
HTTPAUTH A. Melnikov
Internet-Draft Isode Ltd
Intended status: Standards Track July 4, 2014
Expires: January 5, 2015

Salted Challenge Response (SCRAM) HTTP Authentication Mechanism
draft-ietf-httpauth-scram-auth-02.txt

Abstract

 The secure authentication mechanism most widely deployed and used by
 Internet application protocols is the transmission of clear-text
 passwords over a channel protected by Transport Layer Security (TLS).
 There are some significant security concerns with that mechanism,
 which could be addressed by the use of a challenge response
 authentication mechanism protected by TLS. Unfortunately, the HTTP
 Digest challenge response mechanism presently on the standards track
 failed widespread deployment, and have had success only in limited
 use.

 This specification describes a family of HTTP authentication
 mechanisms called the Salted Challenge Response Authentication
 Mechanism (SCRAM), which addresses the security concerns and meets
 the deployability requirements. When used in combination with TLS or
 an equivalent security layer, a mechanism from this family could
 improve the status-quo for application protocol authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Melnikov Expires January 5, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP SCRAM July 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Conventions Used in This Document 2
1.1. Terminology . 3
1.2. Notation . 4
2. Introduction . 5
3. SCRAM Algorithm Overview 6
4. SCRAM Mechanism Names . 7
5. SCRAM Authentication Exchange 7
5.1. SCRAM Attributes . 9
6. Formal Syntax . 12
7. Security Considerations 15
8. IANA Considerations . 16
9. Acknowledgements . 16
10. Design Motivations . 17
11. Open Issues . 17
12. Internet-Draft Change History 17
13. References . 17
13.1. Normative References 17
13.2. Informative References 18

 Author's Address . 19

1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Formal syntax is defined by [RFC5234] including the core rules
 defined in Appendix B of [RFC5234].

 Example lines prefaced by "C:" are sent by the client and ones
 prefaced by "S:" by the server. If a single "C:" or "S:" label

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B

Melnikov Expires January 5, 2015 [Page 2]

Internet-Draft HTTP SCRAM July 2014

 applies to multiple lines, then the line breaks between those lines
 are for editorial clarity only, and are not part of the actual
 protocol exchange.

1.1. Terminology

 This document uses several terms defined in [RFC4949] ("Internet
 Security Glossary") including the following: authentication,
 authentication exchange, authentication information, brute force,
 challenge-response, cryptographic hash function, dictionary attack,
 eavesdropping, hash result, keyed hash, man-in-the-middle, nonce,
 one-way encryption function, password, replay attack and salt.
 Readers not familiar with these terms should use that glossary as a
 reference.

 Some clarifications and additional definitions follow:

 o Authentication information: Information used to verify an identity
 claimed by a SCRAM client. The authentication information for a
 SCRAM identity consists of salt, iteration count, the "StoredKey"
 and "ServerKey" (as defined in the algorithm overview) for each
 supported cryptographic hash function.

 o Authentication database: The database used to look up the
 authentication information associated with a particular identity.
 For application protocols, LDAPv3 (see [RFC4510]) is frequently
 used as the authentication database. For network-level protocols
 such as PPP or 802.11x, the use of RADIUS [RFC2865] is more
 common.

 o Base64: An encoding mechanism defined in [RFC4648] which converts
 an octet string input to a textual output string which can be
 easily displayed to a human. The use of base64 in SCRAM is
 restricted to the canonical form with no whitespace.

 o Octet: An 8-bit byte.

 o Octet string: A sequence of 8-bit bytes.

 o Salt: A random octet string that is combined with a password
 before applying a one-way encryption function. This value is used
 to protect passwords that are stored in an authentication
 database.

