
Workgroup: HTTPAPI

Internet-Draft:

draft-ietf-httpapi-rfc7807bis-06

Obsoletes: 7807 (if approved)

Published: 1 March 2023

Intended Status: Standards Track

Expires: 2 September 2023

Authors: M. Nottingham E. Wilde S. Dalal

Problem Details for HTTP APIs

Abstract

This document defines a "problem detail" to carry machine-readable

details of errors in HTTP response content to avoid the need to

define new error response formats for HTTP APIs.

This document obsoletes RFC 7807.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-httpapi/rfc7807bis.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7807
https://github.com/ietf-wg-httpapi/rfc7807bis
https://github.com/ietf-wg-httpapi/rfc7807bis
https://datatracker.ietf.org/drafts/current/


(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

2.  Notational Conventions

3.  The Problem Details JSON Object

3.1.  Members of a Problem Details Object

3.1.1.  "type"

3.1.2.  "status"

3.1.3.  "title"

3.1.4.  "detail"

3.1.5.  "instance"

3.2.  Extension Members

4.  Defining New Problem Types

4.1.  Example

4.2.  Registered Problem Types

4.2.1.  about:blank

5.  Security Considerations

6.  IANA Considerations

7.  References

7.1.  Normative References

7.2.  Informative References

Appendix A.  JSON Schema for HTTP Problems

Appendix B.  HTTP Problems and XML

Appendix C.  Using Problem Details with Other Formats

Appendix D.  Changes from RFC 7807

Acknowledgements

Authors' Addresses

1. Introduction

HTTP status codes (Section 15 of [HTTP]) cannot always convey enough

information about errors to be helpful. While humans using Web

browsers can often understand an HTML [HTML5] response content, non-

human consumers of HTTP APIs have difficulty doing so.

To address that shortcoming, this specification defines simple JSON 

[JSON] and XML [XML] document formats to describe the specifics of

problem(s) encountered -- "problem details".

For example, consider a response indicating that the client's

account doesn't have enough credit. The API's designer might decide

¶

¶

¶

https://trustee.ietf.org/license-info
https://rfc-editor.org/rfc/rfc9110#section-15


to use the 403 Forbidden status code to inform HTTP-generic software

(such as client libraries, caches, and proxies) of the response's

general semantics. API-specific problem details (such as why the

server refused the request and the applicable account balance) can

be carried in the response content, so that the client can act upon

them appropriately (for example, triggering a transfer of more

credit into the account).

This specification identifies the specific "problem type" (e.g.,

"out of credit") with a URI [URI]. HTTP APIs can use URIs under

their control to identify problems specific to them, or can reuse

existing ones to facilitate interoperability and leverage common

semantics (see Section 4.2).

Problem details can contain other information, such as a URI

identifying the problem's specific occurrence (effectively giving an

identifier to the concept "The time Joe didn't have enough credit

last Thursday"), which can be useful for support or forensic

purposes.

The data model for problem details is a JSON [JSON] object; when

serialized as a JSON document, it uses the "application/

problem+json" media type. Appendix B defines an equivalent XML

format, which uses the "application/problem+xml" media type.

When they are conveyed in an HTTP response, the contents of problem

details can be negotiated using proactive negotiation; see 

Section 12.1 of [HTTP]. In particular, the language used for human-

readable strings (such as those in title and description) can be

negotiated using the Accept-Language request header field

(Section 12.5.4 of [HTTP]), although that negotiation may still

result in a non-preferred, default representation being returned.

Problem details can be used with any HTTP status code, but they most

naturally fit the semantics of 4xx and 5xx responses. Note that

problem details are (naturally) not the only way to convey the

details of a problem in HTTP. If the response is still a

representation of a resource, for example, it's often preferable to

describe the relevant details in that application's format.

Likewise, defined HTTP status codes cover many situations with no

need to convey extra detail.

