
HTTPAUTH Working Group Y. Oiwa
Internet-Draft H. Watanabe
Intended status: Experimental H. Takagi
Expires: July 10, 2016 ITRI, AIST
 K. Maeda
 T. Hayashi
 Lepidum
 Y. Ioku
 Individual
 January 7, 2016

Mutual Authentication Protocol for HTTP
draft-ietf-httpauth-mutual-06

Abstract

 This document specifies a mutual authentication method for the Hyper-
 text Transfer Protocol (HTTP). This method provides a true mutual
 authentication between an HTTP client and an HTTP server using
 password-based authentication. Unlike the Basic and Digest
 authentication methods, the Mutual authentication method specified in
 this document assures the user that the server truly knows the user's
 encrypted password.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 10, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Oiwa, et al. Expires July 10, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Terminology . 4
1.2. Document Structure and Related Documents 5

2. Protocol Overview . 5
2.1. Messages Overview . 6
2.2. Typical Flows of the Protocol 6
2.3. Alternative Flows . 9

3. Message Syntax . 10
3.1. Non-ASCII extended header parameters 11
3.2. Values . 12
3.2.1. Tokens . 12
3.2.2. Strings . 13
3.2.3. Numbers . 13

4. Messages . 14
4.1. 401-INIT and 401-STALE 15
4.2. req-KEX-C1 . 17
4.3. 401-KEX-S1 . 18
4.4. req-VFY-C . 19
4.5. 200-VFY-S . 20

5. Authentication Realms . 20
5.1. Resolving Ambiguities 22

6. Session Management . 22
7. Host Validation Methods 24
7.1. Applicability notes 26
7.2. Notes on tls-unique 26

8. Authentication Extensions 27
9. String Preparation . 27
10. Decision Procedure for Clients 28
10.1. General Principles and Requirements 28
10.2. State machine for the client-side (informative) 30

11. Decision Procedure for Servers 34
12. Authentication Algorithms 36
12.1. Support Functions and Notations 37
12.2. Default Functions for Algorithms 38

13. Application Channel Binding 39
14. Application for Proxy Authentication 40

http://trustee.ietf.org/license-info

Oiwa, et al. Expires July 10, 2016 [Page 2]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

15. Methods to Extend This Protocol 40
16. IANA Considerations . 41
16.1. Registry for Authentication Algorithms 41
16.2. Registry for Password Hashes 42
16.3. Registry for Validation Methods 42

17. Security Considerations 43
17.1. Security Properties 43
17.2. Denial-of-service Attacks to Servers 44
17.2.1. On-line Active Password Attacks 44

 17.3. Communicating the status of mutual authentication with
 users . 44

17.4. Implementation Considerations 45
17.5. Usage Considerations 46

18. Notice on Intellectual Properties 46
19. References . 47
19.1. Normative References 47
19.2. Informative References 48

Appendix A. (Informative) Draft Change Log 49
A.1. Changes in Httpauth WG Revision 06 49
A.2. Changes in Httpauth WG Revision 05 50
A.3. Changes in Httpauth WG Revision 04 50
A.4. Changes in Httpauth WG Revision 03 50
A.5. Changes in Httpauth WG Revision 02 50
A.6. Changes in Httpauth WG Revision 01 50
A.7. Changes in Httpauth Revision 00 51
A.8. Changes in HttpBis Revision 00 51
A.9. Changes in Revision 12 51
A.10. Changes in Revision 11 51
A.11. Changes in Revision 10 51
A.12. Changes in Revision 09 52
A.13. Changes in Revision 08 53
A.14. Changes in Revision 07 53
A.15. Changes in Revision 06 53
A.16. Changes in Revision 05 54
A.17. Changes in Revision 04 54
A.18. Changes in Revision 03 54
A.19. Changes in Revision 02 54
A.20. Changes in Revision 01 55

 Authors' Addresses . 55

Oiwa, et al. Expires July 10, 2016 [Page 3]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

1. Introduction

 This document specifies a mutual authentication method for Hyper-Text
 Transfer Protocol (HTTP). The method, called "Mutual Authentication
 Protocol" in this document, provides a true mutual authentication
 between an HTTP client and an HTTP server, using just a simple
 password as a credential.

 The authentication method proposed in this document is a general
 framework for using password-based authenticated key exchange (PAKE)
 and similar stronger cryptographic primitives on the HTTP. It has
 the following main characteristics:

 o It provides "true" mutual authentication: in addition to assuring
 the server that the user knows the password, it also assures the
 user that the server truly knows the user's encrypted password at
 the same time. This makes it impossible for fake website owners
 to persuade users that they have authenticated with the original
 websites.

 o It uses only passwords as the user's credential: unlike public-
 key-based security algorithms, the method does not rely on secret
 keys or other cryptographic data that have to be stored inside the
 users' computers. The proposed method can be used as a drop-in
 replacement to the current authentication methods like Basic or
 Digest, while ensuring a much stronger level of security.

 o It is secure: when the server fails to authenticate with a user,
 the protocol will not reveal any tiny bit of information about the
 user's password.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document distinguishes the terms "client" and "user" in the
 following way: A "client" is an entity understanding and talking HTTP
 and the specified authentication protocol, usually computer software;
 a "user" is a (usually natural) person who wants to access data
 resources using "a client".

 The term "natural numbers" refers to the non-negative integers
 (including zero) throughout this document.

 This document treats target (codomain) of hash functions to be octet

https://datatracker.ietf.org/doc/html/rfc2119

Oiwa, et al. Expires July 10, 2016 [Page 4]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 strings. The notation INT(H(s)) gives a numerical (natural-number)
 output of hash function H applied to string s.

1.2. Document Structure and Related Documents

 The entire document is organized as follows:

 o Section 2 presents an overview of the protocol design.

 o Sections 3 to 11 define a general framework of the Mutual
 authentication protocol. This framework is independent of
 specific cryptographic primitives.

 o Section 12 describes properties needed for cryptographic
 algorithms used with this protocol framework, and defines a few
 functions which will be shared among such cryptographic
 algorithms.

 o The sections after that contain general normative and informative
 information about the protocol.

 o The appendices contain some information that may help developers
 to implement the protocol.

 In addition, there are two companion documents which are referred
 from/related to this specification:

 o [I-D.ietf-httpauth-mutual-algo]: defines a cryptographic
 primitives which can be used with this protocol framework.

 o [I-D.ietf-httpauth-extension]: defines a small but useful
 extensions to the current HTTP authentication framework so that it
 can support application-level semantics of existing Web systems.

2. Protocol Overview

 The protocol, as a whole, is designed as a natural extension to the
 HTTP protocol [RFC7230] using a framework defined in [RFC7235].
 Internally, the server and the client will first perform a
 cryptographic key exchange, using the secret password as a "tweak" to
 the exchange. The key-exchange will only succeed when the secrets
 used by the both peers are correctly related (i.e. generated from the
 same password). Then, both peers will verify the authentication
 results by confirming the sharing of the exchanged key. This section
 describes a brief image of the protocol and the exchanged messages.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235

Oiwa, et al. Expires July 10, 2016 [Page 5]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

2.1. Messages Overview

 The authentication protocol uses seven kinds of messages to perform
 mutual authentication. These messages have specific names within
 this specification.

 o Authentication request messages: used by the servers to request
 clients to start mutual authentication.

 * 401-INIT message: a general message to start the authentication
 protocol. It is also used as a message indicating an
 authentication failure.

 * 401-STALE message: a message indicating that it has to start a
 new authentication trial.

 o Authenticated key exchange messages: used by both peers to perform
 authentication and the sharing of a cryptographic secret.

 * req-KEX-C1 message: a message sent from the client.

 * 401-KEX-S1 message: a message sent from the server as a
 response to a req-KEX-C1 message.

 o Authentication verification messages: used by both peers to verify
 the authentication results.

 * req-VFY-C message: a message used by the client, requesting
 that the server authenticates and authorizes the client.

 * 200-VFY-S message: a successful response used by the server,
 and also asserting that the server is authentic to the client
 simultaneously.

 In addition to the above, either a request or a response without any
 HTTP headers related to this specification will be hereafter called a
 "normal request" or a "normal response", respectively.

2.2. Typical Flows of the Protocol

 In typical cases, the client access to a resource protected by the
 Mutual authentication will follow the following protocol sequence.

Oiwa, et al. Expires July 10, 2016 [Page 6]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Client Server
 | |
 | ---- (1) normal request ---------> |
 GET / HTTP/1.1 |
 | |
 | <---------------- (2) 401-INIT --- |
 | 401 Authentication Required
 | WWW-Authenticate: Mutual realm="a realm"
 | |
 [user, | |
 pass]-->| |
 | ---- (3) req-KEX-C1 -------------> |
 GET / HTTP/1.1 |
 Authorization: Mutual user="john", |--> [user DB]
 kc1="...", ... |<-- [user info]
 | |
 | <-------------- (4) 401-KEX-S1 --- |
 | 401 Authentication Required
 | WWW-Authenticate: Mutual sid=..., ks1="...", ...
 | |
 [compute] (5) compute session secret [compute]
 | |
 | |
 | ---- (6) req-VFY-C --------------> |
 GET / HTTP/1.1 |--> [verify (6)]
 Authorization: Mutual sid=..., |<-- OK
 vkc="...", ... |
 | |
 | <--------------- (7) 200-VFY-S --- |
 [verify | 200 OK |
 (7)]<--| Authentication-Info: Mutual vks="..."
 | |
 v v

 Figure 1: Typical communication flow for first access to resource

 o As usual in general HTTP protocol designs, a client will at first
 request a resource without any authentication attempt (1). If the
 requested resource is protected by the Mutual authentication, the
 server will respond with a message requesting authentication
 (401-INIT) (2).

 o The client processes the body of the message, and waits for the
 user to input the user name and a password. If the user name and
 the password are available, the client will send a message with
 the authenticated key exchange (req-KEX-C1) to start the
 authentication (3).

Oiwa, et al. Expires July 10, 2016 [Page 7]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o If the server has received a req-KEX-C1 message, the server looks
 up the user's authentication information within its user database.
 Then the server creates a new session identifier (sid) that will
 be used to identify sets of the messages that follow it, and
 responds back with a message containing a server-side
 authenticated key exchange value (401-KEX-S1) (4).

 o At this point (5), both peers calculate a shared "session secret"
 using the exchanged values in the key exchange messages. Only
 when both the server and the client have used secret credentials
 generated from the same password,the session secret values will
 match. This session secret will be used for access authentication
 of every individual request after this point.

 o The client will send a request with a client-side authentication
 verification value (req-VFY-C) (6), generated from the client-
 owned session secret. The server will check the validity of the
 verification value using its own session secret.

 o If the authentication verification value from the client was
 correct, it means that the client definitely owns the credential
 based on the expected password (i.e. the client authentication
 succeeded.) The server will respond with a successful message
 (200-VFY-S) (7). Contrary to the usual one-way authentication
 (e.g. HTTP Basic authentication or POP APOP authentication
 [RFC1939]), this message also contains a server-side
 authentication verification value.

 When the client's verification value is incorrect (e.g. because
 the user-supplied password was incorrect), the server will respond
 with the 401-INIT message (the same one as used in (2)) instead.

 o The client MUST first check the validity of the server-side
 authentication verification value contained in the message (7).
 If the value was equal to the expected one, the server
 authentication succeeded.

