
Workgroup: HTTPAPI

Internet-Draft:

draft-ietf-httpapi-ratelimit-headers-05

Published: 6 July 2022

Intended Status: Standards Track

Expires: 7 January 2023

Authors: R. Polli

Team Digitale, Italian Government

A. Martinez

Red Hat

RateLimit Fields for HTTP

Abstract

This document defines the RateLimit-Limit, RateLimit-Remaining,

RateLimit-Reset and RateLimit-Policy fields for HTTP, thus allowing

servers to publish current service limits and clients to shape their

request policy and avoid being throttled out.

Note to Readers

RFC EDITOR: please remove this section before publication

Discussion of this draft takes place on the HTTP working group

mailing list (httpapi@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/httpapi/.

The source code and issues list for this draft can be found at

https://github.com/ietf-wg-httpapi/ratelimit-headers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/httpapi/
https://mailarchive.ietf.org/arch/browse/httpapi/
https://github.com/ietf-wg-httpapi/ratelimit-headers
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Goals

1.2. Notational Conventions

2. Expressing rate-limit policies

2.1. Time window

2.2. Service limit and quota units

2.3. Quota policy

3. Providing RateLimit fields

3.1. Performance considerations

4. Receiving RateLimit fields

4.1. Intermediaries

4.2. Caching

5. Fields definition

5.1. RateLimit-Limit

5.2. RateLimit-Policy

5.3. RateLimit-Remaining

5.4. RateLimit-Reset

6. Security Considerations

6.1. Throttling does not prevent clients from issuing requests

6.2. Information disclosure

6.3. Remaining quota-units are not granted requests

6.4. Reliability of RateLimit-Reset

6.5. Resource exhaustion

6.6. Denial of Service

7. Privacy Considerations

8. IANA Considerations

8.1. RateLimit Parameters Registration

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Rate-limiting and quotas

A.1. Interoperability issues

Appendix B. Examples

B.1. Unparameterized responses

B.1.1. Throttling information in responses

B.1.2. Use in conjunction with custom fields

B.1.3. Use for limiting concurrency

¶

https://trustee.ietf.org/license-info

B.1.4. Use in throttled responses

B.2. Parameterized responses

B.2.1. Throttling window specified via parameter

B.2.2. Dynamic limits with parameterized windows

B.2.3. Dynamic limits for pushing back and slowing down

B.3. Dynamic limits for pushing back with Retry-After and slow

down

B.3.1. Missing Remaining information

B.3.2. Use with multiple windows

FAQ

RateLimit fields currently used on the web

Acknowledgements

Changes

Since draft-ietf-httpapi-ratelimit-headers-03

Since draft-ietf-httpapi-ratelimit-headers-02

Since draft-ietf-httpapi-ratelimit-headers-01

Since draft-ietf-httpapi-ratelimit-headers-00

Authors' Addresses

1. Introduction

The widespreading of HTTP as a distributed computation protocol

requires an explicit way of communicating service status and usage

quotas.

This was partially addressed by the "Retry-After" header field

defined in [HTTP] to be returned in 429 (Too Many Request) (see

[STATUS429]) or 503 (Service Unavailable) responses.

Widely deployed quota mechanisms limit the number of acceptable

requests in a given time window, e.g. 10 requests per second;

currently, there is no standard way to communicate service quotas so

that the client can throttle its requests and prevent 4xx or 5xx

responses. See Appendix A for further information on the current

usage of rate limiting in HTTP.

This document defines syntax and semantics for the following fields:

RateLimit-Limit: containing the requests quota in the time

window;

RateLimit-Remaining: containing the remaining requests quota in

the current window;

RateLimit-Reset: containing the time remaining in the current

window, specified in seconds;

RateLimit-Policy: containing the quota policy information.

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

Interoperability:

Resiliency:

Documentation:

Authorization:

Throttling scope:

Response status code:

Throttling policy:

Service Level Agreement:

The behavior of the RateLimit-Reset field is compatible with the

delay-seconds notation of Retry-After.

The fields definition allows to describe complex policies, including

the ones using multiple and variable time windows and dynamic

quotas, or implementing concurrency limits.

1.1. Goals

The goals of the RateLimit fields are:

Standardization of the names and semantics of

rate-limit headers to ease their enforcement and adoption;

Improve resiliency of HTTP infrastructure by providing

clients with information useful to throttle their requests and

prevent 4xx or 5xx responses;

Simplify API documentation by eliminating the need

to include detailed quota limits and related fields in API

documentation.

The following features are out of the scope of this document:

RateLimit fields are not meant to support

authorization or other kinds of access controls.

This specification does not cover the throttling

scope, that may be the given resource-target, its parent path or

the whole Origin (see Section 7 of [WEB-ORIGIN]). This can be

addressed using extensibility mechanisms such as the parameter

registry Section 8.1.

RateLimit fields may be returned in both

successful (see Section 15.3 of [HTTP]) and non-successful

responses. This specification does not cover whether non

Successful responses count on quota usage, nor it mandates any

correlation between the RateLimit values and the returned status

code.

This specification does not mandate a specific

throttling policy. The values published in the fields, including

the window size, can be statically or dynamically evaluated.

Conveyed quota hints do not imply any

service guarantee. Server is free to throttle respectful clients

under certain circumstances.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6454#section-7
https://rfc-editor.org/rfc/rfc9110#section-15.3

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the Augmented BNF defined in [RFC5234] and

updated by [RFC7405] along with the "#rule" extension defined in

Section 5.6.1 of [HTTP].

