
Workgroup: HTTPAPI

Internet-Draft:

draft-ietf-httpapi-ratelimit-headers-06

Published: 22 December 2022

Intended Status: Standards Track

Expires: 25 June 2023

Authors: R. Polli

Team Digitale, Italian Government

A. Martinez

Red Hat

RateLimit header fields for HTTP

Abstract

This document defines the RateLimit-Limit, RateLimit-Remaining,

RateLimit-Reset and RateLimit-Policy HTTP header fields for servers

to advertise their current service rate limits, thereby allowing

clients to avoid being throttled.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-httpapi-ratelimit-headers/.

Discussion of this document takes place on the HTTPAPI Working Group

mailing list (mailto:httpapi@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/httpapi/. Subscribe at

https://www.ietf.org/mailman/listinfo/httpapi/. Working Group

information can be found at https://datatracker.ietf.org/wg/httpapi/

about/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-httpapi/ratelimit-headers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-httpapi-ratelimit-headers/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-ratelimit-headers/
mailto:httpapi@ietf.org
https://mailarchive.ietf.org/arch/browse/httpapi/
https://www.ietf.org/mailman/listinfo/httpapi/
https://datatracker.ietf.org/wg/httpapi/about/
https://datatracker.ietf.org/wg/httpapi/about/
https://github.com/ietf-wg-httpapi/ratelimit-headers
https://github.com/ietf-wg-httpapi/ratelimit-headers
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 25 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Goals

1.2. Notational Conventions

2. Concepts

2.1. Quota Policy

2.2. Service Limit

2.3. Time Window

3. RateLimit header field Definitions

3.1. RateLimit-Limit

3.2. RateLimit-Policy

3.3. RateLimit-Remaining

3.4. RateLimit-Reset

4. Server Behavior

4.1. Performance Considerations

5. Client Behavior

5.1. Intermediaries

5.2. Caching

6. Security Considerations

6.1. Throttling does not prevent clients from issuing requests

6.2. Information disclosure

6.3. Remaining quota units are not granted requests

6.4. Reliability of RateLimit-Reset

6.5. Resource exhaustion

6.5.1. Denial of Service

7. Privacy Considerations

8. IANA Considerations

8.1. RateLimit Parameters Registration

9. References

9.1. Normative References

9.2. Informative References

¶

¶

¶

https://trustee.ietf.org/license-info

Appendix A. Rate-limiting and quotas

A.1. Interoperability issues

Appendix B. Examples

B.1. Unparameterized responses

B.1.1. Throttling information in responses

B.1.2. Use in conjunction with custom fields

B.1.3. Use for limiting concurrency

B.1.4. Use in throttled responses

B.2. Parameterized responses

B.2.1. Throttling window specified via parameter

B.2.2. Dynamic limits with parameterized windows

B.2.3. Dynamic limits for pushing back and slowing down

B.3. Dynamic limits for pushing back with Retry-After and slow

down

B.3.1. Missing Remaining information

B.3.2. Use with multiple windows

FAQ

RateLimit header fields currently used on the web

Acknowledgements

Changes

Since draft-ietf-httpapi-ratelimit-headers-03

Since draft-ietf-httpapi-ratelimit-headers-02

Since draft-ietf-httpapi-ratelimit-headers-01

Since draft-ietf-httpapi-ratelimit-headers-00

Authors' Addresses

1. Introduction

Rate limiting HTTP clients has become a widespread practice,

especially for HTTP APIs. Typically, servers who do so limit the

number of acceptable requests in a given time window (e.g. 10

requests per second). See Appendix A for further information on the

current usage of rate limiting in HTTP.

Currently, there is no standard way for servers to communicate

quotas so that clients can throttle its requests to prevent errors.

This document defines a set of standard HTTP header fields to enable

rate limiting:

RateLimit-Limit: the server's quota for requests by the client in

the time window,

RateLimit-Remaining: the remaining quota in the current window,

RateLimit-Reset: the time remaining in the current window,

specified in seconds, and

RateLimit-Policy: the quota policy.

¶

¶

*

¶

* ¶

*

¶

* ¶

Interoperability:

Resiliency:

Documentation:

Authorization:

Throttling scope:

Response status code:

Throttling policy:

Service Level Agreement:

These fields allow the establishment of complex rate limiting

policies, including using multiple and variable time windows and

dynamic quotas, and implementing concurrency limits.

The behavior of the RateLimit-Reset header field is compatible with

the delay-seconds notation of Retry-After.

1.1. Goals

The goals of this document are:

Standardization of the names and semantics of

rate-limit headers to ease their enforcement and adoption;

Improve resiliency of HTTP infrastructure by providing

clients with information useful to throttle their requests and

prevent 4xx or 5xx responses;

Simplify API documentation by eliminating the need

to include detailed quota limits and related fields in API

documentation.

The following features are out of the scope of this document:

RateLimit header fields are not meant to support

authorization or other kinds of access controls.

This specification does not cover the throttling

scope, that may be the given resource-target, its parent path or

the whole Origin (see Section 7 of [WEB-ORIGIN]). This can be

addressed using extensibility mechanisms such as the parameter

registry Section 8.1.

RateLimit header fields may be returned in

both successful (see Section 15.3 of [HTTP]) and non-successful

responses. This specification does not cover whether non

Successful responses count on quota usage, nor it mandates any

correlation between the RateLimit values and the returned status

code.

This specification does not mandate a specific

throttling policy. The values published in the fields, including

the window size, can be statically or dynamically evaluated.

