
[PROPOSED] HTTP Working Group Jeffery L. Hostetler
INTERNET-DRAFT John Franks
<draft-ietf-http-digest-aa-00.txt> Philip Hallam-Baker
 Ari Luotonen
 Eric W. Sink
 Lawrence C. Stewart
Expires SIX MONTHS FROM---> March 10, 1995

A Proposed Extension to HTTP : Digest Access Authentication

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-
 Drafts Shadow Directories on ds.internic.net (US East Coast),
 nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
 munnari.oz.au (Pacific Rim).

 Distribution of this document is unlimited. Please send comments
 to the proposed HTTP working group at <http-wg@cuckoo.hpl.hp.com>.
 Discussions of the working group are archived at
 <URL:http://www.ics.uci.edu/pub/ietf/http/>. General discussions
 about HTTP and the applications which use HTTP should take place
 on the <www-talk@info.cern.ch> mailing list.

Abstract

 The protocol referred to as "HTTP/1.0" includes specification
 for a Basic Access Authentication scheme. This scheme is not
 considered to be a secure method of user authentication, as the
 user name and password are passed over the network in an
 unencrypted form. A specification for a new authentication scheme
 is needed for future versions of the HTTP protocol. This document
 provides specification for such a scheme, referred to as "Digest
 Access Authentication". The encryption method used is the RSA Data
 Security, Inc. MD5 Message-Digest Algorithm.

Table of Contents

 1. Introduction
 1.1 Purpose

https://datatracker.ietf.org/doc/html/draft-ietf-http-digest-aa-00.txt

 1.2 Overall Operation
 2. Basic Access Authentication Scheme
 2.1 Specification
 2.2 Security protocol negotiation
 2.3 Example
 3. Acknowledgments
 4. References
 5. Authors Addresses

1. Introduction

1.1 Purpose

 The protocol referred to as "HTTP/1.0" includes specification
 for a Basic Access Authentication scheme[1]. This scheme is not
 considered to be a secure method of user authentication, as the
 user name and password are passed over the network in an
 unencrypted form. A specification for a new authentication scheme
 is needed for future versions of the HTTP protocol. This document
 provides specification for such a scheme, referred to as "Digest
 Access Authentication".

 The Digest Access Authentication scheme is not intended to be
 a complete answer to the need for security in the World Wide Web.
 This scheme provides no encryption of object content. The intent
 is simply to facilitate secure access authentication.

 It is proposed that this access authentication scheme be included
 in the the proposed HTTP/1.1 specification.

1.2 Overall Operation

 Like Basic Access Authentication, the Digest scheme is based on
 a simple challenge-response paradigm. The Digest scheme challenges
 using a nonce value. A valid response contains the MD5 checksum of
 the password and the given nonce value. In this way, the password
 is never sent in the clear. Just as with the Basic scheme, the
 username and password must be prearranged in some fashion.

2. Digest Access Authentication Scheme

2.1 Specification

 The Digest Access Authentication scheme is conceptually similar to the Basic
 scheme. The formats of the modified WWW-Authenticate header line and the
 Authorization header line are specified below. In addition, a new header,
 Digest-MessageDigest, is specified as well.

 Due to formatting constraints, all of the headers are depicted on multiple
 lines. In actual usage, they are required to be a single line of

 comma-separated attribute-value pairs, terminated by <CRLF>. Whitespace
 between the attribute-value pairs is allowed.

 If a server receives a request for an access-protected object, and an
 acceptable Authorizatation header is not sent, the server responds with:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="<realm>",
 domain="<domain>",
 nonce="<nonce>",
 opaque="<opaque>",
 stale="<TRUE | FALSE>"

 The meanings of the identifers used above are as follows:

 <realm>
 A name given to users so they know which username and password
 to send.

 <domain> OPTIONAL
 A comma separated list of URIs, as specified for HTTP/1.0. The
 intent is that the client could use this information to know the
 set of URIs for which the same authentication information should be
 sent. The URIs in this list may exist on different servers. If
 this keyword is omitted or empty, the client should assume that
 the domain consists of all URIs on the responding server.

 <nonce>
 A server-specified integer value which may be uniquely generated each
 time a 401 response is made. Servers may defend themselves against
 replay attacks by refusing to reuse nonce values. The nonce should be
 considered opqaue by the client.

 <opaque> OPTIONAL
 A string of data, specified by the server, which should returned by
 the client unchanged. It is recommended that this string be
 base64 or hexadecimal data. Specifically, since the string is passed
 in the header lines as a quoted string, the double-quote character
 is not allowed.

 <stale> OPTIONAL
 A flag, indicating that the previous request from the client
 was rejected because the nonce value was stale. If stale
 is TRUE, the client may wish to simply retry the request with
 a new encrypted response, without reprompting the user for a
 new username and password.

 The client is expected to retry the request, passing an Authorization header
 line as follows:

Authorization: Digest
 username="<username>", -- required
 realm="<realm>", -- required
 nonce="<nonce>", -- required
 uri="<requested-uri>", -- required
 response="<digest>", -- required
 message="<message-digest>", -- OPTIONAL
 opaque="<opaque>" -- required if provided by server

 where <digest> := H(H(A1) + ":" + N + ":" + H(A2))
 and <message-digest> := H(H(A1) + ":" + N + ":" + H(<message-body>))

 where:

 A1 := U + ':' + R + ':' + P
 A2 := <Method> + ':' + <requested-uri>

 with:
 N -- nonce value
 U -- username
 R -- realm
 P -- password
 <Method> -- from header line 0
 <requested-uri> -- uri sans proxy/routing

 When authorization succeeds, the Server may optionally provide the
 following:

HTTP/1.1 200 OK
Digest-MessageDigest:
 username="<username>",
 realm="<realm>",
 nonce="<nonce>",
 message="<message-digest>"

 The Digest-MessageDigest header indicates that the server wants to
 communicate some info regarding the successful
 authentication (such as a message digest or a
 receipt of some kind).

