
HTTP Working Group J. Gettys, Digital Equipment Corporation
INTERNET-DRAFT A. Freier, Netscape Communications Corporation
Expires September 26, 1997 March 26, 1997

HTTP Connection Management

draft-ietf-http-connection-00.txt

Status of This Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the HTTP working group at "http-wg@cuckoo.hpl.hp.com". Discussions
 of the working group are archived at
 "http://www.ics.uci.edu/pub/ietf/http/". General discussions about
 HTTP and the applications which use HTTP should take place on the
 "www-talk@w3.org" mailing list.

1. Abstract

 The HTTP/1.1 specification (RFC 2068) is silent about various details
 of TCP connection management when using persistent connections. This
 document discusses some of the implementation issues discussed during
 HTTP/1.1's design, and introduces a few new requirements on HTTP/1.1
 implementations learned from implementation experience, not fully
 understood when RFC 2068 was issued. This is an initial draft for
 working group comment, and we expect further drafts.

Gettys & Freier [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-http-connection-00.txt
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

Internet-Draft HTTP Connection Management March 1997

2. Table of Contents

1. Abstract ... 1
2. Table of Contents .. 2
3. Key Words .. 2
4. Connection Management for Large Scale HTTP Systems 2
5. Resource Usage (Who is going to pay?) 2
6. Go to the Head of the Line 6
7. The Race is On ... 7
8. Closing Half of the Connection 8
9. Capture Effect ... 9
10. Security Considerations 10
12. References ... 12
13. Acknowlegements .. 13
14. Authors' Addresses ... 13

3. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC xxxx. [Bradner]

4. Connection Management for Large Scale HTTP Systems

 Recent development of popular protocols (such as HTTP, LDAP, ...)
 have demonstrated that the standards and engineering communities have
 not yet come to grip with the concept of connection management. For
 instance, HTTP/1.0 [HTTP/1.0] uses a TCP connection for carrying
 exactly one request/response pair. The simplistic beauty of that
 model has much less than optimal behavior.

 This document focuses HTTP/1.1 implementations but the conclusions
 drawn here may be applicable to other protocols as well.

 The HTTP/1.1 Proposed Standard [HTTP/1.1] specification is silent on
 when, or even if, the connection should be closed (implementation
 experience was desired before the specification was frozen on this
 topic). So HTTP has moved from a model that closed the connection
 after every request/response to one that might never close. Neither
 of these two extremes deal with "connection management" in any
 workable sense.

5. Resource Usage (Who is going to pay?)

 The Internet is all about scale: scale of users, scale of servers,

Gettys & Freier [Page 2]

Internet-Draft HTTP Connection Management March 1997

 scale over time, scale of traffic. For many of these attributes,
 clients must be cooperative with servers.

 Clients of a network service are unlikely to communicate with more
 than a few servers (small number of 10s). Considering the power of
 desktop machines of today, maintaining that many idle connections
 does not appear to be overly burdensome, particularly when you
 consider the client is the active party and doesn't really have to
 pay attention to the connection unless it is expecting some response.

 Servers will find connections to be critical resources and will be
 forced to implement some algorithm to shed existing connections to
 make room for new ones. Since this is an area not treated by the
 protocol, one might expect a variety of "interesting" efforts.

 Maintaining an idle connection is almost entirely a local issue.
 However, if that local issue is too burdensome, it can easily become
 a network issue. A server, being passive, must always have a read
 pending on any open connection. Some implementations of the multi-
 wait mechanisms tend to bog down as the number of connections climbs
 in to the hundreds, though operating system implementations can scale
 this into the thousands, tens of thousands, or even beyond. Whether
 server implementations can also scale to so many simultaneous clients
 is likely much less clear than if the operating system can
 theoretically support such use. Implementations might be forced to
 use fairly bizarre mechanisms, which could lead to server
 instability, and then perhaps service outages, which are indeed a
 network issues. And despite any heroic efforts, it will all be to no
 avail. The number of clients that could hold open a connection will
 undoubtedly overwhelm even the most robust of servers over time.

 When this happens, the server will of necessity be forced to close
 connections. The most often considered algorithm is an LRU. The
 success of LRU algorithms in other areas of computer engineering is
 based on locality of reference. I.e., in this case, if LRU is better
 than random, then this is because the "typical" client's behavior is
 predictable based on its recent history. Clients that have made
 requests recently are probably more likely to make them again, than
 clients which have been idle for a while. While we are not sure we
 can point to rigorous proof of this principle, we believe it does
 hold for Web service and client reference patterns are certainly a
 very powerful "clue".