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc4648

Melnikov Expires January 5, 2015 [Page 3]

Internet-Draft HTTP SCRAM July 2014

1.2. Notation

 The pseudocode description of the algorithm uses the following
 notations:

 o ":=": The variable on the left hand side represents the octet
 string resulting from the expression on the right hand side.

 o "+": Octet string concatenation.

 o "[]": A portion of an expression enclosed in "[" and "]" may not
 be included in the result under some circumstances. See the
 associated text for a description of those circumstances.

 o Normalize(str): Apply the SASLPrep profile [RFC4013] of the
 "stringprep" algorithm [RFC3454] as the normalization algorithm to
 a UTF-8 [RFC3629] encoded "str". The resulting string is also in
 UTF-8. When applying SASLPrep, "str" is treated as a "stored
 strings", which means that unassigned Unicode codepoints are
 prohibited (see Section 7 of [RFC3454]). Note that
 implementations MUST either implement SASLPrep, or disallow use of
 non US-ASCII Unicode codepoints in "str".

 o HMAC(key, str): Apply the HMAC keyed hash algorithm (defined in
 [RFC2104]) using the octet string represented by "key" as the key
 and the octet string "str" as the input string. The size of the
 result is the hash result size for the hash function in use. For
 example, it is 20 octets for SHA-1 (see [RFC3174]).

 o H(str): Apply the cryptographic hash function to the octet string
 "str", producing an octet string as a result. The size of the
 result depends on the hash result size for the hash function in
 use.

 o XOR: Apply the exclusive-or operation to combine the octet string
 on the left of this operator with the octet string on the right of
 this operator. The length of the output and each of the two
 inputs will be the same for this use.

 o Hi(str, salt, i):

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3454#section-7
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3174

Melnikov Expires January 5, 2015 [Page 4]

Internet-Draft HTTP SCRAM July 2014

 U1 := HMAC(str, salt + INT(1))
 U2 := HMAC(str, U1)
 ...
 Ui-1 := HMAC(str, Ui-2)
 Ui := HMAC(str, Ui-1)

 Hi := U1 XOR U2 XOR ... XOR Ui

 where "i" is the iteration count, "+" is the string concatenation
 operator and INT(g) is a four-octet encoding of the integer g,
 most significant octet first.

 Hi() is, essentially, PBKDF2 [RFC2898] with HMAC() as the PRF and
 with dkLen == output length of HMAC() == output length of H().

2. Introduction

 This specification describes a family of authentication mechanisms
 called the Salted Challenge Response Authentication Mechanism (SCRAM)
 which addresses the requirements necessary to deploy a challenge-
 response mechanism more widely than past attempts (see [RFC5802]).
 When used in combination with Transport Layer Security (TLS, see
 [RFC5246]) or an equivalent security layer, a mechanism from this
 family could improve the status-quo for application protocol
 authentication.

 SCRAM provides the following protocol features:

 o The authentication information stored in the authentication
 database is not sufficient by itself (without a dictionary attack)
 to impersonate the client. The information is salted to prevent a
 pre-stored dictionary attack if the database is stolen.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies).

 o The mechanism permits the use of a server-authorized proxy without
 requiring that proxy to have super-user rights with the back-end
 server.

 o Mutual authentication is supported, but only the client is named
 (i.e., the server has no name).

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5246

Melnikov Expires January 5, 2015 [Page 5]

Internet-Draft HTTP SCRAM July 2014

3. SCRAM Algorithm Overview

 The following is a description of a full HTTP SCRAM authentication
 exchange. Note that this section omits some details, such as client
 and server nonces. See Section 5 for more details.

 To begin with, the SCRAM client is in possession of a username and
 password (*) (or a ClientKey/ServerKey, or SaltedPassword). It sends
 the username to the server, which retrieves the corresponding
 authentication information, i.e. a salt, StoredKey, ServerKey and the
 iteration count i. (Note that a server implementation may choose to
 use the same iteration count for all accounts.) The server sends the
 salt and the iteration count to the client, which then computes the
 following values and sends a ClientProof to the server:

 (*) - Note that both the username and the password MUST be encoded in
 UTF-8 [RFC3629].

