
HTTPAUTH Working Group Y. Oiwa
Internet-Draft H. Watanabe
Intended status: Experimental H. Takagi
Expires: February 18, 2017 ITRI, AIST
 K. Maeda
 T. Hayashi
 Lepidum
 Y. Ioku
 Individual
 August 17, 2016

HTTP Authentication Extensions for Interactive Clients
draft-ietf-httpauth-extension-08

Abstract

 This document specifies extensions for the HTTP authentication
 framework for interactive clients. Currently, fundamental features
 of HTTP-level authentication are insufficient for complex
 requirements of various Web-based applications. This forces these
 applications to implement their own authentication frameworks by
 means like HTML forms, which becomes one of the hurdles against
 introducing secure authentication mechanisms handled jointly by
 servers and user-agent. The extended framework fills gaps between
 Web application requirements and HTTP authentication provisions to
 solve the above problems, while maintaining compatibility with
 existing Web and non-Web uses of HTTP authentications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 18, 2017.

Copyright Notice

Oiwa, et al. Expires February 18, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Oiwa, et al. Expires February 18, 2017 [Page 2]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

Table of Contents

1. Introduction . 4
1.1. Terminology . 4

2. Definitions . 5
2.1. Terms for describing authentication protocol flow 5
2.2. Syntax Notation . 7

3. Optional Authentication 8
 3.1. Note on Optional-WWW-Authenticate and use of
 WWW-Authenticate header with non-401 status 9

4. Authentication-Control header 11
4.1. Non-ASCII extended header parameters 12
4.2. Auth-style parameter 13
4.3. Location-when-unauthenticated parameter 14
4.4. No-auth parameter . 15
4.5. Location-when-logout parameter 15
4.6. Logout-timeout parameter 16
4.7. Username parameter . 17

5. Usage examples . 17
5.1. Example 1: a portal site 18
5.1.1. Case 1: a simple application 18
5.1.2. Case 2: specific action required on log-out 19
5.1.3. Case 3: specific page displayed before log-in 19

5.2. Example 2: authenticated user-only sites 19
5.3. When to use Cookies 20
5.4. Parallel deployment with Form/Cookie authentications . . . 20

6. Methods to extend this protocol 21
7. IANA Considerations . 22
8. Security Considerations 23
9. References . 24
9.1. Normative References 24
9.2. Informative References 24

Appendix A. (Informative) Applicability of features for each
 messages . 25

Appendix B. (Informative) Draft Change Log 25
B.1. Changes in Httpauth WG Revision 08 25
B.2. Changes in Httpauth WG Revision 07 26
B.3. Changes in Httpauth WG Revision 06 26
B.4. Changes in Httpauth WG Revision 05 26
B.5. Changes in Httpauth WG revision 04 26
B.6. Changes in Httpauth WG revision 03 26
B.7. Changes in Httpauth WG revision 02 26
B.8. Changes in Httpauth WG revision 01 26

 B.9. Changes in Httpauth revision 00 and HttpBis revision 00 . 26
B.10. Changes in revision 02 26
B.11. Changes in revision 01 26
B.12. Changes in revision 00 27

 Authors' Addresses . 27

Oiwa, et al. Expires February 18, 2017 [Page 3]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

1. Introduction

 This document defines several extensions to the current HTTP
 authentication framework, to provide functionality comparable with
 current widely-used form-based Web authentication. A majority of the
 recent websites on the Internet use custom application-layer
 authentication implementations using Web forms. The reasons for
 these may vary, but many people believe that the current HTTP Basic
 and Digest authentication methods do not have enough functionality
 (including good user interfaces) to support most realistic Web-based
 applications. However, such use of form-based Web authentication has
 several weakness against attacks like phishing, because all behavior
 of the authentication is controlled from the server-side application.
 This makes it really hard to implement any cryptographically strong
 authentication mechanisms into Web systems. To overcome this
 problem, we need to "modernize" the HTTP authentication framework so
 that better client-controlled secure methods can be used with Web
 applications. The extensions proposed in this document include:

 o optional authentication on HTTP (Section 3),

 o log out from both server and client side (Section 4), and

 o finer control for redirection depending on authentication status
 (Section 4).

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The terms "encouraged" and "advised" are used for suggestions that do
 not constitute "SHOULD"-level requirements. People MAY freely choose
 not to include the suggested items. However, complying with those
 suggestions would be a best practice; it will improve the security,
 interoperability, and/or operational performance.

 This document distinguishes the terms "client" and "user" in the
 following way: A "client" is an entity understanding and talking HTTP
 and the specified authentication protocol, usually computer software;
 a "user" is a (usually natural) person who wants to access data
 resources using "a client".

https://datatracker.ietf.org/doc/html/rfc2119

Oiwa, et al. Expires February 18, 2017 [Page 4]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

2. Definitions

2.1. Terms for describing authentication protocol flow

 HTTP Authentication defined in [RFC7235] can involve several pairs of
 HTTP requests/responses. Throughout this document, the following
 terms are used to categorize those messages: for requests,

 1) A non-authenticating request is a request not attempting any
 authentication: a request without any Authorization header field.

 2) An authenticating request is the opposite: a request with an
 Authorization header field.

 For responses,

 1) A non-authenticated response is a response which does not involve
 any HTTP authentication. It does not contain any WWW-Authenticate
 or Authentication-Info header field.

 Servers send this response when the requested resource is not
 protected by an HTTP authentication mechanism. In context of this
 specification, non-authentication-related negative responses (e.g.
 403 and 404) are also considered non-authenticated responses.

 (See note on successfully-authenticated responses below for some
 ambiguous cases.)