The term Origin is to be interpreted as described in Section 7 of

[WEB-ORIGIN].

This document uses the following terminology from Section 3 of

[STRUCTURED-FIELDS] to specify syntax and parsing: List, Item and

Integer together with the concept of bare item.

The fields defined in this document are collectively named

"RateLimit fields".

2. Expressing rate-limit policies

2.1. Time window

Rate limit policies limit the number of acceptable requests in a

given time interval.

The "time-window" is a non-negative Integer value expressing such

interval in seconds compatible with the "delay-seconds" rule defined

in Section 10.2.3 of [HTTP].

Subsecond precision is not supported.

2.2. Service limit and quota units

The "service-limit" is a value associated to the maximum number of

requests that the server is willing to accept from one or more

clients on a given basis (originating IP, authenticated user,

geographical, ..) during a time window (Section 2.1).

The service-limit is a non-negative Integer expressed in "quota-

units".

The service-limit SHOULD match the maximum number of acceptable

requests.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.1
https://rfc-editor.org/rfc/rfc8941#section-3
https://rfc-editor.org/rfc/rfc9110#section-10.2.3

w:

The service-limit MAY differ from the total number of acceptable

requests when weight mechanisms, bursts, or other server policies

are implemented.

If the service-limit does not match the maximum number of acceptable

requests the relation with that SHOULD be communicated out-of-band.

Example: A server could

count once requests like /books/{id}

count twice search requests like /books?author=WuMing

so that we have the following counters

GET /books/123 ; service-limit=4, remaining: 3, status=200

GET /books?author=WuMing ; service-limit=4, remaining: 1, status=200

GET /books?author=Eco ; service-limit=4, remaining: 0, status=429

2.3. Quota policy

A "quota-policy" describes a quota policy in terms of quota-units

(Section 2.2) and time-window (Section 2.1). Its value is an Item

where the associated bare item is a service-limit (Section 2.2) and

parameters are supported.

The following parameters are defined:

The REQUIRED "w" parameter value conveys a "time-window" value

as defined in Section 2.1.

Other parameters are allowed and can be regarded as comments. They

ought to be registered within the "Hypertext Transfer Protocol

(HTTP) RateLimit Parameters Registry", as described in Section 8.1.

An example policy of 100 quota-units per minute.

 100;w=60

The definition of a quota-policy does not imply any specific

distribution of quota-units over time. Such service specific details

can be conveyed as parameters.

Two policy examples containing further details via custom parameters

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

 100;w=60;comment="fixed window"

 12;w=1;burst=1000;policy="leaky bucket"

To avoid clashes, implementers SHOULD prefix unregistered parameters

with an x-<vendor> identifier, e.g. x-acme-policy, x-acme-burst.

While it is useful to define a clear syntax and semantics even for

custom parameters, it is important to note that user agents are not

required to process quota policy information.

3. Providing RateLimit fields

A server uses the RateLimit fields to communicate its quota policies

according to the following rules:

RateLimit-Limit and RateLimit-Reset fields are REQUIRED;

RateLimit-Remaining field is RECOMMENDED.

The returned values refers to the metrics used to evaluate if the

current request respects the quota policy and MAY not apply to

subsequent requests.

Example: a successful response with the following fields

 RateLimit-Limit: 10

 RateLimit-Remaining: 1

 RateLimit-Reset: 7

does not guarantee that the next request will be successful. Server

metrics may be subject to other conditions like the one shown in the

example from Section 2.2.

A server MAY return RateLimit fields independently of the response

status code. This includes throttled responses.

This document does not mandate any correlation between the RateLimit

field values and the returned status code.

Servers should be careful in returning RateLimit fields in

redirection responses (e.g. 3xx status codes) because a low

RateLimit-Remaining field value could prevent the client from

issuing requests. For example, given the RateLimit fields below, a

client could decide to wait 10 seconds before following the

"Location" header field (see Section 10.2.2 of [HTTP]), because the

RateLimit-Remaining field value is 0.

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-10.2.2

HTTP/1.1 301 Moved Permanently

Location: /foo/123

RateLimit-Remaining: 0

RateLimit-Limit: 10

RateLimit-Reset: 10

If a response contains both the Retry-After and the RateLimit-Reset

fields, the RateLimit-Reset field value SHOULD reference the same

point in time as the Retry-After field value.

When using a policy involving more than one time-window, the server

MUST reply with the RateLimit fields related to the time window with

the lower RateLimit-Remaining field values.

A service returning RateLimit fields MUST NOT convey values exposing

an unwanted volume of requests and SHOULD implement mechanisms to

cap the ratio between RateLimit-Remaining and RateLimit-Reset field

values (see Section 6.5); this is especially important when quota-

policies use a large time-window.

Under certain conditions, a server MAY artificially lower RateLimit

field values between subsequent requests, e.g. to respond to Denial

of Service attacks or in case of resource saturation.

Servers usually establish whether the request is in-quota before

creating a response, so the RateLimit field values should be already

available in that moment. Nonetheless servers MAY decide to send the

RateLimit fields in a trailer section.

3.1. Performance considerations

Servers are not required to return RateLimit fields in every

response, and clients need to take this into account. For example,

an implementer concerned with performance might provide RateLimit

fields only when a given quota is going to expire.

