The 'Basic' HTTP Authentication Scheme
draft-ietf-httpauth-basicauth-update-06

Abstract

This document defines the "Basic" Hypertext Transfer Protocol (HTTP) Authentication Scheme, which transmits credentials as user-id/password pairs, encoded using Base64.

Editorial Note (To be removed by RFC Editor before publication)

Discussion of this draft takes place on the HTTPAuth working group mailing list (http-auth@ietf.org), which is archived at <http://www.ietf.org/mail-archive/web/http-auth/current/maillist.html>.

XML versions, latest edits and the issues list for this document are available from <http://greenbytes.de/tech/webdav/#draft-ietf-httpauth-basicauth-update>.

The changes in this draft are summarized in Appendix C.7.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 16, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
Table of Contents

1. Introduction ... 4
 1.1. Notational Conventions 4
 1.1.1. Syntax Notation 4
2. The 'Basic' Authentication Scheme 4
 2.1. The 'charset' auth-param 6
 2.2. Re-using Credentials 8
3. Internationalization Considerations 8
4. Security Considerations 9
5. IANA Considerations 10
6. Acknowledgements 10
7. References ... 11
 7.1. Normative References 11
 7.2. Informative References 11
Appendix A. Changes from RFC 2617 12
Appendix B. Deployment Considerations for the 'charset'
 Parameter ... 13
 B.1. User Agents ... 13
 B.2. Origin Servers 13
 B.3. Why not simply switch the default encoding to UTF-8? 13
Appendix C. Change Log (to be removed by RFC Editor before
 publication) .. 13
 C.1. Since RFC 2617 14
 C.2. Since draft-ietf-httpauth-basicauth-update-00 14
 C.5. Since draft-ietf-httpauth-basicauth-update-03 14
 C.7. Since draft-ietf-httpauth-basicauth-update-05 15
1. Introduction

This document defines the "Basic" Hypertext Transfer Protocol (HTTP) Authentication Scheme, which transmits credentials as user-id/password pairs, encoded using Base64 (HTTP authentication schemes are defined in [RFC7235]).

This scheme is not considered to be a secure method of user authentication unless used in conjunction with some external secure system such as TLS (Transport Layer Security, [RFC5246]), as the user-id and password are passed over the network as cleartext.

The "Basic" scheme previously was defined in Section 2 of [RFC2617]. This document updates the definition, and also addresses internationalization issues by introducing the "charset" authentication parameter (Section 2.1).

Other documents updating RFC 2617 are "Hypertext Transfer Protocol (HTTP/1.1): Authentication" ([RFC7235], defining the authentication framework), "HTTP Digest Access Authentication" ([DIGEST], updating the definition of the "Digest" authentication scheme), and "The Hypertext Transfer Protocol (HTTP) Authentication-Info and Proxy-Authentication-Info Response Header Fields" ([AUTHINFO]). Taken together, these four documents obsolete RFC 2617.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.1.1. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF) notation of [RFC5234].

The terms protection space and realm are defined in Section 2.2 of [RFC7235].

The terms (character) repertoire and character encoding scheme are defined in Section 2 of [RFC6365].

2. The 'Basic' Authentication Scheme

The "Basic" authentication scheme is based on the model that the client needs to authenticate itself with a user-id and a password for each protection space ("realm"). The realm value is a free-form string which can only be compared for equality with other realms on
that server. The server will service the request only if it can validate the user-id and password for the protection space applying to the requested resource.

The "Basic" authentication scheme utilizes the Authentication Framework as follows:

In challenges:

- the scheme name is "Basic"
- the authentication parameter "realm" is REQUIRED ([RFC7235], Section 2.2)
- the authentication parameter "charset" is OPTIONAL (see Section 2.1)
- no other authentication parameters are defined -- unknown parameters MUST be ignored by recipients, and new parameters can only be defined by revising this specification

See also Section 4.1 of [RFC7235] which discusses the complexity of parsing challenges properly.

Note that both scheme and parameter names are matched case-insensitively.

For credentials, the "token68" syntax defined in Section 2.1 of [RFC7235] is used. The value is computed based on user-id and password as defined below.

Upon receipt of a request for a URI within the protection space that lacks credentials, the server can reply with a challenge using the 401 (Unauthorized) status code ([RFC7235], Section 3.1) and the WWW-Authenticate header field ([RFC7235], Section 4.1).

