
HTTPAuth Working Group R. Shekh-Yusef, Ed.
Internet-Draft D. Ahrens
Obsoletes: 2617 (if approved) Avaya
Intended Status: Standards Track S. Bremer
Expires: July 5, 2014 Netzkonform
 January 1, 2014

HTTP Digest Access Authentication
draft-ietf-httpauth-digest-01.txt

Abstract

 HTTP provides a simple challenge-response authentication mechanism
 that may be used by a server to challenge a client request and by a
 client to provide authentication information. This document defines
 the HTTP Digest Authentication scheme that may be used with the
 authentication mechanism.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 4
1.1 Terminology . 6

2 Syntax Convention . 6
3 Digest Access Authentication Scheme 6
3.1 Overall Operation . 6
3.2 Representation of Digest Values 6
3.3 The WWW-Authenticate Response Header 7
3.4 The Authorization Request Header 10
3.4.1 Request-Digest . 12
3.4.2 A1 . 13
3.4.3 A2 . 14
3.4.4 Username Hashing . 14
3.4.5 Directive Values and Quoted-String 14
3.4.6 Various Considerations 15

3.5 The Authentication-Info Header 16
3.6 Digest Operation . 17
3.7 Security Protocol Negotiation 19
3.8 Proxy-Authentication and Proxy-Authorization 19
3.9 Example . 20

4 Internationalization . 22
5 Security Considerations . 22
5.1 Limitations . 22
5.2 Authentication of Clients using Digest Authentication . . . 22
5.3 Limited Use Nonce Values 23
5.4 Replay Attacks . 24
5.5 Weakness Created by Multiple Authentication Schemes 24
5.6 Online dictionary attacks 25
5.7 Man in the Middle . 25
5.8 Chosen plaintext attacks 26
5.9 Precomputed dictionary attacks 26
5.10 Batch brute force attacks 27
5.11 Spoofing by Counterfeit Servers 27
5.12 Storing passwords . 27
5.13 Summary . 28

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 2]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

6 IANA Considerations . 28
7 Acknowledgments . 29
8 References . 29
8.1 Normative References . 29
8.2 Informative References 29

 Authors' Addresses . 30

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 3]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

1 Introduction

 HTTP provides a simple challenge-response authentication mechanism
 that MAY be used by a server to challenge a client request and by a
 client to provide authentication information. It uses an extensible,
 case-insensitive token to identify the authentication scheme,
 followed by a comma-separated list of attribute-value pairs which
 carry the parameters necessary for achieving authentication via that
 scheme.

 auth-scheme = token
 auth-param = token "=" (token | quoted-string)

 The 401 (Unauthorized) response message is used by an origin server
 to challenge the authorization of a user agent. This response MUST
 include a WWW-Authenticate header field containing at least one
 challenge applicable to the requested resource. The 407 (Proxy
 Authentication Required) response message is used by a proxy to
 challenge the authorization of a client and MUST include a Proxy-
 Authenticate header field containing at least one challenge
 applicable to the proxy for the requested resource.

 challenge = auth-scheme 1*SP 1#auth-param

 Note: User agents will need to take special care in parsing the WWW-
 Authenticate or Proxy-Authenticate header field value if it contains
 more than one challenge, or if more than one WWW-Authenticate header
 field is provided, since the contents of a challenge may itself
 contain a comma-separated list of authentication parameters.

 The authentication parameter realm is defined for all authentication
 schemes:

 realm = "realm" "=" realm-value
 realm-value = quoted-string

 The realm directive (case-insensitive) is required for all
 authentication schemes that issue a challenge. The realm value (case-
 sensitive), in combination with the canonical root URL (the
 absoluteURI for the server whose abs_path is empty; see section 5.1.2
 of [RFC2616]) of the server being accessed, defines the protection
 space. These realms allow the protected resources on a server to be
 partitioned into a set of protection spaces, each with its own
 authentication scheme and/or authorization database. The realm value
 is a string, generally assigned by the origin server, which may have
 additional semantics specific to the authentication scheme. Note that
 there may be multiple challenges with the same auth-scheme but
 different realms.

https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.2

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 4]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 A user agent that wishes to authenticate itself with an origin
 server--usually, but not necessarily, after receiving a 401
 (Unauthorized)--MAY do so by including an Authorization header field
 with the request. A client that wishes to authenticate itself with a
 proxy--usually, but not necessarily, after receiving a 407 (Proxy
 Authentication Required)--MAY do so by including a Proxy-
 Authorization header field with the request. Both the Authorization
 field value and the Proxy-Authorization field value consist of
 credentials containing the authentication information of the client
 for the realm of the resource being requested. The user agent MUST
 choose to use one of the challenges with the strongest auth-scheme it
 understands and request credentials from the user based upon that
 challenge.

 credentials = auth-scheme #auth-param

 Note that many browsers will only recognize Basic and will require
 that it be the first auth-scheme presented. Servers should only
 include Basic if it is minimally acceptable.

 The protection space determines the domain over which credentials can
 be automatically applied. If a prior request has been authorized, the
 same credentials MAY be reused for all other requests within that
 protection space for a period of time determined by the
 authentication scheme, parameters, and/or user preference. Unless
 otherwise defined by the authentication scheme, a single protection
 space cannot extend outside the scope of its server.

 If the origin server does not wish to accept the credentials sent
 with a request, it SHOULD return a 401 (Unauthorized) response. The
 response MUST include a WWW-Authenticate header field containing at
 least one (possibly new) challenge applicable to the requested
 resource. If a proxy does not accept the credentials sent with a
 request, it SHOULD return a 407 (Proxy Authentication Required). The
 response MUST include a Proxy-Authenticate header field containing a
 (possibly new) challenge applicable to the proxy for the requested
 resource.

 The HTTP protocol does not restrict applications to this simple
 challenge-response mechanism for access authentication. Additional
 mechanisms MAY be used, such as encryption at the transport level or
 via message encapsulation, and with additional header fields
 specifying authentication information. However, these additional
 mechanisms are not defined by this specification.