Implementers concerned with response fields' size, might take into

account their ratio with respect to the content length, or use

header-compression HTTP features such as [HPACK].

4. Receiving RateLimit fields

A client MUST validate the values received in the RateLimit fields

before using them and check if there are significant discrepancies

with the expected ones. This includes a RateLimit-Reset field moment

too far in the future (e.g. similarly to receiving "Retry-after:

1000000") or a service-limit too high.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A client receiving RateLimit fields MUST NOT assume that subsequent

responses contain the same RateLimit fields, or any RateLimit fields

at all.

Malformed RateLimit fields MAY be ignored.

A client SHOULD NOT exceed the quota-units conveyed by the

RateLimit-Remaining field before the time-window expressed in

RateLimit-Reset field.

A client MAY still probe the server if the RateLimit-Reset field is

considered too high.

The value of RateLimit-Reset field is generated at response time: a

client aware of a significant network latency MAY behave accordingly

and use other information (e.g. the "Date" response header field, or

otherwise gathered metrics) to better estimate the RateLimit-Reset

field moment intended by the server.

The details provided in RateLimit-Policy field are informative and

MAY be ignored.

If a response contains both the RateLimit-Reset and Retry-After

fields, the Retry-After field MUST take precedence and the

RateLimit-Reset field MAY be ignored.

This specification does not mandate a specific throttling behavior

and implementers can adopt their preferred policies, including:

slowing down or preemptively back-off their request rate when

approaching quota limits;

consuming all the quota according to the exposed limits and then

wait.

4.1. Intermediaries

This section documents the considerations advised in Section 16.3.2

of [HTTP].

An intermediary that is not part of the originating service

infrastructure and is not aware of the quota-policy semantic used by

the Origin Server SHOULD NOT alter the RateLimit fields' values in

such a way as to communicate a more permissive quota-policy; this

includes removing the RateLimit fields.

An intermediary MAY alter the RateLimit fields in such a way as to

communicate a more restrictive quota-policy when:

it is aware of the quota-unit semantic used by the Origin Server;

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

* ¶

https://rfc-editor.org/rfc/rfc9110#section-16.3.2

it implements this specification and enforces a quota-policy

which is more restrictive than the one conveyed in the fields.

An intermediary SHOULD forward a request even when presuming that it

might not be serviced; the service returning the RateLimit fields is

the sole responsible of enforcing the communicated quota-policy, and

it is always free to service incoming requests.

This specification does not mandate any behavior on intermediaries

respect to retries, nor requires that intermediaries have any role

in respecting quota-policies. For example, it is legitimate for a

proxy to retransmit a request without notifying the client, and thus

consuming quota-units.

Privacy considerations (Section 7) provide further guidance on

intermediaries.

4.2. Caching

As is the ordinary case for HTTP caching ([HTTP-CACHING]), a

response with RateLimit fields might be cached and re-used for

subsequent requests. A cached response containing RateLimit fields

does not modify quota counters but could contain stale information.

Clients interested in determining the freshness of the RateLimit

fields could rely on fields such as the Date header field and on the

time-window of a quota-policy.

5. Fields definition

The following RateLimit response fields are defined

5.1. RateLimit-Limit

The "RateLimit-Limit" response field indicates the service-limit

(Section 2.2) associated to the client in the current time-window

(Section 2.1).

If the client exceeds that limit, it MAY not be served.

The field is an Item and its value is a non-negative Integer named

"expiring-limit". Parameters are not allowed.

The expiring-limit MUST be set to the service-limit that is closer

to reach its limit, and the associated time-window MUST either be:

inferred by the value of RateLimit-Reset field at the moment of

the reset, or

communicated out-of-band (e.g. in the documentation).

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

The RateLimit-Policy field (see Section 5.2), might contain

information on the associated time-window.

 RateLimit-Limit: 100

This field MUST NOT occur multiple times and can be sent in a

trailer section.

5.2. RateLimit-Policy

The RateLimit-Policy field response field indicates the quota

associated to the client and its value is informative.

The field is a non-empty List of Items. Each item is a quota policy

(Section 2.3).

This field can convey the time-window associated to the expiring-

limit, like shown in the following example.

 RateLimit-Policy: 100;w=10

 RateLimit-Limit: 100

Policies using multiple quota limits MAY be returned using multiple

quota-policy Items, like shown in the following two examples:

 RateLimit-Policy: 10;w=1, 50;w=60, 1000;w=3600, 5000;w=86400

 RateLimit-Policy: 10;w=1;burst=1000, 1000;w=3600

This field MUST NOT occur multiple times and can be sent in a

trailer section.

5.3. RateLimit-Remaining

The RateLimit-Remaining field response field indicates the remaining

quota-units defined in Section 2.2 associated to the client.

The field is an Item and its value is a non-negative Integer

expressed in quota-units (Section 2.2). Parameters are not allowed.

This field MUST NOT occur multiple times and can be sent in a

trailer section.

Clients MUST NOT assume that a positive RateLimit-Remaining field

value is a guarantee that further requests will be served.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A low RateLimit-Remaining field value is like a yellow traffic-light

for either the number of requests issued in the time-window or the

request throughput: the red light may arrive suddenly (see Section

3).

One example of RateLimit-Remaining field use is below.

 RateLimit-Remaining: 50

5.4. RateLimit-Reset

The RateLimit-Reset field response field indicates the number of

seconds until the quota resets.