 Informative Note: Implementors are encouraged to create test cases
 that use both username passwords with non-ASCII codepoints. In
 particular, it's useful to test codepoints whose "Unicode
 Normalization Form C" and "Unicode Normalization Form KC" are
 different. Some examples of such codepoints include Vulgar Fraction
 One Half (U+00BD) and Acute Accent (U+00B4).

 SaltedPassword := Hi(Normalize(password), salt, i)
 ClientKey := HMAC(SaltedPassword, "Client Key")
 StoredKey := H(ClientKey)
 AuthMessage := client-first-message-bare + "," +
 server-first-message + "," +
 client-final-message-without-proof
 ClientSignature := HMAC(StoredKey, AuthMessage)
 ClientProof := ClientKey XOR ClientSignature
 ServerKey := HMAC(SaltedPassword, "Server Key")
 ServerSignature := HMAC(ServerKey, AuthMessage)

 The server authenticates the client by computing the ClientSignature,
 exclusive-ORing that with the ClientProof to recover the ClientKey
 and verifying the correctness of the ClientKey by applying the hash
 function and comparing the result to the StoredKey. If the ClientKey
 is correct, this proves that the client has access to the user's
 password.

 Similarly, the client authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server. If
 the two are equal, it proves that the server had access to the user's

https://datatracker.ietf.org/doc/html/rfc3629

Melnikov Expires January 5, 2015 [Page 6]

Internet-Draft HTTP SCRAM July 2014

 ServerKey.

 The AuthMessage is computed by concatenating messages from the
 authentication exchange. The format of these messages is defined in

Section 6.

4. SCRAM Mechanism Names

 A SCRAM mechanism name (authentication scheme) is a string "SCRAM-"
 followed by the uppercased name of the underlying hash function taken
 from the IANA "Hash Function Textual Names" registry (see

http://www.iana.org) .

 For interoperability, all HTTP clients and servers supporting SCRAM
 MUST implement the SCRAM-SHA-1 authentication mechanism, i.e. an
 authentication mechanism from the SCRAM family that uses the SHA-1
 hash function as defined in [RFC3174].

5. SCRAM Authentication Exchange

 SCRAM is a HTTP Authentication mechanism whose client response
 (<credentials-scram>) and server challenge (<challenge-scram>)
 messages are text-based messages containing one or more attribute-
 value pairs separated by commas. Each attribute has a one-letter
 name, with the exception of a couple of attributes which are generic
 to HTTP authentication, such as "realm" (and "sid"). The messages
 and their attributes are described in Section 5.1, and defined in

Section 6.

 challenge-scram = scram-name [1*SP 1#auth-param]
 ; Complies with <challenge> ABNF from RFC 7235.
 ; Included in the WWW-Authenticate header field.

 credentials-scram = scram-name [1*SP 1#auth-param]
 ; Complies with <credentials> from RFC 7235.
 ; Included in the Authorization header field.

 scram-name = "SCRAM-SHA-1" / other-scram-name
 ; SCRAM-SHA-1 is registered by this RFC
 other-scram-name = "SCRAM-" hash-name
 ; hash-name is a capitalized form of names from IANA
 ; "Hash Function Textual Names" registry.
 ; Additional SCRAM names must be registered in both
 ; the IANA "SASL mechanisms" registry
 ; and the IANA "authentication scheme" registry.

http://www.iana.org
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235

Melnikov Expires January 5, 2015 [Page 7]

Internet-Draft HTTP SCRAM July 2014

 This is a simple example of a SCRAM-SHA-1 authentication exchange
 when the client doesn't support channel bindings (username 'user' and
 password 'pencil' are used):

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: [...]

 S: HTTP/1.1 401 Unauthorized
 S: WWW-Authenticate: Digest realm="realm1@host.com",
 Digest realm="realm2@host.com",
 Digest realm="realm3@host.com",
 SCRAM-SHA-1 realm="realm3@host.com"
 SCRAM-SHA-1 realm="testrealm@host.com"
 S: [...]