 <message-digest> is computed as given above for
 the client. this allows the client to verify that
 the message body has not been changed en-route.

 (The server would probably only send this when it
 has the document and can compute it (like the
 content-length field); the server would probably
 not bother generating this header for CGI output.)

 Upon receiving the Authorization information, the server may check its

 validity by looking up its known password which corresponds to the submitted
 <username>. Then, the server must perform the same MD5 operation performed
 by the client, and compare the result to the given <response>.

 Note that the HTTP server does not actually need to know the user's
 clear text password. As long as H(A1) is available to the server, the
 validity of an Authorization header may be verified.

 All keyword-value pairs must be expressed in characters from the
 US-ASCII character set, excluding control characters.

 A client may remember the username, password and nonce values, so that
 future requests within the specified <domain> may include the Authorization
 line preemptively. The server may choose to accept the old Authorization
 information, even though the nonce value included might not be fresh.
 Alternatively, the server could return a 401 response with a new nonce
 value, causing the client to retry the request. By specifying stale=TRUE
 with this response, the server hints to the client that the request should
 be retried with the new nonce, without reprompting the user for a new
 username and password.

 The <opaque> data is useful for transporting state information around.
 For example, a server could be responsible for authenticating content
 which actual sits on another server. The first 401 response would include
 a <domain> which includes the URI on the second server, and the <opaque>
 for specifying state information. The client will retry the request, at
 which time the server may respond with a 301/302 redirection, pointing
 to the URI on the second server. The client will follow the redirection,
 and pass the same Authorization line, including the <opaque> data which
 the second server may require.

 As with the basic scheme, proxies must be completely transparent in
 the Digest access authentication scheme. That is, they must forward the
 WWW-Authenticate, Digest-MessageDigest and Authorization headers untouched.
 If a proxy wants to authenticate a client before a request is forwarded to
 the server, it can be done using the Proxy-Authenticate and
 Proxy-Authorization headers.

2.2 Security Protocol Negotiation

 It is useful for a server to be able to know which security schemes
 a client is capable of handling. It is recommended that the HTTP extension
 mechanism proposed by Dave Kristol [2] be used. If the client includes
 the following header line with the request, then a server can safely assume
 that the client can handle Digest authentication.

Extension: Security/Digest

 If this proposal is accepted as a required part of the HTTP/1.1
 specification, then a server may assume Digest support when a client
 identifies itself as HTTP/1.1 compliant.

 It is possible that a server may want to require Digest as its
 authentication method, even if the server does not know that the client
 supports it. A client is encouraged to fail gracefully if the server
 specifies any authorization scheme it cannot handle.

2.3 Example

 The following example assumes that an access-protected document is being
 requested from the server. The URI of the document is
 "http://www.nowhere.org/simp/".

 Both client and server know that the username for this document is "eric",
 and the password is "spyglass".

 The first time the client requests the document, no Authorization header
 is sent, so the server responds with:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="testrealm",
 nonce="72540723369",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 The client may prompt the user for the username and password, after which it
 will respond with a new request, including the following Authorization
header:

Authorization: Digest username="eric",
 realm="testrealm",
 nonce="72540723369",
 uri="/simp/",
 response="e966c932a9242554e42c8ee200cec7f6",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

3. Acknowledgments

 Source code in C for the RSA Data Security, Inc. MD5 Message-Digest
 Algorithm is available free of charge from RSA Data Security, Inc.

4. References

 [1] T. Berners-Lee, R. T. Fielding, H. Frystyk Nielsen.
 "Hypertext Transfer Protocol -- HTTP/1.0"
 Internet-Draft (work in progress), UC Irvine,
 <URL:http://ds.internic.net/internet-drafts/

draft-fielding-http-spec-01.txt>, December 1994.

 [2] D. Kristol. "A Proposed Extension Mechanism for HTTP"
 <URL:http://www.research.att.com/~dmk/extend.txt>,
 December 1994.

5. Authors Addresses

https://datatracker.ietf.org/doc/html/draft-fielding-http-spec-01.txt

 John Franks
 john@math.nwu.edu
 Professor of Mathematics
 Department of Mathematics
 Northwestern University
 Evanston, IL 60208-2730

 Phillip M. Hallam-Baker
 hallam@w3.org
 European Union Fellow
 CERN
 Geneva
 Switzerland

 Jeffery L. Hostetler
 jeff@spyglass.com
 Senior Software Engineer
 Spyglass, Inc.
 1800 Woodfield Drive
 Savoy, IL 61874

 Ari Luotonen
 luotonen@netscape.com
 Member of Technical Staff
 501 East Middlefield Road
 Mountain View, CA 94043, USA

 Eric W. Sink
 eric@spyglass.com
 Senior Software Engineer
 Spyglass, Inc.
 1800 Woodfield Drive
 Savoy, IL 61874

 Lawrence C. Stewart
 stewart@OpenMarket.com
 Open Market, Inc.
 215 First Street
 Cambridge, MA 02142

--
Eric W. Sink, Senior Software Engineer -- eric@spyglass.com

http://www.spyglass.com/~eric/home.htm

http://www.spyglass.com/~eric/home.htm

