
Network Working Group J. Jena
Internet-Draft
Intended status: Standards Track S. Dalal
Expires: 19 May 2024 16 November 2023

The Idempotency-Key HTTP Header Field
draft-ietf-httpapi-idempotency-key-header-04

Abstract

 The HTTP Idempotency-Key request header field can be used to carry
 idempotency key in order to make non-idempotent HTTP methods such as
 POST or PATCH fault-tolerant.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-
header/.

 Discussion of this document takes place on the HTTPAPI Working Group
 mailing list (mailto:httpapi@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/httpapi/. Subscribe at
https://www.ietf.org/mailman/listinfo/httpapi/. Working Group

 information can be found at https://ietf-wg-httpapi.github.io/.

 Source for this draft and an issue tracker can be found at
https://github.com/ietf-wg-httpapi/idempotency.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 May 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://mailarchive.ietf.org/arch/browse/httpapi/
https://www.ietf.org/mailman/listinfo/httpapi/
https://ietf-wg-httpapi.github.io/
https://github.com/ietf-wg-httpapi/idempotency
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Notational Conventions
 2. The Idempotency-Key HTTP Request Header Field
 2.1. Syntax
 2.2. Uniqueness of Idempotency Key
 2.3. Idempotency Key Validity and Expiry
 2.4. Idempotency Fingerprint
 2.5. Responsibilities
 2.6. Idempotency Enforcement Scenarios
 2.7. Error Scenarios
 3. IANA Considerations
 3.1. The Idempotency-Key HTTP Request Header Field
 4. Implementation Status
 4.1. Implementing the Concept
 5. Security Considerations
 6. Examples
 7. References
 7.1. Normative References
 7.2. Informative References

Appendix A. Imported ABNF
 Acknowledgments
 Authors' Addresses

1. Introduction

 Idempotence is the property of certain operations in mathematics and
 computer science whereby they can be applied multiple times without
 changing the result beyond the initial application. It does not
 matter if the operation is called only once, or 10s of times over.

 Idempotency is important in building a fault-tolerant HTTP API. An
 HTTP request method is considered idempotent if the intended effect
 on the server of multiple identical requests with that method is the
 same as the effect for a single such request. According to
 [RFC7231], HTTP methods OPTIONS, HEAD, GET, PUT and DELETE are
 idempotent while methods POST and PATCH are not.

 Let's say a client of an HTTP API wants to create (or update) a

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7231

 resource using a POST method. Since POST is NOT an idempotent
 method, calling it multiple times can result in duplication or wrong
 updates. Consider a scenario where the client sent a POST request to
 the server, but it got a timeout. Following questions arise : Is the
 resource actually created (or updated)? Did the timeout occur during
 sending of the request, or when receiving of the response? Can the
 client safely retry the request, or does it need to figure out what
 happened in the first place? If POST had been an idempotent method,
 such questions may not arise. Client would safely retry a request
 until it actually gets a valid response from the server.

 For many use cases of HTTP APIs, duplicated resources are a severe
 problem from a business perspective. For example, duplicate records
 for requests involving any kind of money transfer MUST NOT be
 allowed. In other cases, processing of duplicate webhook delivery is
 not expected.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234] and includes, by reference, the IMF-fixdate
 rule as defined in Section 7.1.1.1 of [RFC7231].

 The term "resource" is to be interpreted as defined in Section 2 of
 [RFC7231], that is identified by an URI. The term "resource server"
 is to be interpreted as "origin server" as defined in Section 3 of
 [RFC7231].

2. The Idempotency-Key HTTP Request Header Field

 An idempotency key is a unique value generated by the client which
 the resource server uses to recognize subsequent retries of the same
 request. The Idempotency-Key HTTP request header field carries this
 key.

