DNCP network a set of DNCP nodes running the same DNCP-based
 protocol. The set consists of nodes that have
 discovered each other using the transport method
 defined in the DNCP profile, via multicast on local
 links, and/or by using unicast communication.

 Node identifier an opaque fixed-length identifier consisting of
 DNCP_NODE_IDENTIFIER_LENGTH bytes which uniquely
 identifies a DNCP node within a DNCP network.

 Interface a node's attachment to a particular link.

 Address As DNCP itself is relatively transport agnostic, an
 address in this specification denotes just
 something that identifies an endpoint used by the
 transport protocol employed by a DNCP-based
 protocol. In case of an IPv6 UDP transport, an
 address in this specification refers to a tuple
 (IPv6 address, UDP port).
 Endpoint a locally configured communication endpoint of a
 DNCP node, such as a network socket. It is either
 bound to an Interface for multicast and unicast
 communication, or configured for explicit unicast
 communication with a predefined set of remote
 addresses. Endpoints are usually in one of the
 transport modes specified in Section 4.2.

Stenberg & Barth Expires January 4, 2016 [Page 4]

Internet-Draft Distributed Node Consensus Protocol July 2015

 Endpoint a 32-bit opaque value, which identifies a
 identifier particular endpoint of a particular DNCP node. The
 value 0 is reserved for DNCP and DNCP-based
 protocol purposes and not used to identify an
 actual endpoint. This definition is in sync with
 the interface index definition in [RFC3493], as the
 non-zero small positive integers should comfortably
 fit within 32 bits.

 Peer another DNCP node with which a DNCP node
 communicates using a particular local and remote
 endpoint pair.

 Node data a set of TLVs published and owned by a node in the
 DNCP network. Other nodes pass it along as-is, even
 if they cannot fully interpret it.

 Node state a set of metadata attributes for node data. It
 includes a sequence number for versioning, a hash
 value for comparing equality of stored node data,
 and a timestamp indicating the time passed since
 its last publication. The hash function and the
 length of the hash value are defined in the DNCP
 profile.

 Network state a hash value which represents the current state of
 hash the network. The hash function and the length of
 the hash value are defined in the DNCP profile.
 Whenever a node is added, removed or updates its
 published node data this hash value changes as
 well. For calculation, please see Section 4.1.

 Trust verdict a statement about the trustworthiness of a
 certificate announced by a node participating in
 the certificate based trust consensus mechanism.

 Effective trust the trust verdict with the highest priority within
 verdict the set of trust verdicts announced for the
 certificate in the DNCP network.

 Topology graph the undirected graph of DNCP nodes produced by
 retaining only bidirectional peer relationships
 between nodes.

https://datatracker.ietf.org/doc/html/rfc3493

Stenberg & Barth Expires January 4, 2016 [Page 5]

Internet-Draft Distributed Node Consensus Protocol July 2015

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

3. Overview

 DNCP operates primarily using unicast exchanges between nodes, and
 may use multicast for Trickle-based shared state dissemination and
 topology discovery. If used in pure unicast mode with unreliable
 transport, Trickle is also used between peers.

 DNCP discovers the topology of its nodes and maintains the liveliness
 of published node data by ensuring that the publishing node was - at
 least recently - bidirectionally reachable. This is determined,
 e.g., by a recent and consistent multicast or unicast TLV exchange
 with its peers. New potential peers can be discovered autonomously
 on multicast-enabled links, their addresses may be manually
 configured or they may be found by some other means defined in a
 later specification.

 A Merkle tree is maintained by each node to represent the state of
 all currently reachable nodes and the Trickle algorithm is used to
 trigger synchronization. The need to check neighboring nodes for
 state changes is thereby determined by comparing the current root of
 their respective trees, i.e., their individually calculated network
 state hashes.

 Before joining a DNCP network, a node starts with a Merkle tree (and
 therefore a calculated network state hash) only consisting of the
 node itself. It then announces said hash by means of the Trickle
 algorithm on all its configured endpoints.

 When an update is detected by a node (e.g., by receiving a different
 network state hash from a peer) the originator of the event is
 requested to provide a list of the state of all nodes, i.e., all the
 information it uses to calculate its own Merkle tree. The node uses
 the list to determine whether its own information is outdated and -
 if necessary - requests the actual node data that has changed.

 Whenever a node's local copy of any node data and its Merkle tree are
 updated (e.g., due to its own or another node's node state changing
 or due to a peer being added or removed) its Trickle instances are
 reset which eventually causes any update to be propagated to all of
 its peers.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Stenberg & Barth Expires January 4, 2016 [Page 6]

Internet-Draft Distributed Node Consensus Protocol July 2015

4. Operation

4.1. Merkle Tree

 Each DNCP node maintains a Merkle tree of height 1 to manage state
 updates of individual DNCP nodes, the leaves of the tree, and the
 network as a whole, the root of the tree.

 Each leaf represents one recently bidirectionally reachable DNCP node
 (see Section 4.6), and is represented by a tuple consisting of the
 node's sequence number in network byte order concatenated with the
 hash-value of the node's ordered node data published in the Node
 State TLV (Section 7.2.3). These leaves are ordered in ascending
 order of the respective node identifiers. The root of the tree - the
 network state hash - is represented by the hash-value calculated over
 all such leaf tuples concatenated in order. It is used to determine
 whether the view of the network of two or more nodes is consistent
 and shared.

 The leaves and the root network state hash are updated on-demand and
 whenever any locally stored per-node state changes. This includes
 local unidirectional reachability encoded in the published Neighbor
 TLVs (Section 7.3.2) and - when combined with remote data - results
 in awareness of bidirectional reachability changes.

4.2. Data Transport

 DNCP has relatively few requirements for the underlying transport; it
 requires some way of transmitting either unicast datagram or stream
 data to a peer and, if used in multicast mode, a way of sending
 multicast datagrams. As multicast is used only to identify potential
 new DNCP nodes and to send status messages which merely notify that a
 unicast exchange should be triggered, the multicast transport does
 not have to be secured. If unicast security is desired and one of
 the built-in security methods is to be used, support for some TLS-
 derived transport scheme - such as TLS [RFC5246] on top of TCP or
 DTLS [RFC6347] on top of UDP - is also required. A specific
 definition of the transport(s) in use and their parameters MUST be
 provided by the DNCP profile.

 TLVs are sent across the transport as is, and they SHOULD be sent
 together where, e.g., MTU considerations do not recommend sending
 them in multiple batches. TLVs in general are handled individually
 and statelessly, with one exception: To form bidirectional peer
 relationships DNCP requires identification of the endpoints used for
 communication. As bidirectional peer relationships are required for
 validating liveliness of published node data as described in

Section 4.6, a DNCP node MUST send an Endpoint TLV (Section 7.2.1).