 Proxies MUST be completely transparent regarding user agent
 authentication by origin servers. That is, they must forward the WWW-
 Authenticate and Authorization headers untouched, and follow the

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 5]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 rules found in section 14.8 of [RFC2616]. Both the Proxy-Authenticate
 and the Proxy-Authorization header fields are hop-by-hop headers (see

section 13.5.1 of [RFC2616]).

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2 Syntax Convention

 In the interest of clarity and readability, the extended parameters
 or the headers and parameters in the examples in this document might
 be broken into multiple lines. Any line that is indented in this
 document is a continuation of the preceding line.

3 Digest Access Authentication Scheme

3.1 Overall Operation

 The Digest scheme is based on a simple challenge-response paradigm.
 The Digest scheme challenges using a nonce value. A valid response
 contains a checksum of the username, the password, the given nonce
 value, the HTTP method, and the requested URI. In this way, the
 password is never sent in the clear. The username and password must
 be prearranged in some fashion not addressed by this document.

3.2 Representation of Digest Values

 An optional header allows the server to specify the algorithm used to
 create the checksum or digest. By default the SHA2-256 algorithm is
 used, with SHA2-512/256 being used as a backup algorithm. To
 maintain backwards compatibility, the MD5 algorithm is still
 supported but not recommended.

 The size of the digest depends on the algorithm used. The bits in
 the digest are converted from the most significant to the least
 significant bit, four bits at a time to the ASCII representation as
 follows. Each four bits is represented by its familiar hexadecimal
 notation from the characters 0123456789abcdef, that is binary 0000 is
 represented by the character '0', 0001 by '1' and so on up to the
 representation of 1111 as 'f'. If the MD5 algorithm is used to
 calculate the digest, then the digest will be represented as 32
 hexadecimal characters, SHA2-256 and SHA2-512/256 by 64 hexadecimal
 characters.

https://datatracker.ietf.org/doc/html/rfc2616#section-14.8
https://datatracker.ietf.org/doc/html/rfc2616#section-13.5.1
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 6]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

3.3 The WWW-Authenticate Response Header

 If a server receives a request for an access-protected object, and an
 acceptable Authorization header is not sent, the server responds with
 a "401 Unauthorized" status code, and a WWW-Authenticate header as
 per the framework defined above, which for the digest scheme is
 utilized as follows:

 challenge = "Digest" digest-challenge

 digest-challenge = 1#(realm | [domain] | nonce |
 [opaque] |[stale] | [algorithm] |
 [qop-options] | [charset] | [userhash] |
 [auth-param])

 domain = "domain" "=" <"> URI (1*SP URI) <">
 URI = absoluteURI | abs_path
 nonce = "nonce" "=" nonce-value
 nonce-value = quoted-string
 opaque = "opaque" "=" quoted-string
 stale = "stale" "=" ("true" | "false")
 algorithm = "algorithm" "=" (
 "MD5" | "MD5-sess" |
 "SHA2-256" | "SHA2-256-sess" |
 "SHA2-512-256" | "SHA2-512-256-sess" |
 token)
 qop-options = "qop" "=" <"> 1#qop-value <">
 qop-value = "auth" | "auth-int" | token
 charset = "charset" "=" ("UTF-8" | token)
 userhash = "userhash" "=" ("true" | "false")

 The meanings of the values of the directives used above are as
 follows:

 realm
 A string to be displayed to users so they know which username and
 password to use. This string should contain at least the name of
 the host performing the authentication and might additionally
 indicate the collection of users who might have access. An example
 might be "registered_users@gotham.news.com".

 domain
 A quoted, space-separated list of URIs, as specified in RFC XURI
 [7], that define the protection space. If a URI is an abs_path,
 it is relative to the canonical root URL of the server being
 accessed. An absoluteURI in this list may refer to a different
 server than the one being accessed. The client can use this list

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 7]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 to determine the set of URIs for which the same authentication
 information may be sent: any URI that has a URI in this list as a
 prefix (after both have been made absolute) may be assumed to be
 in the same protection space. If this directive is omitted or its
 value is empty, the client should assume that the protection space
 consists of all URIs on the responding server.

 This directive is not meaningful in Proxy-Authenticate headers,
 for which the protection space is always the entire proxy; if
 present it should be ignored.

 nonce
 A server-specified data string which should be uniquely generated
 each time a 401 response is made. It is recommended that this
 string be base64 or hexadecimal data. Specifically, since the
 string is passed in the header lines as a quoted string, the
 double-quote character is not allowed.

 The contents of the nonce are implementation dependent. The
 quality of the implementation depends on a good choice. A nonce
 might, for example, be constructed as the base 64 encoding of

 time-stamp H(time-stamp ":" ETag ":" private-key)

 where time-stamp is a server-generated time or other non-repeating
 value, ETag is the value of the HTTP ETag header associated with
 the requested entity, and private-key is data known only to the
 server. With a nonce of this form a server would recalculate the
 hash portion after receiving the client authentication header and
 reject the request if it did not match the nonce from that header
 or if the time-stamp value is not recent enough. In this way the
 server can limit the time of the nonce's validity. The inclusion
 of the ETag prevents a replay request for an updated version of
 the resource. (Note: including the IP address of the client in the
 nonce would appear to offer the server the ability to limit the
 reuse of the nonce to the same client that originally got it.
 However, that would break proxy farms, where requests from a
 single user often go through different proxies in the farm. Also,
 IP address spoofing is not that hard.)

 An implementation might choose not to accept a previously used
 nonce or a previously used digest, in order to protect against a
 replay attack. Or, an implementation might choose to use one-time
 nonces or digests for POST or PUT requests and a time-stamp for
 GET requests. For more details on the issues involved see section

5 of this document.

