
Workgroup: HTTPAPI

Internet-Draft:

draft-ietf-httpapi-yaml-mediatypes-03

Published: 5 August 2022

Intended Status: Informational

Expires: 6 February 2023

Authors:

R. Polli

Digital Transformation Department, Italian Government

E. Wilde

Axway

E. Aro

Mozilla

YAML Media Type

Abstract

This document registers the application/yaml media type and the

+yaml structured syntax suffix on the IANA Media Types registry.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-httpapi-yaml-mediatypes/.

Discussion of this document takes place on the HTTPAPI Working Group

mailing list (mailto:httpapi@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/httpapi/. Subscribe at

https://www.ietf.org/mailman/listinfo/httpapi/. Working Group

information can be found at https://datatracker.ietf.org/wg/httpapi/

about/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-httpapi/mediatypes/labels/yaml.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-httpapi-yaml-mediatypes/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-yaml-mediatypes/
mailto:httpapi@ietf.org
https://mailarchive.ietf.org/arch/browse/httpapi/
https://www.ietf.org/mailman/listinfo/httpapi/
https://datatracker.ietf.org/wg/httpapi/about/
https://datatracker.ietf.org/wg/httpapi/about/
https://github.com/ietf-wg-httpapi/mediatypes/labels/yaml
https://github.com/ietf-wg-httpapi/mediatypes/labels/yaml
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 6 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

1.2. Fragment identification

1.2.1. Fragment identification via alias nodes

2. Media Type and Structured Syntax Suffix registrations

2.1. Media Type application/yaml

2.2. The +yaml Structured Syntax Suffix

3. Interoperability Considerations

3.1. YAML is an Evolving Language

3.2. YAML streams

3.3. YAML and JSON

3.4. Fragment identifiers

4. Security Considerations

4.1. Arbitrary Code Execution

4.2. Resource Exhaustion

4.3. YAML streams

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Examples related to fragment identifier

interoperability

A.1. Unreferenceable nodes

A.2. Referencing a missing node

A.3. Representation graph with anchors and cyclic references

Appendix B. Acknowledgements

FAQ

Change Log

Since draft-ietf-httpapi-yaml-mediatypes-02

Since draft-ietf-httpapi-yaml-mediatypes-01

¶

¶

¶

https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction

YAML [YAML] is a data serialization format that is capable of

conveying one or multiple documents in a single presentation stream

(e.g. a file or a network resource). It is widely used on the

Internet, including in the API sector (e.g. see [OAS]), but the

relevant media type and structured syntax suffix previously had not

been registered by IANA.

To increase interoperability when exchanging YAML streams, and

leverage content negotiation mechanisms when exchanging YAML

resources, this specification registers the application/yaml media

type and the +yaml structured syntax suffix.

Moreover, it provides security considerations and interoperability

considerations related to [YAML], including its relation with

[JSON].

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here. These words may also appear in this

document in lower case as plain English words, absent their

normative meanings.

This document uses the Augmented BNF defined in [RFC5234] and

updated by [RFC7405].

The terms "content", "content negotiation", "resource", and "user

agent" in this document are to be interpreted as in [SEMANTICS].

The terms "fragment" and "fragment identifier" in this document are

to be interpreted as in [URI].

The terms "presentation", "stream", "YAML document", "representation

graph", "tag", "node", "alias node", "anchor" and "anchor name" in

this document are to be interpreted as in [YAML].

1.2. Fragment identification

A fragment identifies a node in a stream.

A fragment identifier starting with "*" is to be interpreted as a

YAML alias node Section 1.2.1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

For single-document YAML streams, a fragment identifier that is

empty or that starts with "/" is to be interpreted as a JSON Pointer

[JSON-POINTER] and is evaluated on the YAML representation graph,

walking through alias nodes; in particular, the empty fragment

identifier references the root node. This syntax can only reference

the YAML nodes that are on a path that is made up of nodes

interoperable with the JSON data model (see Section 3.3).

A fragment identifier is not guaranteed to reference an existing

node. Therefore, applications SHOULD define how an unresolved alias

node ought to be handled.