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Stenberg & Barth Expires January 4, 2016 [Page 7]

Internet-Draft Distributed Node Consensus Protocol July 2015

 When it is sent varies, depending on the underlying transport, but
 conceptually it should be available whenever processing a Network
 State TLV:

 o If using a stream transport, the TLV MUST be sent at least once,
 and it SHOULD be sent only once.

 o If using a datagram transport, it MUST be included in every
 datagram that also contains a Network State TLV (Section 7.2.2)
 and MUST be located before any such TLV. It SHOULD also be
 included in any other datagram, to speeds up initial peer
 detection.

 Given the assorted transport options as well as potential endpoint
 configuration, a DNCP endpoint may be used in various transport
 modes:

 Unicast:

 * If only reliable unicast transport is employed, Trickle is not
 used at all. Where Trickle reset has been specified, a single
 Network State TLV (Section 7.2.2) is sent instead to every
 unicast peer. Additionally, recently changed Node State TLVs
 (Section 7.2.3) MAY be included.

 * If only unreliable unicast transport is employed, Trickle state
 is kept per each peer and it is used to send Network State TLVs
 every now and then, as specified in Section 4.3.

 Multicast+Unicast: If multicast datagram transport is available on
 an endpoint, Trickle state is only maintained for the endpoint as
 a whole. It is used to send Network State TLVs every now and
 then, as specified in Section 4.3. Additionally, per-endpoint
 keep-alives MAY be defined in the DNCP profile, as specified in

Section 6.1.2.

 MulticastListen+Unicast: Just like Unicast, except multicast
 transmissions are listened to in order to detect changes of the
 highest node identifier. This mode is used only if the DNCP
 profile supports dense broadcast link optimization (Section 6.2).

4.3. Trickle-Driven Status Updates

 The Trickle algorithm has 3 parameters: Imin, Imax and k. Imin and
 Imax represent the minimum and maximum values for I, which is the
 time interval during which at least k Trickle updates must be seen on
 an endpoint to prevent local state transmission. The actual

Stenberg & Barth Expires January 4, 2016 [Page 8]

Internet-Draft Distributed Node Consensus Protocol July 2015

 suggested Trickle algorithm parameters are DNCP profile specific, as
 described in Section 9.

 The Trickle state for all Trickle instances is considered
 inconsistent and reset if and only if the locally calculated network
 state hash changes. This occurs either due to a change in the local
 node's own node data, or due to receipt of more recent data from
 another node. A node MUST NOT reset its Trickle state merely based
 on receiving a Network State TLV (Section 7.2.2) with a network state
 hash which is different from its locally calculated one.

 Every time a particular Trickle instance indicates that an update
 should be sent, the node MUST send a Network State TLV
 (Section 7.2.2) if and only if:

 o the endpoint is in Multicast+Unicast transport mode, in which case
 the TLV MUST be sent over multicast.

 o the endpoint is NOT in Multicast+Unicast transport mode, and the
 unicast transport is unreliable, in which case the TLV MUST be
 sent over unicast.

 A (sub)set of all Node State TLVs (Section 7.2.3) MAY also be
 included, unless it is defined as undesirable for some reason by the
 DNCP profile, or to avoid exposure of the node state TLVs by
 transmitting them within insecure multicast when using also secure
 unicast.

4.4. Processing of Received TLVs

 This section describes how received TLVs are processed. The DNCP
 profile may specify when to ignore particular TLVs, e.g., to modify
 security properties - see Section 9 for what may be safely defined to
 be ignored in a profile. Any 'reply' mentioned in the steps below
 denotes sending of the specified TLV(s) over unicast to the
 originator of the TLV being processed. If the TLV being replied to
 was received via multicast and it was sent to a link with shared
 bandwidth, the reply SHOULD be delayed by a random timespan in [0,
 Imin/2], to avoid potential simultaneous replies that may cause
 problems on some links. Sending of replies MAY also be rate-limited
 or omitted for a short period of time by an implementation. However,
 an implementation MUST eventually reply to similar repeated requests,
 as otherwise state synchronization breaks.

 A DNCP node MUST process TLVs received from any valid address, as
 specified by the DNCP profile and the configuration of a particular
 endpoint, whether this address is known to be the address of a
 neighbor or not. This provision satisfies the needs of monitoring or

Stenberg & Barth Expires January 4, 2016 [Page 9]

Internet-Draft Distributed Node Consensus Protocol July 2015

 other host software that needs to discover the DNCP topology without
 adding to the state in the network.

 Upon receipt of:

 o Request Network State TLV (Section 7.1.1): The receiver MUST reply
 with a Network State TLV (Section 7.2.2) and a Node State TLV
 (Section 7.2.3) for each node data used to calculate the network
 state hash. The Node State TLVs MUST NOT contain the optional
 node data part unless explicitly specified in the DNCP profile.

 o Request Node State TLV (Section 7.1.2): If the receiver has node
 data for the corresponding node, it MUST reply with a Node State
 TLV (Section 7.2.3) for the corresponding node. The optional node
 data part MUST be included in the TLV.

 o Network State TLV (Section 7.2.2): If the network state hash
 differs from the locally calculated network state hash, and the
 receiver is unaware of any particular node state differences with
 the sender, the receiver MUST reply with a Request Network State
 TLV (Section 7.1.1). These replies MUST be rate limited to only
 at most one reply per link per unique network state hash within
 Imin. The simplest way to ensure this rate limit is a timestamp
 indicating requests, and sending at most one Request Network State
 TLV (Section 7.1.1) per Imin. To facilitate faster state
 synchronization, if a Request Network State TLV is sent in a
 reply, a local, current Network State TLV MAY also be sent.

 o Node State TLV (Section 7.2.3):

 * If the node identifier matches the local node identifier and
 the TLV has a greater sequence number than its current local
 value, or the same sequence number and a different hash, the
 node SHOULD re-publish its own node data with an sequence
 number significantly (e.g., 1000) greater than the received
 one, to reclaim the node identifier. This may occur normally
 once due to the local node restarting and not storing the most
 recently used sequence number. If this occurs more than once
 or for nodes not re-publishing their own node data, the DNCP
 profile MUST provide guidance on how to handle these situations
 as it indicates the existence of another active node with the
 same node identifier.

 * If the node identifier does not match the local node
 identifier, and one or more of the following conditions are
 true:

Stenberg & Barth Expires January 4, 2016 [Page 10]

Internet-Draft Distributed Node Consensus Protocol July 2015

 + The local information is outdated for the corresponding node
 (local sequence number is less than that within the TLV).