2.1. Syntax

 Idempotency-Key is an Item Structured Header [RFC8941]. Its value
 MUST be a String. Refer to Section 3.3.3 of [RFC8941] for ABNF of
 sf-string:

 Idempotency-Key = sf-string

 Clients MUST NOT include more than one Idempotency-Key header field
 in the same request.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-2
https://datatracker.ietf.org/doc/html/rfc7231#section-2
https://datatracker.ietf.org/doc/html/rfc7231#section-3
https://datatracker.ietf.org/doc/html/rfc7231#section-3
https://datatracker.ietf.org/doc/html/rfc8941
https://datatracker.ietf.org/doc/html/rfc8941#section-3.3.3

 The following example shows an idempotency key using UUID [RFC4122]:

 Idempotency-Key: "8e03978e-40d5-43e8-bc93-6894a57f9324"

2.2. Uniqueness of Idempotency Key

 The idempotency key that is supplied as part of every POST request
 MUST be unique and MUST NOT be reused with another request with a
 different request payload.

 Uniqueness of the key MUST be defined by the resource owner and MUST
 be implemented by the clients of the resource server. It is
 RECOMMENDED that UUID [RFC4122] or a similar random identifier be
 used as an idempotency key.

2.3. Idempotency Key Validity and Expiry

 The resource MAY enforce time based idempotency keys, thus, be able
 to purge or delete a key upon its expiry. The resource server SHOULD
 define such expiration policy and publish it in the documentation.

2.4. Idempotency Fingerprint

 An idempotency fingerprint MAY be used in conjunction with an
 idempotency key to determine the uniqueness of a request. Such a
 fingerprint is generated from request payload data by the resource
 server. An idempotency fingerprint generation algorithm MAY use one
 of the following or similar approaches to create a fingerprint.

 * Checksum of the entire request payload.

 * Checksum of selected element(s) in the request payload.

 * Field value match for each field in the request payload.

 * Field value match for selected element(s) in the request payload.

 * Request digest/signature.

2.5. Responsibilities

 Client

 Clients of HTTP API requiring idempotency, SHOULD understand the
 idempotency related requirements as published by the server and use
 appropriate algorithm to generate idempotency keys.

 Clients MAY choose to send an Idempotency-Key field with any valid
 random sf-string to indicate the user's intent is to only perform
 this action once. Without a priori knowledge, a general client
 cannot assume the server will respect this request.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

 For each request, client SHOULD

 * Send a unique idempotency key in the HTTP Idempotency-Key request
 header field.

 Resource Server

 Resource server MUST publish idempotency related specification. This
 specification MUST include expiration related policy if applicable.
 Server is responsible for managing the lifecycle of the idempotency
 key.

 For each request, server SHOULD

 * Identify idempotency key from the HTTP Idempotency-Key request
 header field.

 * Generate idempotency fingerprint if required.

 * Check for idempotency considering various scenarios including the
 ones described in section below.

2.6. Idempotency Enforcement Scenarios

 * First time request (idempotency key and fingerprint has not been
 seen)

 The resource server SHOULD process the request normally and
 respond with an appropriate response and status code.

 * Duplicate request (idempotency key and fingerprint has been seen)

 Retry

 The request was retried after the original request completed. The
 resource server SHOULD respond with the result of the previously
 completed operation, success or an error. See Error Scenarios for
 details on errors.

 Concurrent Request

 The request was retried before the original request completed.
 The resource server SHOULD respond with a resource conflict error.
 See Error Scenarios for details.

2.7. Error Scenarios

 If the Idempotency-Key request header is missing for a documented
 idempotent operation requiring this header, the resource server
 SHOULD reply with an HTTP 400 status code with body containing a link
 pointing to relevant documentation. Following examples shows an
 error response describing the problem using [RFC7807].

https://datatracker.ietf.org/doc/html/rfc7807

 HTTP/1.1 400 Bad Request
 Content-Type: application/problem+json
 Content-Language: en
 {
 "type": "https://developer.example.com/idempotency",
 "title": "Idempotency-Key is missing",
 "detail": "This operation is idempotent and it requires correct
 usage of Idempotency Key.",
 }

 Alternately, using the HTTP header Link, the client can be informed
 about the error as shown below.