This specification's aim is to define common error formats for

applications that need one so that they aren't required to define

their own, or worse, tempted to redefine the semantics of existing

HTTP status codes. Even if an application chooses not to use it to

convey errors, reviewing its design can help guide the design

decisions faced when conveying errors in an existing format.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-12.1
https://rfc-editor.org/rfc/rfc9110#section-12.5.4


See Appendix D for a list of changes from RFC 7807.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. The Problem Details JSON Object

The canonical model for problem details is a JSON [JSON] object.

When serialized in a JSON document, that format is identified with

the "application/problem+json" media type.

For example:

Here, the out-of-credit problem (identified by its type) indicates

the reason for the 403 in "title", identifies the specific problem

occurrence with "instance", gives occurrence-specific details in

"detail", and adds two extensions: "balance" conveys the account's

balance, and "accounts" lists links where the account can be topped

up.

¶

¶

¶

¶

POST /purchase HTTP/1.1

Host: store.example.com

Content-Type: application/json

Accept: application/json, application/problem+json

{

  "item": 123456,

  "quantity": 2

}

¶

HTTP/1.1 403 Forbidden

Content-Type: application/problem+json

Content-Language: en

{

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30,

 "accounts": ["/account/12345",

              "/account/67890"]

}

¶

¶



When designed to accommodate it, problem-specific extensions can

convey more than one instance of the same problem type. For example:

The fictional problem type here defines the "errors" extension, an

array that describes the details of each validation error. Each

member is an object containing "detail" to describe the issue, and

"pointer" to locate the problem within the request's content using a

JSON Pointer [JSON-POINTER].

When an API encounters multiple problems that do not share the same

type, it is RECOMMENDED that the most relevant or urgent problem be

represented in the response. While it is possible to create generic

"batch" problem types that convey multiple, disparate types, they do

not map well into HTTP semantics.

Note also that the API has responded with the application/

problem+json type, even though the client did not list it in Accept,

as is allowed by HTTP (see Section 12.5.1 of [HTTP]).

¶

POST /details HTTP/1.1

Host: account.example.com

Accept: application/json

{

  "age": 42.3,

  "profile": {

    "color": "yellow"

  }

}

¶

HTTP/1.1 400 Bad Request

Content-Type: application/problem+json

Content-Language: en

{

 "type": "https://example.net/validation-error",

 "title": "Your request is not valid.",

 "errors": [

             {

               "detail": "must be a positive integer",

               "pointer": "#/age"

             },

             {

               "detail": "must be 'green', 'red' or 'blue'",

               "pointer": "#/profile/color"

             }

          ]

}

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-12.5.1


3.1. Members of a Problem Details Object

Problem detail objects can have the following members. If a member's

value type does not match the specified type, the member MUST be

ignored -- i.e., processing will continue as if the member had not

been present.

3.1.1. "type"

The "type" member is a JSON string containing a URI reference [URI]

that identifies the problem type. Consumers MUST use the "type" URI

(after resolution, if necessary) as the problem type's primary

identifier.

When this member is not present, its value is assumed to be

"about:blank".

If the type URI is a locator (e.g., those with an "http" or "https"

scheme), dereferencing it SHOULD provide human-readable

documentation for the problem type (e.g., using HTML [HTML5]).

However, consumers SHOULD NOT automatically dereference the type

URI, unless they do so when providing information to developers

(e.g., when a debugging tool is in use).

When "type" contains a relative URI, it is resolved relative to the

document's base URI, as per [URI], Section 5. However, using

relative URIs can cause confusion, and they might not be handled

correctly by all implementations.

For example, if the two resources "https://api.example.org/foo/bar/

123" and "https://api.example.org/widget/456" both respond with a

"type" equal to the relative URI reference "example-problem", when

resolved they will identify different resources ("https://

api.example.org/foo/bar/example-problem" and "https://

api.example.org/widget/example-problem" respectively). As a result,

it is RECOMMENDED that absolute URIs be used in "type" when

possible, and that when relative URIs are used, they include the

full path (e.g., "/types/123").