For instance:

 HTTP/1.1 401 Unauthorized
 Date: Mon, 04 Feb 2014 16:50:53 GMT
 WWW-Authenticate: Basic realm="WallyWorld"

...where "WallyWorld" is the string assigned by the server to identify the protection space.

A proxy can respond with a similar challenge using the 407 (Proxy Authentication Required) status code ([RFC7235], Section 3.2) and the
Proxy-Authenticate header field ([RFC7235], Section 4.3).

To receive authorization, the client

1. obtains the user-id and password from the user,
2. constructs the user-pass by concatenating user-id, a single colon (":") character, and the password,
3. encodes the user-pass into an octet sequence (see below for a discussion of character encoding schemes),
4. and obtains the basic-credentials by encoding this octet sequence using base64 ([RFC4648], Section 4) into a sequence of US-ASCII characters ([RFC0020]).

The original definition of this authentication scheme failed to specify the character encoding scheme used to convert the user-pass into an octet sequence. In practice, most implementations chose either a locale-specific encoding such as ISO-8859-1 ([ISO-8859-1]), or UTF-8 ([RFC3629]). For backwards compatibility reasons, this specification continues to leave the default encoding undefined, as long as it is compatible with US-ASCII (mapping any US-ASCII character to a single octet matching the US-ASCII character code).

The user-id and password MUST NOT contain any control characters (see "CTL" in Appendix B.1 of [RFC5234]).

Furthermore, a user-id containing a colon character is invalid, as recipients will split the user-pass at the first occurrence of a colon character. Note that many user agents however will accept a colon in user-id, thereby producing a user-pass string that recipients will likely treat in a way not intended by the user.

If the user agent wishes to send the user-id "Aladdin" and password "open sesame", it would use the following header field:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

2.1. The 'charset' auth-param

In challenges, servers can use the "charset" authentication parameter to indicate the character encoding scheme they expect the user agent to use when generating "user-pass" (a sequence of octets). This information is purely advisory.

The only allowed value is "UTF-8", to be matched case-insensitively (see [RFC2978], Section 2.3). It indicates that the server expects
character data to be converted to Unicode Normalization Form C ("NFC", see Section 3 of [RFC5198]) and to be encoded into octets using the UTF-8 character encoding scheme ([RFC3629]).

For the user-id, recipients MUST support all characters defined in the "UsernameCasePreserved" profile defined in in Section 3.3 of [PRECIS], with the exception of the colon ("":")) character.

For the password, recipients MUST support all characters defined in the "OpaqueString" profile defined in in Section 4.2 of [PRECIS].

Other values are reserved for future use.

Note: The 'charset' is only defined on challenges, as "Basic" uses a single token for credentials ('token68' syntax), thus the credentials syntax isn't extensible.

Note: The name 'charset' has been chosen for consistency with Section 2.1.1 of [RFC2831]. A better name would have been 'accept-charset', as it is not about the message it appears in, but the server's expectation.

In the example below, the server prompts for authentication in the "foo" realm, using Basic authentication, with a preference for the UTF-8 character encoding scheme:

WWW-Authenticate: Basic realm="foo", charset="UTF-8"

Note that the parameter value can be either a token or a quoted string; in this case the server chose to use the quoted-string notation.

The user's name is "test", and the password is the string "123" followed by the Unicode character U+00A3 (POUND SIGN). Using the character encoding scheme UTF-8, the user-pass becomes:

't' 'e' 's' 't' ':' '1' '2' '3' pound
74 65 73 74 3A 31 32 33 C2 A3

Encoding this octet sequence in Base64 ([RFC4648], Section 4) yields:

dGVzdDoxMjPCow==

Thus the Authorization header field would be:

Authorization: Basic dGVzdDoxMjPCow==

Or, for proxy authentication:
Proxy-Authorization: Basic dGVzdDoxMjPCow==

2.2. Re-using Credentials

Given the absolute URI ([RFC3986], Section 4.3) of an authenticated request, the authentication scope of that request is obtained by removing all characters after the last slash ("/") character of the path component ("hier_part", see [RFC3986], Section 3). A client SHOULD assume that resources identified by URIs with a prefix-match of the authentication scope are also within the protection space specified by the realm value of the authenticated request.