The field is a non-negative Integer compatible with the delay-

seconds rule, because:

it does not rely on clock synchronization and is resilient to

clock adjustment and clock skew between client and server (see

Section 5.6.7 of [HTTP]);

it mitigates the risk related to thundering herd when too many

clients are serviced with the same timestamp.

This field MUST NOT occur multiple times and can be sent in a

trailer section.

An example of RateLimit-Reset field use is below.

 RateLimit-Reset: 50

The client MUST NOT assume that all its service-limit will be

restored after the moment referenced by RateLimit-Reset field. The

server MAY arbitrarily alter the RateLimit-Reset field value between

subsequent requests e.g. in case of resource saturation or to

implement sliding window policies.

6. Security Considerations

6.1. Throttling does not prevent clients from issuing requests

This specification does not prevent clients to make over-quota

requests.

Servers should always implement mechanisms to prevent resource

exhaustion.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.7

6.2. Information disclosure

Servers should not disclose to untrusted parties operational

capacity information that can be used to saturate its

infrastructural resources.

While this specification does not mandate whether non 2xx responses

consume quota, if 401 and 403 responses count on quota a malicious

client could probe the endpoint to get traffic information of

another user.

As intermediaries might retransmit requests and consume quota-units

without prior knowledge of the user agent, RateLimit fields might

reveal the existence of an intermediary to the user agent.

6.3. Remaining quota-units are not granted requests

RateLimit fields convey hints from the server to the clients in

order to avoid being throttled out.

Clients MUST NOT consider the quota-units (Section 2.2) returned in

RateLimit-Remaining field as a service level agreement.

In case of resource saturation, the server MAY artificially lower

the returned values or not serve the request regardless of the

advertised quotas.

6.4. Reliability of RateLimit-Reset

Consider that service-limit might not be restored after the moment

referenced by RateLimit-Reset field, and the RateLimit-Reset field

value do not be considered fixed nor constant.

Subsequent requests might return a higher RateLimit-Reset field

value to limit concurrency or implement dynamic or adaptive

throttling policies.

6.5. Resource exhaustion

When returning RateLimit-Reset field you must be aware that many

throttled clients may come back at the very moment specified.

This is true for Retry-After too.

For example, if the quota resets every day at 18:00:00 and your

server returns the RateLimit-Reset field accordingly

 Date: Tue, 15 Nov 1994 08:00:00 GMT

 RateLimit-Reset: 36000

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

there's a high probability that all clients will show up at

18:00:00.

This could be mitigated by adding some jitter to the field-value.

Resource exhaustion issues can be associated with quota policies

using a large time-window, because a user agent by chance or on

purpose might consume most of its quota-units in a significantly

shorter interval.

This behavior can be even triggered by the provided RateLimit

fields. The following example describes a service with an unconsumed

quota-policy of 10000 quota-units per 1000 seconds.

RateLimit-Limit: 10000

RateLimit-Policy: 10000;w=1000

RateLimit-Remaining: 10000

RateLimit-Reset: 10

A client implementing a simple ratio between RateLimit-Remaining

field and RateLimit-Reset field could infer an average throughput of

1000 quota-units per second, while the RateLimit-Limit field conveys

a quota-policy with an average of 10 quota-units per second. If the

service cannot handle such load, it should return either a lower

RateLimit-Remaining field value or an higher RateLimit-Reset field

value. Moreover, complementing large time-window quota-policies with

a short time-window one mitigates those risks.

6.6. Denial of Service

RateLimit fields may assume unexpected values by chance or purpose.

For example, an excessively high RateLimit-Remaining field value may

be:

used by a malicious intermediary to trigger a Denial of Service

attack or consume client resources boosting its requests;

passed by a misconfigured server;

or an high RateLimit-Reset field value could inhibit clients to

contact the server.

Clients MUST validate the received values to mitigate those risks.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

¶

7. Privacy Considerations

Clients that act upon a request to rate limit are potentially re-

identifiable (see Section 7.1 of [DNS-PRIVACY]) because they react

to information that might only be given to them. Note that this

might apply to other fields too (e.g. Retry-After).

Since rate limiting is usually implemented in contexts where clients

are either identified or profiled (e.g. assigning different quota

units to different users), this is rarely a concern.

Privacy enhancing infrastructures using RateLimit fields can define

specific techniques to mitigate the risks of re-identification.

8. IANA Considerations

IANA is requested to update one registry and create one new

registry.

Please add the following entries to the "Hypertext Transfer Protocol

(HTTP) Field Name Registry" registry ([HTTP]):

Field Name Status Specification

RateLimit-Limit permanent Section 5.1 of RFC nnnn

RateLimit-Remaining permanent Section 5.3 of RFC nnnn

RateLimit-Reset permanent Section 5.4 of RFC nnnn

RateLimit-Policy permanent Section 5.2 of RFC nnnn

Table 1

8.1. RateLimit Parameters Registration

IANA is requested to create a new registry to be called "Hypertext

Transfer Protocol (HTTP) RateLimit Parameters Registry", to be

located at https://www.iana.org/assignments/http-ratelimit-

parameters. Registration is done on the advice of a Designated

Expert, appointed by the IESG or their delegate. All entries are

Specification Required ([IANA], Section 4.6).

Registration requests consist of the following information:

Parameter name: The parameter name, conforming to [STRUCTURED-

FIELDS].

Field name: The RateLimit field for which the parameter is

registered. If a parameter is intended to be used with multiple

fields, it has to be registered for each one.