 If it is not the value expected, or if the message does not
 contain the authentication verification value, it means that the
 mutual authentication has been broken for some unexpected reason.
 The client MUST NOT process any body or header values contained in
 this case. (Note: This case should not happen between a
 correctly-implemented server and a client without any
 interventions. Possible cause of such cases might be either a
 man-in-the-middle attack or a mis-implementation.)

https://datatracker.ietf.org/doc/html/rfc1939

Oiwa, et al. Expires July 10, 2016 [Page 8]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

2.3. Alternative Flows

 As shown above, the typical flow for a first authenticated request
 requires three request-response pairs. To reduce the protocol
 overhead, the protocol enables several short-cut flows which require
 fewer messages.

 o (case A) If the client knows that the resource is likely to
 require the authentication, the client MAY omit the first
 unauthenticated request (1) and immediately send a key exchange
 (req-KEX-C1 message). This will reduce one round-trip of
 messages.

 o (case B) If both the client and the server previously shared a
 session secret associated with a valid session identifier (sid),
 the client MAY directly send a req-VFY-C message using the
 existing session identifier and corresponding session secret.
 This will further reduce one round-trip of messages.

 In such cases, the server MAY have thrown out the corresponding
 sessions from the session table. In this case, the server will
 respond with a 401-STALE message, indicating a new key exchange is
 required. The client SHOULD retry constructing a req-KEX-C1
 message in this case.

 Figure 2 depicts the shortcut flows described above. Under the
 appropriate settings and implementations, most of the requests to
 resources are expected to meet both the criteria, and thus only one
 round-trip of request/responses will be required in most cases.

Oiwa, et al. Expires July 10, 2016 [Page 9]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 (A) omit first request
 (2 round trips)

 Client Server
 | |
 | --- req-KEX-C1 ----> |
 | |
 | <---- 401-KEX-S1 --- |
 | |
 | ---- req-VFY-C ----> |
 | |
 | <----- 200-VFY-S --- |
 | |

 (B) reusing session secret (re-authentication)

 (B-1) key available (B-2) key expired
 (1 round trip) (3 round trips)

 Client Server Client Server
 | | | |
 | ---- req-VFY-C ----> | | --- req-VFY-C -------> |
 | | | |
 | <----- 200-VFY-S --- | | <------- 401-STALE --- |
 | | | |
 | --- req-KEX-C1 ------> |
 | |
 | <------ 401-KEX-S1 --- |
 | |
 | --- req-VFY-C -------> |
 | |
 | <------- 200-VFY-S --- |
 | |

 Figure 2: Several alternative flows on protocol

 For more details, see Sections 10 and 11.

3. Message Syntax

 Throughout this specification, The syntax is denoted in the extended
 augmented BNF syntax defined in [RFC7230] and [RFC5234]. The
 following elements are quoted from [RFC5234], [RFC7230] and
 [RFC7235]: DIGIT, ALPHA, SP, auth-scheme, quoted-string, auth-param,
 header-field, token, challenge, and credential.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235

Oiwa, et al. Expires July 10, 2016 [Page 10]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 The Mutual authentication protocol uses three headers:
 WWW-Authenticate (usually in responses with status code 401),
 Authorization (in requests), and Authentication-Info (in responses
 other than 401 status). These headers follow a common framework
 described in [RFC7235] and [RFC7615]. The detailed meanings for
 these headers are contained in Section 4.

 The framework in [RFC7235] defines the syntax for the headers
 WWW-Authenticate and Authorization as the syntax elements "challenge"
 and "credentials", respectively. The "auth-scheme" contained in
 those headers MUST be "Mutual" throughout this protocol
 specification. The syntax for "challenge" and "credentials" to be
 used with the "Mutual" auth-scheme SHALL be name-value pairs (#auth-
 param), not the "b64token" defined in [RFC7235].

 The Authentication-Info: header used in this protocol SHALL follow
 the syntax defined in [RFC7615].

 In HTTP, the WWW-Authenticate header may contain more than one
 challenges. Client implementations SHOULD be aware of and be capable
 of handle those cases correctly.

3.1. Non-ASCII extended header parameters

 All of parameters contained in the above three headers, except the
 "realm" field, MAY be extended to ISO 10646-1 values using the
 framework described in [RFC5987]. All servers and clients MUST be
 capable of receiving and sending values encoded in [RFC5987] syntax.

 If a value to be sent contains only ASCII characters, the field MUST
 be sent in clear using plain RFC 7235 syntax. The syntax extended by

RFC 5987 MUST NOT be used in this case.

 If a value (except the "realm" header) contains one or more non-ASCII
 characters, the parameter SHOULD be sent using the syntax defined in

Section 3.2 of [RFC5987] as "ext-parameter". Such parameter MUST
 have charset value of "UTF-8", and the language value MUST always be
 omitted (have an empty value). The same parameter MUST NOT be sent
 twice or more, those in both plain- and extended-syntax.

 For example, a parameter "user" with value "Renee or France" SHOULD
 be sent as < user="Renee of France" >. If the value is "Ren<e
 acute>e of France", it SHOULD be sent as < user*=UTF-
 8''Ren%C3%89e%20of%20France > instead.

 [RFC7235] requires realm parameter to be exist as its plain form (not
 as extended "realm*" parameter), so RFC 5987 syntax MUST NOT be used
 for this parameter.

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc5987#section-3.2
https://datatracker.ietf.org/doc/html/rfc5987

Oiwa, et al. Expires July 10, 2016 [Page 11]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

3.2. Values

 The parameter values contained in challenge/credentials MUST be
 parsed strictly conforming to the HTTP semantics (especially un-
 quoting of the string parameter values). In this protocol, those
 values are further categorized into the following value types: tokens
 (bare-token and extensive-token), string, integer, hex-fixed-number,
 and base64-fixed-number.

 For clarity, implementations are RECOMMENDED to use the canonical
 representations specified in the following subsections for sending
 values. Recipients SHOULD accept both quoted and unquoted
 representations interchangeably as specified in HTTP.

3.2.1. Tokens

 For sustaining both security and extensibility at the same time, this
 protocol defines a stricter sub-syntax for the "token" to be used.
 The extensive-token values SHOULD follow the following syntax (after
 HTTP value parsing):

 bare-token = 1*(DIGIT / ALPHA / "-" / "_")
 extension-token = "-" bare-token 1*("." bare-token)
 extensive-token = bare-token / extension-token

 Figure 3: BNF syntax for token values

 The tokens (bare-token and extension-token) are case insensitive;
 Senders SHOULD send these in lower-case, and receivers MUST accept
 both upper- and lower-cases. When tokens are used as (partial)
 inputs to any hash or other mathematical functions, it MUST always be
 used in lower-case.

 Extensive-tokens are used in this protocol where the set of
 acceptable tokens may include non-standard extensions. Any non-
 standard extensions of this protocol SHOULD use the extension-tokens
 with format "-<bare-token>.<domain-name>", where <domain-name> is a
 validly registered (sub-)domain name on the Internet owned by the
 party who defines the extensions.

 Bare-tokens and extensive-tokens are also used for parameter names
 (of course in the unquoted form). Requirements for using the
 extension-token for the parameter names are the same as the above.

 The canonical format for bare-tokens and tokens are unquoted tokens.

Oiwa, et al. Expires July 10, 2016 [Page 12]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

3.2.2. Strings

 All character strings MUST be encoded to octet strings using the
 UTF-8 encoding [RFC3629] for the ISO 10646-1 character set
 [ISO.10646-1.1993]. Such strings MUST NOT contain any leading BOM
 characters (ZERO WIDTH NO-BREAK SPACE, U+FEFF or EF BB BF). Both
 peers are RECOMMENDED to reject any invalid UTF-8 sequences that
 might cause decoding ambiguities (e.g., containing <"> in the second
 or later bytes of the UTF-8 encoded characters).

 If strings are representing a domain name or URI that contains non-
 ASCII characters, the host parts SHOULD be encoded as it is used in
 the HTTP protocol layer (e.g. in a Host: header); under current
 standards it will be the one defined in [RFC5890]. It SHOULD use
 lower-case ASCII characters.

 The canonical format for strings are quoted-string (as it may contain
 equal signs, plus signs and slashes), unless the parameter containing
 the string value will use extended syntax defined in [RFC5987].
 ([RFC5987] extended parameter will have unquoted encoded value, as
 defined there.)

3.2.3. Numbers

 The following syntax definitions gives a syntax for number-type
 values:

 integer = "0" / (%x31-39 *DIGIT) ; no leading zeros
 hex-fixed-number = 1*(2(DIGIT / %x41-46 / %x61-66))
 base64-fixed-number = 1*(ALPHA / DIGIT / "+" / "/") 0*2"="

 Figure 4: BNF syntax for number types

 The syntax definition of the integers only allows representations
 that do not contain extra leading zeros.

 The numbers represented as a hex-fixed-number MUST include an even
 number of characters (i.e. multiples of eight bits). Those values
 are case-insensitive, and SHOULD be sent in lower-case. When these
 values are generated from any cryptographic values, they SHOULD have
 their "natural length": if these are generated from a hash function,
 these lengths SHOULD correspond to the hash size; if these are
 representing elements of a mathematical set (or group), its lengths
 SHOULD be the shortest for representing all the elements in the set.
 For example, any results of SHA-256 hash function will be represented
 by 64 characters, and any elements in 2048-bit prime field (modulo a
 2048-bit integer) will be represented by 512 characters, regardless
 of how much 0's will be appear in front of such representations.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc5987

Oiwa, et al. Expires July 10, 2016 [Page 13]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Session-identifiers and other non-cryptographically generated values
 are represented in any (even) length determined by the side who
 generates it first, and the same length SHALL be used throughout the
 all communications by both peers.

 The numbers represented as base64-fixed-number SHALL be generated as
 follows: first, the number is converted to a big-endian radix-256
 binary representation as an octet string. The length of the
 representation is determined in the same way as mentioned above.
 Then, the string is encoded using the Base 64 encoding [RFC4648]
 without any spaces and newlines. Implementations decoding base64-
 fixed-number SHOULD reject any input data with invalid characters,
 excess/insufficient padding, or non-canonical pad bits (See Sections
 3.1 to 3.5 of [RFC4648]).

 The canonical format for integer and hex-fixed-number are unquoted
 tokens, and that for base64-fixed-number is quoted-string.

4. Messages

 In this section we define the seven kinds of messages used in the
 authentication protocol along with the formats and requirements of
 the headers for each message.

 To determine which message are expected to be sent, see Sections 10
 and 11.

 In the descriptions below, the type of allowable values for each
 header parameter is shown in parenthesis after each parameter name.
 The "algorithm-determined" type means that the acceptable value for
 the parameter is one of the types defined in Section 3, and is
 determined by the value of the "algorithm" parameter. The parameters
 marked "mandatory" SHALL be contained in the message. The parameters
 marked "non-mandatory" MAY either be contained or omitted in the
 message. Each parameter SHALL appear in each headers exactly once at
 most.

 All credentials and challenges MAY contain any parameters not
 explicitly specified in the following sections. Recipients who do
 not understand such parameters MUST silently ignore those. However,
 all credentials and challenges MUST meet the following criteria:

 o For responses, the parameters "reason", any "ks#" (where # stands
 for any decimal integers), and "vks" are mutually exclusive: any
 challenge MUST NOT contain two or more parameters among them.
 They MUST NOT contain any "kc#" and "vkc" parameters.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Oiwa, et al. Expires July 10, 2016 [Page 14]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o For requests, the parameters "kc#" (where # stands for any decimal
 integers), and "vkc" are mutually exclusive and any challenge
 MUST NOT contain two or more parameters among them. They MUST NOT
 contain any "ks#" and "vks" parameters.