Conveyed quota hints do not imply any

service guarantee. Server is free to throttle respectful clients

under certain circumstances.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6454#section-7
https://rfc-editor.org/rfc/rfc9110#section-15.3

w:

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the Augmented BNF defined in [RFC5234] and

updated by [RFC7405] along with the "#rule" extension defined in

Section 5.6.1 of [HTTP].

The term Origin is to be interpreted as described in Section 7 of

[WEB-ORIGIN].

This document uses the terms List, Item and Integer from Section 3

of [STRUCTURED-FIELDS] to specify syntax and parsing, along with the

concept of "bare item".

The header fields defined in this document are collectively referred

to as "RateLimit header fields".

2. Concepts

2.1. Quota Policy

A quota policy is maintained by a server to limit the activity

(counted in quota units) of a given client over a period of time

(known as the time window (Section 2.3)) to a specified amount

(known as the service limit (Section 2.2)).

Quota policies can be advertised by servers (see Section 3.2), but

they are not required to be, and more than one quota policy can

affect a given request from a client to a server.

A quota policy is expressed in Structured Fields [STRUCTURED-FIELDS]

as an Integer that indicates the service limit with associated

parameters.

The following Parameters are defined in this specification:

The REQUIRED "w" parameter value conveys a time window

(Section 2.3).

For example, a quota policy of 100 quota units per minute is

expressed as:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

 100;w=60¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.1
https://rfc-editor.org/rfc/rfc8941#section-3

Other parameters are allowed and can be regarded as comments.

Parameters for use by more than one implementation or service ought

to be registered within the "Hypertext Transfer Protocol (HTTP)

RateLimit Parameters Registry", as described in Section 8.1.

Implementation- or service-specific parameters SHOULD be prefixed

parameters with a vendor identifier, e.g. acme-policy, acme-burst.

2.2. Service Limit

The service limit is a non-negative Integer indicating the maximum

amount of activity that the server is willing to accept from what it

identifies as the client (e.g., based upon originating IP or user

authentication) during a time window (Section 2.3).

The activity being limited is usually the HTTP requests made by the

client; for example "you can make 100 requests per minute". However,

a server might only rate limit some requests (based upon URI,

method, user identity, etc.), and it might weigh requests

differently. Therefore, quota policies are defined in terms of

"quota units". Servers SHOULD document how they count quota units.

For example, a server could count requests like /books/{id} once,

but count search requests like /books?author=WuMing twice. This

might result in the following counters:

Often, the service limit advertised will match the server's actual

limit. However, it MAY differ when weight mechanisms, bursts, or

other server policies are implemented. In that case the difference

SHOULD be communicated using an extension or documented separately.

2.3. Time Window

Quota policies limit the number of acceptable requests within a

given time interval, known as a time window.

The time window is a non-negative Integer value expressing that

interval in seconds, similar to the "delay-seconds" rule defined in

Section 10.2.3 of [HTTP]. Subsecond precision is not supported.

By default, a quota policy does not constrain the distribution of

quota units within the time window. If necessary, these details can

be conveyed as extension parameters.

For example, two quota policies containing further details via

extension parameters:

¶

¶

¶

¶

¶

GET /books/123 ; service-limit=4, remaining: 3, status=200

GET /books?author=WuMing ; service-limit=4, remaining: 1, status=200

GET /books?author=Eco ; service-limit=4, remaining: 0, status=429

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-10.2.3

3. RateLimit header field Definitions

The following RateLimit response header fields are defined.

3.1. RateLimit-Limit

The "RateLimit-Limit" response header field indicates the service

limit (Section 2.2) associated with the client in the current time

window (Section 2.3). If the client exceeds that limit, it MAY not

be served.

The field is an Item and its value is a non-negative Integer

referred to as the "expiring-limit". This specification does not

define Parameters for this field. If they appear, they MUST be

ignored.

The expiring-limit MUST be set to the service limit that is closest

to reaching its limit, and the associated time window MUST either

be:

inferred by the value of RateLimit-Reset header field at the

moment of the reset, or

communicated out-of-band (e.g. in the documentation).

Example:

The RateLimit-Policy header field (see Section 3.2), might contain

information on the associated time window.

This field cannot appear in a trailer section.

3.2. RateLimit-Policy

The "RateLimit-Policy" response header field indicates the quota

policies currently associated with the client. Its value is

informative.

The field is a non-empty List of Items. Each item is a quota policy

(Section 2.1). Two quota policies MUST NOT be associated with the

same quota units value.

This field can convey the time window associated with the expiring-

limit, as shown in this example:

 100;w=60;comment="fixed window"

 12;w=1;burst=1000;policy="leaky bucket"

¶

¶

¶

¶

¶

*

¶

* ¶

¶

 RateLimit-Limit: 100¶

¶

¶

¶

¶

¶

These examples show multiple policies being returned:

An example of invalid header field value with two policies

associated with the same quota units:

This field cannot appear in a trailer section.

3.3. RateLimit-Remaining

The "RateLimit-Remaining" response header field indicates the

remaining quota units associated with the expiring-limit.

The field is an Item and its value is a non-negative Integer

expressed in quota units (Section 2.2). This specification does not

define Parameters for this field. If they appear, they MUST be

ignored.

Clients MUST NOT assume that a positive RateLimit-Remaining header

field value is a guarantee that further requests will be served.

When the value of RateLimit-Remaining is low, it indicates that the

server may soon throttle the client (see Section 4).

For example:

This field cannot appear in a trailer section.

3.4. RateLimit-Reset

The "RateLimit-Reset" response header field indicates the number of

seconds until the quota associated with the expiring-limit resets.