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: Authorization: SCRAM-SHA-1 realm="testrealm@host.com",
 g=n,n=user,r=fyko+d2lbbFgONRv9qkxdawL
 C: [...]

 S: HTTP/1.1 401 Unauthorized
 S: WWW-Authenticate: SCRAM-SHA-1
 sid=AAAABBBBCCCCDDDD,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 s=QSXCR+Q6sek8bf92,i=4096
 S: [...]

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: Authorization: SCRAM-SHA-1 sid=AAAABBBBCCCCDDDD,
 c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=
 C: [...]

 S: HTTP/1.1 200 Ok
 S: Authentication-Info: SCRAM-SHA-1
 sid=AAAABBBBCCCCDDDD,
 v=rmF9pqV8S7suAoZWja4dJRkFsKQ=
 S: [...Other header fields and resource body...]

 Note that in the example above the client can also initiate SCRAM
 authentication without first being prompted by the server.

 "SCRAM-SHA-1" authentication starts with sending the "Authorization"
 request header field defined by HTTP/1.1, Part 7 [RFC7235] containing

https://datatracker.ietf.org/doc/html/rfc7235

Melnikov Expires January 5, 2015 [Page 8]

Internet-Draft HTTP SCRAM July 2014

 "SCRAM-SHA-1" authentication scheme and the following attributes:

 o A "realm" attribute MAY be included to indicate the scope of
 protection in the manner described in HTTP/1.1, Part 7 [RFC7235].
 As specified in [RFC7235], the "realm" attribute MUST NOT appear
 more than once. The realm attribute only appears in the first
 SCRAM message to the server and in the first SCRAM response from
 the server.

 o The client also includes the "client-first-message" containing:

 * a header ("g" attribute) consisting of a flag indicating
 whether channel binding is supported-but-not-used, not
 supported, or used . Note that the "g" attribute always starts
 with "n", "y" or "p", otherwise the message is invalid and
 authentication MUST fail.

 * SCRAM username and a random, unique nonce attributes.

 In HTTP response, the server sends WWW-Authenticate header field
 containing: a unique session identifier (the "sid" attribute) plus
 the "server-first-message" containing the user's iteration count i,
 the user's salt, and the nonce with a concatenation of the client-
 specified one with a server nonce.

 The client then responds with another HTTP request with the
 Authorization header field, which includes the "sid" attribute
 received in the previous server response, together with "client-
 final-message" data. The latter has the same nonce and a ClientProof
 computed using the selected hash function (SHA-1) as explained
 earlier.

 The server verifies the nonce and the proof, and, finally, it
 responds with a 200 HTTP response with the Authentication-Info header
 field containing "server-final-message", concluding the
 authentication exchange.

 The client then authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server. If
 the two are different, the client MUST consider the authentication
 exchange to be unsuccessful and it might have to drop the connection.

5.1. SCRAM Attributes

 This section describes the permissible attributes, their use, and the
 format of their values. All attribute names are single US-ASCII
 letters and are case-sensitive.

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235

Melnikov Expires January 5, 2015 [Page 9]

Internet-Draft HTTP SCRAM July 2014

 Note that the order of attributes in client or server messages is
 fixed, with the exception of extension attributes (described by the
 "extensions" ABNF production), which can appear in any order in the
 designated positions. See the ABNF section for authoritative
 reference.

 o g: This attribute value consist of a flag indicating whether
 channel binding is supported-but-not-used, not supported, or used
 .

 o n: This attribute specifies the name of the user whose password is
 used for authentication. A client MUST include it in its first
 message to the server.

 Before sending the username to the server, the client SHOULD
 prepare the username using the "SASLPrep" profile [RFC4013] of
 the "stringprep" algorithm [RFC3454] treating it as a query
 string (i.e., unassigned Unicode code points are allowed). If
 the preparation of the username fails or results in an empty
 string, the client SHOULD abort the authentication exchange
 (*).