 Every message in this section contains a "version" field, to detect
 future incompatible revisions of the protocol. Implementations of
 the protocol described in this specification MUST always send a token
 "-wg-draft04", and recipients MUST reject messages which contain any
 other value as a version, unless another specification defines a
 behavior for that version. [[Editorial Note: This token is updated
 on every draft revisions which will affect the wire protocol. It
 will (shall) be updated to "1" in the final published RFC.]]

4.1. 401-INIT and 401-STALE

 Every 401-INIT or 401-STALE message SHALL be a valid HTTP 401-status
 (Authentication Required) message (or other 4XX statuses if sensible)
 containing one (and only one: hereafter not explicitly noticed)
 "WWW-Authenticate" header containing a "reason" parameter in the
 challenge. The challenge SHALL contain all of the parameters marked
 "mandatory" below, and MAY contain those marked "non-mandatory".

 version: (mandatory extensive-token) should be the token "-wg-
 draft04".

 algorithm: (mandatory extensive-token) specifies the
 authentication algorithm to be used. The value MUST
 be one of the tokens specified in
 [I-D.ietf-httpauth-mutual-algo] or other supplemental
 specification documentation.

 validation: (mandatory extensive-token) specifies the method of
 host validation. The value MUST be one of the tokens
 described in Section 7, or the tokens specified in
 other supplemental specification documentation.

 auth-scope: (non-mandatory string) specifies the authentication
 scope, the set of hosts for which the authentication
 credentials are valid. It MUST be one of the strings
 described in Section 5. If the value is omitted, it
 is assumed to be the "single-server" type domain in

Section 5.

 realm: (mandatory string) is a string representing the name
 of the authentication realm inside the authentication
 scope. As specified in [RFC7235], this value MUST
 always be sent in the quoted-string form, and an

https://datatracker.ietf.org/doc/html/rfc7235

Oiwa, et al. Expires July 10, 2016 [Page 15]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 [RFC5987] encoding MUST NOT be used.
 The realm value sent from the server SHOULD be an
 ASCII string. Clients MAY treat any non-ASCII value
 received in this field as one of a binary blob, an
 NFC-normalized UTF-8 string, or an error.

 pwd-hash: (non-mandatory extensive-token) specifies the hash
 algorithm (hereafter referred to by ph) used for
 additionally hashing the password. The valid tokens
 are

 * none: ph(p) = p

 * md5: ph(p) = MD5(p)

 * sha1: ph(p) = SHA1(p)

 If omitted, the value "none" is assumed. The use of
 "none" is desirable.

 reason: (mandatory extensive-token) SHALL be an extensive-
 token which describes the possible reason of the
 failed authentication/authorization. Both servers and
 clients SHALL understand and support the following
 three tokens:

 * initial: authentication was not tried because there
 was no Authorization header in the corresponding
 request.

 * stale-session: the provided sid; in the request was
 either unknown to or expired in the server.

 * auth-failed: authentication trial was failed by
 some reasons, possibly with a bad authentication
 credentials.

 Implementations MAY support the following tokens or
 any extensive-tokens defined outside this
 specification. If clients has received any unknown
 tokens, these SHOULD treat these as if it were "auth-
 failed" or "initial".

 * reauth-needed: server-side application requires a
 new authentication trial, regardless of the current
 status.

Oiwa, et al. Expires July 10, 2016 [Page 16]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 * invalid-parameters: authentication was not even
 tried in the server-side because some parameters
 are not acceptable.

 * internal-error: authentication was not even tried
 in the server-side because there is some troubles
 on the server-side.

 * user-unknown: a special case of auth-failed,
 suggesting that the provided user-name is invalid.
 The use of this parameter is NOT RECOMMENDED for
 security implications, except for special-purpose
 applications which makes this value sense.

 * invalid-credential: ditto, suggesting that the
 provided user-name was valid but authentication was
 failed. The use of this parameter is
 NOT RECOMMENDED as the same as the above.

 * authz-failed: authentication was successful, but
 access to the specified resource is not authorized
 to the specific authenticated user. (It might be
 used along with either 401 or 403 status to
 indicate that the authentication result is one of
 highly likely reasons for the failed
 authorization.)

 The algorithm specified in this header will determine the types
 (among those defined in Section 3) and the values for K_c1, K_s1,
 VK_c and VK_s.

 Among these messages, those with the reason parameter of value
 "stale-session" will be called "401-STALE" messages hereafter,
 because these have a special meaning in the protocol flow. Messages
 with any other reason parameters will be called "401-INIT" messages.

4.2. req-KEX-C1

 Every req-KEX-C1 message SHALL be a valid HTTP request message
 containing an "Authorization" header with a credential containing a
 "kc1" parameter.

 The credential SHALL contain the parameters with the following names:

Oiwa, et al. Expires July 10, 2016 [Page 17]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 version: (mandatory, extensive-token) should be the token "-wg-
 draft04".

 algorithm, validation, auth-scope, realm: MUST be the same value as
 it is when received from the server.

 user: (mandatory, string) is the UTF-8 encoded name of the
 user. The string SHOULD be prepared according to the
 method presented in Section 9.

 kc1: (mandatory, algorithm-determined) is the client-side
 key exchange value K_c1, which is specified by the
 algorithm that is used.

4.3. 401-KEX-S1

 Every 401-KEX-S1 message SHALL be a valid HTTP 401-status
 (Authentication Required) response message containing a
 "WWW-Authenticate" header with a challenge containing a "ks1"
 parameter.

 The challenge SHALL contain the parameters with the following names:

 version: (mandatory, extensive-token) should be the token "-wg-
 draft04".

 algorithm, validation, auth-scope, realm: MUST be the same value as
 it is when received from the client.

 sid: (mandatory, hex-fixed-number) MUST be a session
 identifier, which is a random integer. The sid SHOULD
 have uniqueness of at least 80 bits or the square of
 the maximal estimated transactions concurrently
 available in the session table, whichever is larger.
 See Section 6 for more details.

 ks1: (mandatory, algorithm-determined) is the server-side
 key exchange value K_s1, which is specified by the
 algorithm.

 nc-max: (mandatory, integer) is the maximal value of nonce
 numbers that the server accepts.

 nc-window: (mandatory, integer) the number of available nonce
 number slots that the server will accept. The value
 of the nc-window parameter is RECOMMENDED to be 128 or
 more.

Oiwa, et al. Expires July 10, 2016 [Page 18]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 time: (mandatory, integer) represents the suggested time (in
 seconds) that the client can reuse the session
 represented by the sid. It is RECOMMENDED to be at
 least 60. The value of this parameter is not directly
 linked to the duration that the server keeps track of
 the session represented by the sid.

 path: (non-mandatory, string) specifies which path in the
 URI space the same authentication is expected to be
 applied. The value is a space-separated list of URIs,
 in the same format as it was specified in domain
 parameter [RFC7616] for the Digest authentications.
 The all path elements contained in the parameter MUST
 be inside the specified auth-scope; if not, clients
 SHOULD ignore such elements. For better performance,
 recognition of this parameter by clients are
 significantly important.

4.4. req-VFY-C

 Every req-VFY-C message SHALL be a valid HTTP request message
 containing an "Authorization" header with a credential containing a
 "vkc" parameter.

 The parameters contained in the header are as follows:

 version: (mandatory, extensive-token) should be the token "-wg-
 draft04".

 algorithm, validation, auth-scope, realm: MUST be the same value as
 it is when received from the server for the session.

 sid: (mandatory, hex-fixed-number) MUST be one of the sid
 values that was received from the server for the same
 authentication realm.

 nc: (mandatory, integer) is a nonce request number that is
 unique among the requests sharing the same sid. The
 values of the nonce numbers SHOULD satisfy the
 properties outlined in Section 6.

 vkc: (mandatory, algorithm-determined) is the client-side
 authentication verification value VK_c, which is
 specified by the algorithm.

https://datatracker.ietf.org/doc/html/rfc7616

Oiwa, et al. Expires July 10, 2016 [Page 19]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

4.5. 200-VFY-S

 Every 200-VFY-S message SHALL be a valid HTTP message that is not of
 the 401 (Authentication Required) status, containing an
 "Authentication-Info" header with a "vks" parameter.

 The parameters contained in the header are as follows:

 version: (mandatory, extensive-token) should be the token "-wg-
 draft04".

 sid: (mandatory, hex-fixed-number) MUST be the value
 received from the client.

 vks: (mandatory, algorithm-determined) is the server-side
 authentication verification value VK_s, which is
 specified by the algorithm.

 The header MUST be sent before the content body: it MUST NOT be sent
 in the trailer of a chunked-encoded response. If a "100 Continue"
 response is sent from the server, the Authentication-Info header
 SHOULD be included in that response, instead of the final response.

5. Authentication Realms

 In this protocol, an "authentication realm" is defined as a set of
 resources (URIs) for which the same set of user names and passwords
 is valid for. If the server requests authentication for an
 authentication realm that the client is already authenticated for,
 the client will automatically perform the authentication using the
 already-known secrets. However, for the different authentication
 realms, the clients MUST NOT automatically reuse the user names and
 passwords for another realm.

 Just like in Basic and Digest access authentication protocols, Mutual
 authentication protocol supports multiple, separate protection spaces
 to be set up inside each host. Furthermore, the protocol supports
 that a single authentication realm spans over several hosts within
 the same Internet domain.

 Each authentication realm is defined and distinguished by the triple
 of an "authentication algorithm", an "authentication scope", and a
 "realm" parameter. However, server operators are NOT RECOMMENDED to
 use the same pair of an authentication scope and a realm for
 different authentication algorithms.

 The realm parameter is a string as defined in Section 4.

Oiwa, et al. Expires July 10, 2016 [Page 20]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Authentication scopes are described in the remainder of this section.

 An authentication scope specifies the range of hosts that the
 authentication realm spans over. In this protocol, it MUST be one of
 the following kinds of strings.

 o Single-server type: The string in format "<scheme>://<host>" or
 "<scheme>://<host>:<port>", where <scheme>, <host>, and <port> are
 the corresponding URI parts of the request URI. If the default
 port (i.e. 80 for http and 443 for https) is used for the
 underlying HTTP communications, the port part MUST be omitted,
 regardless of whether it was present in the request-URI. In other
 cases, the port part MUST be present, and it MUST NOT contain
 leading zeros. Use this when authentication is only valid for
 specific protocol (such as https). This format is equivalent to
 the ASCII serialization of a Web Origin, presented in Section 6.2
 of [RFC6454].

 o Single-host type: The "host" part of the requested URI. This is
 the default value. Authentication realms within this kind of
 authentication scope will span over several protocols (i.e. http
 and https) and ports, but not over different hosts.

 o Wildcard-domain type: The string in format "*.<domain-postfix>",
 where <domain-postfix> is either the host part of the requested
 URI or any domain in which the requested host is included (this
 means that the specification "*.example.com" is valid for all of
 hosts "www.example.com", "web.example.com",
 "www.sales.example.com" and "example.com"). The domain-postfix
 sent from the servers MUST be equal to or included in a valid
 Internet domain assigned to a specific organization: if clients
 know, by some means such as a blacklist for HTTP cookies
 [RFC6265], that the specified domain is not to be assigned to any
 specific organization (e.g. "*.com" or "*.jp"), the clients are
 RECOMMENDED to reject the authentication request.