The type URI is allowed to be a non-resolvable URI. For example, the

tag URI scheme [TAG] can be used to uniquely identify problem types:

However, resolvable type URIs are encouraged by this specification

because it might become desirable to resolve the URI in the future.

For example, if an API designer used the URI above and later adopted

a tool that resolves type URIs to discover information about the

error, taking advantage of that capability would require switching

¶

¶

¶

¶

¶

¶

¶

tag:mnot@mnot.net,2021-09-17:OutOfLuck¶

https://rfc-editor.org/rfc/rfc3986#section-5


to a resolvable URI, creating a new identity for the problem type

and thus introducing a breaking change.

3.1.2. "status"

The "status" member is a JSON number indicating the HTTP status code

([HTTP], Section 15) generated by the origin server for this

occurrence of the problem.

The "status" member, if present, is only advisory; it conveys the

HTTP status code used for the convenience of the consumer.

Generators MUST use the same status code in the actual HTTP

response, to assure that generic HTTP software that does not

understand this format still behaves correctly. See Section 5 for

further caveats regarding its use.

Consumers can use the status member to determine what the original

status code used by the generator was when it has been changed

(e.g., by an intermediary or cache), and when a message's content is

persisted without HTTP information. Generic HTTP software will still

use the HTTP status code.

3.1.3. "title"

The "title" member is a JSON string containing a short, human-

readable summary of the problem type.

It SHOULD NOT change from occurrence to occurrence of the problem,

except for localization (e.g., using proactive content negotiation;

see [HTTP], Section 12.1).

The "title" string is advisory, and is included only for users who

are both unaware of and cannot discover the semantics of the type

URI (e.g., during offline log analysis).

3.1.4. "detail"

The "detail" member is a JSON string containing a human-readable

explanation specific to this occurrence of the problem.

The "detail" string, if present, ought to focus on helping the

client correct the problem, rather than giving debugging

information.

Consumers SHOULD NOT parse the "detail" member for information;

extensions are more suitable and less error-prone ways to obtain

such information.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-15
https://rfc-editor.org/rfc/rfc9110#section-12.1


3.1.5. "instance"

The "instance" member is a JSON string containing a URI reference

that identifies the specific occurrence of the problem.

When the "instance" URI is dereferenceable, the problem details

object can be fetched from it. It might also return information

about the problem occurrence in other formats through use of

proactive content negotiation (see [HTTP], Section 12.5.1).

When the "instance" URI is not dereferenceable, it serves as a

unique identifier for the problem occurrence that may be of

significance to the server, but is opaque to the client.

When "instance" contains a relative URI, it is resolved relative to

the document's base URI, as per [URI], Section 5. However, using

relative URIs can cause confusion, and they might not be handled

correctly by all implementations.

For example, if the two resources "https://api.example.org/foo/bar/

123" and "https://api.example.org/widget/456" both respond with an

"instance" equal to the relative URI reference "example-instance",

when resolved they will identify different resources ("https://

api.example.org/foo/bar/example-instance" and "https://

api.example.org/widget/example-instance" respectively). As a result,

it is RECOMMENDED that absolute URIs be used in "instance" when

possible, and that when relative URIs are used, they include the

full path (e.g., "/instances/123").

3.2. Extension Members

Problem type definitions MAY extend the problem details object with

additional members that are specific to that problem type.

For example, our "out of credit" problem above defines two such

extensions -- "balance" and "accounts" to convey additional,

problem-specific information.

Similarly, the "validation error" example defines an "errors"

extension that contains a list of individual error occurrences

found, with details and a pointer to the location of each.

Clients consuming problem details MUST ignore any such extensions

that they don't recognize; this allows problem types to evolve and

include additional information in the future.

Future updates to this specification might define additional members

that are available to all problem types, distinguished by a name

starting with "*". To avoid conflicts, extension member names SHOULD

NOT start with the "*" character.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-12.5.1
https://rfc-editor.org/rfc/rfc3986#section-5


When creating extensions, problem type authors should choose their

names carefully. To be used in the XML format (see Appendix B), they

will need to conform to the Name rule in Section 2.3 of [XML].