The field is a non-negative Integer compatible with the delay-

seconds rule, because:

it does not rely on clock synchronization and is resilient to

clock adjustment and clock skew between client and server (see

Section 5.6.7 of [HTTP]);

 RateLimit-Policy: 100;w=10

 RateLimit-Limit: 100

¶

¶

 RateLimit-Policy: 10;w=1, 50;w=60, 1000;w=3600, 5000;w=86400

 RateLimit-Policy: 10;w=1;burst=1000, 1000;w=3600

¶

¶

 RateLimit-Policy: 10;w=1, 10;w=60¶

¶

¶

¶

¶

¶

¶

 RateLimit-Remaining: 50¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.7

it mitigates the risk related to thundering herd when too many

clients are serviced with the same timestamp.

This specification does not define Parameters for this field. If

they appear, they MUST be ignored.

For example:

The client MUST NOT assume that all its service limit will be reset

at the moment indicated by the RateLimit-Reset header field. The

server MAY arbitrarily alter the RateLimit-Reset header field value

between subsequent requests; for example, in case of resource

saturation or to implement sliding window policies.

This field cannot appear in a trailer section.

4. Server Behavior

A server uses the RateLimit header fields to communicate its quota

policies. A response that includes the RateLimit-Limit header field

MUST also include the RateLimit-Reset. It MAY also include a

RateLimit-Remaining header field.

A server MAY return RateLimit header fields independently of the

response status code. This includes on throttled responses. This

document does not mandate any correlation between the RateLimit

header field values and the returned status code.

Servers should be careful when returning RateLimit header fields in

redirection responses (i.e., responses with 3xx status codes)

because a low RateLimit-Remaining header field value could prevent

the client from issuing requests. For example, given the RateLimit

header fields below, a client could decide to wait 10 seconds before

following the "Location" header field (see Section 10.2.2 of

[HTTP]), because the RateLimit-Remaining header field value is 0.

If a response contains both the Retry-After and the RateLimit-Reset

header fields, the RateLimit-Reset header field value SHOULD

reference the same point in time as the Retry-After field value.

*

¶

¶

¶

 RateLimit-Reset: 50¶

¶

¶

¶

¶

¶

HTTP/1.1 301 Moved Permanently

Location: /foo/123

RateLimit-Remaining: 0

RateLimit-Limit: 10

RateLimit-Reset: 10

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-10.2.2

When using a policy involving more than one time window, the server

MUST reply with the RateLimit header fields related to the time

window with the lower RateLimit-Remaining header field values.

A service using RateLimit header fields MUST NOT convey values

exposing an unwanted volume of requests and SHOULD implement

mechanisms to cap the ratio between RateLimit-Remaining and

RateLimit-Reset header field values (see Section 6.5); this is

especially important when a quota policy uses a large time window.

Under certain conditions, a server MAY artificially lower RateLimit

header field values between subsequent requests, e.g. to respond to

Denial of Service attacks or in case of resource saturation.

4.1. Performance Considerations

Servers are not required to return RateLimit header fields in every

response, and clients need to take this into account. For example,

an implementer concerned with performance might provide RateLimit

header fields only when a given quota is going to expire.

Implementers concerned with response fields' size, might take into

account their ratio with respect to the content length, or use

header-compression HTTP features such as [HPACK].

5. Client Behavior

The RateLimit header fields can be used by clients to determine

whether the associated request respected the server's quota policy,

and as an indication of whether subsequent requests will. However,

the server might apply other criteria when servicing future

requests, and so the quota policy may not completely reflect whether

they will succeed.

For example, a successful response with the following fields:

does not guarantee that the next request will be successful.

Servers' behavior may be subject to other conditions like the one

shown in the example from Section 2.2.

A client is responsible for ensuring that RateLimit header field

values returned cause reasonable client behavior with respect to

throughput and latency (see Section 6.5 and Section 6.5.1).

¶

¶

¶

¶

¶

¶

¶

 RateLimit-Limit: 10

 RateLimit-Remaining: 1

 RateLimit-Reset: 7

¶

¶

¶

A client receiving RateLimit header fields MUST NOT assume that

future responses will contain the same RateLimit header fields, or

any RateLimit header fields at all.

Malformed RateLimit header fields MUST be ignored.

A client SHOULD NOT exceed the quota units conveyed by the

RateLimit-Remaining header field before the time window expressed in

RateLimit-Reset header field.

A client MAY still probe the server if the RateLimit-Reset header

field is considered too high.

The value of the RateLimit-Reset header field is generated at

response time: a client aware of a significant network latency MAY

behave accordingly and use other information (e.g. the "Date"

response header field, or otherwise gathered metrics) to better

estimate the RateLimit-Reset header field moment intended by the

server.

The details provided in the RateLimit-Policy header field are

informative and MAY be ignored.

If a response contains both the RateLimit-Reset and Retry-After

fields, the Retry-After field MUST take precedence and the

RateLimit-Reset header field MAY be ignored.

This specification does not mandate a specific throttling behavior

and implementers can adopt their preferred policies, including:

slowing down or preemptively back-off their request rate when

approaching quota limits;

consuming all the quota according to the exposed limits and then

wait.

5.1. Intermediaries

This section documents the considerations advised in Section 16.3.2

of [HTTP].

An intermediary that is not part of the originating service

infrastructure and is not aware of the quota policy semantic used by

the Origin Server SHOULD NOT alter the RateLimit header fields'

values in such a way as to communicate a more permissive quota

policy; this includes removing the RateLimit header fields.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-16.3.2

An intermediary MAY alter the RateLimit header fields in such a way

as to communicate a more restrictive quota policy when:

it is aware of the quota unit semantic used by the Origin Server;

it implements this specification and enforces a quota policy

which is more restrictive than the one conveyed in the fields.