 2) An authentication-initializing response is a response which
 requires or allows clients to start authentication attempts.
 Servers send this response when the requested resource is
 protected by HTTP authentication mechanism, and the request meets
 one of the following cases:

 * The request is a non-authenticating request, or

 * The request contained an authentication trial directed to a
 protection space (realm) other than the one the server
 expected.

 The server will specify the protection space for authentication in
 this response.

 Upon receiving this response, the client's behavior is further
 divided to two possible cases.

 * If the client has no prior knowledge on authentication
 credentials (e.g. a user-name and a password) related to the

https://datatracker.ietf.org/doc/html/rfc7235

Oiwa, et al. Expires February 18, 2017 [Page 5]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 requested protection space, the protocol flow terminates and
 the client will ask the user to provide authentication
 credentials,

 * On the other hand, if client already has enough authentication
 credentials to the requested protection space, the client will
 automatically send an authenticating request. Such cases often
 occur when the client did not know beforehand that the current
 request-URL requires authentication.

 3) A successfully-authenticated response is a response for an
 authenticating request meaning that the authentication attempt was
 granted. (Note: if the authentication scheme used does not use an
 Authentication-Info header field, it can't be distinguishable from
 a non-authenticated response.)

 4) An intermediate authenticating response is a response for an
 authenticating request which requires more reaction by the client
 software without involving users. Such a response is required
 when an authentication scheme requires two or more round-trip
 messages to perform authentication, or when an authentication
 scheme uses some speculative short-cut method (such as uses of
 cached shared secrets) and it failed.

 5) A negatively-authenticated response is a response for an
 authenticating request which means that the authentication attempt
 was declined and can not continue without a different set of
 authentication credentials. Clients typically erase memory of the
 active credentials and ask the user for other ones.

 Usually the format of these responses are as same as the one for
 authentication-initializing responses. Clients can distinguish
 negatively-authenticated responses from authentication-
 initializing responses by comparing the protection spaces
 contained in the request and in the response.

 Figure 1 shows a state diagram of generic HTTP authentication with
 the above message categorization. Note that many authentication
 schemes use only a subset of the transitions described on the
 diagram. Labels in the figure show the abbreviated names of response
 types.

Oiwa, et al. Expires February 18, 2017 [Page 6]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 =========== -----------------
 NEW REQUEST (UNAUTHENTICATED)
 =========== -----------------
 | ^ non-auth.
 v | response
 +----------------------+ NO +-------------+
 | The requested URI |--------------------------->| send normal |
 | known to be auth'ed? | ---------------->| request |
 +----------------------+ / +-------------+
 YES | / initializing|
 v / |
 +------------------+ NO / |
 | Can auth-req.(*1)|--------- |
 | be constructed? | |
 +------------------+ |
 YES | initializing |
 | ---------------------------------------. |
 | / v v
 | | ---------------- NO +-----------+
 | | (AUTH-REQUESTED)<------|credentials|
 | | ---------------- | known? |
 v | +-----------+
 +-----------+ negative ------------- negative |YES
 | send |---------->(AUTH-FAILED)<---------, |
 /| auth-req | ------------- | |
 / +-----------+\ | v
 | \ \ intermediate +-----------+
 | \ -------------------------------->| send |
 | \ | auth-req |
 | non-auth. \successful successful +-----------+
 | response (*2) \ / | ^
 v \ / | |
 ----------------- \ -------------- / `----'
 (UNAUTHENTICATED) ----->(AUTH-SUCCEED)<---- intermediate
 ----------------- --------------

 Figure 1: Generic state diagram for HTTP authentication

 Note: (*1) For example, "Digest" scheme requires server-provided
 nonce to construct client-side challenges.
 (*2) In "Basic" and some others, this cannot be distinguished from a
 successfully-authenticated response.

2.2. Syntax Notation

 This specification uses an extended ABNF syntax defined in [RFC7230]
 and [RFC5234]. The following syntax definitions are quoted from

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5234

Oiwa, et al. Expires February 18, 2017 [Page 7]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 [RFC7230] and [RFC7235]: auth-scheme, quoted-string, auth-param, SP,
 BWS, header-field, and challenge. It also uses the convention of
 using header field names for specifying the syntax of values for the
 header field.

 Additionally, this specification uses the following syntax
 definitions as a refinement for token and the right-hand-side of
 auth-param in [RFC7235]. (Note: these definitions are consistent
 with those in [I-D.ietf-httpauth-mutual].)

 bare-token = 1*(%x30-39 / %x41-5A / %x61-7A / "-" / "_")
 extension-token = "-" bare-token 1*("." bare-token)
 extensive-token = bare-token / extension-token
 integer = "0" / (%x31-39 *%x30-39) ; no leading zeros

 Figure 2: the BNF syntax for common notations

 Extensive-tokens are used in this protocol where the set of
 acceptable tokens includes private extensions. Any extensions of
 this protocol MAY use either bare-tokens allocated by IANA (under the
 procedure described in Section 7), or extension-tokens with the
 format "-<token>.<domain-name>", where <domain-name> is a valid
 (sub-)domain name on the Internet owned by the party who defines the
 extension.

3. Optional Authentication

 The Optional-WWW-Authenticate header enables a non-mandatory
 authentication, which is not possible under the current HTTP
 authentication mechanism.

 In several Web applications, users can access the same contents as
 both a guest user and an authenticated user. In most Web
 applications, this functionality is implemented using HTTP cookies
 [RFC6265] and custom form-based authentication. The new
 authentication method using this message will provide a replacement
 for these authentication systems.