 The nonce is opaque to the client.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 8]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 opaque
 A string of data, specified by the server, which should be
 returned by the client unchanged in the Authorization header of
 subsequent requests with URIs in the same protection space. It is
 recommended that this string be base64 or hexadecimal data.

 stale
 A case-insensitive flag, indicating that the previous request from
 the client was rejected because the nonce value was stale. If
 stale is TRUE, the client may wish to simply retry the request
 with a new encrypted response, without reprompting the user for a
 new username and password. The server should only set stale to
 TRUE if it receives a request for which the nonce is invalid but
 with a valid digest for that nonce (indicating that the client
 knows the correct username/password). If stale is FALSE, or
 anything other than TRUE, or the stale directive is not present,
 the username and/or password are invalid, and new values must be
 obtained.

 algorithm
 A string indicating a pair of algorithms used to produce the
 digest and a checksum. If this is not present it is assumed to be
 "MD5". If the algorithm is not understood, the challenge should be
 ignored (and a different one used, if there is more than one).

 In this document the string obtained by applying the digest
 algorithm to the data "data" with secret "secret" will be denoted
 by KD(secret, data), and the string obtained by applying the
 checksum algorithm to the data "data" will be denoted H(data). The
 notation unq(X) means the value of the quoted-string X without the
 surrounding quotes.

 For the "MD5" and "MD5-sess" algorithms

 H(data) = MD5(data)

 For the "SHA2-256" and "SHA2-256-sess" algorithms

 H(data) = SHA2-256(data)

 For the "SHA2-512-256" and "SHA2-512-256-sess" algorithms

 H(data) = SHA2-512-256(data)

 and

 KD(secret, data) = H(concat(secret, ":", data))

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 9]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 i.e., the digest is the MD5 of the secret concatenated with a
 colon concatenated with the data. The "MD5-sess" algorithm is
 intended to allow efficient 3rd party authentication servers;
 for the difference in usage, see the description in section

3.4.2.

 qop-options
 This directive is optional, but is made so only for backward
 compatibility with RFC 2069 [RFC2069]; it SHOULD be used by all
 implementations compliant with this version of the Digest scheme.
 If present, it is a quoted string of one or more tokens indicating
 the "quality of protection" values supported by the server. The
 value "auth" indicates authentication; the value "auth-int"
 indicates authentication with integrity protection; see the
 descriptions below for calculating the response directive value
 for the application of this choice. Unrecognized options MUST be
 ignored.

 charset
 This is an optional parameter that could be used by the server to
 indicate the encoding scheme it supports.

 userhash
 This is an optional parameter that could be used by the server to
 indicate that it supports username hashing.

 auth-param
 This directive allows for future extensions. Any unrecognized
 directive MUST be ignored.

3.4 The Authorization Request Header

 The client is expected to retry the request, passing an Authorization
 header line, which is defined according to the framework above,
 utilized as follows.

 credentials = "Digest" digest-response
 digest-response = 1#(username | realm | nonce | digest-uri |
 response | [algorithm] | [cnonce] |
 [opaque] | [message-qop] |
 [nonce-count] | [charset] | [userhash] |
 [auth-param])
 username = "username" "=" username-value
 username-value = quoted-string
 digest-uri = "uri" "=" digest-uri-value
 digest-uri-value = request-uri ; As specified by HTTP/1.1
 message-qop = "qop" "=" qop-value

https://datatracker.ietf.org/doc/html/rfc2069
https://datatracker.ietf.org/doc/html/rfc2069

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 10]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 cnonce = "cnonce" "=" cnonce-value
 cnonce-value = nonce-value
 nonce-count = "nc" "=" nc-value
 nc-value = 8LHEX
 response = "response" "=" request-digest
 request-digest = <"> digest-size LHEX <">
 digest-size = "32" | "64"
 LHEX = "0" | "1" | "2" | "3" |
 "4" | "5" | "6" | "7" |
 "8" | "9" | "a" | "b" |
 "c" | "d" | "e" | "f"
 charset = "charset" "=" ("UTF-8" | token)
 userhash = "userhash" "=" ("true" | "false")

 The values of the opaque and algorithm fields must be those supplied
 in the WWW-Authenticate response header for the entity being
 requested.

 response
 A string of digest-size hex digits computed as defined below,
 which proves that the user knows a password

 username
 The user's name in the specified realm.

 digest-uri
 The URI from Request-URI of the Request-Line; duplicated here
 because proxies are allowed to change the Request-Line in transit.

 qop
 Indicates what "quality of protection" the client has applied to
 the message. If present, its value MUST be one of the alternatives
 the server indicated it supports in the WWW-Authenticate header.
 These values affect the computation of the request-digest. Note
 that this is a single token, not a quoted list of alternatives as
 in WWW- Authenticate. This directive is optional in order to
 preserve backward compatibility with a minimal implementation of

RFC 2069 [RFC2069], but SHOULD be used if the server indicated
 that qop is supported by providing a qop directive in the WWW-
 Authenticate header field.

 cnonce
 This MUST be specified if a qop directive is sent (see above), and
 MUST NOT be specified if the server did not send a qop directive
 in the WWW-Authenticate header field. The cnonce-value is an
 opaque quoted string value provided by the client and used by both
 client and server to avoid chosen plaintext attacks, to provide
 mutual authentication, and to provide some message integrity

https://datatracker.ietf.org/doc/html/rfc2069
https://datatracker.ietf.org/doc/html/rfc2069

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 11]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 protection. See the descriptions below of the calculation of the
 response- digest and request-digest values.

 nonce-count
 This MUST be specified if a qop directive is sent (see above), and
 MUST NOT be specified if the server did not send a qop directive
 in the WWW-Authenticate header field. The nc-value is the
 hexadecimal count of the number of requests (including the current
 request) that the client has sent with the nonce value in this
 request. For example, in the first request sent in response to a
 given nonce value, the client sends "nc=00000001". The purpose of
 this directive is to allow the server to detect request replays by
 maintaining its own copy of this count - if the same nc-value is
 seen twice, then the request is a replay. See the description
 below of the construction of the request-digest value.

 charset
 This is an optional parameter that could be used by the client to
 indicate the encoding scheme it supports.

 userhash
 This is an optional parameter that could be used by the client to
 indicate that it supports username hashing.

 auth-param
 This directive allows for future extensions. Any unrecognized
 directive MUST be ignored.