A client MAY preemptively send the corresponding Authorization header field with requests for resources in that space without receipt of another challenge from the server. Similarly, when a client sends a request to a proxy, it may reuse a user-id and password in the Proxy-Authorization header field without receiving another challenge from the proxy server.

For example, given an authenticated request to:

http://example.com/docs/index.html

...requests to the URIs below could use the known credentials:

http://example.com/docs/
http://example.com/docs/test.doc
http://example.com/docs/?page=1

...while the URIs

http://example.com/other/
https://example.com/docs/

would be considered to be outside the authentication scope.

Note that a URI can be part of multiple authentication scopes (such as "http://example.com/" and "http://example.com/docs/"). This specification does not define which of these should be treated with higher priority.

3. Internationalization Considerations

User-ids or passwords containing characters outside the US-ASCII character repertoire will cause interoperability issues, unless both communication partners agree on what character encoding scheme is to be used. Servers can use the new 'charset' parameter (Section 2.1) to indicate a preference of "UTF-8", increasing the probability that
clients will switch to that encoding.

The "realm" parameter carries data that can be considered textual, however [RFC7235] does not define a way to reliably transport non-US-ASCII characters. This is a known issue that would need to be addressed in that specification.

4. Security Considerations

The Basic authentication scheme is not a secure method of user authentication, nor does it in any way protect the entity, which is transmitted in cleartext across the physical network used as the carrier. HTTP does not prevent the addition of enhancements (such as schemes to use one-time passwords) to Basic authentication.

The most serious flaw in Basic authentication is that it results in the cleartext transmission of the user's password over the physical network. Many other authentication schemes address this problem.

Because Basic authentication involves the cleartext transmission of passwords it SHOULD NOT be used (without enhancements such as HTTPS [RFC2818]) to protect sensitive or valuable information.

A common use of Basic authentication is for identification purposes -- requiring the user to provide a user-id and password as a means of identification, for example, for purposes of gathering accurate usage statistics on a server. When used in this way it is tempting to think that there is no danger in its use if illicit access to the protected documents is not a major concern. This is only correct if the server issues both user-id and password to the users and in particular does not allow the user to choose his or her own password. The danger arises because naive users frequently reuse a single password to avoid the task of maintaining multiple passwords.

If a server permits users to select their own passwords, then the threat is not only unauthorized access to documents on the server but also unauthorized access to any other resources on other systems that the user protects with the same password. Furthermore, in the server's password database, many of the passwords may also be users' passwords for other sites. The owner or administrator of such a system could therefore expose all users of the system to the risk of unauthorized access to all those sites if this information is not maintained in a secure fashion. This raises both security and privacy concerns ([RFC6973]). If the same user-id and password combination is in use to access other accounts, such as an email or health portal account, personal information could be exposed.

Basic Authentication is also vulnerable to spoofing by counterfeit
servers. If a user can be led to believe that he is connecting to a host containing information protected by Basic authentication when, in fact, he is connecting to a hostile server or gateway, then the attacker can request a password, store it for later use, and feign an error. This type of attack is not possible with Digest Authentication. Server implementers SHOULD guard against the possibility of this sort of counterfeiting by gateways or CGI scripts. In particular it is very dangerous for a server to simply turn over a connection to a gateway. That gateway can then use the persistent connection mechanism to engage in multiple transactions with the client while impersonating the original server in a way that is not detectable by the client.

The use of the UTF-8 character encoding scheme introduces additional security considerations; see Section 10 of [RFC3629] for more information.

5. IANA Considerations

IANA maintains the registry of HTTP Authentication Schemes ([RFC7235]) at <http://www.iana.org/assignments/http-authschemes>.

The entry for the "Basic" Authentication Scheme shall be updated with a pointer to this specification.

6. Acknowledgements

This specification takes over the definition of the "Basic" HTTP Authentication Scheme, previously defined in RFC 2617. We thank John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott D. Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart for their work on that specification, from which significant amounts of text were borrowed. See Section 6 of [RFC2617] for further acknowledgements.

The internationalization problem with respect to the character encoding scheme used for user-pass has been reported as a Mozilla bug back in the year 2000 (see <https://bugzilla.mozilla.org/show_bug.cgi?id=41489> and also the more recent <https://bugzilla.mozilla.org/show_bug.cgi?id=656213>). It was Andrew Clover's idea to address it using a new auth-param.