 Servers MAY send HTTP non-interim responses containing the
 Optional-WWW-Authenticate header as a replacement of a 401 response
 when it the response is authentication-initializing. The
 Optional-WWW-Authenticate header MUST NOT sent on 401 responses (i.e.
 a usual WWW-Authenticate header MUST be used on 401 responses.)

 HTTP/1.1 200 OK
 Optional-WWW-Authenticate: Basic realm="xxxx"

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc6265

Oiwa, et al. Expires February 18, 2017 [Page 8]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 Optional-WWW-Authenticate = 1#challenge

 Figure 3: BNF syntax for Optional-WWW-Authenticate header

 The challenges contained in the Optional-WWW-Authenticate header are
 the same as those for a 401 responses corresponding to the same
 request. For authentication-related matters, an optional
 authentication request will have the same meaning as a 401 message
 with a corresponding WWW-Authenticate header (as an authentication-
 initializing response). (The behavior for other matters MAY be
 different between the optional authentication and 401 messages. For
 example, clients MAY choose to cache the 200 messages with
 Optional-WWW-Authenticate header field but not the 401 messages by
 default.)

 A response with an Optional-WWW-Authenticate header SHOULD be
 returned from the server only when the request is either non-
 authenticated or authenticating to a wrong (not the server's
 expected) protection space. If a response is either an intermediate
 or a negative response to a client's authentication attempt, the
 server MUST respond with a 401 status response with a
 WWW-Authenticate header instead. Failure to comply with this rule
 will render clients unable to distinguish authentication successes
 and failures.

 The server is NOT RECOMMENDED to include an Optional-WWW-Authenticate
 header in a positive response when a client's authentication attempt
 succeeds.

 Whenever an authentication scheme supports servers sending some
 parameter which gives a hint of the URL space for the corresponding
 protection space for the same realm (e.g. "path" or "domain"),
 servers requesting non-mandatory authentication SHOULD send such
 parameter with the response. Clients supporting non-mandatory
 authentication MUST recognize the parameter, and MUST send a request
 with an appropriate authentication credential in an Authorization
 header for any URI inside the specified paths.

 Support of this header is OPTIONAL; clients MAY also implement this
 extension only for some selected authentication schemes. New
 authentication schemes can make support of the optional
 authentication mandatory by its specification, though.

3.1. Note on Optional-WWW-Authenticate and use of WWW-Authenticate
 header with non-401 status

 In the current specification of HTTP/1.1, it is clarified that the
 WWW-Authenticate header can be used with messages with status codes

Oiwa, et al. Expires February 18, 2017 [Page 9]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 other than 401 (Authentication Required). Especially, the use of
 WWW-Authenticate header with the 200 status messages implies a very
 similar meaning to the above-defined Optional-WWW-Authenticate
 header.

 The design of Optional-WWW-Authenticate header expects that the use
 of a new header guarantees that clients which is unaware of this
 extension will ignore the header, and that Web developers can rely on
 that behavior to implement a secondary fallback method of
 authentications. Several behavioral requirements written in the
 above section also assumes this property, and defines a necessary
 functionality to implement an HTTP optional authentication reliably
 and consistently.

 On the other hand, some experiments and discussions on the IETF
 mailing list revealed that most of (but not necessarily all of) the
 existing HTTP clients, at the time of writing, just ignores the WWW-
 Authenticate headers in non-401 messages, giving the similar behavior
 with the Optional-WWW-Authenticate. However, every corner case of
 behavior was not fully tested, nor well-defined in the existing
 specifications.

 Considering these situations, the author of this document chose to
 use a new header for a new feature "experiment". This is to avoid
 defining every corner-case behavior for the existing standard WWW-
 Authentication header in this experimental document, which could be
 considered by some implementer as an "incompatible changes to
 existing specification".

 Experimentally, the authors propose implementer of the standard
 HTTP/1.1 specification (especially implementer of this extension) to
 implement undefined (implementation-dependant) detailed handling of
 WWW-Authenticate header with non-401 status messages as similar as
 those defined above for the Optional-WWW-Authenticate header. For
 example, we propose for servers to return 401 status for failed
 authentication attempts, even when the unauthenticated request to the
 same resource will result in the 200 status. This can realize how
 (whether) we can implement non-mandatory authentication using the
 standard header fields and status codes. If this experiment is
 successful, the future revision of this experimental document may
 "bless" and recommend the use of standard WWW-Authenticate header,
 with some "standard-level" requirements on some corner case behavior.

Oiwa, et al. Expires February 18, 2017 [Page 10]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

4. Authentication-Control header

 Authentication-Control = 1#auth-control-entry
 auth-control-entry = auth-scheme 1*SP 1#auth-control-param
 auth-control-param = extensive-token BWS "=" BWS token
 / extensive-token "*" BWS "=" BWS ext-value
 ext-value = <see RFC 5987, Section 3.2>

 Figure 4: the BNF syntax for the Authentication-Control header

 The Authentication-Control header provides a more precise control of
 the client behavior for Web applications using an HTTP authentication
 protocol. This header is supposed to be generated in the application
 layer, as opposed to WWW-Authenticate headers which will usually be
 generated by the Web servers.

 Support of this header is OPTIONAL, and clients MAY choose any subset
 of these parameters to be supported. The set of supported parameters
 MAY also be authentication scheme-dependent. However, some
 authentication schemes can require mandatory/recommended support for
 some or all of the features provided in this header.

 The Authentication-Control header contains one or more
 "authentication control entries" each of which corresponds to a
 single realm for a specific authentication scheme. If the
 auth-scheme specified for an entry supports the HTTP "realm" feature,
 that entry MUST contain the "realm" parameter. If not, the entry
 MUST NOT contain the "realm" parameter.