 If a directive or its value is improper, or required directives are
 missing, the proper response is 400 Bad Request. If the request-
 digest is invalid, then a login failure should be logged, since
 repeated login failures from a single client may indicate an attacker
 attempting to guess passwords.

 The definition of request-digest above indicates the encoding for its
 value. The following definitions show how the value is computed.

3.4.1 Request-Digest

 If the "qop" value is "auth" or "auth-int":

 request-digest = <"> < KD (H(A1), unq(nonce-value)
 ":" nc-value
 ":" unq(cnonce-value)
 ":" unq(qop-value)
 ":" H(A2)
) <">

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 12]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 If the "qop" directive is not present (this construction is for
 compatibility with RFC 2069):

 request-digest =
 <"> < KD (H(A1), unq(nonce-value) ":" H(A2)) > <">

 See below for the definitions for A1 and A2.

3.4.2 A1

 If the "algorithm" directive's value is "MD5", "SHA2-256", or "SHA2-
 512-256", then A1 is:

 A1 = unq(username-value) ":" unq(realm-value) ":" passwd

 where

 passwd = < user's password >

 If the "algorithm" directive's value is "MD5-sess", "SHA2-256-sess",
 or "SHA2-512-256-sess", then A1 is calculated only once - on the
 first request by the client following receipt of a WWW-Authenticate
 challenge from the server. It uses the server nonce from that
 challenge, and the first client nonce value to construct A1 as
 follows:

 A1 = H(unq(username-value) ":" unq(realm-value)
 ":" passwd)
 ":" unq(nonce-value) ":" unq(cnonce-value)

 This creates a 'session key' for the authentication of subsequent
 requests and responses which is different for each "authentication
 session", thus limiting the amount of material hashed with any one
 key. (Note: see further discussion of the authentication session in

section 3.6.) Because the server need only use the hash of the user
 credentials in order to create the A1 value, this construction could
 be used in conjunction with a third party authentication service so
 that the web server would not need the actual password value. The
 specification of such a protocol is beyond the scope of this
 specification.

https://datatracker.ietf.org/doc/html/rfc2069

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 13]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

3.4.3 A2

 If the "qop" directive's value is "auth" or is unspecified, then A2
 is:

 A2 = Method ":" digest-uri-value

 If the "qop" value is "auth-int", then A2 is:

 A2 = Method ":" digest-uri-value ":" H(entity-body)

3.4.4 Username Hashing

 To protect the transport of the username from the client to the
 server, the server SHOULD set the "userhash" parameter with the value
 of "true" in the WWW-Authentication header.

 If the client supports the "userhash" parameter, and the "userhash"
 parameter value in the WWW-Authentication header is set to "true",
 then the client SHOULD calculate a hash of the username after any
 other hash calculation and include the "userhash" parameter with the
 value of "true" in the Authorization Request Header. If the client
 does not provide the "username" as a hash value or the "userhash"
 parameter with the value of "true", the server MAY reject the
 request.

 The server may change the nonce value, so the client should be ready
 to recalculate the hashed username.

 The following is the operation that the client will take to hash the
 username:

 username = H(H(username ":" realm) ":" nonce)

3.4.5 Directive Values and Quoted-String

 Note that the value of many of the directives, such as "username-
 value", are defined as a "quoted-string". However, the "unq" notation
 indicates that surrounding quotation marks are removed in forming the
 string A1. Thus if the Authorization header includes the fields

 username="Mufasa", realm=myhost@testrealm.com

 and the user Mufasa has password "Circle Of Life" then H(A1) would be
 H(Mufasa:myhost@testrealm.com:Circle Of Life) with no quotation marks
 in the digested string.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 14]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 No white space is allowed in any of the strings to which the digest
 function H() is applied unless that white space exists in the quoted
 strings or entity body whose contents make up the string to be
 digested. For example, the string A1 illustrated above must be

 Mufasa:myhost@testrealm.com:Circle Of Life

 with no white space on either side of the colons, but with the white
 space between the words used in the password value. Likewise, the
 other strings digested by H() must not have white space on either
 side of the colons which delimit their fields unless that white space
 was in the quoted strings or entity body being digested.

 Also note that if integrity protection is applied (qop=auth-int), the
 H(entity-body) is the hash of the entity body, not the message body -
 it is computed before any transfer encoding is applied by the sender
 and after it has been removed by the recipient. Note that this
 includes multipart boundaries and embedded headers in each part of
 any multipart content-type.

3.4.6 Various Considerations

 The "Method" value is the HTTP request method as specified in section
5.1.1 of [RFC2616]. The "request-uri" value is the Request-URI from

 the request line as specified in section 5.1.2 of [RFC2616]. This may
 be "*", an "absoluteURL" or an "abs_path" as specified in section

5.1.2 of [RFC2616], but it MUST agree with the Request-URI. In
 particular, it MUST be an "absoluteURL" if the Request-URI is an
 "absoluteURL". The "cnonce-value" is an optional client-chosen value
 whose purpose is to foil chosen plaintext attacks.

 The authenticating server must assure that the resource designated by
 the "uri" directive is the same as the resource specified in the
 Request-Line; if they are not, the server SHOULD return a 400 Bad
 Request error. (Since this may be a symptom of an attack, server
 implementers may want to consider logging such errors.) The purpose
 of duplicating information from the request URL in this field is to
 deal with the possibility that an intermediate proxy may alter the
 client's Request-Line. This altered (but presumably semantically
 equivalent) request would not result in the same digest as that
 calculated by the client.