1.2.1. Fragment identification via alias nodes

This section describes how to use alias nodes (see Section 3.2.2.2

and 7.1 of [YAML]) as fragment identifiers to designate nodes.

A YAML alias node can be represented in a URI fragment identifier by

encoding it into bytes using UTF-8 [UTF-8], while percent-encoding

those characters not allowed by the fragment rule in Section 3.5 of

[URI].

If multiple nodes would match a fragment identifier, the first such

match is selected.

Users concerned with interoperability of fragment identifiers:

SHOULD limit alias nodes to a set of characters that do not

require encoding to be expressed as URI fragment identifiers:

this is generally possible since anchor names are a serialization

detail;

SHOULD NOT use alias nodes that match multiple nodes.

In the example resource below, the URL file.yaml#*foo references the

first alias node *foo pointing to the node with value scalar and not

the one in the second document; whereas the URL

file.yaml#*document_2 references the root node of the second

document { one: [a, sequence]}.

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.5

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

 %YAML 1.2

 one: &foo scalar

 two: &bar

 - some

 - sequence

 - items

 ...

 %YAML 1.2

 &document_2

 one: &foo [a, sequence]

Figure 1: A YAML stream containing two YAML documents.

2. Media Type and Structured Syntax Suffix registrations

This section describes the information required to register the

above media type according to [MEDIATYPE]

2.1. Media Type application/yaml

The media type for YAML text is application/yaml; the following

information serves as the registration form for this media type.

application

yaml

N/A

N/A; unrecognized parameters should be ignored

binary

see Section 4 of this document

see Section 3 of this document

[YAML]

Applications that need a

human-friendly, cross language, Unicode based data serialization

language designed around the common native data types of dynamic

programming languages.

See Section 1.2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Name:

+suffix:

References:

Encoding considerations:

Fragment identifier considerations:

Interoperability considerations:

Security considerations:

Contact:

Additional information:

Deprecated alias names for this type: application/x-yaml, text/

yaml, text/x-yaml

Magic number(s) N/A

File extension(s): yaml, yml

Macintosh file type code(s): N/A

See

Authors' Addresses section.

COMMON

None.

See Authors' Addresses section.

IESG

2.2. The +yaml Structured Syntax Suffix

The suffix +yaml MAY be used with any media type whose

representation follows that established for application/yaml. The

media type structured syntax suffix registration form follows. See

[MEDIATYPE] for definitions of each of the registration form

headings.

YAML Ain't Markup Language (YAML)

+yaml

[YAML]

see Section 2.1

Differently from application/

yaml, there is no fragment identification syntax defined for

+yaml.

A specific xxx/yyy+yaml media type needs to define the syntax and

semantics for fragment identifiers because the ones in Section

2.1 do not apply unless explicitly expressed.

See Section 2.1

See Section 2.1

httpapi@ietf.org or art@ietf.org

¶

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Author:

Change controller:

See Authors' Addresses section

IESG

3. Interoperability Considerations

3.1. YAML is an Evolving Language

YAML is an evolving language and, over time, some features have been

added and others removed.

While this document is based on a given YAML version [YAML], the

media type registration does not imply a specific version. This

allows content negotiation of version-independent YAML resources.

Implementers concerned about features related to a specific YAML

version can specify it in YAML documents using the %YAML directive

(see Section 6.8.1 of [YAML]).

3.2. YAML streams

A YAML stream can contain zero or more YAML documents.

When receiving a multi-document stream, an application that only

expects one-document streams, ought to signal an error instead of

ignoring the extra documents.

Current implementations consider different documents in a stream

independent, similarly to JSON Text Sequences (see [RFC7464]);

elements such as anchors are not guaranteed to be referenceable

across different documents.

3.3. YAML and JSON

When using flow collection styles (see Section 7.4 of [YAML]) a YAML

document could look like JSON [JSON], thus similar interoperability

considerations apply.