 In the above specifications, every "scheme", "host", and "domain"
 MUST be in lower-case, and any internationalized domain names beyond
 the ASCII character set SHALL be represented in the way they are sent
 in the underlying HTTP protocol, represented in lower-case
 characters; i.e. these SHALL be in the form of the LDH labels in IDNA
 [RFC5890]. All "port"s MUST be in the shortest, unsigned, decimal
 number notation. Not obeying these requirements will cause failure
 of valid authentication attempts.

https://datatracker.ietf.org/doc/html/rfc6454#section-6.2
https://datatracker.ietf.org/doc/html/rfc6454#section-6.2
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc5890

Oiwa, et al. Expires July 10, 2016 [Page 21]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

5.1. Resolving Ambiguities

 In the above definitions of authentication scopes, several scopes
 will overlap each other. If a client has already been authenticated
 to several realms applicable to the same server, the client may have
 a multiple list of the "path" parameters received with the
 "401-KEX-S1" message (see Section 4). If these path lists have any
 overlap, a single URI may belong to multiple possible candidate of
 realms to be authenticated to. In such cases, clients faces an
 ambiguity on deciding which credentials to be sent for a new request
 (in steps 3 and 4 of the decision procedure presented in Section 10).

 In such cases, clients MAY send requests which belongs to any of
 these candidate realms freely, or it MAY simply send an
 unauthenticated request and see for which realm the server request an
 authentication. Server operators are RECOMMENDED to provide
 properly-configured "path" parameters (more precisely, disjoint path
 sets for each realms) for clients so that such ambiguities will not
 occur.

 The following procedure are one of the possible tactics for resolving
 ambiguity in such cases.

 o If the client has previously sent a request to the same URI, and
 if it remembers the authentication realm requested by 401-INIT
 messages at that time, use that realm.

 o In other cases, use one of authentication realms representing the
 most-specific authentication scopes. From the list of possible
 domain specifications shown above, each one earlier has priority
 over ones described after that.

 If there are several choices with different domain-postfix
 specifications, the one that has the longest domain-postfix has
 priority over ones with a shorter domain-postfix.

 o If there are realms with the same authentication scope, there is
 no defined priority: the client MAY choose any one of the possible
 choices.

6. Session Management

 In the Mutual authentication protocol, a session represented by an
 sid is set up using first four messages (first request, 401-INIT,
 req-KEX-C1 and 401-KEX-S1), and a "session secret" (z) associated
 with the session is established. After sharing a session secret,
 this session, along with the secret, can be used for one or more

Oiwa, et al. Expires July 10, 2016 [Page 22]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 requests for resources protected by the same realm in the same
 server. Note that session management is only an inside detail of the
 protocol and usually not visible to normal users. If a session
 expires, the client and server SHOULD automatically re-establish
 another session without informing the users.

 Sessions and session identifiers are local to each server (defined by
 scheme, host and port), even if an authentication scope covers
 multiple servers; the clients MUST establish separate sessions for
 each port of a host to be accessed. Furthermore, sessions and
 identifiers are also local to each authentication realm, even if
 these are provided from the same server. The same session
 identifiers provided either from different servers or for different
 realms MUST be treated as independent ones.

 The server SHOULD accept at least one req-VFY-C request for each
 session, given that the request reaches the server in a time window
 specified by the timeout parameter in the 401-KEX-S1 message, and
 that there are no emergent reasons (such as flooding attacks) to
 forget the sessions. After that, the server MAY discard any session
 at any time and MAY send 401-STALE messages for any req-VFY-C
 requests.

 The client MAY send two or more requests using a single session
 specified by the sid. However, for all such requests, each value of
 the nonce number (in the nc parameter) MUST satisfy the following
 conditions:

 o It is a natural number.

 o The same nonce number was not sent within the same session.

 o It is not larger than the nc-max value that was sent from the
 server in the session represented by the sid.

 o It is larger than (largest-nc - nc-window), where largest-nc is
 the maximal value of nc which was previously sent in the session,
 and nc-window is the value of the nc-window parameter which was
 received from the server in the session.

 The last condition allows servers to reject any nonce numbers that
 are "significantly" smaller than the "current" value (defined by the
 value of nc-window) of the nonce number used in the session involved.
 In other words, servers MAY treat such nonce numbers as "already
 received". This restriction enables servers to implement duplicated
 nonce detection in a constant amount of memory (for each session).

 Servers MUST check for duplication of the received nonce numbers, and

Oiwa, et al. Expires July 10, 2016 [Page 23]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 if any duplication is detected, the server MUST discard the session
 and respond with a 401-STALE message, as outlined in Section 11. The
 server MAY also reject other invalid nonce numbers (such as ones
 above the nc-max limit) by sending a 401-STALE message.

 For example, assume the nc-window value of the current session is
 128, nc-max is 400, and that the client has already used the
 following nonce numbers: {1-120, 122, 124, 130-238, 255-360, 363-
 372}. Then the nonce number that can be used for next request is one
 of the following set: {245-254, 361, 362, 373-400}. The values {0,
 121, 123, 125-129, 239-244} MAY be rejected by the server, because
 they are not above the current "window limit" (244 = 372 - 128).

 Typically, clients can ensure the above property by using a
 monotonically-increasing integer counter that counts from zero upto
 the value of nc-max.

 The values of the nonce numbers and any nonce-related values MUST
 always be treated as natural numbers within an infinite range.
 Implementations which uses fixed-width integer representations,
 fixed-precision floating numbers or similar representations
 SHOULD NOT reject any larger values which overflow such
 representative limits, and MUST NOT silently truncate it using any
 modulus-like rounding operation (e.g. by mod 2^32). Instead, the
 whole protocol is carefully designed so that recipients MAY replace
 any such overflowed values (e.g. 2^80) with some reasonably-large
 maximal representative integer (e.g. 2^31 - 1 or others).

7. Host Validation Methods

 The "validation method" specifies a method to "relate" (or "bind")
 the mutual authentication processed by this protocol with other
 authentications already performed in the underlying layers and to
 prevent man-in-the-middle attacks. It decides the value vh that is
 an input to the authentication protocols.

 When HTTPS or other possible secure transport is used, this
 corresponds to the idea of "channel binding" described in [RFC5929].
 Even when HTTP is used, similar, but somewhat limited, "binding" is
 performed to prevent a malicious server from trying to authenticate
 themselves to another server as a valid user by forwarding the
 received credentials.

 The valid tokens for the validation parameter and corresponding
 values of vh are as follows:

https://datatracker.ietf.org/doc/html/rfc5929

Oiwa, et al. Expires July 10, 2016 [Page 24]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 host: host-name validation: The value vh will be the ASCII
 string in the following format:
 "<scheme>://<host>:<port>", where <scheme>, <host>,
 and <port> are the URI components corresponding to the
 currently accessing resource. The scheme and host are
 in lower-case, and the port is in a shortest decimal
 representation. Even if the request-URI does not have
 a port part, v will include the default port number.

 tls-server-end-point: TLS endpoint (certificate) validation: The
 value vh will be the octet string of the hash value of
 the server's public key certificate used in the
 underlying TLS [RFC5246] (or SSL) connection,
 processed as specified in Section 4.1 of [RFC5929].

 [[Pending editorial issue: a small security issue is
 pending around here, awaiting analysis and WG
 discussions for final adoption.]]

 tls-unique: TLS shared-key validation: The value v will be the
 channel binding material derived from the Finished
 messages, as defined in Section 3.1 of [RFC5929].
 (Note: see Section 7.2 for some security notices for
 using this validation method.)

 If the HTTP protocol is used on a non-encrypted channel (TCP and
 SCTP, for example), the validation type MUST be "host". If HTTP/TLS
 [RFC2818] (HTTPS) protocol is used with the server certificates, the
 validation type MUST be "tls-server-end-point". If HTTP/TLS protocol
 is used with an anonymous Diffie-Hellman key exchange, the validation
 type MUST be "tls-unique" (see the note below).

 Implementations supporting a Mutual authentication over the HTTPS
 protocol SHOULD support the "tls-server-end-point" validation.
 Support for "tls-unique" validation is OPTIONAL for both the servers
 and clients.

 If the validation type "tls-server-end-point" is used, the server
 certificate provided on TLS connection MUST be verified at least to
 make sure that the server actually owns the corresponding secret key.
 (Note: this verification is automatic in some RSA-based key exchanges
 but NOT automatic in Diffie-Hellman-based key exchanges with separate
 exchange for server verification.)

 Clients MUST validate this parameter upon reception of the 401-INIT
 messages.

 Note: The protocol defines two variants for validation on the TLS

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5929#section-4.1
https://datatracker.ietf.org/doc/html/rfc5929#section-3.1
https://datatracker.ietf.org/doc/html/rfc2818

Oiwa, et al. Expires July 10, 2016 [Page 25]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 connections. The "tls-unique" method is more secure. However, there
 are some situations where tls-server-end-point is more preferable.

 o When TLS accelerating proxies are used, it is difficult for the
 authenticating server to acquire the TLS key information that is
 used between the client and the proxy. This is not the case for
 client-side "tunneling" proxies using a CONNECT method extension
 of HTTP.

 o When a black-box implementation of the TLS protocol is used on
 either peer.

7.1. Applicability notes

 When the client is a Web browser with any scripting capabilities, the
 underlying TLS channel used with HTTP/TLS MUST provide server
 identity verification. This means (1) the anonymous Diffie-Hellman
 key exchange cipher-suite MUST NOT be used, and (2) the verification
 of the server certificate provided from the server MUST be performed.

 For other systems, when the underlying TLS channel used with HTTP/TLS
 does not perform server identity verification, the client SHOULD
 ensure that all the responses are validated using the Mutual
 authentication protocol, regardless of the existence of the 401-INIT
 responses.

7.2. Notes on tls-unique

 As described in the interoperability note in the above channel
 binding specification, the tls-unique verification value will be
 changed by possible TLS renegotiation, causing an interoperability
 problem. TLS re-negotiations are used in several HTTPS server
 implementations for enforcing some security properties (such as
 cryptographic strength) for some specific responses.

 If an implementation supports "tls-unique" verification method, the
 following caution SHOULD be taken:

 o Both peers must be aware that the values vh used for vkc (in
 req-VFY-C) and for vks (in 200-VFY-S) may be different. These
 values MUST be retrieved from underlying TLS libraries each time
 it is used.

 o After calculating value vh and vkc to send a req-VFY-C request,
 Clients SHOULD NOT initiate TLS renegotiation until the end of the
 corresponding response header is received. Exceptionally, Clients
 can and SHOULD perform TLS re-negotiation as a response to
 server's request for TLS renegotiation, occurring before the top

Oiwa, et al. Expires July 10, 2016 [Page 26]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 of response header.

 Also, implementer MUST take care of session resumption attacks
 regarding tls-unique channel binding mechanisms and master secrets.
 As a mitigation, a TLS extension defined in [RFC7627] SHOULD be used
 when tls-unique host verification is to be used.

8. Authentication Extensions

 Interactive clients (e.g. Web browsers) supporting this protocol are
 RECOMMENDED to support non-mandatory authentication and the
 Authentication-Control header defined in
 [I-D.ietf-httpauth-extension], except the "auth-style" parameter.
 This specification also proposes (however, not mandates) default
 "auth-style" to be "non-modal". Web applications SHOULD however
 consider the security impacts of the behaviors of clients that do not
 support these headers.