Description: A brief description of the parameter.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

https://rfc-editor.org/rfc/rfc9076#section-7.1
https://www.iana.org/assignments/http-ratelimit-parameters
https://www.iana.org/assignments/http-ratelimit-parameters
https://rfc-editor.org/rfc/rfc8126#section-4.6

[HTTP]

[IANA]

[RFC2119]

[RFC5234]

[RFC7405]

[RFC8174]

[STRUCTURED-FIELDS]

Specification document: A reference to the document that

specifies the parameter, preferably including a URI that can be

used to retrieve a copy of the document.

Comments (optional): Any additional information that can be

useful.

The initial contents of this registry should be:

Field Name
Parameter

name
Description Specification

Comments

(optional)

RateLimit-

Policy
w Time window

Section 2.3 of

RFC nnnn

Table 2

9. References

9.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/rfc/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

*

¶

*

¶

¶

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941

[WEB-ORIGIN]

[DNS-PRIVACY]

[HPACK]

[HTTP-CACHING]

[RFC3339]

[RFC6585]

[STATUS429]

[UNIX]

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

9.2. Informative References

Wicinski, T., Ed., "DNS Privacy Considerations", RFC

9076, DOI 10.17487/RFC9076, July 2021, <https://www.rfc-

editor.org/rfc/rfc9076>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/rfc/rfc7541>.

Fielding, R., Ed., Nottingham, M., Ed., and J.

Reschke, Ed., "HTTP Caching", STD 98, RFC 9111, DOI

10.17487/RFC9111, June 2022, <https://www.rfc-editor.org/

rfc/rfc9111>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/rfc/rfc3339>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

Stewart, R., Tuexen, M., and P. Lei, "Stream Control

Transmission Protocol (SCTP) Stream Reconfiguration", RFC

6525, DOI 10.17487/RFC6525, February 2012, <https://

www.rfc-editor.org/rfc/rfc6525>.

The Open Group, "The Single UNIX Specification, Version 2

- 6 Vol Set for UNIX 98", February 1997.

Appendix A. Rate-limiting and quotas

Servers use quota mechanisms to avoid systems overload, to ensure an

equitable distribution of computational resources or to enforce

other policies - e.g. monetization.

A basic quota mechanism limits the number of acceptable requests in

a given time window, e.g. 10 requests per second.

When quota is exceeded, servers usually do not serve the request

replying instead with a 4xx HTTP status code (e.g. 429 or 403) or

adopt more aggressive policies like dropping connections.

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc9076
https://www.rfc-editor.org/rfc/rfc9076
https://www.rfc-editor.org/rfc/rfc7541
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc6585
https://www.rfc-editor.org/rfc/rfc6525
https://www.rfc-editor.org/rfc/rfc6525

Quotas may be enforced on different basis (e.g. per user, per IP,

per geographic area, ..) and at different levels. For example, an

user may be allowed to issue:

10 requests per second;

limited to 60 requests per minute;

limited to 1000 requests per hour.

Moreover system metrics, statistics and heuristics can be used to

implement more complex policies, where the number of acceptable

requests and the time window are computed dynamically.

To help clients throttling their requests, servers may expose the

counters used to evaluate quota policies via HTTP header fields.

Those response headers may be added by HTTP intermediaries such as

API gateways and reverse proxies.

On the web we can find many different rate-limit headers, usually

containing the number of allowed requests in a given time window,

and when the window is reset.

The common choice is to return three headers containing:

the maximum number of allowed requests in the time window;

the number of remaining requests in the current window;

the time remaining in the current window expressed in seconds or

as a timestamp;

A.1. Interoperability issues

A major interoperability issue in throttling is the lack of standard

headers, because:

each implementation associates different semantics to the same

header field names;

header field names proliferates.

User agents interfacing with different servers may thus need to

process different headers, or the very same application interface

that sits behind different reverse proxies may reply with different

throttling headers.

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

*

¶

* ¶

¶

Appendix B. Examples

B.1. Unparameterized responses

B.1.1. Throttling information in responses

The client exhausted its service-limit for the next 50 seconds. The

time-window is communicated out-of-band or inferred by the field

values.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

Ratelimit-Remaining: 0

Ratelimit-Reset: 50

{"hello": "world"}

Since the field values are not necessarily correlated with the

response status code, a subsequent request is not required to fail.

The example below shows that the server decided to serve the request

even if RateLimit-Remaining field value is 0. Another server, or the

same server under other load conditions, could have decided to

throttle the request instead.

Request:

GET /items/456 HTTP/1.1

Host: api.example

Response:

¶

¶

¶

¶

¶

¶

¶

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

Ratelimit-Remaining: 0

Ratelimit-Reset: 48

{"still": "successful"}

B.1.2. Use in conjunction with custom fields

The server uses two custom fields, namely acme-RateLimit-DayLimit

and acme-RateLimit-HourLimit to expose the following policy:

5000 daily quota-units;

1000 hourly quota-units.

The client consumed 4900 quota-units in the first 14 hours.

Despite the next hourly limit of 1000 quota-units, the closest limit

to reach is the daily one.

The server then exposes the RateLimit fields to inform the client

that:

it has only 100 quota-units left;

the window will reset in 10 hours.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

acme-RateLimit-DayLimit: 5000

acme-RateLimit-HourLimit: 1000

RateLimit-Limit: 5000

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

¶

¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

B.1.3. Use for limiting concurrency

Throttling fields may be used to limit concurrency, advertising

limits that are lower than the usual ones in case of saturation,

thus increasing availability.