 (*) An interactive client can request a repeated entry of the
 username value.

 Upon receipt of the username by the server, the server MUST
 either prepare it using the "SASLPrep" profile [RFC4013] of the
 "stringprep" algorithm [RFC3454] treating it as a query string
 (i.e., unassigned Unicode codepoints are allowed) or otherwise
 be prepared to do SASLprep-aware string comparisons and/or
 index lookups. If the preparation of the username fails or
 results in an empty string, the server SHOULD abort the
 authentication exchange. Whether or not the server prepares
 the username using "SASLPrep", it MUST use it as received in
 hash calculations.

 The characters ',' or '=' in usernames are sent as '=2C' and
 '=3D' respectively. If the server receives a username which
 contains '=' not followed by either '2C' or '3D', then the
 server MUST fail the authentication.

 o m: This attribute is reserved for future extensibility. In this
 version of SCRAM, its presence in a client or a server message
 MUST cause authentication failure when the attribute is parsed by
 the other end.

 o r: This attribute specifies a sequence of random printable ASCII
 characters excluding ',' which forms the nonce used as input to

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454

Melnikov Expires January 5, 2015 [Page 10]

Internet-Draft HTTP SCRAM July 2014

 the hash function. No quoting is applied to this string. As
 described earlier, the client supplies an initial value in its
 first message, and the server augments that value with its own
 nonce in its first response. It is important that this value be
 different for each authentication (see [RFC4086] for more details
 on how to achieve this). The client MUST verify that the initial
 part of the nonce used in subsequent messages is the same as the
 nonce it initially specified. The server MUST verify that the
 nonce sent by the client in the second message is the same as the
 one sent by the server in its first message.

 o c: This REQUIRED attribute specifies the base64-encoded GS2 header
 and channel-binding data. It is sent by the client in its second
 authentication message. The attribute data consist of:

 * the GS2 header from the client's first message (recall that the
 GS2 header contains a channel binding flag). This header is
 going to include channel binding type prefix (see [RFC5056]),
 if and only if the client is using channel binding;

 * followed by the external channel's channel binding data, if and
 only if the client is using channel binding.

 o s: This attribute specifies the base64-encoded salt used by the
 server for this user. It is sent by the server in its first
 message to the client.

 o i: This attribute specifies an iteration count for the selected
 hash function and user, and MUST be sent by the server along with
 the user's salt.

 For SCRAM-SHA-1 authentication mechanism servers SHOULD
 announce a hash iteration-count of at least 4096. Note that a
 client implementation MAY cache ClientKey&ServerKey (or just
 SaltedPassword) for later reauthentication to the same service,
 as it is likely that the server is going to advertise the same
 salt value upon reauthentication. This might be useful for
 mobile clients where CPU usage is a concern.

 o p: This attribute specifies a base64-encoded ClientProof. The
 client computes this value as described in the overview and sends
 it to the server.

 o v: This attribute specifies a base64-encoded ServerSignature. It
 is sent by the server in its final message, and is used by the
 client to verify that the server has access to the user's
 authentication information. This value is computed as explained
 in the overview.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5056

Melnikov Expires January 5, 2015 [Page 11]

Internet-Draft HTTP SCRAM July 2014

6. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [RFC5234]. "UTF8-2", "UTF8-3"
 and "UTF8-4" non-terminal are defined in [RFC3629].