4. Defining New Problem Types

When an HTTP API needs to define a response that indicates an error

condition, it might be appropriate to do so by defining a new

problem type.

Before doing so, it's important to understand what they are good

for, and what's better left to other mechanisms.

Problem details are not a debugging tool for the underlying

implementation; rather, they are a way to expose greater detail

about the HTTP interface itself. Designers of new problem types need

to carefully take into account the Security Considerations

(Section 5), in particular, the risk of exposing attack vectors by

exposing implementation internals through error messages.

Likewise, truly generic problems -- i.e., conditions that might

apply to any resource on the Web -- are usually better expressed as

plain status codes. For example, a "write access disallowed" problem

is probably unnecessary, since a 403 Forbidden status code in

response to a PUT request is self-explanatory.

Finally, an application might have a more appropriate way to carry

an error in a format that it already defines. Problem details are

intended to avoid the necessity of establishing new "fault" or

"error" document formats, not to replace existing domain-specific

formats.

That said, it is possible to add support for problem details to

existing HTTP APIs using HTTP content negotiation (e.g., using the

Accept request header to indicate a preference for this format; see 

[HTTP], Section 12.5.1).

New problem type definitions MUST document:

a type URI (typically, with the "http" or "https" scheme),

a title that appropriately describes it (think short), and

the HTTP status code for it to be used with.

Problem type definitions MAY specify the use of the Retry-After

response header ([HTTP], Section 10.2.3) in appropriate

circumstances.

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

¶

https://www.w3.org/TR/2008/REC-xml-20081126/#NT-Name
https://rfc-editor.org/rfc/rfc9110#section-12.5.1
https://rfc-editor.org/rfc/rfc9110#section-10.2.3


A problem's type URI SHOULD resolve to HTML [HTML5] documentation

that explains how to resolve the problem.

A problem type definition MAY specify additional members on the

problem details object. For example, an extension might use typed

links [WEB-LINKING] to another resource that machines can use to

resolve the problem.

If such additional members are defined, their names SHOULD start

with a letter (ALPHA, as per [ABNF], Appendix B.1) and SHOULD

comprise characters from ALPHA, DIGIT ([ABNF], Appendix B.1), and

"_" (so that it can be serialized in formats other than JSON), and

they SHOULD be three characters or longer.

4.1. Example

For example, if you are publishing an HTTP API to your online

shopping cart, you might need to indicate that the user is out of

credit (our example from above), and therefore cannot make the

purchase.

If you already have an application-specific format that can

accommodate this information, it's probably best to do that.

However, if you don't, you might use one of the problem details

formats -- JSON if your API is JSON-based, or XML if it uses that

format.

To do so, you might look in the registry (Section 4.2) for an

already-defined type URI that suits your purposes. If one is

available, you can reuse that URI.

If one isn't available, you could mint and document a new type URI

(which ought to be under your control and stable over time), an

appropriate title and the HTTP status code that it will be used

with, along with what it means and how it should be handled.

4.2. Registered Problem Types

This specification defines the HTTP Problem Type registry for

common, widely-used problem type URIs, to promote reuse.

The policy for this registry is Specification Required, per 

[RFC8126], Section 4.6.

When evaluating requests, the Expert(s) should consider community

feedback, how well-defined the problem type is, and this

specification's requirements. Vendor-specific, application-specific,

and deployment-specific values are not registerable. Specification

documents should be published in a stable, freely available manner

(ideally located with a URL), but need not be standards.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5234#appendix-B.1
https://rfc-editor.org/rfc/rfc5234#appendix-B.1
https://rfc-editor.org/rfc/rfc8126#section-4.6


Registrations MAY use the prefix "https://iana.org/assignments/http-

problem-types#" for the type URI. Note that those URIs may not be

able to be resolved.