 The client has more information that could be used to drive the
 process. For instance, it does not seem to much to expect that a
 connection be held throughout the loading of a page and all its
 embedded links. It could further sense user sincerity towards the
 page by detecting such events as mouse movement, scrolling, etc., as

 indicators that there is still some interest in pursing the page's
 content, and therefore the chance of accessing subsequent links. But
 if the user has followed a number of links in succession away to a
 different server, it may be likely that the first connection will not

Gettys & Freier [Page 3]

Internet-Draft HTTP Connection Management March 1997

 be used again soon. Whether this is significantly better than LRU is
 an open question, but it is clear that unlikely to be used
 connections should be closed, to free the server resouces involved.
 Server resouces are much more scarce than client resources, and
 clients should be frugal, if the Web is to have good scaling
 properties.

 Authoritative knowledge that it is appropriate to close a connection
 can only come from the user. Unfortunately, that source is not to be
 trusted. First, most users don't know what a connection is, and
 having them indicate it is okay to close it is meaningless. Second, a
 user that does know what a connection is probably inherently greedy.
 Such a user would never surrender the attention that a connection to
 a server implies. Research [Mogul2] does show that most of the
 benefits of persistent connections are gained if connections can be
 held open after last use approximately one minute for the HTTP
 traffic studied; this captures most "click ahead" behavior of a
 user's web browsing.

 For many important services, server resources are critical resources;
 there are many more clients than services. For example, the AltaVista
 search service handles (as of this writing) tens of millions of
 searches per day, for millions of different clients. While it is one
 of the two or three most popular services on the Internet today, it
 is clearly small relative to future services built with Internet
 technology and HTTP. From this perspective, it is clear that clients
 need to cooperate with servers to enable servers to continue to
 scale.

 System resources at a server:

 * Server resources (open files, file system buffers, processes,
 memory for applications, memory for socket buffers for
 connections currently in use (16-64Kbytes each, data base
 locks). In BSD derived TCP implementations, socket buffers are
 only needed on active connections. This usually works because
 it's seldom the case that there is data queued to/from more
 than a small fraction of the open connections.

 * PCB (Protocol control blocks, only ~100-140 bytes; even after a
 connection is closed, you can't free this data structure for a
 significant amount of time, of order minutes. More severe,
 however, is that many inferior TCP implementations have had
 linear or quadratic algorithms relating to the number of PCB's
 to find PCB's when needed.

 These are organized from most expensive, to least.

 Clients should read data from their TCP implementations aggressively,
 for several reasons:

 * TCP implementations will delay acknowledgements if socket

Gettys & Freier [Page 4]

Internet-Draft HTTP Connection Management March 1997

 buffers are not emptied. This will lower TCP performance, and
 cause increased elapsed time for the end user. [Frystyk et.
 al.] while continuing to consume the server's resources.

 * Servers must be able to free the resources held on behalf of
 the client as quickly as possible, so that the server can reuse
 these resources on behalf of others. These are often the
 largest and scarcest server system resource (processes, open
 files, file system buffers, data base locks, etc.)

 When HTTP requests complete (and a connection is idle), an open
 connection still consumes resources some of which are not under the
 server's control:

 * socket buffers (16-64KB both in the operating system, and often
 similar amounts in the server process itself)

 * Protocol Control Blocks (.15 KB/PCB's). (??? Any other data
 structures associated with PCB's?)

 If, for example, an HTTP server had to indefinitely maintain these
 resources, this memory alone for a million clients (and there are
 already HTTP services larger than this scale in existence today)
 using a single connection each would be tens of gigabytes of memory.
 One of the reasons the Web has succeeded is that servers can, and do
 delete connections, and require clients to reestablish connections.

 If connections are destroyed too aggressively (HTTP/1.0 is the
 classic limiting case), other problems ensue.

 * The state of congestion of the network is forgotten [Jacobson].
 Current TCP implementations maintain congestion information on
 a per-connection basis, and when the connection is closed, this
 information is lost. The consequences of this are well known:
 general Internet congestion, and poor user performance

 * Round trip delays and packets to re-establish the connections.
 Since most objects in the Web are very small, of order half the
 packets in the network has been due to just the TCP open and
 close operation.