 + The local information is potentially incorrect (local
 sequence number matches but the node data hash differs).

 + There is no data for that node altogether.

 Then:

 + If the TLV contains the Node Data field, it SHOULD also be
 verified by ensuring that the locally calculated H(Node
 Data) matches the content of the H(Node Data) field within
 the TLV. If they differ, the TLV SHOULD be ignored and not
 processed further.

 + If the TLV does not contain the Node Data field, and the
 H(Node Data) field within the TLV differs from the local
 node data hash for that node (or there is none), the
 receiver MUST reply with a Request Node State TLV
 (Section 7.1.2) for the corresponding node.

 + Otherwise the receiver MUST update its locally stored state
 for that node (node data based on Node Data field if
 present, sequence number and relative time) to match the
 received TLV.

 For comparison purposes of the sequence number, a looping
 comparison function MUST be used to avoid problems in case of
 overflow. The comparison function a < b <=> (a - b) % 2^32 & 2^31
 != 0 is RECOMMENDED unless the DNCP profile defines another.

 o Any other TLV: TLVs not recognized by the receiver MUST be
 silently ignored.

 If secure unicast transport is configured for an endpoint, any Node
 State TLVs received over insecure multicast MUST be silently ignored.

4.5. Adding and Removing Peers

 When receiving a Node Endpoint TLV (Section 7.2.1) on an endpoint
 from an unknown peer:

 o If received over unicast, the remote node MUST be added as a peer
 on the endpoint and a Neighbor TLV (Section 7.3.2) MUST be created
 for it.

Stenberg & Barth Expires January 4, 2016 [Page 11]

Internet-Draft Distributed Node Consensus Protocol July 2015

 o If received over multicast, the node MAY be sent a (possibly rate-
 limited) unicast Request Network State TLV (Section 7.1.1).

 If keep-alives specified in Section 6.1 are NOT sent by the peer
 (either the DNCP profile does not specify the use of keep-alives or
 the particular peer chooses not to send keep-alives), some other
 existing local transport-specific means (such as Ethernet carrier-
 detection or TCP keep-alive) MUST be employed to ensure its presence.
 When the peer is no longer present, the Neighbor TLV and the local
 DNCP peer state MUST be removed.

 If the local endpoint is in the Multicast-Listen+Unicast transport
 mode, a Neighbor TLV (Section 7.3.2) MUST NOT be published for the
 peers not having the highest node identifier.

4.6. Data Liveliness Validation

 The topology graph MUST be traversed either immediately or with a
 small delay shorter than the DNCP profile-defined Trickle Imin,
 whenever:

 o A Neighbor TLV or a whole node is added or removed, or

 o the origination time (in milliseconds) of some node's node data is
 less than current time - 2^32 + 2^15.

 The topology graph traversal starts with the local node marked as
 reachable. Other nodes are then iteratively marked as reachable
 using the following algorithm: A candidate not-yet-reachable node N
 with an endpoint NE is marked as reachable if there is a reachable
 node R with an endpoint RE that meet all of the following criteria:

 o The origination time (in milliseconds) of R's node data is greater
 than current time in - 2^32 + 2^15.

 o R publishes a Neighbor TLV with:

 * Neighbor Node Identifier = N's node identifier

 * Neighbor Endpoint Identifier = NE's endpoint identifier

 * Endpoint Identifier = RE's endpoint identifier

 o N publishes a Neighbor TLV with:

 * Neighbor Node Identifier = R's node identifier

 * Neighbor Endpoint Identifier = RE's endpoint identifier

Stenberg & Barth Expires January 4, 2016 [Page 12]

Internet-Draft Distributed Node Consensus Protocol July 2015

 * Endpoint Identifier = NE's endpoint identifier

 The algorithm terminates, when no more candidate nodes fulfilling
 these criteria can be found.

 DNCP nodes that have not been reachable in the most recent topology
 graph traversal MUST NOT be used for calculation of the network state
 hash, be provided to any applications that need to use the whole TLV
 graph, or be provided to remote nodes. They MAY be removed
 immediately after the topology graph traversal, however it is
 RECOMMENDED to keep them at least briefly to improve the speed of
 DNCP network state convergence and to reduce the number of redundant
 state transmissions between nodes.

5. Data Model

 This section describes the local data structures a minimal
 implementation might use. This section is provided only as a
 convenience for the implementor. Some of the optional extensions
 (Section 6) describe additional data requirements, and some optional
 parts of the core protocol may also require more.

 A DNCP node has:

 o A data structure containing data about the most recently sent
 Request Network State TLVs (Section 7.1.1). The simplest option
 is keeping a timestamp of the most recent request (required to
 fulfill reply rate limiting specified in Section 4.4).

 A DNCP node has for every DNCP node in the DNCP network:

 o Node identifier: the unique identifier of the node. The length,
 how it is produced, and how collisions are handled, is up to the
 DNCP profile.

 o Node data: the set of TLV tuples published by that particular
 node. As they are transmitted ordered (see Node State TLV
 (Section 7.2.3) for details), maintaining the order within the
 data structure here may be reasonable.

 o Latest sequence number: the 32-bit sequence number that is
 incremented any time the TLV set is published. The comparison
 function used to compare them is described in Section 4.4.

 o Origination time: the (estimated) time when the current TLV set
 with the current sequence number was published. It is used to
 populate the Milliseconds Since Origination field in a Node State
 TLV (Section 7.2.3). Ideally it also has millisecond accuracy.

Stenberg & Barth Expires January 4, 2016 [Page 13]

Internet-Draft Distributed Node Consensus Protocol July 2015

 Additionally, a DNCP node has a set of endpoints for which DNCP is
 configured to be used. For each such endpoint, a node has:

 o Endpoint identifier: the 32-bit opaque value uniquely identifying
 it within the local node.

 o Trickle instance: the endpoint's Trickle instance with parameters
 I, T, and c (only on an endpoint in Multicast+Unicast transport
 mode).

 and one (or more) of the following:

 o Interface: the assigned local network interface.

 o Unicast address: the DNCP node it should connect with.

 o Range of addresses: the DNCP nodes that are allowed to connect.

 For each remote (peer, endpoint) pair detected on a local endpoint, a
 DNCP node has:

 o Node identifier: the unique identifier of the peer.

 o Endpoint identifier: the unique endpoint identifier used by the
 peer.

 o Peer address: the most recently used address of the peer
 (authenticated and authorized, if security is enabled).

 o Trickle instance: the particular peer's Trickle instance with
 parameters I, T, and c (only on an endpoint in Unicast mode, when
 using an unreliable unicast transport) .