 Authentication-initializing messages with the
 Optional-WWW-Authenticate header are used only where 401-INIT
 response is valid. It will not replace other 401-type messages such
 as 401-STALE and 401-KEX-S1.

9. String Preparation

 It is important for interoperability that user-names and passwords
 used in this protocol is binary-comparable regardless of the user's
 input methods and/or environments. To ensure this, the following
 preparation SHOULD be performed:

 o User-names received from users SHOULD be prepared using the
 "UsernameCasePreserved" profile defined in Section 3.3 of
 [RFC7613].

 o Passwords received from users SHOULD be prepared using the
 "OpaqueString" profile defined in Section 4.2 of [RFC7613].

 In both cases, it is the sender's duty to correctly preparing the
 character strings. If any non-normalized character string is
 received from the other peer of the communication, recipients MAY
 either use it as a bare UTF-8 string without any preparation, perform
 any appropriate preparations (which may cause authentication
 failure), or reject any ill-prepared inputs from the sender and
 respond as a communication error.

 Server applications SHOULD also prepare user-names and passwords

https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc7613#section-3.3
https://datatracker.ietf.org/doc/html/rfc7613#section-3.3
https://datatracker.ietf.org/doc/html/rfc7613#section-4.2

Oiwa, et al. Expires July 10, 2016 [Page 27]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 accordingly upon registration of user credentials.

 In addition, binary-based "interfaces" of implementations MAY require
 and assume that the string is already prepared accordingly; in
 detail, when a string is already stored as an binary Unicode string
 form, implementations MAY omit preparation and Unicode normalization
 (performs UTF-8 encoding only) before using it. When a string is
 already stored as an octet blob, implementations MAY send it as it
 is.

10. Decision Procedure for Clients

10.1. General Principles and Requirements

 To securely implement the protocol, the user client must be careful
 about accepting the authenticated responses from the server. This
 also holds true for the reception of "normal responses" (responses
 which do not contain Mutual-related headers) from HTTP servers.

 As usual in the HTTP authentication, a single user-level request may
 result in exchange of two-or-more HTTP requests and responses in
 sequence. The following normative rules MUST be followed by the all
 clients implementing this protocol:

 o Any kinds of "normal responses" MUST only be accepted for the very
 first request in the sequence. Any "normal responses" returned
 for the second or later request in the sequence SHALL be
 considered invalid.

 o In the same principle, any responses which refer to, or request
 changing to, the authentication realm different from the client's
 request MUST only be accepted for the very first request in the
 sequence. Any kind of responses referring to the different realms
 which are returned for the second or later request in the sequence
 SHALL be considered invalid.

 o A req-KEX-C1 message MAY be sent either as a initial request or as
 a response to 401-INIT, and 401-STALE. However, it SHOULD NOT be
 sent more than once in the sequence for a single authentication
 realm, to avoid infinite loops of messages. A 401-KEX-S1 response
 MUST be accepted only when the corresponding request is
 req-KEX-C1.

 o A req-VFY-C message MAY be sent if there is a valid session key
 shared between the client and the server, established by
 req-KEX-C1 and 401-KEX-S1. If any response with 401 status is
 returned for such a message, the corresponding session key SHOULD

Oiwa, et al. Expires July 10, 2016 [Page 28]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 be discarded as unusable.
 Especially, upon the reception of response 401-STALE, the client
 SHOULD try establishing a new session by sending req-KEX-C1, but
 only once within the request/response sequence.

 o A 200-VFY-S message MUST be accepted only as a response to
 req-VFY-C and nothing else. The VK_s field of such response
 message MUST always be checked against the correct value, and if
 it is incorrect, the whole response SHOULD be considered invalid.
 Any content, both the content body and the headers, of such an
 invalid response SHOULD be ignored and discarded.

 The final status of the client request following the message exchange
 sequence shall be determined as follows:

 o AUTH-SUCCEED: A 200-VFY-S message with the correct VK_s value is
 returned to the req-VFY-C request in the sequence.

 o AUTH-REQUIRED: Two cases exists.

 * A 401-INIT message is returned from the server, and the client
 does not know how to authenticate to the given authentication
 realm.

 * A 401-INIT response is returned for req-VFY-C (or req-KEX-C1),
 which means the user-supplied authentication credentials are
 not accepted.

 o UNAUTHENTICATED: a normal response is returned for an initial
 request of any kind in the sequence.

 Any kind of response (including a normal response) other than those
 explicitly allowed in the above rules SHOULD be interpreted as a
 fatal communication error. In such cases, the clients MUST NOT
 process any data (the response body and other content-related
 headers) sent from the server. However, to handle exceptional error
 cases, clients MAY accept a message without an Authentication-Info
 header, if it is a Server-Error (5xx) status. In such cases, they
 SHOULD be careful about processing the body of the content (ignoring
 it is still RECOMMENDED, as it may possibly be forged by intermediate
 attackers,) and the client will be in the "UNAUTHENTICATED" status
 then.

 If a request is a sub-request for a resource included in another
 resources (e.g., embedded images, style sheets, frames etc.), clients
 MAY treat an AUTH-REQUESTED status as the same as UNAUTHENTICATED
 status. In other words, the client MAY ignore server's request to
 start authentication with new credentials via sub-requests.

Oiwa, et al. Expires July 10, 2016 [Page 29]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

10.2. State machine for the client-side (informative)

 The following state machine describes the possible request-response
 sequences derived from the above normative rules. If implementer are
 not quite sure on the security consequences of the above rules, it is
 strongly advised to follow the decision procedure below. In
 particular, clients SHOULD NOT accept "normal responses" unless
 explicitly allowed in the rules. The labels on the steps are for
 informational purposes only. Action entries within each step are
 checked in top-to-bottom order, and the first clause satisfied is to
 be followed.

 Step 1 (step_new_request):
 If the client software needs to access a new Web resource, check
 whether the resource is expected to be inside some authentication
 realm for which the user has already been authenticated by the
 Mutual authentication scheme. If yes, go to Step 2. Otherwise,
 go to Step 5.

 Step 2:
 Check whether there is an available sid for the authentication
 realm you expect. If there is one, go to Step 3. Otherwise, go
 to Step 4.

 Step 3 (step_send_vfy_1):
 Send a req-VFY-C request.

 * If you receive a 401-INIT message with a different
 authentication realm than expected, go to Step 6.

 * If you receive a 401-STALE message, go to Step 9.

 * If you receive a 401-INIT message, go to Step 13.

 * If you receive a 200-VFY-S message, go to Step 14.

 * If you receive a normal response, go to Step 11.

 Step 4 (step_send_kex1_1):
 Send a req-KEX-C1 request.

 * If you receive a 401-INIT message with a different
 authentication realm than expected, go to Step 6.

 * If you receive a 401-KEX-S1 message, go to Step 10.

 * If you receive a 401-INIT message with the same authentication
 realm, go to Step 13 (see Note 1).

Oiwa, et al. Expires July 10, 2016 [Page 30]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 * If you receive a normal response, go to Step 11.

 Step 5 (step_send_normal_1):
 Send a request without any Mutual authentication headers.

 * If you receive a 401-INIT message, go to Step 6.

 * If you receive a normal response, go to Step 11.

 Step 6 (step_rcvd_init):
 Check whether you know the user's password for the requested
 authentication realm. If yes, go to Step 7. Otherwise, go to
 Step 12.

 Step 7:
 Check whether there is an available sid for the authentication
 realm you expect. If there is one, go to Step 8. Otherwise, go
 to Step 9.

 Step 8 (step_send_vfy):
 Send a req-VFY-C request.

 * If you receive a 401-STALE message, go to Step 9.

 * If you receive a 401-INIT message, go to Step 13.

 * If you receive a 200-VFY-S message, go to Step 14.

 Step 9 (step_send_kex1):
 Send a req-KEX-C1 request.

 * If you receive a 401-KEX-S1 message, go to Step 10.

 * If you receive a 401-INIT message, go to Step 13 (See Note 1).

 Step 10 (step_rcvd_kex1):
 Send a req-VFY-C request.

 * If you receive a 401-INIT message, go to Step 13.

 * If you receive a 200-VFY-S message, go to Step 14.

 Step 11 (step_rcvd_normal):
 The requested resource is out of the authenticated area. The
 client will be in the "UNAUTHENTICATED" status. If the response
 contains a request for authentications other than Mutual, it MAY
 be handled normally.

Oiwa, et al. Expires July 10, 2016 [Page 31]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Step 12 (step_rcvd_init_unknown):
 The requested resource requires a Mutual authentication, and the
 user is not yet authenticated. The client will be in the "AUTH-
 REQUESTED" status, and is RECOMMENDED to process the content sent
 from the server, and to ask user for a user name and a password.
 When those are supplied from the user, proceed to Step 9.

 Step 13 (step_rcvd_init_failed):
 For some reason the authentication failed: possibly the password
 or the username is invalid for the authenticated resource.
 Forget the password for the authentication realm and go to Step
 12.

 Step 14 (step_rcvd_vfy):
 The received message is the 200-VFY-S message, which SHALL always
 contain a vks field. Check the validity of the received VK_s
 value. If it is equal to the expected value, it means that the
 mutual authentication has succeeded. The client will be in the
 "AUTH-SUCCEEDED" status.

 If the value is unexpected, it is a fatal communication error.

 If a user explicitly requests to log out (via user interfaces),
 the client MUST forget the user's password, go to step 5 and
 reload the current resource without an authentication header.

 Note 1: These transitions MAY be accepted by clients, but
 NOT RECOMMENDED for servers to initiate.

 Figure 5 shows an informative diagram of the client-side state.

Oiwa, et al. Expires July 10, 2016 [Page 32]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 =========== -(11)------------
 NEW REQUEST (UNAUTHENTICATED)
 =========== -----------------
 | ^ normal
 v | response
 +(1)-------------------+ NO +(5)----------+
 | The requested URI |--------------------------->| send normal |
 | known to be auth'ed? | | request |
 +----------------------+ +-------------+
 YES | 401-INIT 401-INIT|
 | with a different realm |
 | -----------------------------------. |
 | / v v
 | | -(12)------------ NO +(6)--------+
 | | (AUTH-REQUESTED)<------| user/pass |
 | | ----------------- | known? |
 | | +-----------+
 | | |YES
 v | v
 +(2)--------+ | +(7)--------+
 | session | | | session | NO
 NO /| available?| | | available?|\
 / +-----------+ | +-----------+ |
 / |YES | |YES |
 | | /| | | | |
 | v / | 401- 401- v |
 | +(3)--------+ | INIT --(13)---------- INIT +(8)--------+ |
 | | send |--+----->/ AUTH-REQUESTED \<-------| send | |
 | /| req-VFY-C | | \forget password / | req-VFY-C | |
 \/ +-----------+ / ---------------- /+-----------+ |
 /\ \ \/ ^ 401-INIT | |401- |
 | ------ \/\ 401-STALE | | | STALE /
 | \ /\ -----------------+--------------+---. | /
 | | / \ | | | | /
 | v / | 401- | 401- | v v v
 | +(4)--------+ | KEX-S1 +(10)-------+ KEX-S1 | +(9)--------+
 | | send |-|--------->| send |<-------+-| send |
 | --| req-KEX-C1| | | req-VFY-C | | | req-KEX-C1|
 |/ +-----------+ | +-----------+ | +-----------+
 | |200-VFY-S | 200-VFY-S| ^
 |normal | |200-VFY-S / |
 |response | v / ==================
 v \ -(14)--------- / USER/PASS INPUTTED
 -(11)------------ ------->(AUTH-SUCCEED)<-- ==================
 (UNAUTHENTICATED) --------------

 Figure 5: State diagram for clients

Oiwa, et al. Expires July 10, 2016 [Page 33]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

11. Decision Procedure for Servers

 Each server SHOULD have a table of session states. This table need
 not be persistent over a long term; it MAY be cleared upon server
 restart, reboot, or others. Each entry in the table SHOULD contain
 at least the following information:

 o The session identifier, the value of the sid parameter.

 o The algorithm used.

 o The authentication realm.

 o The state of the protocol: one of "key exchanging",
 "authenticated", "rejected", or "inactive".

 o The user name received from the client

 o The boolean flag noting whether or not the session is fake.

 o When the state is "key exchanging", the values of K_c1 and S_s1.

 o When the state is "authenticated", the following information:

 * The value of the session secret z

 * The largest nc received from the client (largest-nc)

 * For each possible nc values between (largest-nc - nc-
 window + 1) and max_nc, a flag whether or not a request with
 the corresponding nc has been received.