An intermediary SHOULD forward a request even when presuming that it

might not be serviced; the service returning the RateLimit header

fields is the sole responsible of enforcing the communicated quota

policy, and it is always free to service incoming requests.

This specification does not mandate any behavior on intermediaries

respect to retries, nor requires that intermediaries have any role

in respecting quota policies. For example, it is legitimate for a

proxy to retransmit a request without notifying the client, and thus

consuming quota units.

Privacy considerations (Section 7) provide further guidance on

intermediaries.

5.2. Caching

[HTTP-CACHING] defines how responses can be stored and reused for

subsequent requests, including those with RateLimit header fields.

Because the information in RateLimit header fields on a cached

response may not be current, they SHOULD be ignored on responses

that come from cache (i.e., those with a positive current_age; see

Section 4.2.3 of [HTTP-CACHING]).

6. Security Considerations

6.1. Throttling does not prevent clients from issuing requests

This specification does not prevent clients from making requests.

Servers should always implement mechanisms to prevent resource

exhaustion.

6.2. Information disclosure

Servers should not disclose to untrusted parties operational

capacity information that can be used to saturate its

infrastructural resources.

While this specification does not mandate whether non-successful

responses consume quota, if error responses (such as 401

(Unauthorized) and 403 (Forbidden)) count against quota, a malicious

client could probe the endpoint to get traffic information of

another user.

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9111#section-4.2.3

As intermediaries might retransmit requests and consume quota units

without prior knowledge of the user agent, RateLimit header fields

might reveal the existence of an intermediary to the user agent.

6.3. Remaining quota units are not granted requests

RateLimit header fields convey hints from the server to the clients

in order to help them avoid being throttled out.

Clients MUST NOT consider the quota units (Section 2.2) returned in

RateLimit-Remaining header field as a service level agreement.

In case of resource saturation, the server MAY artificially lower

the returned values or not serve the request regardless of the

advertised quotas.

6.4. Reliability of RateLimit-Reset

Consider that service limit might not be restored after the moment

referenced by RateLimit-Reset header field, and the RateLimit-Reset

header field value may not be fixed nor constant.

Subsequent requests might return a higher RateLimit-Reset header

field value to limit concurrency or implement dynamic or adaptive

throttling policies.

6.5. Resource exhaustion

When returning RateLimit-Reset header field you must be aware that

many throttled clients may come back at the very moment specified.

This is true for Retry-After too.

For example, if the quota resets every day at 18:00:00 and your

server returns the RateLimit-Reset header field accordingly

there's a high probability that all clients will show up at

18:00:00.

This could be mitigated by adding some jitter to the field-value.

Resource exhaustion issues can be associated with quota policies

using a large time window, because a user agent by chance or on

purpose might consume most of its quota units in a significantly

shorter interval.

¶

¶

¶

¶

¶

¶

¶

¶

¶

 Date: Tue, 15 Nov 1994 08:00:00 GMT

 RateLimit-Reset: 36000

¶

¶

¶

¶

This behavior can be even triggered by the provided RateLimit header

fields. The following example describes a service with an unconsumed

quota policy of 10000 quota units per 1000 seconds.

A client implementing a simple ratio between RateLimit-Remaining

header field and RateLimit-Reset header field could infer an average

throughput of 1000 quota units per second, while the RateLimit-Limit

header field conveys a quota-policy with an average of 10 quota

units per second. If the service cannot handle such load, it should

return either a lower RateLimit-Remaining header field value or an

higher RateLimit-Reset header field value. Moreover, complementing

large time window quota policies with a short time window one

mitigates those risks.

6.5.1. Denial of Service

RateLimit header fields may contain unexpected values by chance or

on purpose. For example, an excessively high RateLimit-Remaining

header field value may be:

used by a malicious intermediary to trigger a Denial of Service

attack or consume client resources boosting its requests;

passed by a misconfigured server;

or a high RateLimit-Reset header field value could inhibit clients

to contact the server (e.g. similarly to receiving "Retry-after:

1000000").

To mitigate this risk, clients can set thresholds that they consider

reasonable in terms of quota units, time window, concurrent requests

or throughput, and define a consistent behavior when the RateLimit

exceed those thresholds. For example this means capping the maximum

number of request per second, or implementing retries when the

RateLimit-Reset exceeds ten minutes.

The considerations above are not limited to RateLimit header fields,

but apply to all fields affecting how clients behave in subsequent

requests (e.g. Retry-After).

7. Privacy Considerations

Clients that act upon a request to rate limit are potentially re-

identifiable (see Section 5.2.1 of [PRIVACY]) because they react to

¶

RateLimit-Limit: 10000

RateLimit-Policy: 10000;w=1000

RateLimit-Remaining: 10000

RateLimit-Reset: 10

¶

¶

¶

*

¶

* ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6973#section-5.2.1

information that might only be given to them. Note that this might

apply to other fields too (e.g. Retry-After).

Since rate limiting is usually implemented in contexts where clients

are either identified or profiled (e.g. assigning different quota

units to different users), this is rarely a concern.

Privacy enhancing infrastructures using RateLimit header fields can

define specific techniques to mitigate the risks of re-

identification.

8. IANA Considerations

IANA is requested to update one registry and create one new

registry.