6. Optional Extensions

 This section specifies extensions to the core protocol that a DNCP
 profile may specify to be used.

6.1. Keep-Alives

 Trickle-driven status updates (Section 4.3) provide a mechanism for
 handling of new peer detection on an endpoint, as well as state
 change notifications. Another mechanism may be needed to get rid of
 old, no longer valid peers if the transport or lower layers do not
 provide one.

 If keep-alives are not specified in the DNCP profile, the rest of
 this subsection MUST be ignored.

Stenberg & Barth Expires January 4, 2016 [Page 14]

Internet-Draft Distributed Node Consensus Protocol July 2015

 A DNCP profile MAY specify either per-endpoint or per-peer keep-alive
 support.

 For every endpoint that a keep-alive is specified for in the DNCP
 profile, the endpoint-specific keep-alive interval MUST be
 maintained. By default, it is DNCP_KEEPALIVE_INTERVAL. If there is
 a local value that is preferred for that for any reason
 (configuration, energy conservation, media type, ..), it can be
 substituted instead. If a non-default keep-alive interval is used on
 any endpoint, a DNCP node MUST publish appropriate Keep-Alive
 Interval TLV(s) (Section 7.3.3) within its node data.

6.1.1. Data Model Additions

 The following additions to the Data Model (Section 5) are needed to
 support keep-alives:

 For each configured endpoint that has per-endpoint keep-alives
 enabled:

 o Last sent: If a timestamp which indicates the last time a Network
 State TLV (Section 7.2.2) was sent over that interface.

 For each remote (peer, endpoint) pair detected on a local endpoint, a
 DNCP node has:

 o Last contact timestamp: a timestamp which indicates the last time
 a consistent Network State TLV (Section 7.2.2) was received from
 the peer over multicast, or anything was received over unicast.
 When adding a new peer, it is initialized to the current time.

 o Last sent: If per-peer keep-alives are enabled, a timestamp which
 indicates the last time a Network State TLV (Section 7.2.2) was
 sent to to that point-to-point peer. When adding a new peer, it
 is initialized to the current time.

6.1.2. Per-Endpoint Periodic Keep-Alives

 If per-endpoint keep-alives are enabled on an endpoint in
 Multicast+Unicast transport mode, and if no traffic containing a
 Network State TLV (Section 7.2.2) has been sent to a particular
 endpoint within the endpoint-specific keep-alive interval, a Network
 State TLV (Section 7.2.2) MUST be sent on that endpoint, and a new
 Trickle transmission time 't' in [I/2, I] MUST be randomly chosen.
 The actual sending time SHOULD be further delayed by a random
 timespan in [0, Imin/2].

Stenberg & Barth Expires January 4, 2016 [Page 15]

Internet-Draft Distributed Node Consensus Protocol July 2015

6.1.3. Per-Peer Periodic Keep-Alives

 If per-peer keep-alives are enabled on a unicast-only endpoint, and
 if no traffic containing a Network State TLV (Section 7.2.2) has been
 sent to a particular peer within the endpoint-specific keep-alive
 interval, a Network State TLV (Section 7.2.2) MUST be sent to the
 peer and a new Trickle transmission time 't' in [I/2, I] MUST be
 randomly chosen.

6.1.4. Received TLV Processing Additions

 If a TLV is received over unicast from the peer, the Last contact
 timestamp for the peer MUST be updated.

 On receipt of a Network State TLV (Section 7.2.2) which is consistent
 with the locally calculated network state hash, the Last contact
 timestamp for the peer MUST be updated.

6.1.5. Neighbor Removal

 For every peer on every endpoint, the endpoint-specific keep-alive
 interval must be calculated by looking for Keep-Alive Interval TLVs
 (Section 7.3.3) published by the node, and if none exist, using the
 default value of DNCP_KEEPALIVE_INTERVAL. If the peer's last contact
 timestamp has not been updated for at least locally chosen
 potentially endpoint-specific keep-alive multiplier (defaults to
 DNCP_KEEPALIVE_MULTIPLIER) times the peer's endpoint-specific keep-
 alive interval, the Neighbor TLV for that peer and the local DNCP
 peer state MUST be removed.

6.2. Support For Dense Broadcast Links

 This optimization is needed to avoid a state space explosion. Given
 a large set of DNCP nodes publishing data on an endpoint that
 actually uses multicast on a link, every node will add a Neighbor TLV
 (Section 7.3.2) for each peer. While Trickle limits the amount of
 traffic on the link in stable state to some extent, the total amount
 of data that is added to and maintained in the DNCP network given N
 nodes on a multicast-enabled link is O(N^2). Additionally if per-
 peer keep-alives are employed, there will be O(N^2) keep-alives
 running on the link if liveliness of peers is not ensured using some
 other way (e.g., TCP connection lifetime, layer 2 notification, per-
 endpoint keep-alive).

 An upper bound for the number of neighbors that are allowed for a
 particular type of link that an endpoint in Multicast+Unicast
 transport mode is used on SHOULD be provided by a DNCP profile, but
 MAY also be chosen at runtime. Main consideration when selecting a

Stenberg & Barth Expires January 4, 2016 [Page 16]

Internet-Draft Distributed Node Consensus Protocol July 2015

 bound (if any) for a particular type of link should be whether it
 supports broadcast traffic, and whether a too large number of
 neighbors case is likely to happen during the use of that DNCP
 profile on that particular type of link. If neither is likely, there
 is little point specifying support for this for that particular link
 type.

 If a DNCP profile does not support this extension at all, the rest of
 this subsection MUST be ignored. This is because when this extension
 is employed, the state within the DNCP network only contains a subset
 of the full topology of the network. Therefore every node must be
 aware of the potential of it being used in a particular DNCP profile.

 If the specified upper bound is exceeded for some endpoint in
 Multicast+Unicast transport mode and if the node does not have the
 highest node identifier on the link, it SHOULD treat the endpoint as
 a unicast endpoint connected to the node that has the highest node
 identifier detected on the link, therefore transitioning to
 Multicast-listen+Unicast transport mode. The nodes in Multicast-
 listen+Unicast transport mode MUST keep listening to multicast
 traffic to both receive messages from the node(s) still in
 Multicast+Unicast mode, and as well to react to nodes with a greater
 node identifier appearing. If the highest node identifier present on
 the link changes, the remote unicast address of the endpoints in
 Multicast-Listen+Unicast transport mode MUST be changed. If the node
 identifier of the local node is the highest one, the node MUST switch
 back to, or stay in Multicast+Unicast mode, and normally form peer
 relationships with all peers.