When using YAML as a more efficient format to serialize information

intended to be consumed as JSON, information not reflected in the

representation graph and classified as presentation or serialization

detail (see Section 3.2 of [YAML]) can be discarded. This includes

comments (see Section 3.2.3.3 of [YAML]), directives, and alias

nodes (see Section 7.1 of [YAML]) that do not have a JSON

counterpart.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This comment will be lost

when serializing in JSON.

Title:

 type: string

 maxLength: &text_limit 64

Name:

 type: string

 maxLength: *text_limit # Replaced by the value 64.

Figure 2: JSON replaces alias nodes with static values.

Implementers need to ensure that relevant information will not be

lost during the processing. For example, they might consider

acceptable that alias nodes are replaced by static values.

In some cases an implementer may want to define a list of allowed

YAML features, taking into account that the following ones might

have interoperability issues with JSON:

multi-document YAML streams;

non UTF-8 encoding, since YAML supports UTF-16 and UTF-32 in

addition to UTF-8;

mapping keys that are not strings;

circular references represented using anchor (see Section 4.2 and

Figure 4);

.inf and .nan float values, since JSON does not support them;

non-JSON types, including the ones associated with tags like !!

timestamp that were included in the default schema of older YAML

versions;

tags in general, and specifically the ones that do not map to

JSON types like custom and local tags such as !!python/object

and !mytag (see Section 2.4 of [YAML]);

¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

 %YAML 1.2

 non-json-keys:

 0: a number

 [0, 1]: a sequence

 ? {k: v}

 : a map

 non-json-keys:

 !date 2020-01-01: a timestamp

 non-json-value: !date 2020-01-01

 ...

Figure 3: Example of mapping keys and values not supported in JSON in a

multi-document YAML stream

3.4. Fragment identifiers

To allow fragment identifiers to traverse alias nodes, the YAML

representation graph needs to be generated before the fragment

identifier evaluation. It is important that this evaluation will not

cause the issues mentioned in Section 3.3 and in Security

considerations (Section 4) such as infinite loops and unexpected

code execution.

Implementers need to consider that the YAML version and supported

features (e.g. merge keys) can impact on the generation of the

representation graph (see Figure 9).

In Section 2.1, this document extends the use of specifications

based on the JSON data model with support for YAML fragment

identifiers. This is to improve the interoperability of already

consolidated practices, such as the one of writing OpenAPI documents

[OAS] in YAML.

Appendix A provides a non-exhaustive list of examples that could

help understand interoperability issues related to fragment

identifiers.

4. Security Considerations

Security requirements for both media type and media type suffix

registrations are discussed in Section 4.6 of [MEDIATYPE].

4.1. Arbitrary Code Execution

Care should be used when using YAML tags, because their resolution

might trigger unexpected code execution.

¶

¶

¶

¶

¶

¶

Code execution in deserializers should be disabled by default, and

only be enabled explicitly. In those cases, the implementation

should ensure - for example, via specific functions - that the code

execution results in strictly bounded time/memory limits.

Many implementations provide safe deserializers addressing these

issues.

4.2. Resource Exhaustion

YAML documents are rooted, connected, directed graphs and can

contain reference cycles, so they can't be treated as simple trees

(see Section 3.2.1 of [YAML]). An implementation that attempts to do

that can infinite-loop traversing the YAML representation graph at

some point, for example:

when trying to serialize it JSON;

or when searching/identifying nodes using specifications based on

the JSON data model (e.g. [JSON-POINTER]).

x: &x

 y: *x

Figure 4: A cyclic document

Even if a representaion graph is not cyclic, treating it as a simple

tree could lead to improper behaviors (such as the "billion laughs"

problem).

x1: &a1 ["a", "a"]

x2: &a2 [*a1, *a1]

x3: &a3 [*a2, *a2]

Figure 5: A billion laughs document

This can be addressed using processors limiting the anchor recursion

depth and validating the input before processing it; even in these

cases it is important to carefully test the implementation you are

going to use. The same considerations apply when serializing a YAML

representation graph in a format that does not support reference

cycles (see Section 3.3).