Please add the following entries to the "Hypertext Transfer Protocol

(HTTP) Field Name Registry" registry ([HTTP]):

Field Name Status Specification

RateLimit-Limit permanent Section 3.1 of RFC nnnn

RateLimit-Remaining permanent Section 3.3 of RFC nnnn

RateLimit-Reset permanent Section 3.4 of RFC nnnn

RateLimit-Policy permanent Section 3.2 of RFC nnnn

Table 1

8.1. RateLimit Parameters Registration

IANA is requested to create a new registry to be called "Hypertext

Transfer Protocol (HTTP) RateLimit Parameters Registry", to be

located at https://www.iana.org/assignments/http-ratelimit-

parameters. Registration is done on the advice of a Designated

Expert, appointed by the IESG or their delegate. All entries are

Specification Required ([IANA], Section 4.6).

Registration requests consist of the following information:

Parameter name: The parameter name, conforming to

[STRUCTURED-FIELDS].

Field name: The RateLimit header field for which the parameter is

registered. If a parameter is intended to be used with multiple

fields, it has to be registered for each one.

Description: A brief description of the parameter.

Specification document: A reference to the document that

specifies the parameter, preferably including a URI that can be

used to retrieve a copy of the document.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

https://www.iana.org/assignments/http-ratelimit-parameters
https://www.iana.org/assignments/http-ratelimit-parameters
https://rfc-editor.org/rfc/rfc8126#section-4.6

[HTTP]

[IANA]

[RFC2119]

[RFC5234]

[RFC7405]

[RFC8174]

[STRUCTURED-FIELDS]

[WEB-ORIGIN]

Comments (optional): Any additional information that can be

useful.

The initial contents of this registry should be:

Field Name
Parameter

name
Description Specification

Comments

(optional)

RateLimit-

Policy
w Time window

Section 2.1 of

RFC nnnn

Table 2

9. References

9.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/rfc/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

*

¶

¶

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454

[HPACK]

[HTTP-CACHING]

[PRIVACY]

[RFC3339]

[RFC6585]

[UNIX]

9.2. Informative References

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/rfc/rfc7541>.

Fielding, R., Ed., Nottingham, M., Ed., and J.

Reschke, Ed., "HTTP Caching", STD 98, RFC 9111, DOI

10.17487/RFC9111, June 2022, <https://www.rfc-editor.org/

rfc/rfc9111>.

Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

Morris, J., Hansen, M., and R. Smith, "Privacy

Considerations for Internet Protocols", RFC 6973, DOI

10.17487/RFC6973, July 2013, <https://www.rfc-editor.org/

rfc/rfc6973>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/rfc/rfc3339>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

The Open Group, "The Single UNIX Specification, Version 2

- 6 Vol Set for UNIX 98", February 1997.

Appendix A. Rate-limiting and quotas

Servers use quota mechanisms to avoid systems overload, to ensure an

equitable distribution of computational resources or to enforce

other policies - e.g. monetization.

A basic quota mechanism limits the number of acceptable requests in

a given time window, e.g. 10 requests per second.

When quota is exceeded, servers usually do not serve the request

replying instead with a 4xx HTTP status code (e.g. 429 or 403) or

adopt more aggressive policies like dropping connections.

Quotas may be enforced on different basis (e.g. per user, per IP,

per geographic area, ..) and at different levels. For example, an

user may be allowed to issue:

10 requests per second;

limited to 60 requests per minute;

limited to 1000 requests per hour.

¶

¶

¶

¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc7541
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc6973
https://www.rfc-editor.org/rfc/rfc6973
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc6585

Moreover system metrics, statistics and heuristics can be used to

implement more complex policies, where the number of acceptable

requests and the time window are computed dynamically.

To help clients throttling their requests, servers may expose the

counters used to evaluate quota policies via HTTP header fields.

Those response headers may be added by HTTP intermediaries such as

API gateways and reverse proxies.

On the web we can find many different rate-limit headers, usually

containing the number of allowed requests in a given time window,

and when the window is reset.

The common choice is to return three headers containing:

the maximum number of allowed requests in the time window;

the number of remaining requests in the current window;

the time remaining in the current window expressed in seconds or

as a timestamp;

A.1. Interoperability issues

A major interoperability issue in throttling is the lack of standard

headers, because:

each implementation associates different semantics to the same

header field names;

header field names proliferates.

User agents interfacing with different servers may thus need to

process different headers, or the very same application interface

that sits behind different reverse proxies may reply with different

throttling headers.

Appendix B. Examples

B.1. Unparameterized responses

B.1.1. Throttling information in responses

The client exhausted its service-limit for the next 50 seconds. The

time-window is communicated out-of-band or inferred by the field

values.

Request:

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

*

¶

* ¶

¶

¶

¶

Response:

Since the field values are not necessarily correlated with the

response status code, a subsequent request is not required to fail.

The example below shows that the server decided to serve the request

even if RateLimit-Remaining header field value is 0. Another server,

or the same server under other load conditions, could have decided

to throttle the request instead.

Request:

Response:

B.1.2. Use in conjunction with custom fields

The server uses two custom fields, namely acme-RateLimit-DayLimit

and acme-RateLimit-HourLimit to expose the following policy:

5000 daily quota units;

1000 hourly quota units.

The client consumed 4900 quota units in the first 14 hours.

Despite the next hourly limit of 1000 quota units, the closest limit

to reach is the daily one.

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

Ratelimit-Remaining: 0

Ratelimit-Reset: 50

{"hello": "world"}

¶

¶

¶

GET /items/456 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

Ratelimit-Remaining: 0

Ratelimit-Reset: 48

{"still": "successful"}

¶

¶

* ¶

* ¶

¶

¶

The server then exposes the RateLimit header fields to inform the

client that:

it has only 100 quota units left;

the window will reset in 10 hours.

Request:

Response:

B.1.3. Use for limiting concurrency

RateLimit header fields may be used to limit concurrency,

advertising limits that are lower than the usual ones in case of

saturation, thus increasing availability.