6.3. Node Data Fragmentation

 A DNCP-based protocol may be required to support node data which
 would not fit the maximum size of a single Node State TLV
 (Section 7.2.3) (roughly 64KB of payload), or use a datagram-only
 transport with a limited MTU and no reliable support for
 fragmentation. To handle such cases, a DNCP profile MAY specify a
 fixed number of trailing bytes in the node identifier to represent a
 fragment number indicating a part of a node's node data. The profile
 MAY also specify an upper bound for the size of a single fragment to
 accommodate limitations of links in the network. Note that the
 maximum size of fragment also constrains the maximum size of a single
 TLV published by a node.

 The data within Node State TLVs of all fragments MUST be valid, as
 specified in Section 7.2.3. The locally used node data for a
 particular node MUST be produced by concatenating node data in each
 fragment, in ascending fragment number order. The locally used

Stenberg & Barth Expires January 4, 2016 [Page 17]

Internet-Draft Distributed Node Consensus Protocol July 2015

 concatenated node data MUST still follow the ordering described in
Section 7.2.3.

 Any transmitted node identifiers used to identify the own or any
 other node MUST have the fragment number 0. For algorithm purposes,
 the relative time since the most recent fragment change MUST be used,
 regardless of fragment number. Therefore, even if just some of the
 node data fragments change, they all are considered refreshed if one
 of them is.

 If using fragmentation, the data liveliness validation defined in
Section 4.6 is extended so that if a Fragment Count TLV

 (Section 7.3.1) is present within the fragment number 0, all
 fragments up to fragment number specified in the Count field are also
 considered reachable if the fragment number 0 itself is reachable
 based on graph traversal.

7. Type-Length-Value Objects

 Each TLV is encoded as a 2 byte type field, followed by a 2 byte
 length field (of the value excluding header, in bytes, 0 meaning no
 value) followed by the value itself, if any. Both type and length
 fields in the header as well as all integer fields inside the value -
 unless explicitly stated otherwise - are represented in network byte
 order. Padding bytes with value zero MUST be added up to the next 4
 byte boundary if the length is not divisible by 4. These padding
 bytes MUST NOT be included in the number stored in the length field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value |
 | (variable # of bytes) |
 +-+

 For example, type=123 (0x7b) TLV with value 'x' (120 = 0x78) is
 encoded as: 007B 0001 7800 0000.

 In this section, the following special notation is used:

 .. = octet string concatenation operation.

 H(x) = non-cryptographic hash function specified by DNCP profile.

Stenberg & Barth Expires January 4, 2016 [Page 18]

Internet-Draft Distributed Node Consensus Protocol July 2015

7.1. Request TLVs

7.1.1. Request Network State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: REQ-NETWORK-STATE (1) | Length: 0 |
 +-+

 This TLV is used to request response with a Network State TLV
 (Section 7.2.2) and all Node State TLVs (Section 7.2.3) (without node
 data).

7.1.2. Request Node State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: REQ-NODE-STATE (2) | Length: >0 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 | |
 +-+

 This TLV is used to request a Node State TLV (Section 7.2.3)
 (including node data) for the node with the matching node identifier.

7.2. Data TLVs

7.2.1. Node Endpoint TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NODE-ENDPOINT (3) | Length: > 4 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Endpoint Identifier |
 +-+

 This TLV identifies both the local node's node identifier, as well as
 the particular endpoint's endpoint identifier.

Stenberg & Barth Expires January 4, 2016 [Page 19]

Internet-Draft Distributed Node Consensus Protocol July 2015

7.2.2. Network State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NETWORK-STATE (4) | Length: > 0 |
 +-+
 | H(sequence number of node 1 .. H(node data of node 1) .. |
 | .. sequence number of node N .. H(node data of node N)) |
 | (length fixed in DNCP profile) |
 ...
 +-+

 This TLV contains the current locally calculated network state hash,
 see Section 4.1 for how it is calculated.

7.2.3. Node State TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NODE-STATE (5) | Length: > 8 |
 +-+
 | Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Sequence Number |
 +-+
 | Milliseconds Since Origination |
 +-+
 | H(Node Data) |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | (optionally) Node Data (a set of nested TLVs) |
 ...
 +-+

 This TLV represents the local node's knowledge about the published
 state of a node in the DNCP network identified by the Node Identifier
 field in the TLV.

 Every node, including the originating one, MUST update the
 Milliseconds Since Origination whenever it sends a Node State TLV
 based on when the node estimates the data was originally published.
 This is, e.g., to ensure that any relative timestamps contained
 within the published node data can be correctly offset and

Stenberg & Barth Expires January 4, 2016 [Page 20]

Internet-Draft Distributed Node Consensus Protocol July 2015

 interpreted. Ultimately, what is provided is just an approximation,
 as transmission delays are not accounted for.

 Absent any changes, if the originating node notices that the 32-bit
 milliseconds since origination value would be close to overflow
 (greater than 2^32-2^16), the node MUST re-publish its TLVs even if
 there is no change. In other words, absent any other changes, the
 TLV set MUST be re-published roughly every 48 days.

 The actual node data of the node may be included within the TLV as
 well in the optional Node Data field. In a DNCP profile which
 supports fragmentation, described in Section 6.3, the TLV data may be
 only partial but it MUST contain full individual TLVs. The set of
 TLVs MUST be strictly ordered based on ascending binary content
 (including TLV type and length). This enables, e.g., efficient state
 delta processing and no-copy indexing by TLV type by the recipient.
 The Node Data content MUST be passed along exactly as it was
 received. It SHOULD be also verified on receipt that the locally
 calculated H(Node Data) matches the content of the field within the
 TLV, and if the hash differs, the TLV SHOULD be ignored.

7.3. Data TLVs within Node State TLV

 These TLVs are published by the DNCP nodes, and therefore only
 encoded within the Node State TLVs. If encountered outside Node
 State TLV, they MUST be silently ignored.

7.3.1. Fragment Count TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: FRAGMENT-COUNT (7) | Length: > 0 |
 +-+
 | Count |
 | (length fixed in DNCP profile) |
 ...
 +-+

 If the DNCP profile supports node data fragmentation as specified in
Section 6.3, this TLV indicates that the node data is encoded as a

 sequence of Node State TLVs. Following Node State TLVs with Node
 Identifiers up to Count greater than the current one MUST be
 considered reachable and part of the same logical set of node data
 that this TLV is within. The fragment portion of the Node Identifier
 of the Node State TLV this TLV appears in MUST be zero.