 Among the multiple entries in the header, the relevant entries in the
 header are those corresponding to an auth-scheme and a realm (if
 any), for which "the authentication process is being performed, or
 going to be performed". In more detail,

 (1) If the response is either an authentication-initializing
 response or a negatively-authenticated response, there can be
 multiple challenges in the WWW-Authenticate header (or the
 Optional-WWW-Authenticate header defined in this extension),
 each of which corresponds to a different scheme and realm. In
 this case, the client has a choice on the scheme and realm they
 will use to authenticate. Only the entry in the
 Authentication-Control header corresponding to that scheme and
 realm are relevant.

 (2) If the response is either an intermediate authenticating
 response or a successfully-authenticated response, the scheme
 and realm given in the Authorization header of the HTTP request
 will determine the currently-ongoing authentication process.

https://datatracker.ietf.org/doc/html/rfc5987#section-3.2

Oiwa, et al. Expires February 18, 2017 [Page 11]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 Only the entry corresponding to that scheme and realm are
 relevant.

 The server MAY send an Authentication-Control header containing non-
 relevant entries. The client MUST ignore all non-relevant entries it
 received.

 Each entry contains one or more parameters, each of which is a name-
 value pair. The name of each parameter MUST be an extensive-token.
 Clients MUST ignore any unknown parameters contained in this header.
 The entries for the same auth-scheme and the realm MUST NOT contain
 duplicated parameters for the same name. Clients MAY either take any
 one of those duplicated entries or ignore all of them.

 The type of parameter value depends on the parameter name as defined
 in the following subsections. Regardless of the type, however, the
 recipients MUST accept both quoted and unquoted representations of
 values as defined in HTTP. If the parameter is defined to have a
 string value, implementations MUST send any value outside of the
 "token" ABNF syntax in either a quoted form or an an ext-value form
 (see Section 4.1). If the parameter is defined as a token (or
 similar) or an integer, the value SHOULD follow the corresponding
 ABNF syntax after possible unquoting of the quoted-string value (as
 defined in HTTP), and MUST be sent in an plain (not an ext-value)
 form. (Note: the rest of this document will show all string-value
 parameters in quoted forms, and others in unquoted forms.)

 Any parameters contained in this header MAY be ignored by clients.
 Also, even when a client accepts this header, users are able to
 circumvent the semantics of this header. Therefore, if this header
 is used for security purposes, its use MUST be limited to providing
 some non-fundamental additional security measures valuable for end-
 users (such as client-side log-out for protecting against console
 takeover). Server-side applications MUST NOT rely on the use of this
 header for protecting server-side resources.

 Note: The header syntax allows servers to specify Authentication-
 Control for multiple authentication schemes, either as multiple
 occurrences of this header or as a combined single header (see

Section 3.2.2 of [RFC7230] for rationale). The same care as for
 parsing multiple authentication challenges needs to be taken.

4.1. Non-ASCII extended header parameters

 Parameters contained in the Authentication-Control header MAY be
 extended to non-ASCII values using the framework described in
 [RFC5987]. All servers and clients MUST be capable of receiving and
 sending values encoded in [RFC5987] syntax.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc5987

Oiwa, et al. Expires February 18, 2017 [Page 12]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 If a value to be sent contains only ASCII characters, the field MUST
 be sent using plain RFC 7235 syntax. The syntax as extended by ext-
 value MUST NOT be used in this case.

 If a value (except the "realm" header) contains one or more non-ASCII
 characters, the parameter SHOULD be sent using the ext-value syntax
 defined in Section 3.2 of [RFC5987]. Such a parameter MUST have a
 charset value of "UTF-8", and the language value MUST always be
 omitted (have an empty value). The same parameter MUST NOT be sent
 more than once, regardless of the used syntax.

 For example, a parameter "username" with value "Renee of France"
 SHOULD be sent as < username="Renee of France" >. If the value is
 "Ren<e acute>e of France", it SHOULD be sent as
 < username*=UTF-8''Ren%C3%89e%20of%20France > instead.

 Interoperability note: [RFC7235], Section 2.2, defines the "realm"
 authentication parameter which cannot be replaced by the "realm*"
 extend parameter. It means that the use of non-ASCII values for an
 authentication realm is not the defined behavior in the HTTP.
 Unfortunately, some people currently use non-ASCII realm parameter in
 reality, but even its encoding scheme is not well-defined.
 Given this background, this document does not specify how to handle
 non-ASCII "realm" parameter in the extended header fields. If
 needed, the authors propose to use a non-extended "realm" parameter
 form, with a wish for maximum interoperability.

4.2. Auth-style parameter

 Example:
 Authentication-Control: Digest realm="protected space",
 auth-style=modal

 The parameter "auth-style" specifies the server's preferences for
 user interface behavior for user authentication. This parameter can
 be included in any kind of response, however, it is only meaningful
 for either authentication-initializing or negatively-authenticated
 responses. The value of this parameter MUST be one of the bare-
 tokens "modal" or "non-modal". When the Optional-WWW-Authenticate
 header is used, the value of this parameter MUST be disregarded and
 the value "non-modal" is implied.

 The value "modal" means that the server thinks the content of the
 response (body and other content-related headers) is valuable only
 for users refusing the authentication request. The clients are
 expected to ask the user for a password before processing the
 content. This behavior is common for most of the current
 implementations of Basic and Digest authentication schemes.