Registration requests should use the following template:

Type URI: [a URI for the problem type]

Title: [a short description of the problem type]

Recommended HTTP status code: [what status code is most

appropriate to use with the type]

Reference: [to a specification defining the type]

See the registry at https://iana.org/assignments/http-problem-types

for details on where to send registration requests.

4.2.1. about:blank

This specification registers one Problem Type, "about:blank".

Type URI: about:blank

Title: See HTTP Status Code

Recommended HTTP status code: N/A

Reference: [this document]

The "about:blank" URI [ABOUT], when used as a problem type,

indicates that the problem has no additional semantics beyond that

of the HTTP status code.

When "about:blank" is used, the title SHOULD be the same as the

recommended HTTP status phrase for that code (e.g., "Not Found" for

404, and so on), although it MAY be localized to suit client

preferences (expressed with the Accept-Language request header).

Please note that according to how the "type" member is defined

(Section 3.1), the "about:blank" URI is the default value for that

member. Consequently, any problem details object not carrying an

explicit "type" member implicitly uses this URI.

5. Security Considerations

When defining a new problem type, the information included must be

carefully vetted. Likewise, when actually generating a problem --

however it is serialized -- the details given must also be

scrutinized.

¶

¶

* ¶

* ¶

*

¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

https://iana.org/assignments/http-problem-types


[ABNF]

[HTTP]

[JSON]

[RFC2119]

Risks include leaking information that can be exploited to

compromise the system, access to the system, or the privacy of users

of the system.

Generators providing links to occurrence information are encouraged

to avoid making implementation details such as a stack dump

available through the HTTP interface, since this can expose

sensitive details of the server implementation, its data, and so on.

The "status" member duplicates the information available in the HTTP

status code itself, bringing the possibility of disagreement between

the two. Their relative precedence is not clear, since a

disagreement might indicate that (for example) an intermediary has

changed the HTTP status code in transit (e.g., by a proxy or cache).

Generic HTTP software (such as proxies, load balancers, firewalls,

and virus scanners) are unlikely to know of or respect the status

code conveyed in this member.

6. IANA Considerations

Please update the "application/problem+json" and "application/

problem+xml" registrations in the "Media Types" registry to refer to

this document.

Please create the "HTTP Problem Types" registry as specified in 

Section 4.2, and populate it with "about:blank" as per 

Section 4.2.1.

7. References

7.1. Normative References

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>. 

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>. 

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259


[RFC8126]

[RFC8174]

[URI]

[XML]

[ABOUT]

[HTML5]

[ISO-19757-2]

[JSON-POINTER]

[JSON-SCHEMA]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>. 

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26, 

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. 

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>. 

Maler, E., Ed., Yergeau, F., Ed., Paoli, J., Ed., 

Sperberg-McQueen, M., Ed., and T. Bray, Ed., "Extensible

Markup Language (XML) 1.0 (Fifth Edition)", W3C REC REC-

xml-20081126, W3C REC-xml-20081126, 26 November 2008, 

<https://www.w3.org/TR/2008/REC-xml-20081126/>. 

7.2. Informative References

Moonesamy, S., Ed., "The "about" URI Scheme", RFC 6694, 

DOI 10.17487/RFC6694, August 2012, <https://www.rfc-

editor.org/rfc/rfc6694>. 

WHATWG, "HTML - Living Standard", n.d., <https://

html.spec.whatwg.org>. 

International Organization for Standardization, 

"Information Technology -- Document Schema Definition

Languages (DSDL) -- Part 2: Grammar-based Validation --

RELAX NG", ISO/IEC 19757-2, 2003. 

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed., 

"JavaScript Object Notation (JSON) Pointer", RFC 6901, 

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/rfc/rfc6901>. 

Wright, A., Andrews, H., Hutton, B., and G. Dennis, 

"JSON Schema: A Media Type for Describing JSON

Documents", Work in Progress, Internet-Draft, draft-

bhutton-json-schema-01, 10 June 2022, <https://

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.rfc-editor.org/rfc/rfc6694
https://www.rfc-editor.org/rfc/rfc6694
https://html.spec.whatwg.org
https://html.spec.whatwg.org
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc6901
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01


[RDFA]

[TAG]

[WEB-LINKING]

[XSLT]

datatracker.ietf.org/doc/html/draft-bhutton-json-

schema-01>. 