 HTTP/1.1 400 Bad Request
 Link: <https://developer.example.com/idempotency>;
 rel="describedby"; type="text/html"

 If there is an attempt to reuse an idempotency key with a different
 request payload, the resource server SHOULD reply with a HTTP 422
 status code with body containing a link pointing to relevant
 documentation. The status code 422 is defined in Section 11.2 of
 [RFC4918].

 HTTP/1.1 422 Unprocessable Content
 Content-Type: application/problem+json
 Content-Language: en
 {
 "type": "https://developer.example.com/idempotency",
 "title": "Idempotency-Key is already used",
 "detail": "This operation is idempotent and it requires
 correct usage of Idempotency Key. Idempotency Key MUST not be
 reused across different payloads of this operation.",
 }

 The server can also inform the client by using the HTTP header Link
 as shown below.

 HTTP/1.1 422 Unprocessable Content
 Link: <https://developer.example.com/idempotency>;
 rel="describedby"; type="text/html"

 If the request is retried, while the original request is still being
 processed, the resource server SHOULD reply with an HTTP 409 status
 code with body containing problem description.

 HTTP/1.1 409 Conflict
 Content-Type: application/problem+json
 Content-Language: en
 {
 "type": "https://developer.example.com/idempotency",

https://datatracker.ietf.org/doc/html/rfc4918#section-11.2
https://datatracker.ietf.org/doc/html/rfc4918#section-11.2

 "title": "A request is outstanding for this Idempotency-Key",
 "detail": "A request with the same Idempotency-Key for the
 same operation is being processed or is outstanding.",
 }

 Or, alternately using the HTTP header Link pointing to the relevant
 documentation

 HTTP/1.1 409 Conflict
 Link: <https://developer.example.com/idempotency>;
 rel="describedby"; type="text/html"

 Error scenarios above describe the status of failed idempotent
 requests after the resource server prcocesses them. Clients MUST
 correct the requests (with the exception of 409 where no correction
 is required) before performing a retry operation, or the the resource
 server MUST fail the request and return one of the above errors.

 For other 4xx/5xx errors, such as 401, 403, 500, 502, 503, 504, 429,
 or any other HTTP error code that is not listed here, the client
 SHOULD act appropriately by following the resource server's
 documentation.

3. IANA Considerations

3.1. The Idempotency-Key HTTP Request Header Field

 The Idempotency-Key field name should be added to the "Hypertext
 Transfer Protocol (HTTP) Field Name Registry".

 Field Name: Idempotency-Key

 Status: permanent

 Specification document: This specification, Section 2

4. Implementation Status

 Note to RFC Editor: Please remove this section before publication.

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

https://datatracker.ietf.org/doc/html/rfc7942

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 Organization: Stripe

 * Description: Stripe uses custom HTTP header named Idempotency-Key

 * Reference: https://stripe.com/docs/idempotency

 Organization: Adyen

 * Description: Adyen uses custom HTTP header named Idempotency-Key

 * Reference: https://docs.adyen.com/development-resources/api-
idempotency/

 Organization: Dwolla

 * Description: Dwolla uses custom HTTP header named Idempotency-Key

 * Reference: https://docs.dwolla.com/

 Organization: Interledger

 * Description: Interledger uses custom HTTP header named
 Idempotency-Key

 * Reference: https://github.com/interledger/

 Organization: WorldPay

 * Description: WorldPay uses custom HTTP header named Idempotency-
 Key

 * Reference: https://developer.worldpay.com/docs/wpg/idempotency

 Organization: Yandex

 * Description: Yandex uses custom HTTP header named Idempotency-Key

 * Reference: https://cloud.yandex.com/docs/api-design-
guide/concepts/idempotency

 Organization: http4s.org

 * Description: Http4s is a minimal, idiomatic Scala interface for
 HTTP services.