 ALPHA = <as defined in RFC 5234 appendix B.1>
 DIGIT = <as defined in RFC 5234 appendix B.1>
 UTF8-2 = <as defined in RFC 3629 (STD 63)>
 UTF8-3 = <as defined in RFC 3629 (STD 63)>
 UTF8-4 = <as defined in RFC 3629 (STD 63)>

 attr-val = ALPHA "=" value
 ;; Generic syntax of any attribute sent
 ;; by server or client

 value = 1*value-char

 value-safe-char = %x01-2B / %x2D-3C / %x3E-7F /
 UTF8-2 / UTF8-3 / UTF8-4
 ;; UTF8-char except NUL, "=", and ",".

 value-char = value-safe-char / "="

 printable = %x21-2B / %x2D-7E
 ;; Printable ASCII except ",".
 ;; Note that any "printable" is also
 ;; a valid "value".

 base64-char = ALPHA / DIGIT / "/" / "+"

 base64-4 = 4base64-char

 base64-3 = 3base64-char "="

 base64-2 = 2base64-char "=="

 base64 = *base64-4 [base64-3 / base64-2]

 posit-number = %x31-39 *DIGIT
 ;; A positive number.

 cb-name = 1*(ALPHA / DIGIT / "." / "-")
 ;; See RFC 5056, Section 7.
 ;; E.g., "tls-server-end-point" or
 ;; "tls-unique".

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5056#section-7

Melnikov Expires January 5, 2015 [Page 12]

Internet-Draft HTTP SCRAM July 2014

 gs2-cbind-flag = ("p=" cb-name) / "n" / "y"
 ;; "n" -> client doesn't support channel binding.
 ;; "y" -> client does support channel binding
 ;; but thinks the server does not.
 ;; "p" -> client requires channel binding.
 ;; The selected channel binding follows "p=".

 gs2-header = gs2-cbind-flag ","
 ;; GS2 header for SCRAM.

 username = "n=" 1*(value-safe-char / "=2C" / "=3D")
 ;; Conforms to <value>.
 ;; Usernames are prepared using SASLPrep.

 reserved-mext = "m=" 1*(value-char)
 ;; Reserved for signaling mandatory extensions.
 ;; The exact syntax will be defined in
 ;; the future.

 channel-binding = "c=" base64
 ;; base64 encoding of cbind-input.

 proof = "p=" base64

 nonce = "r=" c-nonce [s-nonce]
 ;; Second part provided by server.

 c-nonce = printable

 s-nonce = printable

 salt = "s=" base64

 verifier = "v=" base64
 ;; base-64 encoded ServerSignature.

 iteration-count = "i=" posit-number
 ;; A positive number.

 client-first-message-bare =
 [reserved-mext ","]
 username "," nonce ["," extensions]

 client-first-message =
 "g=" gs2-header client-first-message-bare
 ;; Note that this doesn't include "realm" and
 ;; other generic HTTP directives.

Melnikov Expires January 5, 2015 [Page 13]

Internet-Draft HTTP SCRAM July 2014

 server-first-message =
 [reserved-mext ","] nonce "," salt ","
 iteration-count ["," extensions]
 ;; Note that this doesn't include "realm", "sid" and
 ;; other generic HTTP directives.

 client-final-message-without-proof =
 channel-binding "," nonce [","
 extensions]

 client-final-message =
 client-final-message-without-proof "," proof
 ;; Note that this doesn't include "sid" and
 ;; other generic HTTP directives.

 server-error = "e=" server-error-value

 server-error-value = "invalid-encoding" /
 "extensions-not-supported" / ; unrecognized 'm' value
 "invalid-proof" /
 "channel-bindings-dont-match" /
 "server-does-support-channel-binding" /
 ; server does not support channel binding
 "channel-binding-not-supported" /
 "unsupported-channel-binding-type" /
 "unknown-user" /
 "invalid-username-encoding" /
 ; invalid username encoding (invalid UTF-8 or
 ; SASLprep failed)
 "no-resources" /
 "other-error" /
 server-error-value-ext
 ; Unrecognized errors should be treated as "other-error".
 ; In order to prevent information disclosure, the server
 ; may substitute the real reason with "other-error".

 server-error-value-ext = value
 ; Additional error reasons added by extensions
 ; to this document.

 server-final-message = (server-error / verifier)
 ["," extensions]

 extensions = attr-val *("," attr-val)
 ;; All extensions are optional,
 ;; i.e., unrecognized attributes
 ;; not defined in this document
 ;; MUST be ignored.