 The table MAY contain other information.

 Servers SHOULD respond to the client requests according to the
 following procedure: (See Note 1 below for 401-INIT message with *
 marks)

 o When the server receives a normal request:

 * If the requested resource is not protected by the Mutual
 Authentication, send a normal response.

 * If the resource is protected by the Mutual Authentication, send
 a 401-INIT response.

Oiwa, et al. Expires July 10, 2016 [Page 34]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o When the server receives a req-KEX-C1 request:

 * If the requested resource is not protected by the Mutual
 Authentication, send a normal response.

 * If the authentication realm specified in the req-KEX-C1 request
 is not the expected one, send a 401-INIT response.

 * If the server cannot validate the parameter kc1, send a
 401-INIT (*) response.

 * If the received user name is either invalid, unknown or
 unacceptable, create a new session, mark it a "fake" session,
 compute a random value as K_s1, and send a fake 401-KEX-S1
 response. (Note 2)

 * Otherwise, create a new session, compute K_s1 and send a
 401-KEX-S1 response.

 The created session has the "key exchanging" state.

 o When the server receives a req-VFY-C request:

 * If the requested resource is not protected by the Mutual
 Authentication, send a normal response.

 * If the authentication realm specified in the req-VFY-C request
 is not the expected one, send a 401-INIT response.

 If none of above holds true, the server will lookup the session
 corresponding to the received sid and the authentication realm.

 * If the session corresponding to the received sid could not be
 found, or it is in the "inactive" state, send a 401-STALE
 response.

 * If the session is in the "rejected" state, send either a
 401-INIT (*) or a 401-STALE message.

 * If the session is in the "authenticated" state, and the request
 has an nc value that was previously received from the client,
 send a 401-STALE message. The session SHOULD be changed to the
 "inactive" status.

 * If the nc value in the request is larger than the nc-max
 parameter sent from the server, or if it is not larger then
 (largest-nc - nc-window) (when in "authenticated" status), the
 server MAY (but not REQUIRED to) send a 401-STALE message. The

Oiwa, et al. Expires July 10, 2016 [Page 35]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 session SHOULD be changed to the "inactive" status if so.

 * If the session is a "fake" session, or if the received vkc is
 incorrect, then send a 401-INIT (*) response. If the session
 is in the "key exchanging" state, it SHOULD be changed to the
 "rejected" state; otherwise, it MAY either be changed to the
 "rejected" status or kept in the previous state.

 * Otherwise, send a 200-VFY-S response. If the session was in
 the "key exchanging" state, the session SHOULD be changed to an
 "authenticated" state. The maximum nc and nc flags of the
 state SHOULD be updated properly.

 At any time, the server MAY change any state entries with both the
 "rejected" and "authenticated" statuses to the "inactive" status, and
 MAY discard any "inactive" states from the table. The entries with
 the "key exchanging" status SHOULD be kept unless there is an
 emergency situation such as a server reboot or a table capacity
 overflow.

 Note 1: In relation with, and following the specification of the
 optional authentication defined in [I-D.ietf-httpauth-extension], the
 401-INIT messages marked with the asterisks can not be replaced with
 a successful responses with an Optional-WWW-Authenticate header.
 Every other 401-INIT can be a response with an
 Optional-WWW-Authenticate.

 Note 2: the server SHOULD NOT send a 401-INIT response in this case,
 because it will leak the information to the client that the specified
 user will not be accepted. Instead, postpone it to the response for
 the next req-VFY-C request.

12. Authentication Algorithms

 Cryptographic authentication algorithms which are used with this
 protocol will be defined separately. The algorithm definition MUST
 at least provide a definitions for the following functions:

 o The server-side authentication credential J, derived from user-
 side authentication credential pi.

 o Key exchange values K_c1, K_s1 (exchanged on wire) and S_c1, S_s1
 (kept secret in each peer).

 o Shared secret z, to be computed in both server-side and client
 side.

Oiwa, et al. Expires July 10, 2016 [Page 36]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o A hash function H to be used with the protocol, along with its
 output size hSize.

 o The number of iterations for password hashing nIterPi, if it uses
 the default password hashing function defined below.

 Specifications for cryptographic algorithms used with this framework
 MUST specify whether these will use the default functions defined
 below for the functions pi, VK_c, and VK_s; or, these will define
 their own versions for these functions.

 All algorithm used with this protocol SHOULD provide secure mutual
 authentication between client and servers, and generate a
 cryptographically strong shared secret value z, equivalently strong
 to or stronger than the hash function H. If any passwords (or pass-
 phrases or any equivalents, i.e. weak secrets) are involved, these
 SHOULD NOT be guessable from any data transmitted in the protocol,
 even if an attacker (either an eavesdropper or an active server)
 knows the possible thoroughly-searchable candidate list of the
 passwords. Furthermore, if possible, the function for deriving
 server-side authentication credential J is RECOMMENDED to be one-way
 so that pi should not be easily computed from J(pi).

12.1. Support Functions and Notations

 In this section we define several support functions and notations to
 be shared by several algorithm definitions:

 The integers in the specification are in decimal, or in hexadecimal
 when prefixed with "0x".

 The function octet(c) generates a single octet string whose code
 value is equal to c. The operator |, when applied to octet strings,
 denotes the concatenation of two operands.

 The function VI encodes natural numbers into octet strings in the
 following manner: numbers are represented in big-endian radix-128
 string, where each digit is represented by a octet within 0x80-0xff
 except the last digit represented by a octet within 0x00-0x7f. The
 first octet MUST NOT be 0x80. For example, VI(i) = octet(i) for i <
 128, and VI(i) = octet(0x80 + (i >> 7)) | octet(i & 127) for 128 <= i
 < 16384. This encoding is the same as the one used for the sub-
 components of object identifiers in the ASN.1 encoding
 [ITU.X690.1994], and available as a "w" conversion in the pack
 function of several scripting languages.

 The function VS encodes a variable-length octet string into a
 uniquely-decoded, self-delimited octet string, as in the following

Oiwa, et al. Expires July 10, 2016 [Page 37]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 manner:

 VS(s) = VI(length(s)) | s

 where length(s) is a number of octets (not characters) in s.

 Some examples:

 VI(0) = "\000" (in C string notation)

 VI(100) = "d"

 VI(10000) = "\316\020"

 VI(1000000) = "\275\204@"

 VS("") = "\000"

 VS("Tea") = "\003Tea"

 VS("Caf<e acute>" [in UTF-8]) = "\005Caf\303\251"

 VS([10000 "a"s]) = "\316\020aaaaa..." (10002 octets)

 (Note: Unlike the colon-separated notion used in the Basic/Digest
 HTTP authentication scheme, the string generated by a concatenation
 of the VS-encoded strings will be unique, regardless of the
 characters included in the strings to be encoded.)

 The function OCTETS converts an integer into the corresponding radix-
 256 big-endian octet string having its natural length: See

Section 3.2.3 for the definition of "natural length".

 The function INT converts an octet string into a natural number,
 where the input string is treated as a radix-256 big-endian notation.
 The identity INT(OCTETS(n)) = n always holds for any natural number
 n.

12.2. Default Functions for Algorithms

 The functions defined in this section are common default functions
 among authentication algorithms.

 The client-side password-based (credential) pi used by this
 authentication is a natural number derived in the following manner:

 pi = INT(PBKDF2(HMAC_H, ph(password), VS(algorithm) | VS(auth-scope)
 | VS(realm) | VS(username), nIterPi, hSize / 8)),

Oiwa, et al. Expires July 10, 2016 [Page 38]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 where

 o PBKDF2 is the password-based key derivation function defined in
 [RFC2898],

 o HMAC_H is the HMAC function, defined in [RFC2104], composed from
 the hash function H, and

 o hSize is the output size of hash H, counted in bits.

 The values of algorithm, realm, and auth-scope are taken from the
 values contained in the 401-INIT message. The function ph is
 determined by the value of the pwd-hash parameter given in a 401-INIT
 message. If the password comes from a user input, it SHOULD first be
 prepared according to the method presented in Section 9. Then, the
 password SHALL be encoded as a UTF-8 string before passed to ph.

 The values VK_c and VK_s are derived by the following equation.

 VK_c = INT(H(octet(4) | OCTETS(K_c1) | OCTETS(K_s1) | OCTETS(z) |
 VI(nc) | VS(vh)))

 VK_s = INT(H(octet(3) | OCTETS(K_c1) | OCTETS(K_s1) | OCTETS(z) |
 VI(nc) | VS(vh)))

13. Application Channel Binding

 Applications and upper-layer communication protocols may need
 authentication binding to the HTTP-layer authenticated user. Such
 applications MAY use the following values as a standard shared
 secret.

 These values are parameterized with an optional octet string (t)
 which may be arbitrarily chosen by each applications or protocols.
 If there is no appropriate value to be specified, use a null string
 for t.

 For applications requiring binding to either an authenticated user or
 a shared-key session (to ensure that the requesting client is
 certainly authenticated), the following value b_1 MAY be used.

 b_1 = H(H(octet(6) | OCTETS(K_c1) | OCTETS(K_s1) | OCTETS(z) | VI(0)
 | VS(vh)) | VS(t)).

 For applications requiring binding to a specific request (to ensure
 that the payload data is generated for the exact HTTP request), the
 following value b_2 MAY be used.

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2104

Oiwa, et al. Expires July 10, 2016 [Page 39]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 b_2 = H(H(octet(7) | OCTETS(K_c1) | OCTETS(K_s1) | OCTETS(z) | VI(nc)
 | VS(vh)) | VS(t)).

 Note: Channel bindings to lower-layer transports (TCP and TLS) are
 defined in Section 7.