The server adopted a basic policy of 100 quota units per minute, and

in case of resource exhaustion adapts the returned values reducing

both RateLimit-Limit and RateLimit-Remaining header field values.

After 2 seconds the client consumed 40 quota units

Request:

Response:

¶

* ¶

* ¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

acme-RateLimit-DayLimit: 5000

acme-RateLimit-HourLimit: 1000

RateLimit-Limit: 5000

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

¶

¶

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

At the subsequent request - due to resource exhaustion - the server

advertises only RateLimit-Remaining: 20.

Request:

Response:

B.1.4. Use in throttled responses

A client exhausted its quota and the server throttles it sending

Retry-After.

In this example, the values of Retry-After and RateLimit-Reset

header field reference the same moment, but this is not a

requirement.

The 429 (Too Many Request) HTTP status code is just used as an

example.

Request:

Response:

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 60

RateLimit-Reset: 58

{"elapsed": 2, "issued": 40}

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 20

RateLimit-Reset: 56

{"elapsed": 4, "issued": 41}

¶

¶

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

B.2. Parameterized responses

B.2.1. Throttling window specified via parameter

The client has 99 quota units left for the next 50 seconds. The time

window is communicated by the w parameter, so we know the throughput

is 100 quota units per minute.

Request:

Response:

B.2.2. Dynamic limits with parameterized windows

The policy conveyed by the RateLimit-Limit header field states that

the server accepts 100 quota units per minute.

To avoid resource exhaustion, the server artificially lowers the

actual limits returned in the throttling headers.

The RateLimit-Remaining header field then advertises only 9 quota

units for the next 50 seconds to slow down the client.

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Date: Mon, 05 Aug 2019 09:27:00 GMT

Retry-After: Mon, 05 Aug 2019 09:27:05 GMT

RateLimit-Reset: 5

RateLimit-Limit: 100

Ratelimit-Remaining: 0

{

"title": "Too Many Requests",

"status": 429,

"detail": "You have exceeded your quota"

}

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 99

Ratelimit-Reset: 50

{"hello": "world"}

¶

¶

¶

¶

Note that the server could have lowered even the other values in the

RateLimit-Limit header field: this specification does not mandate

any relation between the field values contained in subsequent

responses.

Request:

Response:

B.2.3. Dynamic limits for pushing back and slowing down

Continuing the previous example, let's say the client waits 10

seconds and performs a new request which, due to resource

exhaustion, the server rejects and pushes back, advertising

RateLimit-Remaining: 0 for the next 20 seconds.

The server advertises a smaller window with a lower limit to slow

down the client for the rest of its original window after the 20

seconds elapse.

Request:

Response:

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 9

Ratelimit-Reset: 50

{

 "status": 200,

 "detail": "Just slow down without waiting."

}

¶

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

B.3. Dynamic limits for pushing back with Retry-After and slow down

Alternatively, given the same context where the previous example

starts, we can convey the same information to the client via Retry-

After, with the advantage that the server can now specify the

policy's nominal limit and window that will apply after the reset,

e.g. assuming the resource exhaustion is likely to be gone by then,

so the advertised policy does not need to be adjusted, yet we

managed to stop requests for a while and slow down the rest of the

current window.

Request:

Response:

Note that in this last response the client is expected to honor

Retry-After and perform no requests for the specified amount of

time, whereas the previous example would not force the client to

stop requests before the reset time is elapsed, as it would still be

free to query again the server even if it is likely to have the

request rejected.

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

RateLimit-Limit: 0

RateLimit-Policy: 15;w=20

Ratelimit-Remaining: 0

Ratelimit-Reset: 20

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Retry-After: 20

RateLimit-Limit: 15

RateLimit-Policy: 100;w=60

Ratelimit-Remaining: 15

Ratelimit-Reset: 40

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

¶

¶

B.3.1. Missing Remaining information

The server does not expose RateLimit-Remaining header field values

(for example, because the underlying counters are not available).

Instead, it resets the limit counter every second.

It communicates to the client the limit of 10 quota units per second

always returning the couple RateLimit-Limit and RateLimit-Reset

header field.

Request:

Response:

Request:

Response:

B.3.2. Use with multiple windows

This is a standardized way of describing the policy detailed in

Appendix B.1.2:

5000 daily quota units;

1000 hourly quota units.

The client consumed 4900 quota units in the first 14 hours.

¶

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"first": "request"}

¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"second": "request"}

¶

¶

* ¶

* ¶

¶

Despite the next hourly limit of 1000 quota units, the closest limit

to reach is the daily one.

The server then exposes the RateLimit header fields to inform the

client that:

it has only 100 quota units left;

the window will reset in 10 hours;

the expiring-limit is 5000.

Request:

Response:

FAQ

This section is to be removed before publishing as an RFC.

Why defining standard fields for throttling?

To simplify enforcement of throttling policies.

Can I use RateLimit header fields in throttled responses (eg

with status code 429)?

Yes, you can.

Are those specs tied to RFC 6585?

No. [RFC6585] defines the 429 status code and we use it just as

an example of a throttled request, that could instead use even

403 or whatever status code. The goal of this specification is

to standardize the name and semantic of three RateLimit header

fields widely used on the internet. Stricter relations with

status codes or error response payloads would impose behaviors

¶

¶

* ¶

* ¶

* ¶

¶

GET /items/123 HTTP/1.1

Host: api.example

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

RateLimit-Limit: 5000

RateLimit-Policy: 1000;w=3600, 5000;w=86400

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

¶

¶

1. ¶

¶

2.

¶

¶

3. ¶

to all the existing implementations making the adoption more

complex.