 * Slow Start lowers initial throughput of the TCP connection

 * PCB's become a performance bottleneck in some TCP
 implementations (and cannot be reused for a XXX timeout after
 the connection has been terminated). The absolute number of
 PCBs in the TIME_WAIT state could be much larger than the
 number in the ESTABLISHED state. Closing connections too
 quickly can actually consume more memory than closing them

 slowly, because all PCBs consume memory and idle socket buffers
 do not.

Gettys & Freier [Page 5]

Internet-Draft HTTP Connection Management March 1997

 From these two extreme examples, it is obvious that connection
 management becomes a central issue for both clients and servers.

 Clearly, benefits of persistent connections will be lost if clients
 open many connections simultaneously. RFC2068 therefore specifies no
 more than 2 connections from a client to a server should be open at
 any one time, or 2N connections (where N is the number of clients a
 proxy is serving) for proxies. Frystyk et. al. have shown that
 roughly twice the performance of HTTP/1.0 using four to six
 connections can be reached using HTTP/1.1 over a single TCP
 connection using HTTP/1.1, even over a LAN, once combined with
 compression of the HTML documents [Frystyk].

6. Go to the Head of the Line

 The HTTP/1.1 specification requires that proxies use no more than 2N
 connections, where N is the number of client connections being
 served. Mogul has shown that persistent connections are a "good
 thing", and Frystyk et. al. show data that significant (a factor of
 2-8) savings in number of packets transmitted result by using
 persistent connections.

 If fewer connections are better, then, why does HTTP/1.1 permit
 proxies to establish more than the absolute minimum of connections?
 In the interests of brevity, the HTTP/1.1 specification is silent on
 some of the motivations for some requirements of the specification.
 At the time HTTP/1.1 was specified, we realized that if a proxy
 server attempted to aggregate requests from multiple client
 connections onto a single TCP connection, a proxy would become
 vulnerable to the "head of line" blocking problem. If Client A, for
 example, asks for 10 megabytes of data (or asked for a dynamicly
 generated document of unlimited length), then if a proxy combined
 that request with requests from another Client B, Client B would
 never get its request processed. This would be a very "bad thing",
 and so the HTTP/1.1 specification allows proxies to scale up their
 connection use in proportion to incoming connections. This will also
 result in proxy servers getting roughly fair allocation of bandwidth
 from the Internet proportional to the number of clients.

 Since the original HTTP/1.1 design discussions, we realized that
 there is a second, closely related denial of service security arises
 if proxies attempt to use the same TCPconnection for multiple
 clients. An attacker could note that a particular URL of a server
 that they wished to attack was either very large, very slow (script
 based), or never returned data. By making requests for that URL, the
 attacker could easily block other clients from using that server
 entirely, due to head of line blocking, so again, simultaneously
 multiplexing requests from different clients would be very bad, and

https://datatracker.ietf.org/doc/html/rfc2068

 therefore implementations MUST not attempt such multipexing.

 In other words, head-of-line blocking couples the fates of what
 should be independent interactions, which allows for both denial-of-

Gettys & Freier [Page 6]

Internet-Draft HTTP Connection Management March 1997

 service attacks, and for accidental synchronization.

 Here is another example of head-of-line blocking: imagine clients A
 and B are connected to proxy P1, which is connected to firewall proxy
 P2, which is connected to the Internet. If P1 only has one connection
 to P2, and A attempts to connect (via P1 and P2) to a dead server on
 the Internet, all of B's operations are blocked until the connection
 attempt from P2 to the dead server times out. This is not a good
 situation.

 Note that serial reuse of a TCP connection does not have these
 considerations: a proxy might first establish a connection to an
 origin server for Client A, and possibly leave the connection open
 after Client A finishes and closes

 its connection, and then use the same connection for Client B, and so
 on. As in normal clients, such a proxy should close idle
 connections.

 Future HTTP evolution also dictates that simultaneous multiplexing of
 clients over a connection should be prohibited. A number of schemes
 for compactly encoding HTTP rely on associating client state with a
 connection, which HTTP 1.X does not currently do. If proxies do such
 multiplexing, then such designs will be much harder to implement.

7. The Race is On

 Deleting a connection without authoritative knowledge that it will
 not be soon reused is a fundamental race that is part of any timeout
 mechanism. Depending on how the decision is made will determine the
 penalties imposed.