4.3. YAML streams

Incremental parsing and processing of a YAML stream can produce

partial results and later indicate failure to parse the remainder of

¶

¶

¶

* ¶

*

¶

¶

¶

[JSON]

[JSON-POINTER]

[MEDIATYPE]

the stream; to prevent partial processing, implementers might prefer

validating all the documents in a stream beforehand.

Repeated parsing and re-encoding of a YAML stream can result in the

addition or removal of document delimiters (e.g. --- or ...) as well

as the modification of anchor names and other serialization details:

this can break signature validation.

5. IANA Considerations

This specification defines the following new Internet media type

[MEDIATYPE].

IANA has updated the "Media Types" registry at https://www.iana.org/

assignments/media-types with the registration information provided

below.

Media Type Section

application/yaml Section 2.1 of this document

Table 1

IANA has updated the "Structured Syntax Suffixes" registry at

https://www.iana.org/assignments/media-type-structured-suffix with

the registration information provided below.

Suffix Section

+yaml Section 2.2 of this document

Table 2

6. References

6.1. Normative References

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/rfc/rfc6901>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

¶

¶

¶

¶

¶

https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-type-structured-suffix
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc6901

[OAS]

[RFC2119]

[RFC5234]

[RFC7405]

[RFC8174]

[SEMANTICS]

[URI]

[UTF-8]

[YAML]

[I-D.ietf-jsonpath-base]

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/rfc/rfc6838>.

Darrel Miller, Jeremy Whitlock, Marsh Gardiner, Mike

Ralphson, Ron Ratovsky, and Uri Sarid, "OpenAPI

Specification 3.0.0", 26 July 2017.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/rfc/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Oren Ben-Kiki, Clark Evans, Ingy dot Net, Tina Müller,

Pantelis Antoniou, Eemeli Aro, and Thomas Smith, "YAML

Ain't Markup Language Version 1.2", 1 October 2021,

<https://yaml.org/spec/1.2.2/>.

6.2. Informative References

Gössner, S., Normington, G., and C.

Bormann, "JSONPath: Query expressions for JSON", Work in

Progress, Internet-Draft, draft-ietf-jsonpath-base-05, 25

https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3629
https://yaml.org/spec/1.2.2/

[RFC7464]

April 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-jsonpath-base-05>.

Williams, N., "JavaScript Object Notation (JSON) Text

Sequences", RFC 7464, DOI 10.17487/RFC7464, February

2015, <https://www.rfc-editor.org/rfc/rfc7464>.

Appendix A. Examples related to fragment identifier interoperability

A.1. Unreferenceable nodes

In this example, a couple of YAML nodes that cannot be referenced

based on the JSON data model since their mapping keys are not

strings.

 %YAML 1.2

 a-map-cannot:

 ? {be: expressed}

 : with a JSON Pointer

 0: no numeric mapping keys in JSON

Figure 6: Example of YAML nodes that are not referenceable based on

JSON data model.

A.2. Referencing a missing node

In this example the fragment #/0 does not reference an existing node

0: "JSON Pointer `#/0` references a string mapping key."

Figure 7: Example of a JSON Pointer that does not reference an existing

node.

A.3. Representation graph with anchors and cyclic references

In this YAML document, the #/foo/bar/baz fragment identifier

traverses the representation graph and references the string you.

Moreover, the presence of a cyclic reference implies that there are

infinite fragment identifiers #/foo/bat/../bat/bar referencing the

&anchor node.

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05
https://www.rfc-editor.org/rfc/rfc7464

Q: Why this document?

 anchor: &anchor

 baz: you

 foo: &foo

 bar: *anchor

 bat: *foo

Figure 8: Example of a cyclic references and alias nodes.

Many YAML implementations will resolve the merge key "<<:" defined

in YAML 1.1 in the representation graph. This means that the

fragment #/book/author/given_name references the string Federico and

that the fragment #/book/<< will not reference any existing node.

 %YAML 1.1

 # Many implementations use merge keys.

 the-viceroys: &the-viceroys

 title: The Viceroys

 author:

 given_name: Federico

 family_name: De Roberto

 book:

 <<: *the-viceroys

 title: The Illusion

Figure 9: Example of YAML merge keys.