We also thank the members of the HTTPAuth Working Group and other reviewers, namely Stephen Farrell, Bjoern Hoehrmann, Kari Hurtta, Amos Jeffries, Benjamin Kaduk, Michael Koeller, Eric Lawrence, James Manger, Alexey Melnikov, Kathleen Moriarty, Yaron Sheffer, Michael Sweet, and Martin Thomson for feedback on this revision.
7. References

7.1. Normative References

7.2. Informative References

Response Header Fields”,
draft-ietf-httpbis-auth-info-02 (work in progress), February 2015.

draft-ietf-httpauth-digest-13 (work in progress), February 2015.

[ISO-8859-1] International Organization for Standardization,

Appendix A. Changes from RFC 2617

The scheme definition has been rewritten to be consistent with newer specifications such as [RFC7235].

The new authentication parameter "charset" has been added. It is purely advisory, so existing implementations do not need to change, unless they want to take advantage of the additional information which previously wasn’t available.
Appendix B. Deployment Considerations for the 'charset' Parameter

B.1. User Agents

User agents not implementing 'charset' will continue to work as before, ignoring the new parameter.

User agents which already default to the UTF-8 encoding implement 'charset' by definition.

Other user agents can keep their default behavior, and switch to UTF-8 when seeing the new parameter.

B.2. Origin Servers

Origin servers that do not support non-US-ASCII characters in credentials do not require any changes to support 'charset'.

Origin servers that need to support non-US-ASCII characters, but cannot use the UTF-8 character encoding scheme will not be affected; they will continue to function as well or as badly as before.

Finally, origin servers that need to support non-US-ASCII characters and can use the UTF-8 character encoding scheme can opt in as described above. In the worst case, they'll continue to see either broken credentials or no credentials at all (depending on how legacy clients handle characters they cannot encode).

B.3. Why not simply switch the default encoding to UTF-8?

There are sites in use today that default to a local character encoding scheme, such as ISO-8859-1 ([ISO-8859-1]), and expect user agents to use that encoding. Authentication on these sites will stop to work if the user agent switches to a different encoding, such as UTF-8.

Note that sites might even inspect the User-Agent header field ([RFC7231], Section 5.5.3) to decide what character encoding scheme to expect from the client. Therefore they might support UTF-8 for some user agents, but default to something else for others. User agents in the latter group will have to continue to do what they do today until the majority of these servers have been upgraded to always use UTF-8.

Appendix C. Change Log (to be removed by RFC Editor before publication)
C.1. Since RFC 2617

This draft acts as a baseline for tracking subsequent changes to the specification. As such, it extracts the definition of "Basic", plus the related Security Considerations, and also adds the IANA registration of the scheme. Changes to the actual definition will be made in subsequent drafts.

C.2. Since draft-ietf-httpauth-basicauth-update-00

Fixed Base64 reference to point to an actual definition of Base64.

Update HTTPbis and Digest references.

Note that this spec, together with HTTPbis P7 and the Digest update, obsoletes RFC 2617.

Rewrote text about authentication parameters and their extensibility.

Pulled in the definition of the "charset" parameter.

Removed a misleading statement about user-ids potentially being case-sensitive, as the same is true for passwords.

Added TODOs with respect to path matching, and colons in user-ids.

Minor improvements on Security Considerations.

Update Digest reference.

Rewrite scheme definition as algorithm rather than pseudo-ABNF.

Add a note about colons in user-id.

Attempt to explain authentication scopes.

C.4. Since draft-ietf-httpauth-basicauth-update-02

Reference draft-ietf-precis-saslprepbis for the set of characters that need to be supported in user-ids and passwords.

C.5. Since draft-ietf-httpauth-basicauth-update-03

Update reference for draft-ietf-precis-saslprepbis (which renames "Password" to "OpaqueString").
Mention HTTPS as enhancement for securing the transmission of credentials.

Update DIGEST reference and change it to informative.

Use RFC 20 as reference for ASCII.

Fixed definition of authentication scope. Updated DIGEST reference.

C.7. Since draft-ietf-httpauth-basicauth-update-05

Updated DIGEST and PRECIS references.

Avoid the term "obfuscated". Say "free-form string" instead of "opaque string" in realm description.

Mention AUTHINFO as yet another draft that helps obsoleting RFC 2617.

Add a note about the complexity of parsing challenges correctly.

Author's Address

Julian F. Reschke
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany

EMail: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/