https://datatracker.ietf.org/doc/html/rfc7942
https://stripe.com/docs/idempotency
https://docs.adyen.com/development-resources/api-idempotency/
https://docs.adyen.com/development-resources/api-idempotency/
https://docs.dwolla.com/
https://github.com/interledger/
https://developer.worldpay.com/docs/wpg/idempotency
https://cloud.yandex.com/docs/api-design-guide/concepts/idempotency
https://cloud.yandex.com/docs/api-design-guide/concepts/idempotency

 * Reference: https://github.com/http4s/http4s

 Organization: Finastra

 * Description: Finastra uses custom HTTP header named Idempotency-
 Key

 * Reference: https://developer.fusionfabric.cloud/

 Organization: Datatrans

 * Description: Datatrans focuses on the technical processing of
 payments, including hosting smart payment forms and correctly
 routing payment information.

 * Reference: https://docs.datatrans.ch/docs/api-endpoints

4.1. Implementing the Concept

 This is a list of implementations that implement the general concept,
 but do so using different mechanisms:

 Organization: Django

 * Description: Django uses custom HTTP header named
 HTTP_IDEMPOTENCY_KEY

 * Reference: https://pypi.org/project/django-idempotency-key

 Organization: Twilio

 * Description: Twilio uses custom HTTP header named I-Twilio-
 Idempotency-Token in webhooks

 * Reference: https://www.twilio.com/docs/usage/webhooks/webhooks-
connection-overrides

 Organization: PayPal

 * Description: PayPal uses custom HTTP header named PayPal-Request-
 Id

 * Reference: https://developer.paypal.com/docs/business/develop/
idempotency

 Organization: RazorPay

 * Description: RazorPay uses custom HTTP header named X-Payout-
 Idempotency

 * Reference: https://razorpay.com/docs/razorpayx/api/idempotency/

 Organization: OpenBanking

https://github.com/http4s/http4s
https://developer.fusionfabric.cloud/
https://docs.datatrans.ch/docs/api-endpoints
https://pypi.org/project/django-idempotency-key
https://www.twilio.com/docs/usage/webhooks/webhooks-connection-overrides
https://www.twilio.com/docs/usage/webhooks/webhooks-connection-overrides
https://developer.paypal.com/docs/business/develop/idempotency
https://developer.paypal.com/docs/business/develop/idempotency
https://razorpay.com/docs/razorpayx/api/idempotency/

 * Description: OpenBanking uses custom HTTP header called x-
 idempotency-key

 * Reference: https://openbankinguk.github.io/read-write-api-
site3/v3.1.6/profiles/read-write-data-api-profile.html#request-

 headers

 Organization: Square

 * Description: To make an idempotent API call, Square recommends
 adding a property named idempotency_key with a unique value in the
 request body.

 * Reference: https://developer.squareup.com/docs/build-basics/using-
rest-api

 Organization: Google Standard Payments

 * Description: Google Standard Payments API uses a property named
 requestId in request body in order to provider idempotency in
 various use cases.

 * Reference: https://developers.google.com/standard-payments/
payment-processor-service-api/rest/v1/TopLevel/capture

 Organization: BBVA

 * Description: BBVA Open Platform uses custom HTTP header called X-
 Unique-Transaction-ID

 * Reference:
https://bbvaopenplatform.com/apiReference/APIbasics/content/x-
unique-transaction-id

 Organization: WebEngage

 * Description: WebEngage uses custom HTTP header called x-request-id
 to identify webhook POST requests uniquely to achieve events
 idempotency.

 * Reference: https://docs.webengage.com/docs/webhooks

5. Security Considerations

 This section is meant to inform developers, information providers,
 and users of known security concerns specific to the idempotency
 keys.