 Implementers should be aware of how authenticated transactions
 interact with shared caches. The HTTP/1.1 protocol specifies that
 when a shared cache (see section 13.7 of [RFC2616]) has received a
 request containing an Authorization header and a response from
 relaying that request, it MUST NOT return that response as a reply to

https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc2616#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc2616#section-13.7

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 15]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 any other request, unless one of two Cache-Control (see section 14.9
 of [RFC2616]) directives was present in the response. If the original
 response included the "must-revalidate" Cache-Control directive, the
 cache MAY use the entity of that response in replying to a subsequent
 request, but MUST first revalidate it with the origin server, using
 the request headers from the new request to allow the origin server
 to authenticate the new request. Alternatively, if the original
 response included the "public" Cache-Control directive, the response
 entity MAY be returned in reply to any subsequent request.

3.5 The Authentication-Info Header

 The Authentication-Info header is used by the server to communicate
 some information regarding the successful authentication in the
 response.

 AuthenticationInfo = "Authentication-Info" ":" auth-info
 auth-info = 1#(nextnonce | [message-qop]
 | [response-auth] | [cnonce]
 | [nonce-count])
 nextnonce = "nextnonce" "=" nonce-value
 response-auth = "rspauth" "=" response-digest
 response-digest = <"> digest-size LHEX <">
 digest-size = "32" | "64"

 The value of the nextnonce directive is the nonce the server wishes
 the client to use for a future authentication response. The server
 may send the Authentication-Info header with a nextnonce field as a
 means of implementing one-time or otherwise changing nonces. If the
 nextnonce field is present the client SHOULD use it when constructing
 the Authorization header for its next request. Failure of the client
 to do so may result in a request to re-authenticate from the server
 with the "stale=TRUE".

 Server implementations should carefully consider the performance
 implications of the use of this mechanism; pipelined requests will
 not be possible if every response includes a nextnonce directive
 that must be used on the next request received by the server.
 Consideration should be given to the performance vs. security
 tradeoffs of allowing an old nonce value to be used for a limited
 time to permit request pipelining. Use of the nonce-count can
 retain most of the security advantages of a new server nonce
 without the deleterious affects on pipelining.

 message-qop
 Indicates the "quality of protection" options applied to the
 response by the server. The value "auth" indicates
 authentication; the value "auth-int" indicates authentication with

https://datatracker.ietf.org/doc/html/rfc2616#section-14.9
https://datatracker.ietf.org/doc/html/rfc2616#section-14.9

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 16]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 integrity protection. The server SHOULD use the same value for the
 message- qop directive in the response as was sent by the client
 in the corresponding request.

 The optional response digest in the "response-auth" directive
 supports mutual authentication -- the server proves that it knows the
 user's secret, and with qop=auth-int also provides limited integrity
 protection of the response. The "response-digest" value is calculated
 as for the "request-digest" in the Authorization header, except that
 if "qop=auth" or is not specified in the Authorization header for the
 request, A2 is

 A2 = ":" digest-uri-value

 and if "qop=auth-int", then A2 is

 A2 = ":" digest-uri-value ":" H(entity-body)

 where "digest-uri-value" is the value of the "uri" directive on the
 Authorization header in the request. The "cnonce-value" and "nc-
 value" MUST be the ones for the client request to which this message
 is the response. The "response-auth", "cnonce", and "nonce-count"
 directives MUST BE present if "qop=auth" or "qop=auth-int" is
 specified.

 The Authentication-Info header is allowed in the trailer of an HTTP
 message transferred via chunked transfer-coding.

3.6 Digest Operation

 Upon receiving the Authorization header, the server may check its
 validity by looking up the password that corresponds to the submitted
 username. Then, the server must perform the same digest operation
 (e.g., MD5) performed by the client, and compare the result to the
 given request-digest value.

 Note that the HTTP server does not actually need to know the user's
 cleartext password. As long as H(A1) is available to the server, the
 validity of an Authorization header may be verified.

 The client response to a WWW-Authenticate challenge for a protection
 space starts an authentication session with that protection space.
 The authentication session lasts until the client receives another
 WWW-Authenticate challenge from any server in the protection space. A
 client should remember the username, password, nonce, nonce count and
 opaque values associated with an authentication session to use to
 construct the Authorization header in future requests within that
 protection space. The Authorization header may be included

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 17]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 preemptively; doing so improves server efficiency and avoids extra
 round trips for authentication challenges. The server may choose to
 accept the old Authorization header information, even though the
 nonce value included might not be fresh. Alternatively, the server
 may return a 401 response with a new nonce value, causing the client
 to retry the request; by specifying stale=TRUE with this response,
 the server tells the client to retry with the new nonce, but without
 prompting for a new username and password.

 Because the client is required to return the value of the opaque
 directive given to it by the server for the duration of a session,
 the opaque data may be used to transport authentication session state
 information. (Note that any such use can also be accomplished more
 easily and safely by including the state in the nonce.) For example,
 a server could be responsible for authenticating content that
 actually sits on another server. It would achieve this by having the
 first 401 response include a domain directive whose value includes a
 URI on the second server, and an opaque directive whose value
 contains the state information. The client will retry the request, at
 which time the server might respond with a 301/302 redirection,
 pointing to the URI on the second server. The client will follow the
 redirection, and pass an Authorization header , including the
 <opaque> data.

 As with the basic scheme, proxies must be completely transparent in
 the Digest access authentication scheme. That is, they must forward
 the WWW-Authenticate, Authentication-Info and Authorization headers
 untouched. If a proxy wants to authenticate a client before a request
 is forwarded to the server, it can be done using the Proxy-
 Authenticate and Proxy-Authorization headers described in section 3.6
 below.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 18]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

3.7 Security Protocol Negotiation

 It is useful for a server to be able to know which security schemes a
 client is capable of handling.

 It is possible that a server may want to require Digest as its
 authentication method, even if the server does not know that the
 client supports it. A client is encouraged to fail gracefully if the
 server specifies only authentication schemes it cannot handle.

 When a server receives a request to access a resource, the server
 might challenge the client by responding with "401 Unauthorized"
 status code, and include one or more WWW-Authenticate headers. If the
 server challenges with multiple Digest headers, then each one of
 these headers MUST use a different digest algorithm. The server MUST
 add these Digest headers to the response in order of preference,
 starting with the most preferred header, followed by the less
 preferred headers.