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5987#section-3.2
https://datatracker.ietf.org/doc/html/rfc7235#section-2.2

Oiwa, et al. Expires February 18, 2017 [Page 13]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 The value "non-modal" means that the server thinks the content of the
 response (body and other content-related headers) is valuable for
 users before processing an authentication request. The clients are
 expected to first process the content and then provide users the
 opportunity to perform authentication.

 The default behavior for clients is implementation-dependent, and it
 may also depend on authentication schemes. The proposed default
 behavior is "modal" for all authentication schemes unless otherwise
 specified.

 The above two different methods of authentication possibly introduce
 a observable difference of semantics when the response contains
 state-changing side effects; for example, it can affect how Cookie
 headers [RFC6265] in 401 responses are processed. However, the
 server applications SHOULD NOT depend on existence of such side
 effects.

4.3. Location-when-unauthenticated parameter

 Example:
 Authentication-Control: Mutual realm="auth-space-1",
 location-when-unauthenticated="http://www.example.com/login.html"

 The parameter "location-when-unauthenticated" specifies a location
 where any unauthenticated clients should be redirected to. This
 header can be used, for example, when there is a central login page
 for the entire Web application. The value of this parameter is a
 string that contains an URL location. If a received URL is not
 absolute, the clients SHOULD consider it a relative URL from the
 current location.

 This parameter MAY be used with a 401 response for an authentication-
 initializing response. It can also be contained, although this is
 NOT RECOMMENDED, in a positive response with an
 Optional-WWW-Authenticate header. The clients MUST ignore this
 parameter when a response is either successfully-authenticated or
 intermediately-authenticated.

 When a client receives an authentication-initiating response with
 this parameter, and if the client has to ask users for authentication
 credentials, the client will treat the entire response as if it were
 a 303 "See Other" response with a Location header that contains the
 value of this parameter (i.e., client will be redirected to the
 specified location with a GET request). Unlike a normal 303
 response, if the client can process authentication without the user's
 interaction, this parameter MUST be ignored.

https://datatracker.ietf.org/doc/html/rfc6265

Oiwa, et al. Expires February 18, 2017 [Page 14]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

4.4. No-auth parameter

 Example:
 Authentication-Control: Basic realm="entrance", no-auth=true

 The parameter "no-auth" is a variant of the
 location-when-unauthenticated parameter; it specifies that new
 authentication attempts are not to be performed on this location in
 order to improve the user experience, without specifying the
 redirection on the HTTP level. This header can be used, for example,
 when there is a central login page for the entire Web application,
 and when an explicit user interaction with the Web content is desired
 before authentications. The value of this parameter MUST be a token
 "true". If the value is incorrect, client MAY ignore this parameter.

 This parameter MAY be used with authentication-initiating responses.
 It can also be contained, although this is NOT RECOMMENDED, in a
 positive response with an Optional-WWW-Authenticate header. The
 clients MUST ignore this parameter when a response is either
 successfully-authenticated or intermediately-authenticated.

 When a client receives an authentication-initiating response with
 this parameter, if the client has to ask users for authentication
 credentials, the client will ignore the WWW-Authenticate header
 contained in the response and treat the whole response as a normal
 negative 4xx-class response instead of giving the user an opportunity
 to start authentication. If the client can process authentication
 without the user's interaction, this parameter MUST be ignored.

 This parameter SHOULD NOT be used along with the
 location-when-unauthenticated parameter. If both were supplied,
 clients MAY choose which one is to be honored.

 This parameter SHOULD NOT be used as a security measure to prevent
 authentication attempts, as it is easily circumvented by users. This
 parameter SHOULD be used solely for improving user experience of Web
 applications.

4.5. Location-when-logout parameter

 Example:
 Authentication-Control: Digest realm="protected space",
 location-when-logout="http://www.example.com/byebye.html"

 The parameter "location-when-logout" specifies a location where the
 client is to be redirected when the user explicitly requests a
 logout. The value of this parameter MUST be a string that contains
 an URL location. If a given URL is not absolute, the clients MUST

Oiwa, et al. Expires February 18, 2017 [Page 15]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 consider it a relative URL from the current location.

 This parameter MAY be used with successfully-authenticated responses.
 If this parameter is contained in other kinds of responses, the
 clients MUST ignore this parameter.

 When the user requests termination of an authentication period, and
 if the client currently displays a page supplied by a response with
 this parameter, the client will be redirected to the specified
 location by a new GET request (as if it received a 303 response).
 The log-out operation (e.g. erasing memories of user name,
 authentication credential and all related one-time credentials such
 as nonce or keys) SHOULD occur before processing a redirection.

 When the user requests termination of an authentication period, if
 the client supports this parameter but the server response does not
 contain this parameter, the client's RECOMMENDED behavior is as
 follows: if the request corresponding to the current content was GET
 method, reload the page without the authentication credential.
 Otherwise, keep the current content as-is and simply forget the
 authentication status. The client SHOULD NOT replay a non-idempotent
 request without the user's explicit approval.

 Web applications are encouraged to send this parameter with an
 appropriate value for any responses (except those with redirection
 (3XX) statuses) for non-GET requests.

4.6. Logout-timeout parameter

 Example:
 Authentication-Control: Basic realm="entrance", logout-timeout=300

 The parameter "logout-timeout", when contained in a successfully-
 authenticated response, means that any authentication credentials and
 state related to the current protection space are to be discarded if
 a time specified in this header (in seconds) has passed since from
 the time this header was received. The value MUST be an integer. As
 a special case, the value 0 means that the client is requested to
 immediately log-out from the current authentication space and revert
 to an unauthenticated status. This does not, however, mean that the
 long-term memories for the passwords and passwords-related details
 (such as the password reminders and auto fill-ins) should be removed.
 If a new timeout value is received for the same authentication space,
 it cancels the previous timeout and sets a new timeout.