Stenberg & Barth Expires January 4, 2016 [Page 21]

Internet-Draft Distributed Node Consensus Protocol July 2015

7.3.2. Neighbor TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: NEIGHBOR (8) | Length: > 8 |
 +-+
 | Neighbor Node Identifier |
 | (length fixed in DNCP profile) |
 ...
 +-+
 | Neighbor Endpoint Identifier |
 +-+
 | Local Endpoint Identifier |
 +-+

 This TLV indicates that the node in question vouches that the
 specified neighbor is reachable by it on the specified local
 endpoint. The presence of this TLV at least guarantees that the node
 publishing it has received traffic from the neighbor recently. For
 guaranteed up-to-date bidirectional reachability, the existence of
 both nodes' matching Neighbor TLVs needs to be checked.

7.3.3. Keep-Alive Interval TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: KEEP-ALIVE-INTERVAL (9) | Length: 8 |
 +-+
 | Endpoint Identifier |
 +-+
 | Interval |
 +-+

 This TLV indicates a non-default interval being used to send keep-
 alives specified in Section 6.1.

 Endpoint identifier is used to identify the particular endpoint for
 which the interval applies. If 0, it applies for ALL endpoints for
 which no specific TLV exists.

 Interval specifies the interval in milliseconds at which the node
 sends keep-alives. A value of zero means no keep-alives are sent at
 all; in that case, some lower layer mechanism that ensures presence
 of nodes MUST be available and used.

Stenberg & Barth Expires January 4, 2016 [Page 22]

Internet-Draft Distributed Node Consensus Protocol July 2015

8. Security and Trust Management

 If specified in the DNCP profile, either DTLS [RFC6347] or TLS
 [RFC5246] may be used to authenticate and encrypt either some (if
 specified optional in the profile), or all unicast traffic. The
 following methods for establishing trust are defined, but it is up to
 the DNCP profile to specify which ones may, should or must be
 supported.

8.1. Pre-Shared Key Based Trust Method

 A PSK-based trust model is a simple security management mechanism
 that allows an administrator to deploy devices to an existing network
 by configuring them with a pre-defined key, similar to the
 configuration of an administrator password or WPA-key. Although
 limited in nature it is useful to provide a user-friendly security
 mechanism for smaller networks.

8.2. PKI Based Trust Method

 A PKI-based trust-model enables more advanced management capabilities
 at the cost of increased complexity and bootstrapping effort. It
 however allows trust to be managed in a centralized manner and is
 therefore useful for larger networks with a need for an authoritative
 trust management.

8.3. Certificate Based Trust Consensus Method

 The certificate-based consensus model is designed to be a compromise
 between trust management effort and flexibility. It is based on
 X.509-certificates and allows each DNCP node to provide a trust
 verdict on any other certificate and a consensus is found to
 determine whether a node using this certificate or any certificate
 signed by it is to be trusted.

 A DNCP node not using this security method MUST ignore all announced
 trust verdicts and MUST NOT announce any such verdicts by itself,
 i.e., any other normative language in this subsection does not apply
 to it.

 The current effective trust verdict for any certificate is defined as
 the one with the highest priority from all trust verdicts announced
 for said certificate at the time.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Stenberg & Barth Expires January 4, 2016 [Page 23]

Internet-Draft Distributed Node Consensus Protocol July 2015

8.3.1. Trust Verdicts

 Trust verdicts are statements of DNCP nodes about the trustworthiness
 of X.509-certificates. There are 5 possible trust verdicts in order
 of ascending priority:

 0 (Neutral): no trust verdict exists but the DNCP network should
 determine one.

 1 (Cached Trust): the last known effective trust verdict was
 Configured or Cached Trust.

 2 (Cached Distrust): the last known effective trust verdict was
 Configured or Cached Distrust.

 3 (Configured Trust): trustworthy based upon an external ceremony
 or configuration.

 4 (Configured Distrust): not trustworthy based upon an external
 ceremony or configuration.

 Trust verdicts are differentiated in 3 groups:

 o Configured verdicts are used to announce explicit trust verdicts a
 node has based on any external trust bootstrap or predefined
 relation a node has formed with a given certificate.

 o Cached verdicts are used to retain the last known trust state in
 case all nodes with configured verdicts about a given certificate
 have been disconnected or turned off.

 o The Neutral verdict is used to announce a new node intending to
 join the network so a final verdict for it can be found.

 The current effective trust verdict for any certificate is defined as
 the one with the highest priority within the set of trust verdicts
 announced for the certificate in the DNCP network. A node MUST be
 trusted for participating in the DNCP network if and only if the
 current effective trust verdict for its own certificate or any one in
 its certificate hierarchy is (Cached or Configured) Trust and none of
 the certificates in its hierarchy have an effective trust verdict of
 (Cached or Configured) Distrust. In case a node has a configured
 verdict, which is different from the current effective trust verdict
 for a certificate, the current effective trust verdict takes
 precedence in deciding trustworthiness. Despite that, the node still
 retains and announces its configured verdict.

Stenberg & Barth Expires January 4, 2016 [Page 24]

Internet-Draft Distributed Node Consensus Protocol July 2015

8.3.2. Trust Cache

 Each node SHOULD maintain a trust cache containing the current
 effective trust verdicts for all certificates currently announced in
 the DNCP network. This cache is used as a backup of the last known
 state in case there is no node announcing a configured verdict for a
 known certificate. It SHOULD be saved to a non-volatile memory at
 reasonable time intervals to survive a reboot or power outage.

 Every time a node (re)joins the network or detects the change of an
 effective trust verdict for any certificate, it will synchronize its
 cache, i.e., store new effective trust verdicts overwriting any
 previously cached verdicts. Configured verdicts are stored in the
 cache as their respective cached counterparts. Neutral verdicts are
 never stored and do not override existing cached verdicts.

8.3.3. Announcement of Verdicts

 A node SHOULD always announce any configured trust verdicts it has
 established by itself, and it MUST do so if announcing the configured
 trust verdict leads to a change in the current effective trust
 verdict for the respective certificate. In absence of configured
 verdicts, it MUST announce cached trust verdicts it has stored in its
 trust cache, if one of the following conditions applies:

 o The stored trust verdict is Cached Trust and the current effective
 trust verdict for the certificate is Neutral or does not exist.

 o The stored trust verdict is Cached Distrust and the current
 effective trust verdict for the certificate is Cached Trust.

 A node rechecks these conditions whenever it detects changes of
 announced trust verdicts anywhere in the network.