Why don't pass the throttling scope as a parameter?

The word "scope" can have different meanings: for example it

can be an URL, or an authorization scope. Since authorization

is out of the scope of this document (see Section 1.1), and

that we rely only on [HTTP], in Section 1.1 we defined "scope"

in terms of URL.

Since clients are not required to process quota policies (see

Section 5), we could add a new "RateLimit-Scope" field to this

spec. See this discussion on a similar thread

Specific ecosystems can still bake their own prefixed

parameters, such as acme-auth-scope or acme-url-scope and

ensure that clients process them. This behavior cannot be

relied upon when communicating between different ecosystems.

We are open to suggestions: comment on this issue

Why using delay-seconds instead of a UNIX Timestamp? Why not

using subsecond precision?

Using delay-seconds aligns with Retry-After, which is returned

in similar contexts, eg on 429 responses.

Timestamps require a clock synchronization protocol (see

Section 5.6.7 of [HTTP]). This may be problematic (e.g. clock

adjustment, clock skew, failure of hardcoded clock

synchronization servers, IoT devices, ..). Moreover timestamps

may not be monotonically increasing due to clock adjustment.

See Another NTP client failure story

We did not use subsecond precision because:

that is more subject to system clock correction like the one

implemented via the adjtimex() Linux system call;

response-time latency may not make it worth. A brief

discussion on the subject is on the httpwg ml

almost all rate-limit headers implementations do not use it.

Why not support multiple quota remaining?

While this might be of some value, my experience suggests that

overly-complex quota implementations results in lower

¶

4. ¶

¶

¶

¶

¶

5.

¶

¶

¶

¶

*

¶

*

¶

* ¶

6. ¶

https://github.com/httpwg/http-core/pull/317#issuecomment-585868767
https://github.com/ioggstream/draft-polli-ratelimit-headers/issues/70
https://rfc-editor.org/rfc/rfc9110#section-5.6.7
https://community.ntppool.org/t/another-ntp-client-failure-story/1014/
https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0202.html

effectiveness of this policy. This spec allows the client to

easily focusing on RateLimit-Remaining and RateLimit-Reset.

Shouldn't I limit concurrency instead of request rate?

You can use this specification to limit concurrency at the HTTP

level (see {#use-for-limiting-concurrency}) and help clients to

shape their requests avoiding being throttled out.

A problematic way to limit concurrency is connection dropping,

especially when connections are multiplexed (e.g. HTTP/2)

because this results in unserviced client requests, which is

something we want to avoid.

A semantic way to limit concurrency is to return 503 + Retry-

After in case of resource saturation (e.g. thrashing,

connection queues too long, Service Level Objectives not meet,

..). Saturation conditions can be either dynamic or static: all

this is out of the scope for the current document.

Do a positive value of RateLimit-Remaining header field imply

any service guarantee for my future requests to be served?

No. FAQ integrated in Section 3.3.

Is the quota-policy definition Section 2.1 too complex?

You can always return the simplest form of the 3 fields

The key runtime value is the first element of the list: expiring-

limit, the others quota-policy are informative. So for the following

field:

the key value is the one referencing the lowest limit: 100

Can we use shorter names? Why don't put everything in one

field?

The most common syntax we found on the web is X-RateLimit-* and when

starting this I-D we opted for it

¶

7. ¶

¶

¶

¶

8.

¶

¶

9. ¶

¶

RateLimit-Limit: 100

RateLimit-Remaining: 50

RateLimit-Reset: 60

¶

¶

RateLimit-Limit: 100

RateLimit-Policy: 100;w=60;burst=1000;comment="sliding window", 5000;w=3600;burst=0;comment="fixed window"

¶

¶

1.

¶

¶

https://github.com/ioggstream/draft-polli-ratelimit-headers/issues/34#issuecomment-519366481

The basic form of those fields is easily parseable, even by

implementers processing responses using technologies like dynamic

interpreter with limited syntax.

Using a single field complicates parsing and takes a significantly

different approach from the existing ones: this can limit adoption.

Why don't mention connections?

Beware of the term "connection": ￼ ￼ - it is just

one possible saturation cause. Once you go that path ￼

you will expose other infrastructural details (bandwidth, CPU,

.. see Section 6.2) ￼ and complicate client compliance;

￼ - it is an infrastructural detail defined in terms of

server and network ￼ rather than the consumed service.

This specification protects the services first, and then the

infrastructures through client cooperation (see Section 6.1).

￼ ￼ RateLimit header fields enable sending on the

same connection different limit values ￼ on each

response, depending on the policy scope (e.g. per-user, per-

custom-key, ..) ￼

Can intermediaries alter RateLimit header fields?

Generally, they should not because it might result in

unserviced requests. There are reasonable use cases for

intermediaries mangling RateLimit header fields though, e.g.

when they enforce stricter quota-policies, or when they are an

active component of the service. In those case we will consider

them as part of the originating infrastructure.

Why the w parameter is just informative? Could it be used by a

client to determine the request rate?

A non-informative w parameter might be fine in an environment

where clients and servers are tightly coupled. Conveying

policies with this detail on a large scale would be very

complex and implementations would be likely not interoperable.

We thus decided to leave w as an informational parameter and

only rely on RateLimit-Limit, RateLimit-Remaining header field

and RateLimit-Reset header field for defining the throttling

behavior.

Can I use RateLimit fields in trailers? Servers usually

establish whether the request is in-quota before creating a

response, so the RateLimit field values should be already

available in that moment. Supporting trailers has the only

advantage that allows to provide more up-to-date information to

the client in case of slow responses. However, this complicates

client implementations with respect to combining fields from

¶

¶

1. ¶

¶

2. ¶

¶

3.