Oiwa, et al. Expires February 18, 2017 [Page 16]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

4.7. Username parameter

 Example:
 Authentication-Control: Basic realm="configuration", username="admin"

 The parameter "username" tells that the only "user name" to be
 accepted by the server is the value given in this parameter. This
 parameter is particularly useful, for example, for routers and other
 appliances with a Web configuration interface.

 This parameter MAY be used with authentication-initiating responses
 or negatively-authenticated responses requiring another attempt of
 authentication. The clients MUST ignore this parameter when a
 response is either successfully-authenticated or intermediately-
 authenticated.

 If the authentication scheme to be used has a syntax limitation on
 the allowed user names (e.g. Basic and Digest do not allow colons in
 user names), the specified value MUST follow that limitation.
 Clients SHOULD ignore any values which do not conform to such
 limitations.

 Also, if the used authentication scheme requires a specific style of
 text preparation for the user name (e.g., PRECIS [RFC7564] string
 preparation or Unicode normalization), the server SHOULD send the
 values satisfying such requirements (so that clients can use the
 given user name as is).

 Clients MAY still send any authentication requests with other user
 names, possibly in vain. Servers are not strictly required to reject
 user names other than specified, but doing so will give bad user
 experiences and may confuse users and clients.

5. Usage examples

 This section shows some examples for applying this extension to
 typical websites which are using Forms and cookies for managing
 authentication and authorization. The content of this section is not
 normative and for illustrative purposes only.

 In these examples, we assume that there are two kinds of clients (Web
 browsers). One kind of these implements all features described in
 the previous sections. We also assume that browsers will have a user
 interface which allows users to deactivate (log-out from) current
 authentication sessions. The other kind are the "existing"
 implementations which do not support any of these features.

https://datatracker.ietf.org/doc/html/rfc7564

Oiwa, et al. Expires February 18, 2017 [Page 17]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 When not explicitly specified, all settings described below are to be
 applied with Authentication-Control headers, and these can be sent to
 clients regardless of the authentication status (these will be
 silently ignored whenever not effective).

5.1. Example 1: a portal site

 This subsection provides an example application for a site whose
 structure is somewhat similar to conventional portal sites. In
 particular, most web pages are available for guest (unauthenticated)
 users, and if authentication is performed, the content of these pages
 is customized for each user. We assume the site has the following
 kinds of pages currently:

 o Content pages.

 o Pages/mechanism for performing authentication:

 * There is one page which asks a user name and a password using a
 HTML POST form.

 * After the authentication attempt, the user will be redirected
 to either the page which is previously displayed before the
 authentication, or some specific page.

 o A de-authentication (log-out) page.

5.1.1. Case 1: a simple application

 When such a site does not require specific actions upon log-in and
 log-out, the following simple settings can be used.

 o Set up an optional authentication to all pages available to
 guests. Set up an Authentication-Control header with "auth-
 style=non-modal" setting.

 o If there are pages only available to authenticated users, set up a
 mandatory authentication with "auth-style=non-modal" setting.

 o No specific pages for authentication are needed. It will be
 performed automatically, directed by the above setting.

 o A de-authentication page is also not needed. If the site has one,
 put "logout-timeout=0" there.

 o For all pages for POST requests, it is advisable to have
 "location-when-logout=<some page>".

Oiwa, et al. Expires February 18, 2017 [Page 18]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

5.1.2. Case 2: specific action required on log-out

 If the site requires specific actions upon log-out, the following
 settings can be used.

 o All settings in the Case 1 are applied.

 o For all pages, set up the Authentication-Control header "location-
 when-logout=<de-authentication page>".

 o In the de-authentication page, no specific set-up is needed. If
 there are any direct links to the de-authentication page, put
 "logout-timeout=0".

5.1.3. Case 3: specific page displayed before log-in

 If the site needs to display a specific page before log-in actions
 (some announcements, user notices, or even advertisements), the
 following settings can be applied.

 o Set up an optional authentication to all pages available to
 guests. Set up an Authentication-Control header with "no-
 auth=true". Put a link to a specific log-in page in contents.

 o If there are pages only available to authenticated users, set up a
 mandatory authentication with "location-when-unauthenticated=<the
 log-in page>".

 o For the specific log-in page, set up a mandatory authentication.

 o For all pages for POST requests, it is advisable to have
 "location-when-logout=<some page>", too.

 o De-authentication pages are not needed. If the site has one, put
 "logout-timeout=0".

5.2. Example 2: authenticated user-only sites

 If almost all pages in the target site require authentication (e.g.,
 an Internet banking site), or if there are no needs to support both
 unauthenticated and authenticated users on the same resource, the
 settings will become simpler. The following are an example for such
 a site:

 o Set up a mandatory authentication to all pages available to
 authenticated users. Set up an Authentication-Control header with
 "auth-style=non-modal" setting.

Oiwa, et al. Expires February 18, 2017 [Page 19]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 o Set up a handler for the 401-status which requests users to
 authenticate.

 o For all pages for POST requests, it is advisable to have
 "location-when-logout=<some page>", too.

 o De-authentication pages are not needed. If the site will have
 one, put "logout-timeout=0" there.