Adida, B., Ed., Herman, I., Ed., Birbeck, M., Ed., and S.

McCarron, Ed., "RDFa Core 1.1 - Third Edition", W3C REC

REC-rdfa-core-20150317, W3C REC-rdfa-core-20150317, 17

March 2015, <https://www.w3.org/TR/2015/REC-rdfa-

core-20150317/>. 

Kindberg, T. and S. Hawke, "The 'tag' URI Scheme", RFC

4151, DOI 10.17487/RFC4151, October 2005, <https://

www.rfc-editor.org/rfc/rfc4151>. 

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/rfc/

rfc8288>. 

Thompson, H., Ed., Clark, J., Ed., and S. Pieters, Ed., 

"Associating Style Sheets with XML documents 1.0 (Second

Edition)", W3C REC REC-xml-stylesheet-20101028, W3C REC-

xml-stylesheet-20101028, 28 October 2010, <https://

www.w3.org/TR/2010/REC-xml-stylesheet-20101028/>. 

Appendix A. JSON Schema for HTTP Problems

This section presents a non-normative JSON Schema [JSON-SCHEMA] for

HTTP Problem Details. If there is any disagreement between it and

the text of the specification, the latter prevails.¶

https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.rfc-editor.org/rfc/rfc4151
https://www.rfc-editor.org/rfc/rfc4151
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8288
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/


Appendix B. HTTP Problems and XML

HTTP-based APIs that use XML [XML] can express problem details using

the format defined in this appendix.

The RELAX NG schema [ISO-19757-2] for the XML format is:

# NOTE: '\' line wrapping per RFC 8792

{

  "$schema": "https://json-schema.org/draft/2020-12/schema",

  "title": "A problem object RFC 7807bis",

  "type": "object",

  "properties": {

    "type": {

      "type": "string",

      "format": "uri-reference",

      "description": "A URI reference that identifies the \

problem type."

    },

    "title": {

      "type": "string",

      "description": "A short, human-readable summary of the \

problem type."

    },

    "status": {

      "type": "integer",

      "description": "The HTTP status code \

generated by the origin server for this occurrence of the problem.",

      "minimum": 100,

      "maximum": 599

    },

    "detail": {

      "type": "string",

      "description": "A human-readable explanation specific to \

this occurrence of the problem."

    },

    "instance": {

      "type": "string",

      "format": "uri-reference",

      "description": "A URI reference that identifies the \

specific occurrence of the problem. It may or may not yield \

further information if dereferenced."

    }

  }

}

¶

¶

¶



Note that this schema is only intended as documentation, and not as

a normative schema that captures all constraints of the XML format.

It is possible to use other XML schema languages to define a similar

set of constraints (depending on the features of the chosen schema

language).

The media type for this format is "application/problem+xml".

Extension arrays and objects are serialized into the XML format by

considering an element containing a child or children to represent

an object, except for elements that contain only child element(s)

named 'i', which are considered arrays. For example, the example

above appears in XML as follows:

   default namespace ns = "urn:ietf:rfc:7807"

   start = problem

   problem =

     element problem {

       (  element  type            { xsd:anyURI }?

        & element  title           { xsd:string }?

        & element  detail          { xsd:string }?

        & element  status          { xsd:positiveInteger }?

        & element  instance        { xsd:anyURI }? ),

       anyNsElement

     }

   anyNsElement =

     (  element    ns:*  { anyNsElement | text }

      | attribute  *     { text })*

¶

¶

¶

¶

HTTP/1.1 403 Forbidden

Content-Type: application/problem+xml

Content-Language: en

<?xml version="1.0" encoding="UTF-8"?>

<problem xmlns="urn:ietf:rfc:7807">

  <type>https://example.com/probs/out-of-credit</type>

  <title>You do not have enough credit.</title>

  <detail>Your current balance is 30, but that costs 50.</detail>

  <instance>https://example.net/account/12345/msgs/abc</instance>

  <balance>30</balance>

  <accounts>

    <i>https://example.net/account/12345</i>

    <i>https://example.net/account/67890</i>

  </accounts>

</problem>

¶



This format uses an XML namespace, primarily to allow embedding it

into other XML-based formats; it does not imply that it can or

should be extended with elements or attributes in other namespaces.

