
INTERNET-DRAFT E. Nebel
Form-based File Upload in HTML L. Masinter
draft-ietf-html-fileupload-02.txt Xerox Corporation
Expires in 6 months April 19, 1995

Form-based File Upload in HTML

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

1. Abstract

 Currently, HTML forms allow the producer of the form to request
 information from the user reading the form. These forms have proven
 useful in a wide variety of applications in which input from the
 user is necessary. However, this capability is limited because HTML
 forms don't provide a way to ask the user to submit files of data.
 Service providers who need to get files from the user have had to
 implement custom user applications. (Examples of these custom
 browsers have appeared on the www-talk mailing list.) Since
 file-upload is a feature that will benefit many applications, this
 draft proposes an extension to HTML to allow information providers
 to express file upload requests uniformly, and a MIME compatible
 representation for file upload responses. This draft also includes
 a description of a backward compatibility strategy that allows new
 servers to interact with the current HTML user agents.

 The proposal is independent of which version of HTML it becomes a
 part.

2. HTML forms with file submission

 The current draft HTML specification defines eight possible values
 for the attribute TYPE of an INPUT element: CHECKBOX, HIDDEN, IMAGE,
 PASSWORD, RADIO, RESET, SUBMIT, TEXT.

https://datatracker.ietf.org/doc/html/draft-ietf-html-fileupload-02.txt

 In addition, it defines the default ENCTYPE attribute of the FORM
 element using the POST METHOD to have the default value
 "application/x-www-form-urlencoded".

 This proposal makes three changes:
 1) add a FILE option for the TYPE attribute of INPUT
 2) Allow an ACCEPT attribute for INPUT tag, which is a list of
 media types or type patterns allowed for the input
 3) allow the ENCTYPE of a FORM to be "multipart/form-data".

 These changes might be considered independently, but are all
 necessary for reasonable file upload.

 The author of an HTML form who wants to request one or more files
 from a user would write (for example):

 <FORM ENCTYPE="multipart/form-data" ACTION="_URL_" METHOD=POST>

 File to process: <INPUT NAME="userfile1" TYPE="file">

 <INPUT TYPE="submit" VALUE="Send File">

 </FORM>

 The change to the HTML DTD is to add one item to the entity
 "InputType". In addition, it is proposed that the INPUT tag have an
 ACCEPT attribute, which is a list of comma-separated media types.

 ... (other elements) ...

 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |
 RADIO | SUBMIT | RESET |
 IMAGE | HIDDEN | FILE)">
 <!ELEMENT INPUT - 0 EMPTY>
 <!ATTLIST INPUT
 TYPE %InputType TEXT
 NAME CDATA #IMPLIED -- required for all but submit and reset
 VALUE CDATA #IMPLIED
 SRC %URI #IMPLIED -- for image inputs --
 CHECKED (CHECKED) #IMPLIED
 SIZE CDATA #IMPLIED --like NUMBERS,
 but delimited with comma, not space
 MAXLENGTH NUMBER #IMPLIED
 ALIGN (top|middle|bottom) #IMPLIED
 ACCEPT CDATA #IMPLIED --list of content types
 >

 ... (other elements) ...

3. Suggested implementation

 While user agents that interpret HTML have wide leeway to choose the
 most appropriate mechanism for their context, this section suggests
 how one class of user agent, WWW browsers, might implement file
 upload.

3.1 Display of FILE widget

 When a INPUT tag of type FILE is encountered, the browser might show
 a display of (previously selected) file names, and a "Browse" button
 or selection method. Selecting the "Browse" button would cause the
 browser to enter into a file selection mode appropriate for the
 platform. Window-based browsers might pop up a file selection
 window, for example. In such a file selection dialog, the user would
 have the option of replacing a current selection, adding a new file
 selection, etc. Browser implementors might choose let the list of
 file names be manually edited.

 If an ACCEPT attribute is present, the browser might constrain the
 file patterns prompted for to match those with the corresponding
 appropriate file extensions for the platform.

3.2 Action on submit

 When the user completes the form, and selects the SUBMIT element,
 the browser should send the form data and the content of the
 selected files. The encoding type application/x-www-form-urlencoded
 is inefficient for sending large quantities of binary data. Thus, a
 new media type, multipart/form-data, is proposed as a way of
 efficiently sending the values associated with a filled-out form
 from client to server.

3.3 use of multipart/form-data

 The definition of multipart/form-data is included in section 7.
 The media-type multipart/form-data follows the rules of all
 multipart MIME data streams as outlined in RFC 1521--a boundary is
 selected that does not occur in any of the data. Each field of the
 form is sent, in the order in which it occurs in the form, as a part
 of the multipart stream. Each part identifies the INPUT name within
 the original HTML form using a "content-disposition: form-data" header
 with a name attribute specifying the field name. Each part has an
 optional Content-Type (which defaults to text/plain). File inputs
 should be identified as either application/octet-stream or the
 appropriate media type, if known. If multiple files were selected,
 they should be transferred together using the multipart/mixed
 format.