5.3. When to use Cookies

 In the current Web sites using form-based authentications, Cookies
 [RFC6265] are used for managing both authorization and application
 sessions. Using the extensions in this document, the former features
 will be provided by using (extended) HTTP authentication/
 authorization mechanisms. In some cases, there will be ambiguity on
 whether some functions are for authorization management or for
 session management. The following hints will be helpful for deciding
 which features to use.

 o If there is a need to serve multiple sessions for a single user
 using multiple browsers concurrently, use a Cookie for
 distinguishing between sessions for the same user. (C.f. if there
 is a need to distinguish sessions in the same browser, HTML5 Web
 Storage [W3C.REC-webstorage-20130730] features can be used instead
 of Cookies.)

 o If a web site is currently deploying a session time-out feature,
 consider who benefits from the feature. In most cases, the main
 requirement for such a feature is to protect users from having
 their consoles and browsers hijacked (i.e. benefits are on the
 users' side). In such cases, the time-out features provided in
 this extension can be used. On the other hand, the requirement is
 to protect server's privilege (e.g. when some regulations require
 to limit the time difference between user's two-factor
 authentication and financial transaction commitment; the
 requirement is strictly on the servers' side), that should be
 managed on the server side using Cookies or other session
 management mechanisms.

5.4. Parallel deployment with Form/Cookie authentications

 In some transition periods, sites can need to support both HTTP-layer
 and form-based authentication. The following example shows one way
 to achieve that.

https://datatracker.ietf.org/doc/html/rfc6265

Oiwa, et al. Expires February 18, 2017 [Page 20]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 o If Cookies are used even for HTTP-authenticated users, each
 session determined by Cookies SHOULD identify which authentication
 has been used for the session.

 o First, set up any of the above settings for enabling HTTP-layer
 authentication.

 o For unauthenticated users, add the following things to the Web
 pages, unless the client supports this extension and HTTP-level
 authentication.

 * For non-mandatory authenticated pages, put a link to Form-based
 authenticated pages.

 * For mandatory authenticated pages, either put a link to Form-
 based authenticated pages, or put a HTML-level redirection
 (using >META http-equiv="refresh" ...< element) to such pages.

 o In Form-based authenticated pages, if users are not authenticated,
 the page can provide a redirection for HTTP-level authentication
 by "location-when-unauthenticated" setting.

 o Users are identified to authorization and content customization by
 the following logic.

 * First, check the result of the HTTP-level authentication. If
 there is a Cookie session tied to a specific user, both should
 match.

 * If the user is not authenticated on the HTTP-level, use the
 conventional Form-based method to determine the user.

 * If there is a Cookie tied to HTTP authentication, but there is
 no corresponding HTTP authentication result, that session will
 be discarded (because it means that authentication is
 deactivated by the corresponding user).

6. Methods to extend this protocol

 If a private extension to this protocol is implemented, it MUST use
 the extension-param to avoid conflicts with this protocol and any
 other extensions. (Standardized or being-standardized extensions MAY
 use either bare-tokens or extension-tokens.)

 When bare-tokens are used in this protocol, these MUST be allocated
 by IANA. Any tokens used for non-private, non-experimental
 parameters are RECOMMENDED to be registered to IANA, regardless of

Oiwa, et al. Expires February 18, 2017 [Page 21]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 the kind of tokens used.

 Extension-tokens MAY be freely used for any non-standard, private,
 and/or experimental uses. An extension-tokens MUST use the format
 "-<bare-token>.<domain-name>", where <domain-name> is a validly
 registered (sub-)domain name on the Internet owned by the party who
 defines the extensions. Any unknown parameter name is to be ignored
 regardless of whether it is an extension-token or a bare-token.

7. IANA Considerations

 This document defines two new entries for the "Permanent Message
 Header Field Names" registry.

 +---------------------------+----------+----------------------------+
 | Header Field Name | Protocol | Specification |
 +---------------------------+----------+----------------------------+
 | Optional-WWW-Authenticate | http | Section 3 of this document |
 | Authentication-Control | http | Section 4 of this document |
 +---------------------------+----------+----------------------------+

 This document also establishes a registry for HTTP authentication
 control parameters. The registry manages case-insensitive ASCII
 strings. The string MUST follow the extensive-token syntax defined
 in Section 2.2.

 To acquire registered tokens, a specification for the use of such
 tokens MUST be available as a publicly-accessible documents, as
 outlined as "Specification Required" level in [RFC5226].

 Registrations for authentication control parameters are required to
 include a description of the control extension. New registrations
 are advised to provide the following information:

 o Token: a token used in HTTP headers for identifying the algorithm.

 o Specification: A reference for a specification defining the
 algorithm.

 The initial content of this registry is as follows:

https://datatracker.ietf.org/doc/html/rfc5226

Oiwa, et al. Expires February 18, 2017 [Page 22]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 +-------------------------------+------------------------------+
 | Token | Specification |
 +-------------------------------+------------------------------+
 | auth-style | Section 4.2 of this document |
 | location-when-unauthenticated | Section 4.3 of this document |
 | no-auth | Section 4.4 of this document |
 | location-when-logout | Section 4.5 of this document |
 | logout-timeout | Section 4.6 of this document |
 | username | Section 4.7 of this document |
 +-------------------------------+------------------------------+

8. Security Considerations

 The purpose of the log-out timeout feature in the Authentication-
 control header is to protect users of clients from impersonation
 caused by an attacker having access to the same console. The server
 application implementer SHOULD be aware that the directive may always
 be ignored by either malicious clients or clients not supporting this
 extension. If the purpose of introducing a timeout for an
 authentication period is to protect server-side resources, this
 protection MUST be implemented by other means such as HTTP Cookies
 [RFC6265].

 All parameters in the Authentication-Control header SHOULD NOT be
 used for any security-enforcement purposes. Server-side applications
 MUST NOT assume that the header will be honored by clients and users.