 This specification defines the following preference list, starting
 with the most preferred algorithm:

 * SHA2-256 as the default algorithm.
 * SHA2-512/256 as a backup algorithm.
 * MD5 for backward compatibility.

 A future version of this document might add SHA3 [SHA3] as a backup
 algorithm, once its definition has been finalized and published.

 When the client receives the response it SHOULD use the topmost
 header that it supports, unless a local policy dictates otherwise.
 The client should ignore any challenge it does not understand.

3.8 Proxy-Authentication and Proxy-Authorization

 The digest authentication scheme may also be used for authenticating
 users to proxies, proxies to proxies, or proxies to origin servers by
 use of the Proxy-Authenticate and Proxy-Authorization headers. These
 headers are instances of the Proxy-Authenticate and Proxy-
 Authorization headers specified in sections 10.33 and 10.34 of the
 HTTP/1.1 specification [RFC2616] and their behavior is subject to
 restrictions described there. The transactions for proxy
 authentication are very similar to those already described. Upon
 receiving a request which requires authentication, the proxy/server
 must issue the "407 Proxy Authentication Required" response with a
 "Proxy-Authenticate" header. The digest-challenge used in the Proxy-
 Authenticate header is the same as that for the WWW- Authenticate

https://datatracker.ietf.org/doc/html/rfc2616

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 19]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 header as defined above in section 3.2.1.

 The client/proxy must then re-issue the request with a Proxy-
 Authorization header, with directives as specified for the
 Authorization header in section 3.4 above.

 On subsequent responses, the server sends Proxy-Authentication-Info
 with directives the same as those for the Authentication-Info header
 field.

 Note that in principle a client could be asked to authenticate itself
 to both a proxy and an end-server, but never in the same response.

3.9 Example

 The following example assumes that an access protected document is
 being requested from the server via a GET request. The URI of the
 document is http://www.nowhere.org/dir/index.html". Both client and
 server know that the username for this document is "Mufasa" and the
 password is "Circle of Life" (with one space between each of the
 three words).

 The first time the client requests the document, no Authorization
 header is sent, so the server responds with:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Digest
 realm = "testrealm@host.com",
 qop="auth, auth-int",
 algorithm="SHA2-256",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth, auth-int",
 algorithm="MD5",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40ef41"

http://www.nowhere.org/dir/index

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 20]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 The client may prompt the user for their username and password, after
 which it will respond with a new request, including the following
 Authorization header if the client chooses MD5 digest:

 Authorization:Digest username="Mufasa",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 qop="auth",
 algorithm="MD5",
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 If the client chooses to use the SHA2-256 algorithm for calculating
 the response, the client responds with a new request including the
 following Authorization header:

 Authorization:Digest username="Mufasa",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 qop="auth",
 algorithm="SHA2-256",
 nc=00000001,
 cnonce="0a4f113b",
 response="5abdd07184ba512a22c53f41470e5eea7dcaa3a93
 a59b630c13dfe0a5dc6e38b",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 21]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

4 Internationalization

 In challenges, servers SHOULD use the "charset" authentication
 parameter (case-insensitive) to express the character encoding they
 expect the user agent to use.

 The only allowed value is "UTF-8", to be matched case-insensitively,
 indicating that the server expects the UTF-8 character encoding to be
 used ([RFC3629]).

 If the user agent supports the encoding indicated by the server, it
 MAY add the "charset" parameter, with the value it received from the
 server, to the Proxy-Authenticate or WWW-Authenticate header fields
 it sends back to the server.

 If the user agent does not support the encoding indicated by the
 server, it MAY add the "charset" parameter to the Proxy-Authenticate
 or WWW-Authenticate header fields it sends back to the server, but
 the value in the parameter should be preceded by an exclamation point
 (!).

5 Security Considerations

5.1 Limitations

 HTTP Digest authentication, when used with human-memorable passwords,
 is vulnerable to dictionary attacks. Such attacks are much easier
 than cryptographic attacks on any widely used algorithm, including
 those that are no longer considered secure. In other words, algorithm
 agility does not make this usage any more secure.

 As a result, Digest authentication SHOULD be used only with passwords
 that have a reasonable amount of entropy, e.g. 128-bit or more. Such
 passwords typically cannot be memorized by humans but can be used for
 automated web services.

 It is recommended that Digest authentication be used over a secure
 channel like HTTPS.

5.2 Authentication of Clients using Digest Authentication

 Digest Authentication does not provide a strong authentication
 mechanism, when compared to public key based mechanisms, for example.

 However, it is significantly stronger than (e.g.) CRAM-MD5, which has
 been proposed for use with LDAP [10], POP and IMAP (see RFC 2195

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2195

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 22]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 [9]). It is intended to replace the much weaker and even more
 dangerous Basic mechanism.

 Digest Authentication offers no confidentiality protection beyond
 protecting the actual password. All of the rest of the request and
 response are available to an eavesdropper.

 Digest Authentication offers only limited integrity protection for
 the messages in either direction. If qop=auth-int mechanism is used,
 those parts of the message used in the calculation of the WWW-
 Authenticate and Authorization header field response directive values
 (see section 3.2 above) are protected. Most header fields and their
 values could be modified as a part of a man-in-the-middle attack.

 Many needs for secure HTTP transactions cannot be met by Digest
 Authentication. For those needs TLS or SHTTP are more appropriate
 protocols. In particular Digest authentication cannot be used for any
 transaction requiring confidentiality protection. Nevertheless many
 functions remain for which Digest authentication is both useful and
 appropriate. Any service in present use that uses Basic should be
 switched to Digest as soon as practical.