 It is intuitively (and most certainly empirically) less expensive for
 the active (client) partner to close a connection than the server.
 This is due in most part to the natural flow of events. For instance,
 a server closing a connection cannot know that the client might at
 that very moment be sending a request. The new request and the close
 message can pass by in the night simply because the server and the
 client are separated by a network. That type of failure is a network
 issue. The code of both the client and the server must to be able to
 deal with such failures, but they should not have to deal with it
 efficiently. A client closing a connection, on the other hand, will
 at least be assured that any such race conditions are mostly local
 issues. The flow will be natural, assuming one treats closing as a
 natural event. To paraphrase Butler Lampson's 1983 paper on system
 design, "The events that happen normally must be efficient. The
 exceptional need to make progress." [Lampson]

 Having the client closing the connection will decrease the

 probability of the client having to do automatic connection recovery
 of a pipeline caused by a premature close on server side. From an
 client implementation point of view this is advantageous as automatic

Gettys & Freier [Page 7]

Internet-Draft HTTP Connection Management March 1997

 connection recovery of a pipeline is significantly more complicated
 than closing an idle connection. In HTTP, however, servers are free
 to close connections any time, and this observation does not help,
 but may simplify other protocols. It will, however, reduce the number
 of TCP resets observed, and make the exceptional case exceptional,
 and avoid a TCP window full of requests being transmitted under some
 circumstances.

 On the one hand, it is a specific fact about TCP that if the client
 closes the connection, the server does not have to keep the TIME_WAIT
 entry lying around. This is goodness.

 On the other hand, if the server has the resources to keep the
 connection open, then the client shouldn't close it unless there is
 little chance that the client will use the server again soon, since
 closing & then reopening adds computational overhead to the server.
 So allowing the server to take the lead in closing connections does
 have some benefits.

 A further observation is that congestion state of the network varies
 with time, so the benefits of the congestion state being maintained
 by TCP diminishes the longer a connection is idle.

 This discussion also shows that a client should close idle
 connections before the server does. Currently in the HTTP standard
 there is no way for a server to provide such a "hint" to the client,
 and there should be a mechanism. This memo solicits other opinions on
 this topic.

8. Closing Half of the Connection

 In simple request/response protocols (e.g. HTTP/1.0), a server can go
 ahead and close both recieve and transmit sides of its connection
 simultaneously whenever it needs to. A pipelined or streaming
 protocol (e.g. HTTP/1.1) connection, is more complex [Frystyk et.
 al.], and an implementation which does so can create major problems.

 The scenario is as follows: an HTTP/1.1 client talking to a HTTP/1.1
 server starts pipelining a batch of requests, for example 15 on an
 open TCP connection. The server decides that it will not serve more
 than 5 requests per connection and closes the TCP connection in both
 directions after it successfully has served the first five requests.
 The remaining 10 requests that are already sent from the client will
 along with client generated TCP ACK packets arrive on a closed port
 on the server. This "extra" data causes the server's TCP to issue a
 reset which makes the client TCP stack pass the last ACK'ed packet to
 the client application and discard all other packets. This means that
 HTTP responses that are either being received or already have been

 received successfully but haven't been ACK'ed will be dropped by the
 client TCP. In this situation the client does not have any means of
 finding out which HTTP messages were successful or even why the
 server closed the connection. The server may have generated a

Gettys & Freier [Page 8]

Internet-Draft HTTP Connection Management March 1997

 "Connection: Close" header in the 5th response but the header may
 have been lost due to the TCP reset. Servers must therefore close
 each half of the connection independently.

9. Capture Effect

 One of the beauties of the simple single connection for each
 request/response pair is that it did not favor an existing client
 over another. In general, this natural rotation made for a fairer
 offering of the overall service, albeit a bit heavy handed. Our
 expectation is that when protocols with persistent connections get
 heavily deployed, that aspect of fairness will not exist. Without
 some moderately complex history, it might be that only the first 1000
 clients will ever be able to access a server (providing that your
 server can handle 1000 connections).

 There needs to be some policy indicating when it is appropriate to
 close connections. Such a policy should favor having the client be
 the party to initiate the closure, but must provide some manner in
 which the server can protect itself from misbehaving clients. Servers
 can control greedy clients in HTTP/1.1 by use of the 503 (Service
 Unavailable) response code in concert with the Retry-After response-
 header field, or by not reading further requests from that client, at
 the cost of temporarily occupying the connection. As long as the
 server can afford to keep the connection open, it can delay a "greedy
 client" by simply closing the TCP receive window. As soon as it
 drops the connection, it has no way to distinguish this client from
 any other. Either of these techniques may in fact be preferable to
 closing the client's connection; the client might just immediately
 reopen the connection, and you are unlikely to know if it is the same
 greedy client.