 The "content-transfer-encoding" header should be supplied for all
 fields whose values do not conform to the default 7BIT encoding.
 (All characters 7-bit US-ASCII data with lines no longer than 1000

https://datatracker.ietf.org/doc/html/rfc1521

 characters.) Otherwise, file data and longer field values may be
 transferred using a content-transfer-encoding appropriate to the
 protocol of the ACTION in the form. For HTTP applications,
 content-transfer-encoding of "binary" may be use. If the ACTION is
 a "mailto:" URL, then the user agent may encode the data
 appropriately to the mail transport mechanism. [See section 5 of
 RFC 1521 for more details.]

 File inputs may optionally identify the file name using the
 "filename" attribute on the content-disposition header. This is not
 required, but is as a convenience for those cases where, for
 example, the uploaded files might contain references to each other,
 e.g., a TeX file and its .sty auxiliary style description.

 On the server end, the ACTION might point to a HTTP URL that
 implements the forms action via CGI. In such a case, the CGI program
 would note that the content-type is multipart/form-data, parse the
 various fields (checking for validity, writing the file data to local
 files for subsequent processing, etc.).

3.4 Interpretation of other attributes

 The VALUE attribute might be used with <INPUT TYPE=file> tags for
 a default file name. This use is probably platform dependent.
 It might be useful, however, in sequences of more than one
 transaction, e.g., to avoid having the user prompted for the same
 file name over and over again.

 The SIZE attribute might be specified using SIZE=width,height, where
 width is some default for file name width, while height is the
 expected size showing the list of selected files. For example, this
 would be useful for forms designers who expect to get several files
 and who would like to show a multiline file input field in the
 browser (with a "browse" button beside it, hopefully). It would be
 useful to show a one line text field when no height is specified
 (when the forms designer expects one file, only) and to show a
 multiline text area with scrollbars when the height is greater than
 1 (when the forms designer expects multiple files).

4. Backward compatibility issues

 While not necessary for successful adoption of an enhancement to the
 current WWW form mechanism, it is useful to also plan for a
 migration strategy: users with older browsers can still participate
 in file upload dialogs, using a helper application. Most current web
 browers, when given <INPUT TYPE=FILE>, will treat it as <INPUT
 TYPE=TEXT> and give the user a text box. The user can type in a file
 name into this text box. In addition, current browsers seem to
 ignore the ENCTYPE parameter in the <FORM> element, and always
 transmit the data as application/x-www-form-urlencoded.

https://datatracker.ietf.org/doc/html/rfc1521#section-5
https://datatracker.ietf.org/doc/html/rfc1521#section-5

 Thus, the server CGI might be written in a way that would note that
 the form data returned had content-type
 application/x-www-form-urlencoded instead of
 multipart/form-data, and know that the user was using a browser
 that didn't implement file upload.

 In this case, rather than replying with a "text/html" response, the
 CGI on the server could instead send back a data stream that a helper
 application might process instead; this would be a data stream of
 type "application/x-please-send-files", which contains:

 * The (fully qualified) URL to which the actual form data should
 be posted (terminated with CRLF)
 * The list of field names that were supposed to be file contents
 (space separated, terminated with CRLF)
 * The entire original application/x-www-form-urlencoded form data
 as originally sent from client to server.

 In this case, the browser needs to be configured to process
 application/x-please-send-files to launch a helper application.

 The helper would read the form data, note which fields contained
 'local file names' that needed to be replaced with their data
 content, might itself prompt the user for changing or adding to the
 list of files available, and then repackage the data & file contents
 in multipart/form-data for retransmission back to the server.

 The helper would generate the kind of data that a 'new' browser should
 actually have sent in the first place, with the intention that the URL
 to which it is sent corresponds to the original ACTION URL. The point
 of this is that the server can use the *same* CGI to implement the
 mechanism for dealing with both old and new browsers.

 The helper need not display the form data, but *should* ensure that
 the user actually be prompted about the suitability of sending the
 files requested (this is to avoid a security problem with malicious
 servers that ask for files that weren't actually promised by the
 user.) It would be useful if the status of the transfer of the files
 involved could be displayed.

5. Other considerations

5.1 Compression, encryption

 This scheme doesn't address the possible compression of files.
 After some consideration, it seemed that the optimization issues of
 file compression were too complex to try to automatically have
 browsers decide that files should be compressed. Many link-layer
 transport mechanisms (e.g., high-speed modems) perform data
 compression over the link, and optimizing for compression at this
 layer might not be appropriate. It might be possible for browsers to

 optionally produce a content-transfer-encoding of x-compress for
 file data, and for servers to decompress the data before processing,
 if desired; this was left out of the proposal, however.