 Upon encountering a node with a hierarchy of certificates for which
 there is no effective trust verdict, a node adds a Neutral Trust-
 Verdict-TLV to its node data for all certificates found in the
 hierarchy, and publishes it until an effective trust verdict
 different from Neutral can be found for any of the certificates, or a
 reasonable amount of time (10 minutes is suggested) with no reaction
 and no further authentication attempts has passed. Such trust
 verdicts SHOULD also be limited in rate and number to prevent denial-
 of-service attacks.

 Trust verdicts are announced using Trust-Verdict TLVs:

Stenberg & Barth Expires January 4, 2016 [Page 25]

Internet-Draft Distributed Node Consensus Protocol July 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type: Trust-Verdict (10) | Length: 37-100 |
 +-+
 | Verdict | (reserved) |
 +-+
 | |
 | |
 | |
 | SHA-256 Fingerprint |
 | |
 | |
 | |
 | |
 +-+
 | Common Name |

 Verdict represents the numerical index of the trust verdict.

 (reserved) is reserved for future additions and MUST be set to 0
 when creating TLVs and ignored when parsing them.

 SHA-256 Fingerprint contains the SHA-256 [RFC6234] hash value of
 the certificate in DER-format.

 Common Name contains the variable-length (1-64 bytes) common name
 of the certificate. Final byte MUST have value of 0.

8.3.4. Bootstrap Ceremonies

 The following non-exhaustive list of methods describes possible ways
 to establish trust relationships between DNCP nodes and node
 certificates. Trust establishment is a two-way process in which the
 existing network must trust the newly added node and the newly added
 node must trust at least one of its neighboring nodes. It is
 therefore necessary that both the newly added node and an already
 trusted node perform such a ceremony to successfully introduce a node
 into the DNCP network. In all cases an administrator MUST be
 provided with external means to identify the node belonging to a
 certificate based on its fingerprint and a meaningful common name.

8.3.4.1. Trust by Identification

 A node implementing certificate-based trust MUST provide an interface
 to retrieve the current set of effective trust verdicts, fingerprints
 and names of all certificates currently known and set configured
 trust verdicts to be announced. Alternatively it MAY provide a

https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires January 4, 2016 [Page 26]

Internet-Draft Distributed Node Consensus Protocol July 2015

 companion DNCP node or application with these capabilities with which
 it has a pre-established trust relationship.

8.3.4.2. Preconfigured Trust

 A node MAY be preconfigured to trust a certain set of node or CA
 certificates. However such trust relationships MUST NOT result in
 unwanted or unrelated trust for nodes not intended to be run inside
 the same network (e.g., all other devices by the same manufacturer).

8.3.4.3. Trust on Button Press

 A node MAY provide a physical or virtual interface to put one or more
 of its internal network interfaces temporarily into a mode in which
 it trusts the certificate of the first DNCP node it can successfully
 establish a connection with.

8.3.4.4. Trust on First Use

 A node which is not associated with any other DNCP node MAY trust the
 certificate of the first DNCP node it can successfully establish a
 connection with. This method MUST NOT be used when the node has
 already associated with any other DNCP node.

9. DNCP Profile-Specific Definitions

 Each DNCP profile MUST specify the following aspects:

 o Unicast and optionally multicast transport protocol(s) to be used.
 If multicast-based node and status discovery is desired, a
 datagram-based transport supporting multicast has to be available.

 o How the chosen transport(s) are secured: Not at all, optionally or
 always with the TLS scheme defined here using one or more of the
 methods, or with something else. If the links with DNCP nodes can
 be sufficiently secured or isolated, it is possible to run DNCP in
 a secure manner without using any form of authentication or
 encryption.

 o Transport protocols' parameters such as port numbers to be used,
 or multicast address to be used. Unicast, multicast, and secure
 unicast may each require different parameters, if applicable.

 o When receiving TLVs, what sort of TLVs are ignored in addition -
 as specified in Section 4.4 - e.g., for security reasons. A DNCP
 profile may safely define the following DNCP TLVs to be safely
 ignored:

Stenberg & Barth Expires January 4, 2016 [Page 27]

Internet-Draft Distributed Node Consensus Protocol July 2015

 * Anything received over multicast, except Node Endpoint TLV
 (Section 7.2.1) and Network State TLV (Section 7.2.2).

 * Any TLVs received over unreliable unicast or multicast at too
 high rate; Trickle will ensure eventual convergence given the
 rate slows down at some point.

 o How to deal with node identifier collision as described in
Section 4.4. Main options are either for one or both nodes to

 assign new node identifiers to themselves, or to notify someone
 about a fatal error condition in the DNCP network.

 o Imin, Imax and k ranges to be suggested for implementations to be
 used in the Trickle algorithm. The Trickle algorithm does not
 require these to be the same across all implementations for it to
 work, but similar orders of magnitude helps implementations of a
 DNCP profile to behave more consistently and to facilitate
 estimation of lower and upper bounds for convergence behavior of
 the network.

 o Hash function H(x) to be used, and how many bits of the output are
 actually used. The chosen hash function is used to handle both
 hashing of node specific data, and network state hash, which is a
 hash of node specific data hashes. SHA-256 defined in [RFC6234]
 is the recommended default choice, but a non-cryptographic hash
 function could be used as well.

 o DNCP_NODE_IDENTIFIER_LENGTH: The fixed length of a node identifier
 (in bytes).

 o Whether to send keep-alives, and if so, whether per-endpoint
 (requires multicast transport), or per-peer. Keep-alive has also
 associated parameters:

 * DNCP_KEEPALIVE_INTERVAL: How often keep-alives are to be sent
 by default (if enabled).

 * DNCP_KEEPALIVE_MULTIPLIER: How many times the
 DNCP_KEEPALIVE_INTERVAL (or peer-supplied keep-alive interval
 value) a node may not be heard from to be considered still
 valid. This is just a default used in absence of any other
 configuration information, or particular per-endpoint
 configuration.

 o Whether to support fragmentation, and if so, the number of bytes
 reserved for fragment count in the node identifier.

https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires January 4, 2016 [Page 28]

Internet-Draft Distributed Node Consensus Protocol July 2015

10. Security Considerations

 DNCP-based protocols may use multicast to indicate DNCP state changes
 and for keep-alive purposes. However, no actual published data TLVs
 will be sent across that channel. Therefore an attacker may only
 learn hash values of the state within DNCP and may be able to trigger
 unicast synchronization attempts between nodes on a local link this
 way. A DNCP node should therefore rate-limit its reactions to
 multicast packets.

 When using DNCP to bootstrap a network, PKI based solutions may have
 issues when validating certificates due to potentially unavailable
 accurate time, or due to inability to use the network to either check
 Certifcate Revocation Lists or perform on-line validation.