 Implementation complexity will need to be balanced against scheduling
 overhead. A number of possible server scheduling algorithms exist,
 with different costs and benefits. The implementation experience of
 one of us (jg) with the X Window System [Gettys et. al.] may be of
 use to those implementing Web server schedulers.

 * Strict round robin scheduling: a operating system select or
 poll operation is executed for each request processed, and each
 request is handled in turn (across connections). Since select
 is executed frequently, new connections get a good chance of
 service sooner rather than later. Some algorithm must be chosen
 to avoid capture effect if the server is loaded. This is most
 fair, and approximates current behavior. The disadvantage is,
 however, a (relatively expensive) system call / request, which
 will likely become too expensive as Web servers become
 carefully optimized after HTTP/1.1 is fully implemented.

 * Modified round robin scheduling: a operating system select or
 poll operation is executed. Any new connections are
 established, and for each connection showing data available,

Gettys & Freier [Page 9]

Internet-Draft HTTP Connection Management March 1997

 all available requests are read into buffers for later
 execution. Then all requests are processed, round robin between
 buffers. Some algorithm must be chosen to avoid capture effect
 if the server is loaded. This eliminates the system call per
 operation. This is quite efficient, and still reasonably
 fairly apportions server capabilities.

 * Some servers are likely to be multithreaded, possibly with a
 thread per connection. These servers will have to have some
 mechanism to share state so that no client can forever capture
 a connection on a busy server.

 A final note: indefinite round robin scheduling may not in fact be
 the most desirable algorithm, due to the timesharing fallacy. If a
 connection makes progress more slowly than possible, not only will
 the client (the end user) observe poorer performance, but the
 connection (and the considerable system overhead each one represents)
 will be open longer, and more connections and server resources will
 be required as a result.

 At some point, large, loaded servers will have to choose a connection
 to close; research [Padmanabhan and Mogul] shows that LRU may be as
 good as more complex algorithms for choosing which to close.

 Further experimentation with HTTP/1.1 servers will be required to
 understand the most useful scheduling and connection management
 algorithms.

10. Security Considerations

 Most HTTP related security considerations are discussed in RFC2068.
 This document identifies a further security concern: proxy
 implementations that simultaneously multiplex requests from multiple
 clients over a TCP connection are vulnerable to a form of denial of
 service attacks, due to head of line blocking problems, as discussed
 further above.

 The capture effect discussed above also presents opportunities for
 denial of service attacks.

11. Requirements on HTTP/1.1 Implementations

 Here are some simple observations and requirements from the above
 discussion.

 * clients and proxies SHOULD close idle connections. Most of the
 benefits of an open connection diminish the longer the
 connection is idle: the congestion state of the network is a
 dynamic and changing phenomena [Paxson]. The client, better

https://datatracker.ietf.org/doc/html/rfc2068

 than a server, knows when it is likely not to revisit a site.
 By monitoring user activity, a client can make reasonable
 guesses as to when a connection needs closing. Research has

Gettys & Freier [Page 10]

Internet-Draft HTTP Connection Management March 1997

 shown [Mogul2] shows that most of the benefits of a persistent
 connection are likely to occur within approximately
 60 seconds. Further research in this area is needed. On the
 client side, define a connection as "idle" if it meets at least
 one of these two criteria:

 * no user-interface input events during the last 60 seconds
 (parameter value shouldn't be defined too precisely)

 * user has explicitly selected a URL from a different
 server. Don't switch just because inlined images are from
 somewhere else! Even in this case, dally for some seconds
 (e.g., 10) in case the user hits the "back" button.
 On the server side, use a timeout that is adapted based on
 resource constraints: short timeout during overload, long
 timeout during underload. Memory, not CPU cycles, is likely to
 be the controlling resource in a well-implemented system.

 * servers SHOULD implement some mechanism to avoid the capture
 effect.

 * proxies MUST use independent TCPconnections to origin or futher
 proxy servers for different client connections, both to avoid
 head of line blocking between clients, and to avoid the denial
 of service attacks that implementations that attempt to
 multiplex multiple clients over the same connection would be
 open to.

 * proxies MAY serially reuse connections for multiple clients.

 * servers MUST properly close incoming and outgoing halves of TCP
 connections independently.

 * clients SHOULD close connections before servers when possible.
 Currently, HTTP has no "standard" way to indicate idle time
 behavior to clients, though we note that the Apache HTTP/1.1
 implementation advertizes this information using the Keep-Alive
 header if Keep-Alive is requested. We note, however, that Keep-
 Alive is NOT currently part of the HTTP standard, and that the
 working group may need to consider providing this "hint" to
 clients in the future of the standard by this or other means
 not currently specified in this initial draft.