14. Application for Proxy Authentication

 The authentication scheme defined by the previous sections can be
 applied (with modifications) for proxy authentications. In such
 cases, the following alterations MUST be applied:

 o The 407 status is to be sent and recognized for places where the
 401 status is used,

 o Proxy-Authenticate: header is to be used for places where WWW-
 Authenticate: is used,

 o Proxy-Authorization: header is to be used for places where
 Authorization: is used,

 o Proxy-Authentication-Info: header is to be used for places where
 Authentication-Info: is used,

 o The auth-scope parameter is fixed to the host-name of the proxy,
 which means to cover all requests processed through the specific
 proxy,

 o The limitation for the paths contained in the path parameter of
 401-KEX-S1 messages is disregarded,

 o The omission of the path parameter of 401-KEX-S1 messages means
 that the authentication realm will potentially cover all requests
 processed by the proxy,

 o The scheme, host name and the port of the proxy is used for host
 validation tokens, and

 o Authentication extensions in [I-D.ietf-httpauth-extension] are not
 applicable.

15. Methods to Extend This Protocol

 If a private extension to this protocol is implemented, it MUST use
 the extension-tokens defined in Section 3 to avoid conflicts with
 this protocol and other extensions. (standardized or being-

Oiwa, et al. Expires July 10, 2016 [Page 40]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 standardizing extensions MAY use either bare-tokens or extension-
 tokens.)

 Specifications defining authentication algorithms MAY use other
 representations for the parameters "kc1", "ks1", "vkc", and "vks",
 replace those parameter names, and/or add parameters to the messages
 containing those parameters in supplemental specifications, provided
 that syntactic and semantic requirements in Section 3, [RFC7230] and
 [RFC7235] are satisfied. Any parameters starting with "kc", "ks",
 "vkc" or "vks" and followed by decimal natural numbers (e.g. kc2,
 ks0, vkc1, vks3 etc.) are reserved for this purpose. If those
 specifications use names other than those mentioned above, it is
 RECOMMENDED to use extension-tokens to avoid any parameter name
 conflict with the future extension of this protocol.

 Extension-tokens MAY be freely used for any non-standard, private,
 and/or experimental uses for those parameters provided that the
 domain part in the token is appropriately used.

16. IANA Considerations

 When bare-tokens are used for the authentication-algorithm, pwd-hash,
 and validation parameters MUST be allocated by IANA. To acquire
 registered tokens, a specification for the use of such tokens MUST be
 reviewed by a designated expert, as outlined in [RFC5226].

16.1. Registry for Authentication Algorithms

 This document establishes a registry for HTTP Mutual authentication
 algorithms. The registry manages a case-insensitive ASCII strings.
 The string MUST follow the extensive-token syntax defined in

Section 3.

 Registrations for authentication algorithms are required to include a
 description of the key exchange algorithms. Reviewers assigned by
 IESG are advised to examine minimum security requirements and
 consistency of the key exchange algorithm descriptions.

 New registrations are advised to provide the following information:

 o Token: a token used in HTTP headers for identifying the algorithm.

 o Description: A brief description of the algorithm.

 o Specification: A reference for a specification defining the
 algorithm.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5226

Oiwa, et al. Expires July 10, 2016 [Page 41]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 The initial content of this registry is empty. [[Editorial Note: A
 separate document [I-D.ietf-httpauth-mutual-algo] will effectively
 define the initial content of the registry.]]

16.2. Registry for Password Hashes

 This document establishes a registry for HTTP Mutual authentication
 password hashes. The registry manages a case-insensitive ASCII
 strings. The string MUST follow the extensive-token syntax defined
 in Section 3.

 Registrations for authentication algorithms are required to include a
 description of the key exchange algorithms. Reviewers assigned by
 IESG are advised to examine its use-case requirements and security
 consequence of its introduction.

 New registrations are advised to provide the following information:

 o Token: a token used in HTTP headers for identifying the algorithm.

 o Description: A brief description of the algorithm.

 o Specification: A reference for a specification defining the
 algorithm.

 The initial content of this registry is as follows:

 +------------+------------------------------------+---------------+
 | Token | Description | Specification |
 +------------+------------------------------------+---------------+
 | none | No additional hashing, recommended | Section 4.1 |
 | md5 | MD5-based preprocessing | Section 4.1 |
 | digest-md5 | Digest-compatible preprocessing | Section 4.1 |
 | sha1 | SHA1-based preprocessing | Section 4.1 |
 +------------+------------------------------------+---------------+

16.3. Registry for Validation Methods

 This document establishes a registry for HTTP Mutual authentication
 host validations. The registry manages a case-insensitive ASCII
 strings. The string MUST follow the extensive-token syntax defined
 in Section 3.

 Registrations for authentication algorithms are required to include a
 description of the key exchange algorithms. Reviewers assigned by
 IESG are advised to examine its use-case requirements and security
 consequence of its introduction.

Oiwa, et al. Expires July 10, 2016 [Page 42]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 New registrations are advised to provide the following information:

 o Token: a token used in HTTP headers for identifying the algorithm.

 o Description: A brief description of the algorithm.

 o Specification: A reference for a specification defining the
 algorithm.

 The initial content of this registry is as follows:

 +----------------------+----------------------------+---------------+
 | Token | Description | Specification |
 +----------------------+----------------------------+---------------+
host	Host name verification	Section 7
	only	
tls-server-end-point	TLS certificate-based	Section 7
tls-unique	TLS unique key-based	Section 7
 +----------------------+----------------------------+---------------+

17. Security Considerations

17.1. Security Properties

 o The protocol is secure against passive eavesdropping and replay
 attacks. However, the protocol relies on transport security
 including DNS integrity for data secrecy and integrity. HTTP/TLS
 SHOULD be used where transport security is not assured and/or data
 confidentiality is important.

 o When used with HTTP/TLS, if TLS server certificates are reliably
 verified, the protocol provides true protection against active
 man-in-the-middle attacks.

 o Even if the server certificate is not used or is unreliable, the
 protocol provides protection against active man-in-the-middle
 attacks for each HTTP request/response pair. However, in such
 cases, JavaScript or similar scripting facilities can be used to
 affect the Mutually-authenticated contents from other contents not
 protected by this authentication mechanism. This is the reason
 why this protocol requires that valid TLS server certificates MUST
 be presented (Section 7).

Oiwa, et al. Expires July 10, 2016 [Page 43]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

17.2. Denial-of-service Attacks to Servers

 The protocol requires a server-side table of active sessions, which
 may become a critical point of the server resource consumption. For
 proper operation, the protocol requires that at least one key
 verification request is processed for each session identifier. After
 that, servers MAY discard sessions internally at any time, without
 causing any operational problems to clients. Clients will silently
 reestablishes a new session then.

 However, if a malicious client sends too many requests of key
 exchanges (req-KEX-C1 messages) only, resource starvation might
 occur. In such critical situations, servers MAY discard any kind of
 existing sessions regardless of these statuses. One way to mitigate
 such attacks are that servers MAY have a number and a time limits for
 unverified pending key exchange requests (in the "key exchanging"
 status).

 This is a common weakness of authentication protocols with almost any
 kind of negotiations or states, including Digest authentication
 method and most Cookie-based authentication implementations.
 However, regarding the resource consumption, a situation of the
 mutual authentication method is a slightly better than the Digest,
 because HTTP requests without any kind of authentication requests
 will not generate any kind of sessions. Session identifiers are only
 generated after a client starts a key negotiation. It means that
 simple clients such as web crawlers will not accidentally consume
 server-side resources for session managements.

17.2.1. On-line Active Password Attacks

 Although the protocol provides very strong protection against off-
 line dictionary attacks from eavesdropped traffics, the protocol, by
 its nature, can not prevent an active password attacks which the
 attackers sends so many authentication trial requests for every
 possible passwords.

 Possible countermeasures for preventing such attacks may be rate-
 limiting of the password authentication trials, statistics-based
 intrusion detection measures or similar protection schemes. If the
 server operators assume that the passwords of users are not strong
 enough, it may be desirable to introduce such ad-hoc countermeasures.

17.3. Communicating the status of mutual authentication with users

 This protocol is designed for two goals. The first goal is just
 providing a secure alternative for existing Basic and Digest
 authentication. The second goal is to provide users a way to detect

Oiwa, et al. Expires July 10, 2016 [Page 44]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 forged rogue servers imitating user's registered account on server-
 side, commonly known as (a part or kind of) Phishing attacks.

 For this protocol to effectively work as some countermeasures to such
 attacks, it is very important that end users of clients will be
 notified of the result of mutual authentication performed by this
 protocol, especially the three states "AUTH-SUCCEED",
 "UNAUTHENTICATED" and "AUTH-REQUIRED" defined in Section 10. The
 design of secure users' interfaces of the HTTP interactive clients
 are out of the scope of this document, but if possible, having some
 kind of UI indication for the three states above will be desirable
 for user's benefits on their security.

 Of course, in such cases, the user interfaces for asking passwords
 for this authentication shall be clearly identifiable against
 imitation by other insecure password input fields (such as forms).
 If the passwords are known to malicious attackers outside of the
 protocol, the protocol can not work as an effective security
 measures.

17.4. Implementation Considerations

 o To securely implement the protocol, the Authentication-Info
 headers in the 200-VFY-S messages MUST always be validated by the
 client. If the validation fails, the client MUST NOT process any
 content sent with the message, including other headers and the
 body part. Non-compliance to this requirement will allow phishing
 attacks.

 o For HTTP/TLS communications, when a web form is submitted from
 Mutually-authenticated pages with the "tls-server-end-point"
 validation method to a URI that is protected by the same realm (so
 indicated by the path parameter), if the server certificate has
 been changed since the pages were received, the peer is
 RECOMMENDED to be re-validated using a req-KEX-C1 message with an
 "Expect: 100-continue" header. The same applies when the page is
 received with the "tls-unique" validation method, and when the TLS
 session has expired.

 o For better protection against possible password database steal,
 Server-side storage of user passwords are better containing the
 values encrypted by one-way function J(pi), instead of the real
 passwords, those hashed by ph, or pi.

Oiwa, et al. Expires July 10, 2016 [Page 45]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

17.5. Usage Considerations

 o The user-names inputted by a user may be sent automatically to any
 servers sharing the same auth-scope. This means that when host-
 type auth-scope is used for authentication on an HTTPS site, and
 when an HTTP server on the same host requests Mutual
 authentication within the same realm, the client will send the
 user-name in a clear text. If user-names have to be kept secret
 against eavesdropping, the server must use full-scheme-type auth-
 scope parameter and HTTPS. Contrarily, passwords are not exposed
 to eavesdroppers even on HTTP requests.

 o The "pwd-hash" parameter is only provided for backward
 compatibility of password databases. The use of "none" function
 is the most secure choice and is RECOMMENDED. If values other
 than "none" are used, you MUST ensure that the hash values of the
 passwords were not exposed to the public. Note that hashed
 password databases for plain-text authentications are usually not
 considered secret.

 o If the server provides several ways for storing server-side
 password secrets into the password database, it is desirable for
 better security to store the values encrypted by using the one-way
 function J(pi), instead of the real passwords, those hashed by ph,
 or pi.

18. Notice on Intellectual Properties

 The National Institute of Advanced Industrial Science and Technology
 (AIST) and Yahoo! Japan, Inc. has jointly submitted a patent
 application on the protocol proposed in this documentation to the
 Patent Office of Japan. The patent is intended to be open to any
 implementer of this protocol and its variants under non-exclusive
 royalty-free manner. For the details of the patent application and
 its status, please contact the author of this document.

 The elliptic-curve based authentication algorithms might involve
 several existing third-party patents. The authors of the document
 take no position regarding the validity or scope of such patents, and
 other patents as well.