¶

¶

4.

headers and accounting for intermediaries that drop trailers.

Since there are no current implementations that use trailers,

we decided to leave this as a future-work.

RateLimit header fields currently used on the web

This section is to be removed before publishing as an RFC.

Commonly used header field names are:

X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset;

X-Rate-Limit-Limit, X-Rate-Limit-Remaining, X-Rate-Limit-Reset.

There are variants too, where the window is specified in the header

field name, eg:

x-ratelimit-limit-minute, x-ratelimit-limit-hour, x-ratelimit-

limit-day

x-ratelimit-remaining-minute, x-ratelimit-remaining-hour, x-

ratelimit-remaining-day

Here are some interoperability issues:

X-RateLimit-Remaining references different values, depending on

the implementation:

seconds remaining to the window expiration

milliseconds remaining to the window expiration

seconds since UTC, in UNIX Timestamp [UNIX]

a datetime, either IMF-fixdate [HTTP] or [RFC3339]

different headers, with the same semantic, are used by different

implementers:

X-RateLimit-Limit and X-Rate-Limit-Limit

X-RateLimit-Remaining and X-Rate-Limit-Remaining

X-RateLimit-Reset and X-Rate-Limit-Reset

The semantic of RateLimit-Remaining depends on the windowing

algorithm. A sliding window policy for example may result in having

a RateLimit-Remaining header field value related to the ratio

between the current and the maximum throughput. e.g.

¶

¶

¶

* ¶

* ¶

¶

*

¶

*

¶

¶

*

¶

- ¶

- ¶

- ¶

- ¶

*

¶

- ¶

- ¶

- ¶

¶

If this is the case, the optimal solution is to achieve

At this point you should stop increasing your request rate.

Acknowledgements

Thanks to Willi Schoenborn, Alejandro Martinez Ruiz, Alessandro

Ranellucci, Amos Jeffries, Martin Thomson, Erik Wilde and Mark

Nottingham for being the initial contributors of these

specifications. Kudos to the first community implementers: Aapo

Talvensaari, Nathan Friedly and Sanyam Dogra.

In addition to the people above, this document owes a lot to the

extensive discussion in the HTTPAPI workgroup, including Rich Salz,

Darrel Miller and Julian Reschke.

Changes

This section is to be removed before publishing as an RFC.

Since draft-ietf-httpapi-ratelimit-headers-03

This section is to be removed before publishing as an RFC.

Split policy informatio in RateLimit-Policy #81

Since draft-ietf-httpapi-ratelimit-headers-02

This section is to be removed before publishing as an RFC.

Address throttling scope #83

Since draft-ietf-httpapi-ratelimit-headers-01

This section is to be removed before publishing as an RFC.

Update IANA considerations #60

Use Structured fields #58

RateLimit-Limit: 12

RateLimit-Policy: 12;w=1

RateLimit-Remaining: 6 ; using 50% of throughput, that is 6 units/s

RateLimit-Reset: 1

¶

¶

RateLimit-Limit: 12

RateLimit-Policy: 12;w=1

RateLimit-Remaining: 1 ; using 100% of throughput, that is 12 units/s

RateLimit-Reset: 1

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

* ¶

Reorganize document #67

Since draft-ietf-httpapi-ratelimit-headers-00

This section is to be removed before publishing as an RFC.

Use I-D.httpbis-semantics, which includes referencing delay-

seconds instead of delta-seconds. #5

Authors' Addresses

Roberto Polli

Team Digitale, Italian Government

Italy

Email: robipolli@gmail.com

Alejandro Martinez Ruiz

Red Hat

Email: alex@flawedcode.org

* ¶

¶

*

¶

mailto:robipolli@gmail.com
mailto:alex@flawedcode.org

	RateLimit header fields for HTTP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Notational Conventions

	2. Concepts
	2.1. Quota Policy
	2.2. Service Limit
	2.3. Time Window

	3. RateLimit header field Definitions
	3.1. RateLimit-Limit
	3.2. RateLimit-Policy
	3.3. RateLimit-Remaining
	3.4. RateLimit-Reset

	4. Server Behavior
	4.1. Performance Considerations

	5. Client Behavior
	5.1. Intermediaries
	5.2. Caching

	6. Security Considerations
	6.1. Throttling does not prevent clients from issuing requests
	6.2. Information disclosure
	6.3. Remaining quota units are not granted requests
	6.4. Reliability of RateLimit-Reset
	6.5. Resource exhaustion
	6.5.1. Denial of Service

	7. Privacy Considerations
	8. IANA Considerations
	8.1. RateLimit Parameters Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Rate-limiting and quotas
	A.1. Interoperability issues

	Appendix B. Examples
	B.1. Unparameterized responses
	B.1.1. Throttling information in responses
	B.1.2. Use in conjunction with custom fields
	B.1.3. Use for limiting concurrency
	B.1.4. Use in throttled responses

	B.2. Parameterized responses
	B.2.1. Throttling window specified via parameter
	B.2.2. Dynamic limits with parameterized windows
	B.2.3. Dynamic limits for pushing back and slowing down

	B.3. Dynamic limits for pushing back with Retry-After and slow down
	B.3.1. Missing Remaining information
	B.3.2. Use with multiple windows

	FAQ
	RateLimit header fields currently used on the web
	Acknowledgements
	Changes
	Since draft-ietf-httpapi-ratelimit-headers-03
	Since draft-ietf-httpapi-ratelimit-headers-02
	Since draft-ietf-httpapi-ratelimit-headers-01
	Since draft-ietf-httpapi-ratelimit-headers-00

	Authors' Addresses