 Resource servers that do not implement strong idempotency keys, such
 as UUIDs, or have appropriate controls to validate the idempotency
 keys, could be victim to various forms of security attacks from

https://openbankinguk.github.io/read-write-api-site3/v3.1.6/profiles/read-write-data-api-profile.html#request-
https://openbankinguk.github.io/read-write-api-site3/v3.1.6/profiles/read-write-data-api-profile.html#request-
https://developer.squareup.com/docs/build-basics/using-rest-api
https://developer.squareup.com/docs/build-basics/using-rest-api
https://developers.google.com/standard-payments/payment-processor-service-api/rest/v1/TopLevel/capture
https://developers.google.com/standard-payments/payment-processor-service-api/rest/v1/TopLevel/capture
https://bbvaopenplatform.com/apiReference/APIbasics/content/x-unique-transaction-id
https://bbvaopenplatform.com/apiReference/APIbasics/content/x-unique-transaction-id
https://docs.webengage.com/docs/webhooks

 malicious clients:

 * Injection attacks-When the resource server does not validate the
 idempotency key in the client request and performs a idempotent
 cache lookup, there can be security attacks (primarily in the form
 of injection), compromising the server.

 * Data leaks-When an idempotency implementation allows low entropy
 keys, attackers MAY determine other keys and use them to fetch
 existing idempotent cache entries, belonging to other clients.

 To prevent such situations, the specification recommends the
 following best practices for idempotency key implementation in the
 resource server.

 * Establish a fixed format for the idempotency key and publish the
 key’s specification.

 * Always validate the key as per its published specification before
 processing any request.

 * On the resource server, implement a unique composite key as the
 idempotent cache lookup key. For example, a composite key MAY be
 implemented by combining the idempotency key sent by the client
 with other client specific attributes known only to the resource
 server.

6. Examples

 The first example shows an idempotency-key header field with key
 value using UUID version 4 scheme:

 Idempotency-Key: "8e03978e-40d5-43e8-bc93-6894a57f9324"

 Second example shows an idempotency-key header field with key value
 using some random string generator:

 Idempotency-Key: "clkyoesmbgybucifusbbtdsbohtyuuwz"

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/rfc/rfc4122>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/rfc/rfc4122

 [RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918,
 DOI 10.17487/RFC4918, June 2007,
 <https://www.rfc-editor.org/rfc/rfc4918>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7231>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/rfc/rfc7807>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8941] Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,
 <https://www.rfc-editor.org/rfc/rfc8941>.

7.2. Informative References

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/rfc/rfc7942>.

Appendix A. Imported ABNF

 The following core rules are included by reference, as defined in
Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),

 CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double
 quote), HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any
 8-bit sequence of data), SP (space), and VCHAR (any visible US-ASCII
 character).

 The rules below are defined in [RFC7230]:

 obs-text = <obs-text, see [RFC7230], Section 3.2.6>

https://datatracker.ietf.org/doc/html/rfc4918
https://www.rfc-editor.org/rfc/rfc4918
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/rfc/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://datatracker.ietf.org/doc/html/rfc7807
https://www.rfc-editor.org/rfc/rfc7807
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/rfc8941
https://www.rfc-editor.org/rfc/rfc8941
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/rfc/rfc7942
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Acknowledgments

 The authors would like to thank Mark Nottingham for his support for
 this Internet Draft. We would like to acknowledge that this draft is
 inspired by Idempotency related patterns described in API
 documentation of PayPal (https://github.com/paypal/api-

standards/blob/master/patterns.md#idempotency) and Stripe
 (https://stripe.com/docs/idempotency) as well as Internet Draft on
 POST Once Exactly (https://tools.ietf.org/html/draft-nottingham-http-

poe-00) authored by Mark Nottingham.

 The authors take all responsibility for errors and omissions.

Authors' Addresses

 Jayadeba Jena
 Email: jayadebaj@gmail.com

 Sanjay Dalal
 Email: sanjay.dalal@cal.berkeley.edu
 URI: https://github.com/sdatspun2

https://github.com/paypal/api-standards/blob/master/patterns.md#idempotency
https://github.com/paypal/api-standards/blob/master/patterns.md#idempotency
https://stripe.com/docs/idempotency
https://tools.ietf.org/html/draft-nottingham-http-poe-00
https://tools.ietf.org/html/draft-nottingham-http-poe-00
https://github.com/sdatspun2