5.3 Limited Use Nonce Values

 The Digest scheme uses a server-specified nonce to seed the
 generation of the request-digest value (as specified in section

3.2.2.1 above). As shown in the example nonce in section 3.2.1, the
 server is free to construct the nonce such that it may only be used
 from a particular client, for a particular resource, for a limited
 period of time or number of uses, or any other restrictions. Doing
 so strengthens the protection provided against, for example, replay
 attacks (see 4.5). However, it should be noted that the method
 chosen for generating and checking the nonce also has performance and
 resource implications. For example, a server may choose to allow
 each nonce value to be used only once by maintaining a record of
 whether or not each recently issued nonce has been returned and
 sending a next-nonce directive in the Authentication-Info header
 field of every response. This protects against even an immediate
 replay attack, but has a high cost checking nonce values, and perhaps
 more important will cause authentication failures for any pipelined
 requests (presumably returning a stale nonce indication). Similarly,
 incorporating a request-specific element such as the Etag value for a
 resource limits the use of the nonce to that version of the resource
 and also defeats pipelining. Thus it may be useful to do so for
 methods with side effects but have unacceptable performance for those
 that do not.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 23]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

5.4 Replay Attacks

 A replay attack against Digest authentication would usually be
 pointless for a simple GET request since an eavesdropper would
 already have seen the only document he could obtain with a replay.
 This is because the URI of the requested document is digested in the
 client request and the server will only deliver that document. By
 contrast under Basic Authentication once the eavesdropper has the
 user's password, any document protected by that password is open to
 him.

 Thus, for some purposes, it is necessary to protect against replay
 attacks. A good Digest implementation can do this in various ways.
 The server created "nonce" value is implementation dependent, but if
 it contains a digest of the client IP, a time-stamp, the resource
 ETag, and a private server key (as recommended above) then a replay
 attack is not simple. An attacker must convince the server that the
 request is coming from a false IP address and must cause the server
 to deliver the document to an IP address different from the address
 to which it believes it is sending the document. An attack can only
 succeed in the period before the time-stamp expires. Digesting the
 client IP and time-stamp in the nonce permits an implementation which
 does not maintain state between transactions.

 For applications where no possibility of replay attack can be
 tolerated the server can use one-time nonce values which will not be
 honored for a second use. This requires the overhead of the server

 remembering which nonce values have been used until the nonce time-
 stamp (and hence the digest built with it) has expired, but it
 effectively protects against replay attacks.

 An implementation must give special attention to the possibility of
 replay attacks with POST and PUT requests. Unless the server employs
 one-time or otherwise limited-use nonces and/or insists on the use of
 the integrity protection of qop=auth-int, an attacker could replay
 valid credentials from a successful request with counterfeit form
 data or other message body. Even with the use of integrity protection
 most metadata in header fields is not protected. Proper nonce
 generation and checking provides some protection against replay of
 previously used valid credentials, but see 4.8.

5.5 Weakness Created by Multiple Authentication Schemes

 An HTTP/1.1 server may return multiple challenges with a 401
 (Authenticate) response, and each challenge may use a different auth-
 scheme. A user agent MUST choose to use the strongest auth- scheme it

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 24]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 understands and request credentials from the user based upon that
 challenge.

 Note that many browsers will only recognize Basic and will require
 that it be the first auth-scheme presented. Servers should only
 include Basic if it is minimally acceptable.

 When the server offers choices of authentication schemes using the
 WWW-Authenticate header, the strength of the resulting authentication
 is only as good as that of the of the weakest of the authentication
 schemes. See section 5.7 below for discussion of particular attack
 scenarios that exploit multiple authentication schemes.

5.6 Online dictionary attacks

 If the attacker can eavesdrop, then it can test any overheard
 nonce/response pairs against a list of common words. Such a list is
 usually much smaller than the total number of possible passwords. The
 cost of computing the response for each password on the list is paid
 once for each challenge.

 The server can mitigate this attack by not allowing users to select
 passwords that are in a dictionary.

5.7 Man in the Middle

 Both Basic and Digest authentication are vulnerable to "man in the
 middle" (MITM) attacks, for example, from a hostile or compromised
 proxy. Clearly, this would present all the problems of eavesdropping.
 But it also offers some additional opportunities to the attacker.

 A possible man-in-the-middle attack would be to add a weak
 authentication scheme to the set of choices, hoping that the client
 will use one that exposes the user's credentials (e.g. password). For
 this reason, the client should always use the strongest scheme that
 it understands from the choices offered.

 An even better MITM attack would be to remove all offered choices,
 replacing them with a challenge that requests only Basic
 authentication, then uses the cleartext credentials from the Basic
 authentication to authenticate to the origin server using the
 stronger scheme it requested. A particularly insidious way to mount
 such a MITM attack would be to offer a "free" proxy caching service
 to gullible users.

 User agents should consider measures such as presenting a visual

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 25]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 indication at the time of the credentials request of what
 authentication scheme is to be used, or remembering the strongest
 authentication scheme ever requested by a server and produce a
 warning message before using a weaker one. It might also be a good
 idea for the user agent to be configured to demand Digest
 authentication in general, or from specific sites.

 Or, a hostile proxy might spoof the client into making a request the
 attacker wanted rather than one the client wanted. Of course, this is
 still much harder than a comparable attack against Basic
 Authentication.

5.8 Chosen plaintext attacks

 With Digest authentication, a MITM or a malicious server can
 arbitrarily choose the nonce that the client will use to compute the
 response. This is called a "chosen plaintext" attack. The ability to
 choose the nonce is known to make cryptanalysis much easier [8].

 However, no way to analyze the MD5 one-way function used by Digest
 using chosen plaintext is currently known.

 The countermeasure against this attack is for clients to be
 configured to require the use of the optional "cnonce" directive;
 this allows the client to vary the input to the hash in a way not
 chosen by the attacker.