19. References

Oiwa, et al. Expires July 10, 2016 [Page 46]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

19.1. Normative References

 [I-D.ietf-httpauth-extension]
 Oiwa, Y., Watanabe, H., Takagi, H., Hayashi, T., and Y.
 Ioku, "HTTP Authentication Extensions for Interactive
 Clients", draft-ietf-httpauth-extension-05 (work in
 progress), January 2016.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, DOI 10.17487/

RFC2898, September 2000,
 <http://www.rfc-editor.org/info/rfc2898>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5987] Reschke, J., "Character Set and Language Encoding for
 Hypertext Transfer Protocol (HTTP) Header Field
 Parameters", RFC 5987, DOI 10.17487/RFC5987, August 2010,
 <http://www.rfc-editor.org/info/rfc5987>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

https://datatracker.ietf.org/doc/html/draft-ietf-httpauth-extension-05
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898
http://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5987
http://www.rfc-editor.org/info/rfc5987

Oiwa, et al. Expires July 10, 2016 [Page 47]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7613] Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", RFC 7613,
 DOI 10.17487/RFC7613, August 2015,
 <http://www.rfc-editor.org/info/rfc7613>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <http://www.rfc-editor.org/info/rfc7615>.

19.2. Informative References

 [I-D.ietf-httpauth-mutual-algo]
 Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
 T., and Y. Ioku, "Mutual Authentication Protocol for HTTP:
 KAM3-based Cryptographic Algorithms",

draft-ietf-httpauth-mutual-algo-04 (work in progress),
 January 2016.

 [ISO.10646-1.1993]
 International Organization for Standardization,
 "Information Technology - Universal Multiple-octet coded
 Character Set (UCS) - Part 1: Architecture and Basic
 Multilingual Plane", ISO Standard 10646-1, May 1993.

 [ITU.X690.1994]
 International Telecommunications Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 1994.

 [RFC1939] Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, DOI 10.17487/RFC1939, May 1996,
 <http://www.rfc-editor.org/info/rfc1939>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/
RFC2818, May 2000,

 <http://www.rfc-editor.org/info/rfc2818>.

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7613
http://www.rfc-editor.org/info/rfc7613
https://datatracker.ietf.org/doc/html/rfc7615
http://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/draft-ietf-httpauth-mutual-algo-04
https://datatracker.ietf.org/doc/html/rfc1939
http://www.rfc-editor.org/info/rfc1939
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818

Oiwa, et al. Expires July 10, 2016 [Page 48]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <http://www.rfc-editor.org/info/rfc5929>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",

RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <http://www.rfc-editor.org/info/rfc7564>.

 [RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616, DOI 10.17487/

RFC7616, September 2015,
 <http://www.rfc-editor.org/info/rfc7616>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <http://www.rfc-editor.org/info/rfc7627>.

Appendix A. (Informative) Draft Change Log

A.1. Changes in Httpauth WG Revision 06

 o The auth-domain parameter has been renamed to auth-scope,
 following suggestions on the mailing list.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5890
http://www.rfc-editor.org/info/rfc5890
https://datatracker.ietf.org/doc/html/rfc5929
http://www.rfc-editor.org/info/rfc5929
https://datatracker.ietf.org/doc/html/rfc6265
http://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6454
http://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc7564
http://www.rfc-editor.org/info/rfc7564
https://datatracker.ietf.org/doc/html/rfc7616
https://datatracker.ietf.org/doc/html/rfc7616
http://www.rfc-editor.org/info/rfc7616
https://datatracker.ietf.org/doc/html/rfc7627
http://www.rfc-editor.org/info/rfc7627

Oiwa, et al. Expires July 10, 2016 [Page 49]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o The digest-md5 password-hash has been dropped, as Digest with MD5
 hash is now obsoleted.

A.2. Changes in Httpauth WG Revision 05

 o Minimum nonce number window has increased to 128. (HTTP 2.0
 recommends at least 100 concurrent sessions to exist)

 o Reference to TLS session hash extension added for tls-unique
 security issues.

 o Comments in the previous F2F meeting has been reflected to the
 text.

A.3. Changes in Httpauth WG Revision 04

 o Merged httpauthprep proposal into general PRECIS Username/Password
 profile.

 o Adopting RFC 5987 extended syntax for non-ASCII parameter values.

 o Refer draft-ietf-httpbis-auth-info for Authentication-Info header.
 This results in a different syntax for that header.

A.4. Changes in Httpauth WG Revision 03

 o Incompatible change: Single-port type authentication realm label
 has been changed to harmonize with Web Origin. (That is, the
 default ports (80 and 443) are to be omitted.)

A.5. Changes in Httpauth WG Revision 02

 o Major change: introduction of password-strengthening function
 PBKDF2.

 o Changed Section 10 to adopt "list of requirements" style. Strict
 definition of state machine is now a derived, informational
 definition.

A.6. Changes in Httpauth WG Revision 01

 o Changed "tls-key" verification to "tls-unique" verification, and
 "tls-cert" to "tls-server-end-point", adopting RFC 5929.

 o Adopted PRECIS framework [RFC7564].

 o Reverted reservation of "rekey-sid" and "rekey-method" parameters.

https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-auth-info
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc7564

Oiwa, et al. Expires July 10, 2016 [Page 50]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o Degraded secure UI requirement to application note level, non-
 normative.

 o Adjusted levels of several requirements.

 o Added warning text for handling of exceptional 5XX responses.

 o Dropped several references for optional authentications, except
 one "Note".

 o Several textual fixes, improvements and revisions.

A.7. Changes in Httpauth Revision 00

 o Changed the version token.

 o Renamed "verification tokens" to "Host verification tokens" and
 variables "v" to "vh" for clarification. (Back-ported from

draft-oiwa-httpauth-multihop-template-00)

A.8. Changes in HttpBis Revision 00

 None.

A.9. Changes in Revision 12

 o Added a reason "authz-failed".

A.10. Changes in Revision 11

 o Message syntax definition reverted to pre-07 style as httpbis-p1
 and p7 now defines a precise rule for parameter value parsing.

 o Replaced "stale" parameter with more informative/extensive
 "reason" parameter in 401-INIT and 401-STALE.

 o Reserved "rekey-sid" and "rekey-method" parameters for future
 extensions.

 o Added descriptions for replacing/non-replacing existing
 technologies.

A.11. Changes in Revision 10

 o The authentication extension parts (non-mandatory authentication
 and authentication controls) are separated to yet another draft.

https://datatracker.ietf.org/doc/html/draft-oiwa-httpauth-multihop-template-00

Oiwa, et al. Expires July 10, 2016 [Page 51]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o The default auth-domain parameter is changed to the full scheme-
 host-port syntax, which is consistent with usual HTTP
 authentication framework behavior.

 o Provision for application channel binding is added.

 o Provision for proxy access authentication is added.

 o Bug fix: syntax specification of sid parameter was wrong: it was
 inconsistent with the type specified in the main text (the bug
 introduced in -07 draft).

 o Terminologies for headers are changed to be in harmony with
 httpbis drafts (e.g. field to parameter).

 o Syntax definitions are changed to use HTTP-extended ABNF syntax,
 and only the header values are shown for header syntax, in harmony
 with httpbis drafts.

 o Names of parameters and corresponding mathematical values are now
 renamed to more informative ones. The following list shows
 correspondence between the new and the old names.

 +------------+----------+---+
 | new name | old name | description |
 +------------+----------+---+
S_c1, S_s1	s_a, s_b	client/server-side secret randoms
K_c1, K_s1	w_a, w_b	client/server-side exchanged key
		components
kc1, ks1	wa, wb	parameter names for those
VK_c, VK_s	o_a, o_b	client/server-side key verifiers
vkc, vks	oa, ob	parameter names for those
z	z	session secrets
 +------------+----------+---+

A.12. Changes in Revision 09

 o The (default) cryptographic algorithms are separated to another
 draft.

 o Names of the messages are changed to more informative ones than
 before. The following is the correspondence table of those names:

Oiwa, et al. Expires July 10, 2016 [Page 52]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 +-------------------+-----------------+-----------------------------+
 | new name | old name | description |
 +-------------------+-----------------+-----------------------------+
401-INIT	401-B0	initial response
401-STALE	401-B0-stale	session key expired
req-KEX-C1	req-A1	client->server key exchange
401-KEX-S1	401-B1	server->client key exchange
req-VFY-C	req-A3	client->server auth.
		verification
200-VFY-S	200-B4	server->client auth.
		verification
200-Optional-INIT	200-Optional-B0	initial with non-mandatory
		authentication
 +-------------------+-----------------+-----------------------------+

A.13. Changes in Revision 08

 o The English text has been revised.

A.14. Changes in Revision 07

 o Adapt to httpbis HTTP/1.1 drafts:

 * Changed definition of extensive-token.

 * LWSP continuation-line (%0D.0A.20) deprecated.

 o To simplify the whole spec, the type of nonce-counter related
 parameters are change from hex-integer to integer.

 o Algorithm tokens are renamed to include names of hash algorithms.

 o Clarified the session management, added details of server-side
 protocol decisions.

 o The whole draft was reorganized; introduction and overview has
 been rewritten.

A.15. Changes in Revision 06

 o Integrated Optional Mutual Authentication to the main part.

 o Clarified the decision procedure for message recognitions.

 o Clarified that a new authentication request for any sub-requests
 in interactive clients may be silently discarded.

Oiwa, et al. Expires July 10, 2016 [Page 53]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o Typos and confusing phrases are fixed.

 o Several "future considerations" are added.

A.16. Changes in Revision 05

 o A new parameter called "version" is added for supporting future
 incompatible changes with a single implementation. In the (first)
 final specification its value will be changed to 1.

 o A new header "Authentication-Control" is added for precise control
 of application-level authentication behavior.

A.17. Changes in Revision 04

 o Changed text of patent licenses: the phrase "once the protocol is
 accepted as an Internet standard" is removed so that the sentence
 also covers the draft versions of this protocol.

 o The "tls-key" verification is now OPTIONAL.

 o Several description fixes and clarifications.

A.18. Changes in Revision 03

 o Wildcard domain specifications (e.g. "*.example.com") are allowed
 for auth-domain parameters (Section 4.1).

 o Specification of the tls-cert verification is updated
 (incompatible change).

 o State transitions fixed.

 o Requirements for servers concerning w_a values are clarified.

 o RFC references are updated.

A.19. Changes in Revision 02

 o Auth-realm is extended to allow full-scheme type.

 o A decision diagram for clients and decision procedures for servers
 are added.

 o 401-B1 and req-A3 messages are changed to contain authentication
 realm information.

Oiwa, et al. Expires July 10, 2016 [Page 54]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 o Bugs on equations for o_A and o_B are fixed.

 o Detailed equations for the entire algorithm are included.

 o Elliptic-curve algorithms are updated.

 o Several clarifications and other minor updates.

A.20. Changes in Revision 01

 o Several texts are rewritten for clarification.

 o Added several security consideration clauses.

Authors' Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

 Email: mutual-auth-contact-ml@aist.go.jp

 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

 Hiromitsu Takagi
 National Institute of Advanced Industrial Science and Technology
 Information Technology Research Institute
 Tsukuba Central 1
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

Oiwa, et al. Expires July 10, 2016 [Page 55]

Internet-Draft Mutual Authentication Protocol for HTTP January 2016

 Kaoru Maeda
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP

 Tatsuya Hayashi
 Lepidum Co. Ltd.
 Village Sasazuka 3, Suite #602
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP

 Yuichi Ioku
 Individual

Oiwa, et al. Expires July 10, 2016 [Page 56]