 The Certificate-based trust consensus mechanism defined in this
 document allows for a consenting revocation, however in case of a
 compromised device the trust cache may be poisoned before the actual
 revocation happens allowing the distrusted device to rejoin the
 network using a different identity. Stopping such an attack might
 require physical intervention and flushing of the trust caches.

11. IANA Considerations

 IANA should set up a registry for DNCP TLV types, with the following
 initial contents:

 0: Reserved

 1: Request network state

 2: Request node state

 3: Node endpoint

 4: Network state

 5: Node state

 6: Reserved (was: Custom)

 7: Fragment count

 8: Neighbor

 9: Keep-alive interval

 10: Trust-Verdict

Stenberg & Barth Expires January 4, 2016 [Page 29]

Internet-Draft Distributed Node Consensus Protocol July 2015

 32-191: Reserved for per-DNCP profile use

 192-255: Reserved for per-implementation experimentation. How
 collision is avoided is out of scope of this document.

 For the rest of the values (11-31, 256-65535), policy of 'standards
 action' should be used.

12. References

12.1. Normative references

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, March 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

12.2. Informative references

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC

3493, February 2003.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

Appendix A. Alternative Modes of Operation

 Beyond what is described in the main text, the protocol allows for
 other uses. These are provided as examples.

A.1. Read-only Operation

 If a node uses just a single endpoint and does not need to publish
 any TLVs, full DNCP node functionality is not required. Such limited
 node can acquire and maintain view of the TLV space by implementing
 the processing logic as specified in Section 4.4. Such node would
 not need Trickle, peer-maintenance or even keep-alives at all, as the
 DNCP nodes' use of it would guarantee eventual receipt of network
 state hashes, and synchronization of node data, even in presence of
 unreliable transport.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6206
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc6234

Stenberg & Barth Expires January 4, 2016 [Page 30]

Internet-Draft Distributed Node Consensus Protocol July 2015

A.2. Forwarding Operation

 If a node with a pair of endpoints does not need to publish any TLVs,
 it can detect (for example) nodes with the highest node identifier on
 each of the endpoints (if any). Any TLVs received from one of them
 would be forwarded verbatim as unicast to the other node with highest
 node identifier.

 Any tinkering with the TLVs would remove guarantees of this scheme
 working; however passive monitoring would obviously be fine. This
 type of simple forwarding cannot be chained, as it does not send
 anything proactively.

Appendix B. Some Questions and Answers [RFC Editor: please remove]

 Q: 32-bit endpoint id?

 A: Here, it would save 32 bits per neighbor if it was 16 bits (and
 less is not realistic). However, TLVs defined elsewhere would not
 seem to even gain that much on average. 32 bits is also used for
 ifindex in various operating systems, making for simpler
 implementation.

 Q: Why have topology information at all?

 A: It is an alternative to the more traditional seq#/TTL-based
 flooding schemes. In steady state, there is no need to, e.g., re-
 publish every now and then.

Appendix C. Changelog [RFC Editor: please remove]

draft-ietf-homenet-dncp-06:

 o Removed custom TLV.

 o Made keep-alive multipliers local implementation choice, profiles
 just provide guidance on sane default value.

 o Removed the DNCP_GRACE_INTERVAL as it is really implementation
 choice.

 o Simplified the suggested structures in data model.

 o Reorganized the document and provided an overview section.

draft-ietf-homenet-dncp-04:

https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-06
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-04

Stenberg & Barth Expires January 4, 2016 [Page 31]

Internet-Draft Distributed Node Consensus Protocol July 2015

 o Added mandatory rate limiting for network state requests, and
 optional slightly faster convergence mechanism by including
 current local network state in the remote network state requests.

draft-ietf-homenet-dncp-03:

 o Renamed connection -> endpoint.

 o !!! Backwards incompatible change: Renumbered TLVs, and got rid of
 node data TLV; instead, node data TLV's contents are optionally
 within node state TLV.

draft-ietf-homenet-dncp-02:

 o Changed DNCP "messages" into series of TLV streams, allowing
 optimized round-trip saving synchronization.

 o Added fragmentation support for bigger node data and for chunking
 in absence of reliable L2 and L3 fragmentation.

draft-ietf-homenet-dncp-01:

 o Fixed keep-alive semantics to consider unicast requests also
 updates of most recently consistent, and added proactive unicast
 request to ensure even inconsistent keep-alive messages eventually
 triggering consistency timestamp update.

 o Facilitated (simple) read-only clients by making Node Connection
 TLV optional if just using DNCP for read-only purposes.

 o Added text describing how to deal with "dense" networks, but left
 actual numbers and mechanics up to DNCP profiles and (local)
 configurations.

draft-ietf-homenet-dncp-00: Split from pre-version of draft-ietf-
homenet-hncp-03 generic parts. Changes that affect implementations:

 o TLVs were renumbered.

 o TLV length does not include header (=-4). This facilitates, e.g.,
 use of DHCPv6 option parsing libraries (same encoding), and
 reduces complexity (no need to handle error values of length less
 than 4).

 o Trickle is reset only when locally calculated network state hash
 is changes, not as remote different network state hash is seen.
 This prevents, e.g., attacks by multicast with one multicast

https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-03
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-02
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-01
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-dncp-00
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-hncp-03
https://datatracker.ietf.org/doc/html/draft-ietf-homenet-hncp-03

Stenberg & Barth Expires January 4, 2016 [Page 32]

Internet-Draft Distributed Node Consensus Protocol July 2015

 packet to force Trickle reset on every interface of every node on
 a link.

 o Instead of 'ping', use 'keep-alive' (optional) for dead peer
 detection. Different message used!

Appendix D. Draft Source [RFC Editor: please remove]

 As usual, this draft is available at https://github.com/fingon/ietf-
drafts/ in source format (with nice Makefile too). Feel free to send

 comments and/or pull requests if and when you have changes to it!

Appendix E. Acknowledgements

 Thanks to Ole Troan, Pierre Pfister, Mark Baugher, Mark Townsley,
 Juliusz Chroboczek, Jiazi Yi, Mikael Abrahamsson, Brian Carpenter,
 Thomas Clausen and DENG Hui for their contributions to the draft.

Authors' Addresses

 Markus Stenberg
 Helsinki 00930
 Finland

 Email: markus.stenberg@iki.fi

 Steven Barth
 Halle 06114
 Germany

 Email: cyrus@openwrt.org

https://github.com/fingon/ietf-drafts/
https://github.com/fingon/ietf-drafts/

Stenberg & Barth Expires January 4, 2016 [Page 33]