5.9 Precomputed dictionary attacks

 With Digest authentication, if the attacker can execute a chosen
 plaintext attack, the attacker can precompute the response for many
 common words to a nonce of its choice, and store a dictionary of
 (response, password) pairs. Such precomputation can often be done in
 parallel on many machines. It can then use the chosen plaintext
 attack to acquire a response corresponding to that challenge, and
 just look up the password in the dictionary. Even if most passwords
 are not in the dictionary, some might be. Since the attacker gets to
 pick the challenge, the cost of computing the response for each
 password on the list can be amortized over finding many passwords. A
 dictionary with 100 million password/response pairs would take about
 3.2 gigabytes of disk storage.

 The countermeasure against this attack is to for clients to be
 configured to require the use of the optional "cnonce" directive.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 26]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

5.10 Batch brute force attacks

 With Digest authentication, a MITM can execute a chosen plaintext
 attack, and can gather responses from many users to the same nonce.
 It can then find all the passwords within any subset of password
 space that would generate one of the nonce/response pairs in a single
 pass over that space. It also reduces the time to find the first
 password by a factor equal to the number of nonce/response pairs
 gathered. This search of the password space can often be done in
 parallel on many machines, and even a single machine can search large
 subsets of the password space very quickly -- reports exist of
 searching all passwords with six or fewer letters in a few hours.

 The countermeasure against this attack is to for clients to be
 configured to require the use of the optional "cnonce" directive.

5.11 Spoofing by Counterfeit Servers

 Basic Authentication is vulnerable to spoofing by counterfeit
 servers. If a user can be led to believe that she is connecting to a
 host containing information protected by a password she knows, when
 in fact she is connecting to a hostile server, then the hostile
 server can request a password, store it away for later use, and feign
 an error. This type of attack is more difficult with Digest
 Authentication -- but the client must know to demand that Digest
 authentication be used, perhaps using some of the techniques
 described above to counter "man-in-the-middle" attacks. Again, the
 user can be helped in detecting this attack by a visual indication of
 the authentication mechanism in use with appropriate guidance in
 interpreting the implications of each scheme.

5.12 Storing passwords

 Digest authentication requires that the authenticating agent (usually
 the server) store some data derived from the user's name and password
 in a "password file" associated with a given realm. Normally this
 might contain pairs consisting of username and H(A1), where H(A1) is
 the digested value of the username, realm, and password as described
 above.

 The security implications of this are that if this password file is
 compromised, then an attacker gains immediate access to documents on
 the server using this realm. Unlike, say a standard UNIX password
 file, this information need not be decrypted in order to access
 documents in the server realm associated with this file. On the other
 hand, decryption, or more likely a brute force attack, would be

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 27]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 necessary to obtain the user's password. This is the reason that the
 realm is part of the digested data stored in the password file. It
 means that if one Digest authentication password file is compromised,
 it does not automatically compromise others with the same username
 and password (though it does expose them to brute force attack).

 There are two important security consequences of this. First the
 password file must be protected as if it contained unencrypted
 passwords, because for the purpose of accessing documents in its
 realm, it effectively does.

 A second consequence of this is that the realm string should be
 unique among all realms which any single user is likely to use. In
 particular a realm string should include the name of the host doing
 the authentication. The inability of the client to authenticate the
 server is a weakness of Digest Authentication.

5.13 Summary

 By modern cryptographic standards Digest Authentication is weak. But
 for a large range of purposes it is valuable as a replacement for
 Basic Authentication. It remedies some, but not all, weaknesses of
 Basic Authentication. Its strength may vary depending on the
 implementation. In particular the structure of the nonce (which is
 dependent on the server implementation) may affect the ease of
 mounting a replay attack. A range of server options is appropriate
 since, for example, some implementations may be willing to accept the
 server overhead of one-time nonces or digests to eliminate the
 possibility of replay. Others may satisfied with a nonce like the one
 recommended above restricted to a single IP address and a single ETag
 or with a limited lifetime.

 The bottom line is that *any* compliant implementation will be
 relatively weak by cryptographic standards, but *any* compliant
 implementation will be far superior to Basic Authentication.

6 IANA Considerations

 This specification creates a new IANA registry named "HTTP Digest
 Hash Algorithms". When registering a new hash algorithm, the
 following information MUST be provided:

 o The textual name of the hash algorithm.
 o A reference to the specification that describes the new algorithm.

 The update policy for this registry shall be Specification Required.

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 28]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

 The initial registry will contain the following entries:

 Hash Algorithm Reference
 ------------------ ---------
 "MD5" RFC XXXX
 "MD5-sess" RFC XXXX
 "SHA2-256" RFC XXXX
 "SHA2-256-sess" RFC XXXX
 "SHA2-512-256" RFC XXXX
 "SHA2-512-256-sess" RFC XXXX

7 Acknowledgments

 TODO

8 References

8.1 Normative References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC1776] Crocker, S., "The Address is the Message", RFC 1776, April
 1 1995.

 [TRUTHS] Callon, R., "The Twelve Networking Truths", RFC 1925,
 April 1 1996.

8.2 Informative References

 [EVILBIT] Bellovin, S., "The Security Flag in the IPv4 Header",
RFC 3514, April 1 2003.

 [RFC5513] Farrel, A., "IANA Considerations for Three Letter
 Acronyms", RFC 5513, April 1 2009.

 [RFC5514] Vyncke, E., "IPv6 over Social Networks", RFC 5514, April 1
 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1776
https://datatracker.ietf.org/doc/html/rfc1925
https://datatracker.ietf.org/doc/html/rfc3514
https://datatracker.ietf.org/doc/html/rfc5513
https://datatracker.ietf.org/doc/html/rfc5514

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 29]

Internet-Draft HTTP Digest Access Authentication January 1, 2014

Authors' Addresses

 Rifaat Shekh-Yusef (Editor)
 Avaya
 250 Sydney Street
 Belleville, Ontario
 Canada

 Phone: +1-613-967-5267
 Email: rifaat.ietf@gmail.com

 David Ahrens
 Avaya
 California
 USA

 EMail: ahrensdc@gmail.com

 Sophie Bremer
 Netzkonform
 Germany

 Email: sophie.bremer@netzkonform.de

Shekh-Yusef, et. al. Expires July 5, 2014 [Page 30]