 The "username" parameter sometimes reveals sensitive information
 about the HTTP server and its configurations, useful for security
 attacks. The use of the "username" parameter SHOULD be limited to
 cases where the all of the following conditions are met:

 (1) the valid user name is pre-configured and not modifiable (such
 as root, admin or similar ones);

 (2) the valid user name for such an appliance is publicly known (for
 example, written in a manual document); and

 (3) either the valid user name for the server is easily guessable by
 other means (for example, from the model number shown in an
 unauthenticated page), or the server is only accessible from
 limited networks.

 Most importantly, the "username" parameter SHOULD NOT be used in any
 case when the valid user names can be changed by users or
 administrators.

https://datatracker.ietf.org/doc/html/rfc6265

Oiwa, et al. Expires February 18, 2017 [Page 23]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5987] Reschke, J., "Character Set and Language Encoding for
 Hypertext Transfer Protocol (HTTP) Header Field
 Parameters", RFC 5987, DOI 10.17487/RFC5987, August 2010,
 <http://www.rfc-editor.org/info/rfc5987>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

9.2. Informative References

 [I-D.ietf-httpauth-mutual]
 Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
 T., and Y. Ioku, "Mutual Authentication Protocol for
 HTTP", draft-ietf-httpauth-mutual-09 (work in progress),
 August 2016.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5987
http://www.rfc-editor.org/info/rfc5987
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/draft-ietf-httpauth-mutual-09
https://datatracker.ietf.org/doc/html/rfc6265
http://www.rfc-editor.org/info/rfc6265

Oiwa, et al. Expires February 18, 2017 [Page 24]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 Internationalized Strings in Application Protocols",
RFC 7564, DOI 10.17487/RFC7564, May 2015,

 <http://www.rfc-editor.org/info/rfc7564>.

 [W3C.REC-webstorage-20130730]
 Hickson, I., "Web Storage", World Wide Web Consortium
 Recommendation REC-webstorage-20130730, July 2013,
 <http://www.w3.org/TR/2013/REC-webstorage-20130730>.

Appendix A. (Informative) Applicability of features for each messages

 This section provides a cross-reference table showing the
 applicability of the features provided in this specification to each
 kind of responses described in Section 2.1. The table provided in
 this section is for informative purposes only.

 +-------------------+-------+----------+-----------+------+
 | | init. | success. | intermed. | neg. |
 +-------------------+-------+----------+-----------+------+
 | Optional auth. | O | n | N | N |
 | auth-style | O | - | - | O |
 | loc.-when-unauth. | O | I | I | i |
 | no-auth | O | I | I | i |
 | loc.-when-logout | - | O | - | - |
 | logout-timeout | - | O | - | - |
 | username | O | - | - | O |
 +-------------------+-------+----------+-----------+------+

 Legends:
 O = MAY contain; n = SHOULD NOT contain; N = MUST NOT contain
 i = SHOULD be ignored; I = MUST be ignored;
 - = meaningless (to be ignored)

Appendix B. (Informative) Draft Change Log

 [To be removed on final publication]

B.1. Changes in Httpauth WG Revision 08

 o Typo fixed.

 o Authors' addresses updated.

https://datatracker.ietf.org/doc/html/rfc7564
http://www.rfc-editor.org/info/rfc7564
http://www.w3.org/TR/2013/REC-webstorage-20130730

Oiwa, et al. Expires February 18, 2017 [Page 25]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

B.2. Changes in Httpauth WG Revision 07

 o WGLC comments are reflected to the text.

B.3. Changes in Httpauth WG Revision 06

 o Several comments from reviewers are reflected to the text.

B.4. Changes in Httpauth WG Revision 05

 o Authors' addresses updated.

B.5. Changes in Httpauth WG revision 04

 o IANA consideration section added.

B.6. Changes in Httpauth WG revision 03

 o Adopting RFC 5987 extended syntax for non-ASCII parameter values.

B.7. Changes in Httpauth WG revision 02

 o Added realm parameter.

 o Added username parameter. We acknowledge Michael Sweet's proposal
 for including this to the Basic authentication.

B.8. Changes in Httpauth WG revision 01

 o Clarification on peers' responsibility about handling of relative
 URLs.

 o Automatic reloading should be allowed only on safe methods, not
 always on idempotent methods.

B.9. Changes in Httpauth revision 00 and HttpBis revision 00

 None.

B.10. Changes in revision 02

 o Added usage examples.

B.11. Changes in revision 01

 o Syntax notations and parsing semantics changed to match httpbis
 style.

https://datatracker.ietf.org/doc/html/rfc5987

Oiwa, et al. Expires February 18, 2017 [Page 26]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

B.12. Changes in revision 00

 o Separated from HTTP Mutual authentication proposal (-09).

 o Adopting httpbis works as a referencing point to HTTP.

 o Generalized, now applicable for all HTTP authentication schemes.

 o Added "no-auth" and "auth-style" parameters.

 o Loosened standardization requirements for parameter-name tokens
 registration.

Authors' Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

 Email: y.oiwa@aist.go.jp

 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

 Email: h-watanabe@aist.go.jp

 Hiromitsu Takagi
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

 Email: takagi.hiromitsu@aist.go.jp

Oiwa, et al. Expires February 18, 2017 [Page 27]

Internet-Draft HTTP Auth. Ext. for Interactive Clients August 2016

 Kaoru Maeda
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP

 Email: maeda@lepidum.co.jp

 Tatsuya Hayashi
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP

 Email: hayashi@lepidum.co.jp

 Yuichi Ioku
 Individual

 Email: mutual-work@ioku.org

Oiwa, et al. Expires February 18, 2017 [Page 28]