The server adopted a basic policy of 100 quota-units per minute, and

in case of resource exhaustion adapts the returned values reducing

both RateLimit-Limit and RateLimit-Remaining field values.

After 2 seconds the client consumed 40 quota-units

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 60

RateLimit-Reset: 58

{"elapsed": 2, "issued": 40}

At the subsequent request - due to resource exhaustion - the server

advertises only RateLimit-Remaining: 20.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 20

RateLimit-Reset: 56

{"elapsed": 4, "issued": 41}

B.1.4. Use in throttled responses

A client exhausted its quota and the server throttles it sending

Retry-After.

In this example, the values of Retry-After and RateLimit-Reset field

reference the same moment, but this is not a requirement.

The 429 (Too Many Request) HTTP status code is just used as an

example.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Date: Mon, 05 Aug 2019 09:27:00 GMT

Retry-After: Mon, 05 Aug 2019 09:27:05 GMT

RateLimit-Reset: 5

RateLimit-Limit: 100

Ratelimit-Remaining: 0

{

"title": "Too Many Requests",

"status": 429,

"detail": "You have exceeded your quota"

}

¶

¶

¶

¶

¶

¶

¶

¶

B.2. Parameterized responses

B.2.1. Throttling window specified via parameter

The client has 99 quota-units left for the next 50 seconds. The

time-window is communicated by the w parameter, so we know the

throughput is 100 quota-units per minute.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 99

Ratelimit-Reset: 50

{"hello": "world"}

B.2.2. Dynamic limits with parameterized windows

The policy conveyed by the RateLimit-Limit field states that the

server accepts 100 quota-units per minute.

To avoid resource exhaustion, the server artificially lowers the

actual limits returned in the throttling headers.

The RateLimit-Remaining field then advertises only 9 quota-units for

the next 50 seconds to slow down the client.

Note that the server could have lowered even the other values in the

RateLimit-Limit field: this specification does not mandate any

relation between the field values contained in subsequent responses.

Request:

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 9

Ratelimit-Reset: 50

{

 "status": 200,

 "detail": "Just slow down without waiting."

}

B.2.3. Dynamic limits for pushing back and slowing down

Continuing the previous example, let's say the client waits 10

seconds and performs a new request which, due to resource

exhaustion, the server rejects and pushes back, advertising

RateLimit-Remaining: 0 for the next 20 seconds.

The server advertises a smaller window with a lower limit to slow

down the client for the rest of its original window after the 20

seconds elapse.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

RateLimit-Limit: 0

RateLimit-Policy: 15;w=20

Ratelimit-Remaining: 0

Ratelimit-Reset: 20

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

¶

¶

¶

¶

¶

¶

¶

¶

B.3. Dynamic limits for pushing back with Retry-After and slow down

Alternatively, given the same context where the previous example

starts, we can convey the same information to the client via Retry-

After, with the advantage that the server can now specify the

policy's nominal limit and window that will apply after the reset,

e.g. assuming the resource exhaustion is likely to be gone by then,

so the advertised policy does not need to be adjusted, yet we

managed to stop requests for a while and slow down the rest of the

current window.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Retry-After: 20

RateLimit-Limit: 15

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 15

Ratelimit-Reset: 40

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

Note that in this last response the client is expected to honor

Retry-After and perform no requests for the specified amount of

time, whereas the previous example would not force the client to

stop requests before the reset time is elapsed, as it would still be

free to query again the server even if it is likely to have the

request rejected.

B.3.1. Missing Remaining information

The server does not expose RateLimit-Remaining field values (for

example, because the underlying counters are not available).

Instead, it resets the limit counter every second.

¶

¶

¶

¶

¶

¶

¶

¶

It communicates to the client the limit of 10 quota-units per second

always returning the couple RateLimit-Limit and RateLimit-Reset

field.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"first": "request"}

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"second": "request"}

B.3.2. Use with multiple windows

This is a standardized way of describing the policy detailed in

Appendix B.1.2:

5000 daily quota-units;

1000 hourly quota-units.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

The client consumed 4900 quota-units in the first 14 hours.

Despite the next hourly limit of 1000 quota-units, the closest limit

to reach is the daily one.

The server then exposes the RateLimit fields to inform the client

that:

it has only 100 quota-units left;

the window will reset in 10 hours;

the expiring-limit is 5000.

Request:

GET /items/123 HTTP/1.1

Host: api.example

Response:

HTTP/1.1 200 OK

Content-Type: application/json

RateLimit-Limit: 5000

RateLimit-Policy: 1000;w=3600, 5000;w=86400

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

FAQ

This section is to be removed before publishing as an RFC.

Why defining standard fields for throttling?

To simplify enforcement of throttling policies.

Can I use RateLimit fields in throttled responses (eg with

status code 429)?

Yes, you can.

Are those specs tied to RFC 6585?

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

1. ¶

¶

2.

¶

¶

3. ¶

No. [RFC6585] defines the 429 status code and we use it just as

an example of a throttled request, that could instead use even

403 or whatever status code. The goal of this specification is

to standardize the name and semantic of three ratelimit fields

widely used on the internet. Stricter relations with status

codes or error response payloads would impose behaviors to all

the existing implementations making the adoption more complex.

Why don't pass the throttling scope as a parameter?