 Similarly, the proposal does not contain a mechanism for encryption
 of the data; this should be handled by whatever other mechanisms are
 in place for secure transmission of data, whether via secure HTTP or
 mail.

5.2 Deferred file transmission

 In some situations, it might be advisable to have the server
 validate various elements of the form data (user name, account,
 etc.) before actually preparing to receive the data. However,
 after some consideration, it seemed best to require that servers
 that wish to do this should implement this as a series of forms,
 where some of the data elements that were previously validated might
 be sent back to the client as 'hidden' fields, or by arranging the
 form so that the elements that need validation occur first. This
 puts the onus of maintaining the state of a transaction only on
 those servers that wish to build a complex application, while
 allowing those cases that have simple input needs to be built
 simply. Clients are encouraged to supply content-length for overall
 file input so that a busy server could detect if the proposed file
 data is too large to be processed reasonably and just return an
 error code and close the connection without waiting to process all
 of the incoming data.

 If the INPUT tag includes the attribute MAXLENGTH, the user agent
 should consider its value to represent the maximum Content-Length
 (in bytes) which the server will accept for transferred files. In
 this way, servers can hint to the client how much space they have
 available for a file upload, before that upload takes place. It is
 important to note, however, that this is only a hint, and the actual
 requirements of the server may change between form creation and file
 submission.

5.3 Other choices for return transmission of binary data

 Various people have suggested using new mime top-level type
 "aggregate", e.g., aggregate/mixed or a content-transfer-encoding of
 "packet" to express indeterminate-length binary data, rather than
 relying on the multipart-style boundaries. While we are not opposed
 to doing so, this would require additional design and
 standardization work to get acceptance of "aggregate". On the other
 hand, the 'multipart' mechanisms are well established, simple to
 implement on both the sending client and receiving server, and as
 efficient as other methods of dealing with multiple combinations of
 binary data.

5.4 Not overloading <INPUT>:

 Various people have wondered about the advisability of overloading
 'INPUT' for this function, rather than merely providing a different
 type of FORM element. Among other considerations, the migration
 strategy which is allowed when using <INPUT> is important. In
 addition, the <INPUT> field *is* already overloaded to contain most
 kinds of data input; rather than creating multiple kinds of <INPUT>
 tags, it seems most reasonable to enhance <INPUT>. The 'type' of
 INPUT is not the content-type of what is returned, but rather the
 'widget-type'; i.e., it identifies the interaction style with the
 user. The description here is carefully written to allow <INPUT
 TYPE=FILE> to work for text browsers or audio-markup.

5.5 Default content-type of field data

 Many input fields in HTML are to be typed in. There has been some
 ambiguity as to how form data should be transmitted back to servers.
 Making the content-type of <INPUT> fields be text/plain clearly
 disambiguates that the client should properly encode the data before
 sending it back to the server with CRLFs.

5.6 Allow form ACTION to be "mailto:"

 Independent of this proposal, it would be very useful for HTML
 interpreting user agents to allow a ACTION in a form to be a
 "mailto:" URL. This seems like a good idea, with or without this
 proposal. Similarly, the ACTION for a HTML form which is received
 via mail should probably default to the "reply-to:" of the message.
 These two proposals would allow HTML forms to be served via HTTP
 servers but sent back via mail, or, alternatively, allow HTML forms
 to be sent by mail, filled out by HTML-aware mail recipients, and
 the results mailed back.

5.7 Remote files with third-party transfer

 In some scenarios, the user operating the client software might want
 to specify a URL for remote data rather than a local file. In this
 case, is there a way to allow the browser to send to the client a
 pointer to the external data rather than the entire contents? This
 capability could be implemented, for example, by having the client
 send to the server data of type "message/external-body" with
 "access-type" set to, say, "uri", and the URL of the remote data in
 the body of the message.

5.8 File transfer with ENCTYPE=x-www-form-urlencoded

 If a form contains <INPUT TYPE=file> elements but does not contain
 an ENCTYPE in the enclosing <FORM>, the behavior is not specified.
 It is probably inappropriate to attempt to URN-encode large
 quantities of data to servers that don't expect it.

5.9 CRLF used as line separator

 As with all MIME transmissions, CRLF is used as the separator for
 lines in a POST of the data in multipart/www-form-data.

6. Examples

 Suppose the server supplies the following HTML:

 <FORM ACTION="http://server.dom/cgi/handle"
 ENCTYPE="multipart/form-data"
 METHOD=POST>
 What is your name? <INPUT TYPE=TEXT NAME=submitter>
 What files are you sending? <INPUT TYPE=FILE NAME=pics>
 </FORM>

 and the user types "Joe Blow" in the name field, and selects
 a text file "file1.txt" and also an image file "file2.gif" for
 the answer to 'What files are you sending?'.