Appendix B. Acknowledgements

Thanks to Erik Wilde and David Biesack for being the initial

contributors of this specification, and to Darrel Miller and Rich

Salz for their support during the adoption phase.

In addition to the people above, this document owes a lot to the

extensive discussion inside and outside the HTTPAPI workgroup. The

following contributors have helped improve this specification by

opening pull requests, reporting bugs, asking smart questions,

drafting or reviewing text, and evaluating open issues:

Tina (tinita) Mueller, Ben Hutton, Manu Sporny and Jason Desrosiers.

FAQ

This section is to be removed before publishing as an RFC.

After all these years, we still lack a proper

media-type for YAML. This has some security implications too (eg.

wrt on identifying parsers or treat downloads)

¶

¶

¶

¶

¶

¶

https://yaml.org/type/merge.html

Q: Why using alias nodes as fragment identifiers?

Q: Why not use plain names for alias nodes? Why not define plain

names?

Q: Why not just use JSON Pointer as the primary fragment identifier?

Alias nodes are a

native YAML feature that allows addressing any node in a YAML

document. Since YAML is not limited to string keywords, not all

nodes are addressable using JSON Pointers. Alias nodes are thus

the natural choice for fragment identifiers Section 1.2.

Using plain name fragments could have limited the ability of

future xxx+yaml media types to define their plain name fragments.

Moreover, alias nodes starts with * so we found no reason to

strip it when using them in fragments.

Preserving * had another positive result: it allows

distinguishing a fragment identifier expressed as an alias node

from one expressed in other formats. In this document we included

JSON Pointer [JSON-POINTER] which is expected to start with /.

Moreover, since JSON Path [I-D.ietf-jsonpath-base] expressions

start with $, this mechanism can be extended to JSON Path too.

Fragment identifiers in YAML always reference YAML representation

graph nodes. JSON Pointer can only rely on string keywords so it

is not able to reference a generic node in the representation

graph.

Since JSON Pointer is a specification unrelated to YAML, we

decided to isolate the impacts of changes in JSON Pointer on YAML

fragments: only fragments starting with "/" are "delegated" to an

external spec, and if [JSON-POINTER] changes, it will only affect

fragments starting with "/".

The current behaviour for empty fragments is the same for both

JSON Pointer and alias nodes. Incidentally, it's the only

sensible behaviour independently of [JSON-POINTER].

Change Log

This section is to be removed before publishing as an RFC.

Since draft-ietf-httpapi-yaml-mediatypes-02

clarification on fragment identifiers #50.

Since draft-ietf-httpapi-yaml-mediatypes-01

application/yaml fragment identifiers compatible with JSON

Pointer #41 (#47).

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

Authors' Addresses

Roberto Polli

Digital Transformation Department, Italian Government

Italy

Email: robipolli@gmail.com

Erik Wilde

Axway

Switzerland

Email: erik.wilde@dret.net

Eemeli Aro

Mozilla

Finland

Email: eemeli@gmail.com

mailto:robipolli@gmail.com
mailto:erik.wilde@dret.net
mailto:eemeli@gmail.com

	YAML Media Type
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Fragment identification
	1.2.1. Fragment identification via alias nodes

	2. Media Type and Structured Syntax Suffix registrations
	2.1. Media Type application/yaml
	2.2. The +yaml Structured Syntax Suffix

	3. Interoperability Considerations
	3.1. YAML is an Evolving Language
	3.2. YAML streams
	3.3. YAML and JSON
	3.4. Fragment identifiers

	4. Security Considerations
	4.1. Arbitrary Code Execution
	4.2. Resource Exhaustion
	4.3. YAML streams

	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Examples related to fragment identifier interoperability
	A.1. Unreferenceable nodes
	A.2. Referencing a missing node
	A.3. Representation graph with anchors and cyclic references

	Appendix B. Acknowledgements
	FAQ
	Change Log
	Since draft-ietf-httpapi-yaml-mediatypes-02
	Since draft-ietf-httpapi-yaml-mediatypes-01

	Authors' Addresses