Gettys & Freier [Page 11]

Internet-Draft HTTP Connection Management March 1997

12. References

 [Apache]
 The Apache Authors, The Apache Web Server is distributed by The
 Apache Group.

 [Bradner]
 S. Bradner, "Keywords for use in RFCs to Indicate Requirement
 Levels", RFC XXXX

 [Frystyk]
 Henrik Frystyk Nielsen, "The Effect of HTML Compression on a LAN
 ", W3C. URL:

http://www.w3.org/pub/WWW/Protocols/HTTP/Performance/Compression/LAN.html

 [Frystyk et. al]
 Henrik Frystyk Nielsen, Jim Gettys, Anselm Baird-Smith, Eric
 Prud'hommeaux, W3C, Håkon Wium Lie, Chris Lilley, W3C,
 "Network Performance Effects of HTTP/1.1, CSS1, and PNG". W3C
 Note, February, 1997. See URL:

http://www.w3.org/pub/WWW/Protocols/HTTP/Performance/ for this and
 other HTTP/1.1 performance information.

 [Gettys et. al.]
 Gettys, J., P.L. Karlton, and S. McGregor, " The X Window System,
 Version 11.'' Software Practice and Experience Volume 20, Issue
 No. S2, 1990 ISSN 0038-0644.

 [HTTP/1.0]
 T. Berners-Lee, R. Fielding, H. Frystyk. "Informational RFC 1945
 - Hypertext Transfer Protocol -- HTTP/1.0," MIT/LCS, UC Irvine,
 May 1996

 [HTTP/1.1]
 R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, T. Berners-Lee,
 "RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1," UC Irvine,
 Digital Equipment Corporation, MIT

 [Jacobson]
 Van Jacobson. "Congestion Avoidance and Control." In Proc. SIGCOMM
 '88 Symposium on Communications Architectures and Protocols, pages
 314-329. Stanford, CA, August, 1988.

 [Lampson]
 B. Lampson, "Hints for Computer System Design", 9th ACM SOSP, Oct.
 1983, pp. 33-48.

 [Mogul]
 Jeffrey C. Mogul. "The Case for Persistent-Connection HTTP." In

http://www.w3.org/pub/WWW/Protocols/HTTP/Performance/Compression/LAN.html
http://www.w3.org/pub/WWW/Protocols/HTTP/Performance/
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2068

 Proc. SIGCOMM '95 Symposium on Communications Architectures and
 Protocols, pages 299-313. Cambridge, MA, August, 1995.

Gettys & Freier [Page 12]

Internet-Draft HTTP Connection Management March 1997

 [Mogul2]
 Jeffrey C. Mogul. "The Case for Persistent-Connection HTTP".
 Research Report 95/4, Digital Equipment Corporation Western
 Research Laboratory, May, 1995. URL:

http://www.research.digital.com/wrl/techreports/abstracts/95.4.html

 [Padmanabhan and Mogul]
 Venkata N. Padmanabhan and Jeffrey C. Mogul. Improving HTTP
 Latency. In Proc. 2nd International WWW Conf. '94: Mosaic and the
 Web, pages 995-1005. Chicago, IL, October, 1994. URL:

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html

 [Padmanabhan & Mogul]
 V.N. Padmanabhan, J. Mogul, "Improving HTTP Latency", Computer
 Networks and ISDN Systems, v.28, pp. 25-35, Dec. 1995. Slightly
 revised version of paper in Proc. 2nd International WWW Conference
 '94: Mosaic and the Web, Oct. 1994

 [Paxson]

 Vern Paxson, "End-to-end Routing Behavior in the Internet" ACM
 SIGCOMM '96, August 1996, Stanford, CA.

13. Acknowlegements

 Our thanks to Henrik Frystyk Nielsen for comments on the first draft
 of this document.

14. Authors' Addresses

 Jim Gettys
 W3 Consortium
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139, USA
 Fax: +1 (617) 258 8682
 Email: jg@w3.org

 Alan Freier
 Netscape Communications Corporation
 Netscape Communications
 501 East Middlefield Rd.
 Mountain View, CA 94043
 Email: freier@netscape.com

http://www.research.digital.com/wrl/techreports/abstracts/95.4.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html

Gettys & Freier [Page 13]