The word "scope" can have different meanings: for example it

can be an URL, or an authorization scope. Since authorization

is out of the scope of this document (see Section 1.1), and

that we rely only on [HTTP], in Section 1.1 we defined "scope"

in terms of URL.

Since clients are not required to process quota policies (see

Section 4), we could add a new "RateLimit-Scope" field to this

spec. See this discussion on a similar thread

Specific ecosystems can still bake their own prefixed

parameters, such as acme-auth-scope or acme-url-scope and

ensure that clients process them. This behavior cannot be

relied upon when communicating between different ecosystems.

We are open to suggestions: comment on this issue

Why using delay-seconds instead of a UNIX Timestamp? Why not

using subsecond precision?

Using delay-seconds aligns with Retry-After, which is returned

in similar contexts, eg on 429 responses.

Timestamps require a clock synchronization protocol (see

Section 5.6.7 of [HTTP]). This may be problematic (e.g. clock

adjustment, clock skew, failure of hardcoded clock

synchronization servers, IoT devices, ..). Moreover timestamps

may not be monotonically increasing due to clock adjustment.

See Another NTP client failure story

We did not use subsecond precision because:

that is more subject to system clock correction like the one

implemented via the adjtimex() Linux system call;

response-time latency may not make it worth. A brief

discussion on the subject is on the httpwg ml

almost all rate-limit headers implementations do not use it.

¶

4. ¶

¶

¶

¶

¶

5.

¶

¶

¶

¶

*

¶

*

¶

* ¶

https://github.com/httpwg/http-core/pull/317#issuecomment-585868767
https://github.com/ioggstream/draft-polli-ratelimit-headers/issues/70
https://rfc-editor.org/rfc/rfc9110#section-5.6.7
https://community.ntppool.org/t/another-ntp-client-failure-story/1014/
https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0202.html

Why not support multiple quota remaining?

While this might be of some value, my experience suggests that

overly-complex quota implementations results in lower

effectiveness of this policy. This spec allows the client to

easily focusing on RateLimit-Remaining and RateLimit-Reset.

Shouldn't I limit concurrency instead of request rate?

You can use this specification to limit concurrency at the HTTP

level (see {#use-for-limiting-concurrency}) and help clients to

shape their requests avoiding being throttled out.

A problematic way to limit concurrency is connection dropping,

especially when connections are multiplexed (e.g. HTTP/2)

because this results in unserviced client requests, which is

something we want to avoid.

A semantic way to limit concurrency is to return 503 + Retry-

After in case of resource saturation (e.g. thrashing,

connection queues too long, Service Level Objectives not meet,

..). Saturation conditions can be either dynamic or static: all

this is out of the scope for the current document.

Do a positive value of RateLimit-Remaining field imply any

service guarantee for my future requests to be served?

No. FAQ integrated in Section 5.3.

Is the quota-policy definition Section 2.3 too complex?

You can always return the simplest form of the 3 fields

RateLimit-Limit: 100

RateLimit-Remaining: 50

RateLimit-Reset: 60

The key runtime value is the first element of the list: expiring-

limit, the others quota-policy are informative. So for the following

field:

RateLimit-Limit: 100

RateLimit-Policy: 100;w=60;burst=1000;comment="sliding window", 5000;w=3600;burst=0;comment="fixed window"

6. ¶

¶

7. ¶

¶

¶

¶

8.

¶

¶

9. ¶

¶

¶

¶

¶

the key value is the one referencing the lowest limit: 100

Can we use shorter names? Why don't put everything in one

field?

The most common syntax we found on the web is X-RateLimit-* and when

starting this I-D we opted for it

The basic form of those fields is easily parseable, even by

implementers processing responses using technologies like dynamic

interpreter with limited syntax.

Using a single field complicates parsing and takes a significantly

different approach from the existing ones: this can limit adoption.

Why don't mention connections?

Beware of the term "connection": ￼ ￼ - it is just

one possible saturation cause. Once you go that path ￼

you will expose other infrastructural details (bandwidth, CPU,

.. see Section 6.2) ￼ and complicate client compliance;

￼ - it is an infrastructural detail defined in terms of

server and network ￼ rather than the consumed service.

This specification protects the services first, and then the

infrastructures through client cooperation (see Section 6.1).

￼ ￼ RateLimit fields enable sending on the same

connection different limit values ￼ on each response,

depending on the policy scope (e.g. per-user, per-custom-key,

..) ￼

Can intermediaries alter RateLimit fields?

Generally, they should not because it might result in

unserviced requests. There are reasonable use cases for

intermediaries mangling RateLimit fields though, e.g. when they

enforce stricter quota-policies, or when they are an active

component of the service. In those case we will consider them

as part of the originating infrastructure.

Why the w parameter is just informative? Could it be used by a

client to determine the request rate?

A non-informative w parameter might be fine in an environment

where clients and servers are tightly coupled. Conveying

policies with this detail on a large scale would be very

complex and implementations would be likely not interoperable.

We thus decided to leave w as an informational parameter and

only rely on RateLimit-Limit, RateLimit-Remaining field and

RateLimit-Reset field for defining the throttling behavior.

¶

1.

¶

¶

¶

¶

1. ¶

¶

2. ¶

¶

3.

¶

¶

https://github.com/ioggstream/draft-polli-ratelimit-headers/issues/34#issuecomment-519366481

RateLimit fields currently used on the web

This section is to be removed before publishing as an RFC.