 The client would send back the following data:

 Content-type: multipart/form-data, boundary=AaB03x
 --AaB03x
 content-disposition: form-data; name="field1"

 Joe Blow
 --AaB03x
 content-disposition: form-data; name="pics"
 Content-type: multipart/mixed, boundary=BbC04y

 --BbC04y
 Content-disposition: attachment; filename="file1.txt"
 Content-Type: text/plain
 Content-Transfer-Encoding: binary

 ... contents of file1.txt ...
 --BbC04y
 Content-disposition: attachment; filename="file2.gif"
 Content-type: image/gif
 Content-Transfer-Encoding: binary

 ...contents of file2.gif...
 --BbC04y--
 --AaB03x--

7. Registration of multipart/form-data

 The media-type multipart/form-data follows the rules of all
 multipart MIME data streams as outlined in RFC 1521. It is intended
 for use in returning the data that comes about from filling out a
 form. In a form (in HTML, although other applications may also use

https://datatracker.ietf.org/doc/html/rfc1521

 forms), there are a series of fields to be supplied by the user who
 fills out the form. Each field has a name. The name of the field
 is restricted to be a set of US-ASCII graphic characters; within a
 given form, the names are unique.

 multipart/form-data contains a series of parts. Each part is expected
 to contain a content-disposition header where the value is
 "form-data" and a name attribute specifies the field name within the
 form, e.g., 'content-disposition: form-data; name="xxxxx"', where
 xxxxx is the field name corresponding to that field. As with all
 multipart MIME types, each part has an optional Content-Type which
 defaults to text/plain.

 Note that mime headers are generally required to consist only of
 7-bit data in the US-ASCII character set. This specification thus
 requires that the field names used consist of 7-bit ascii US
 characters.

 If the contents of a file are returned via filling out a form, then
 the file input is identified as application/octet-stream or the
 appropriate media type, if known. If multiple files are to be
 returned as the result of a single form entry, they can be returned
 as multipart/mixed embedded within the multipart/form-data.

 The "content-transfer-encoding" header should be supplied for all
 fields whose values do not conform to the default 7BIT encoding
 (all characters 7-bit US-ASCII data with lines no longer than 1000
 characters.)

 Otherwise, file data and longer field values may be
 transferred using a content-transfer-encoding appropriate to the
 protocol of the ACTION in the form. For HTTP applications,
 content-transfer-encoding of "binary" may be use. If the ACTION is
 a "mailto:" URL, then the user agent may encode the data
 appropriately to the mail transport mechanism. [See section 5 of
 RFC 1521 for more details.]

 File inputs may also identify the file name. The file name may be
 described using the 'filename' parameter of the
 "content-disposition" header. This is not required, but is strongly
 recommended in any case where the original filename is known. This
 is useful or necessary in many applications.

8. Security Considerations

 It is important that a user agent not send any file that the user
 has not asked to be sent, explicitly. Thus, HTML interpreting agents
 are expected to confirm any default file names that might be
 suggested with <INPUT TYPE=file VALUE="yyyy">. Never have any
 hidden fields be able to specify any file.

https://datatracker.ietf.org/doc/html/rfc1521#section-5
https://datatracker.ietf.org/doc/html/rfc1521#section-5

9. Conclusion

 The suggested implementation gives the client a lot of flexibility in
 the number and types of files it can send to the server, it gives the
 server control of the decision to accept the files, and it gives
 servers a chance to interact with browsers which do not support INPUT
 TYPE "file".

 The change to the HTML DTD is very simple, but very powerful. It
 enables a much greater variety of services to be implemented via the
 World-Wide Web than is currently possible due to the lack of a file
 submission facility. This would be an extremely valuable addition to
 the capabilities of the World-Wide Web.

A. Authors' Addresses

 Larry Masinter masinter@parc.xerox.com
 Xerox Palo Alto Research Center Voice: (415) 812-4365
 3333 Coyote Hill Road Fax: (415) 812-4333
 Palo Alto, CA 94304

 Ernesto Nebel nebel@xsoft.sd.xerox.com
 XSoft, Xerox Corporation Voice: (619) 676-7817
 10875 Rancho Bernardo Road, Suite 200 Fax: (619) 676-7865
 San Diego, CA 92127-2116

B. Media type registration for multipart/form-data
Media Type name:
 multipart

Media subtype name:
 form-data

Required parameters:
 none

Optional parameters:
 none

Encoding considerations:
 No additional considerations other than as for other multipart types.

Published specification:
draft-ietf-html-fileupload-02.txt

Security Considerations

 The multipart/form-data type introduces no new security
 considerations beyond what might occur with any of the enclosed
 parts.

https://datatracker.ietf.org/doc/html/draft-ietf-html-fileupload-02.txt

Person & email address to contact for further information:

 Larry Masinter
 masinter@parc.xerox.com