The RELAX NG schema explicitly only allows elements from the one

namespace used in the XML format. Any extension arrays and objects

MUST be serialized into XML markup using only that namespace.

When using the XML format, it is possible to embed an XML processing

instruction in the XML that instructs clients to transform the XML,

using the referenced XSLT code [XSLT]. If this code is transforming

the XML into (X)HTML, then it is possible to serve the XML format,

and yet have clients capable of performing the transformation

display human-friendly (X)HTML that is rendered and displayed at the

client. Note that when using this method, it is advisable to use

XSLT 1.0 in order to maximize the number of clients capable of

executing the XSLT code.

Appendix C. Using Problem Details with Other Formats

In some situations, it can be advantageous to embed problem details

in formats other than those described here. For example, an API that

uses HTML [HTML5] might want to also use HTML for expressing its

problem details.

Problem details can be embedded in other formats either by

encapsulating one of the existing serializations (JSON or XML) into

that format or by translating the model of a problem detail (as

specified in Section 3) into the format's conventions.

For example, in HTML, a problem could be embedded by encapsulating

JSON in a script tag:

or by inventing a mapping into RDFa [RDFA].

This specification does not make specific recommendations regarding

embedding problem details in other formats; the appropriate way to

embed them depends both upon the format in use and application of

that format.

¶

¶

¶

¶

¶

<script type="application/problem+json">

  {

   "type": "https://example.com/probs/out-of-credit",

   "title": "You do not have enough credit.",

   "detail": "Your current balance is 30, but that costs 50.",

   "instance": "/account/12345/msgs/abc",

   "balance": 30,

   "accounts": ["/account/12345",

                "/account/67890"]

  }

</script>

¶

¶

¶



Appendix D. Changes from RFC 7807

This revision has made the following changes:

Section 4.2 introduces a registry of common problem type URIs

Section 3 clarifies how multiple problems should be treated

Section 3.2 reserves a prefix for future standards-defined object

members

Section 3.1.1 provides guidance for using type URIs that cannot

be dereferenced

Acknowledgements

The authors would like to thank Jan Algermissen, Subbu Allamaraju,

Mike Amundsen, Roy Fielding, Eran Hammer, Sam Johnston, Mike McCall,

Julian Reschke, and James Snell for review of this specification.

Authors' Addresses

Mark Nottingham

Prahran

Australia

Email: mnot@mnot.net

URI: https://www.mnot.net/

Erik Wilde

Email: erik.wilde@dret.net

URI: http://dret.net/netdret/

Sanjay Dalal

United States of America

Email: sanjay.dalal@cal.berkeley.edu

URI: https://github.com/sdatspun2

¶

* ¶

* ¶

*

¶

*

¶

¶

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:erik.wilde@dret.net
http://dret.net/netdret/
mailto:sanjay.dalal@cal.berkeley.edu
https://github.com/sdatspun2

	Problem Details for HTTP APIs
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. The Problem Details JSON Object
	3.1. Members of a Problem Details Object
	3.1.1. "type"
	3.1.2. "status"
	3.1.3. "title"
	3.1.4. "detail"
	3.1.5. "instance"

	3.2. Extension Members

	4. Defining New Problem Types
	4.1. Example
	4.2. Registered Problem Types
	4.2.1. about:blank


	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. JSON Schema for HTTP Problems
	Appendix B. HTTP Problems and XML
	Appendix C. Using Problem Details with Other Formats
	Appendix D. Changes from RFC 7807
	Acknowledgements
	Authors' Addresses