Commonly used header field names are:

X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset;

X-Rate-Limit-Limit, X-Rate-Limit-Remaining, X-Rate-Limit-Reset.

There are variants too, where the window is specified in the header

field name, eg:

x-ratelimit-limit-minute, x-ratelimit-limit-hour, x-ratelimit-

limit-day

x-ratelimit-remaining-minute, x-ratelimit-remaining-hour, x-

ratelimit-remaining-day

Here are some interoperability issues:

X-RateLimit-Remaining references different values, depending on

the implementation:

seconds remaining to the window expiration

milliseconds remaining to the window expiration

seconds since UTC, in UNIX Timestamp [UNIX]

a datetime, either IMF-fixdate [HTTP] or [RFC3339]

different headers, with the same semantic, are used by different

implementers:

X-RateLimit-Limit and X-Rate-Limit-Limit

X-RateLimit-Remaining and X-Rate-Limit-Remaining

X-RateLimit-Reset and X-Rate-Limit-Reset

The semantic of RateLimit-Remaining depends on the windowing

algorithm. A sliding window policy for example may result in having

a RateLimit-Remaining field value related to the ratio between the

current and the maximum throughput. e.g.

RateLimit-Limit: 12

RateLimit-Policy: 12;w=1

RateLimit-Remaining: 6 ; using 50% of throughput, that is 6 units/s

RateLimit-Reset: 1

¶

¶

* ¶

* ¶

¶

*

¶

*

¶

¶

*

¶

- ¶

- ¶

- ¶

- ¶

*

¶

- ¶

- ¶

- ¶

¶

If this is the case, the optimal solution is to achieve

RateLimit-Limit: 12

RateLimit-Policy: 12;w=1

RateLimit-Remaining: 1 ; using 100% of throughput, that is 12 units/s

RateLimit-Reset: 1

At this point you should stop increasing your request rate.

Acknowledgements

Thanks to Willi Schoenborn, Alejandro Martinez Ruiz, Alessandro

Ranellucci, Amos Jeffries, Martin Thomson, Erik Wilde and Mark

Nottingham for being the initial contributors of these

specifications. Kudos to the first community implementers: Aapo

Talvensaari, Nathan Friedly and Sanyam Dogra.

In addition to the people above, this document owes a lot to the

extensive discussion in the HTTPAPI workgroup, including Rich Salz,

Darrel Miller and Julian Reschke.

Changes

This section is to be removed before publishing as an RFC.

Since draft-ietf-httpapi-ratelimit-headers-03

This section is to be removed before publishing as an RFC.

Split policy informatio in RateLimit-Policy #81

Since draft-ietf-httpapi-ratelimit-headers-02

This section is to be removed before publishing as an RFC.

Address throttling scope #83

Since draft-ietf-httpapi-ratelimit-headers-01

This section is to be removed before publishing as an RFC.

Update IANA considerations #60

Use Structured fields #58

Reorganize document #67

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

* ¶

* ¶

Since draft-ietf-httpapi-ratelimit-headers-00

This section is to be removed before publishing as an RFC.

Use I-D.httpbis-semantics, which includes referencing delay-

seconds instead of delta-seconds. #5

Authors' Addresses

Roberto Polli

Team Digitale, Italian Government

Italy

Email: robipolli@gmail.com

Alejandro Martinez Ruiz

Red Hat

Email: alex@flawedcode.org

¶

*

¶

mailto:robipolli@gmail.com
mailto:alex@flawedcode.org

	RateLimit Fields for HTTP
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Notational Conventions

	2. Expressing rate-limit policies
	2.1. Time window
	2.2. Service limit and quota units
	2.3. Quota policy

	3. Providing RateLimit fields
	3.1. Performance considerations

	4. Receiving RateLimit fields
	4.1. Intermediaries
	4.2. Caching

	5. Fields definition
	5.1. RateLimit-Limit
	5.2. RateLimit-Policy
	5.3. RateLimit-Remaining
	5.4. RateLimit-Reset

	6. Security Considerations
	6.1. Throttling does not prevent clients from issuing requests
	6.2. Information disclosure
	6.3. Remaining quota-units are not granted requests
	6.4. Reliability of RateLimit-Reset
	6.5. Resource exhaustion
	6.6. Denial of Service

	7. Privacy Considerations
	8. IANA Considerations
	8.1. RateLimit Parameters Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Rate-limiting and quotas
	A.1. Interoperability issues

	Appendix B. Examples
	B.1. Unparameterized responses
	B.1.1. Throttling information in responses
	B.1.2. Use in conjunction with custom fields
	B.1.3. Use for limiting concurrency
	B.1.4. Use in throttled responses

	B.2. Parameterized responses
	B.2.1. Throttling window specified via parameter
	B.2.2. Dynamic limits with parameterized windows
	B.2.3. Dynamic limits for pushing back and slowing down

	B.3. Dynamic limits for pushing back with Retry-After and slow down
	B.3.1. Missing Remaining information
	B.3.2. Use with multiple windows

	FAQ
	RateLimit fields currently used on the web
	Acknowledgements
	Changes
	Since draft-ietf-httpapi-ratelimit-headers-03
	Since draft-ietf-httpapi-ratelimit-headers-02
	Since draft-ietf-httpapi-ratelimit-headers-01
	Since draft-ietf-httpapi-ratelimit-headers-00

	Authors' Addresses