Melnikov Expires January 5, 2015 [Page 14]

Internet-Draft HTTP SCRAM July 2014

 cbind-data = 1*OCTET

 cbind-input = gs2-header [cbind-data]
 ;; cbind-data MUST be present for
 ;; gs2-cbind-flag of "p" and MUST be absent
 ;; for "y" or "n".

7. Security Considerations

 If the authentication exchange is performed without a strong security
 layer (such as TLS with data confidentiality), then a passive
 eavesdropper can gain sufficient information to mount an offline
 dictionary or brute-force attack which can be used to recover the
 user's password. The amount of time necessary for this attack
 depends on the cryptographic hash function selected, the strength of
 the password and the iteration count supplied by the server. An
 external security layer with strong encryption will prevent this
 attack.

 If the external security layer used to protect the SCRAM exchange
 uses an anonymous key exchange, then the SCRAM channel binding
 mechanism can be used to detect a man-in-the-middle attack on the
 security layer and cause the authentication to fail as a result.
 However, the man-in-the-middle attacker will have gained sufficient
 information to mount an offline dictionary or brute-force attack.
 For this reason, SCRAM allows to increase the iteration count over
 time. (Note that a server that is only in posession of "StoredKey"
 and "ServerKey" can't automatic increase the iteration count upon
 successful authentication. Such increase would require resetting
 user's password.)

 If the authentication information is stolen from the authentication
 database, then an offline dictionary or brute-force attack can be
 used to recover the user's password. The use of salt mitigates this
 attack somewhat by requiring a separate attack on each password.
 Authentication mechanisms which protect against this attack are
 available (e.g., the EKE class of mechanisms). RFC 2945 [RFC2945] is
 an example of such technology.

 If an attacker obtains the authentication information from the
 authentication repository and either eavesdrops on one authentication
 exchange or impersonates a server, the attacker gains the ability to
 impersonate that user to all servers providing SCRAM access using the
 same hash function, password, iteration count and salt. For this
 reason, it is important to use randomly-generated salt values.

 SCRAM does not negotiate a hash function to use. Hash function

https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945

Melnikov Expires January 5, 2015 [Page 15]

Internet-Draft HTTP SCRAM July 2014

 negotiation is left to the HTTP authentication mechanism negotiation.
 It is important that clients be able to sort a locally available list
 of mechanisms by preference so that the client may pick the most
 preferred of a server's advertised mechanism list. This preference
 order is not specified here as it is a local matter. The preference
 order should include objective and subjective notions of mechanism
 cryptographic strength (e.g., SCRAM with a successor to SHA-1 may be
 preferred over SCRAM with SHA-1).

 SCRAM does not protect against downgrade attacks of channel binding
 types. The complexities of negotiation a channel binding type, and
 handling down-grade attacks in that negotiation, was intentionally
 left out of scope for this document.

 A hostile server can perform a computational denial-of-service attack
 on clients by sending a big iteration count value.

 See [RFC4086] for more information about generating randomness.

8. IANA Considerations

 New mechanisms in the SCRAM- family are registered according to the
 IANA procedure specified in [RFC5802].

 Note to future SCRAM- mechanism designers: each new SCRAM- HTTP
 authentication mechanism MUST be explicitly registered with IANA and
 MUST comply with SCRAM- mechanism naming convention defined in

Section 4 of this document.

 IANA is requested to add the following entry to the Authentication
 Scheme Registry defined in HTTP/1.1, Part 7 [RFC7235]:

 Authentication Scheme Name: SCRAM-SHA-1
 Pointer to specification text: [[this document]]
 Notes (optional): (none)

9. Acknowledgements

 This document benefited from discussions on the HTTPAuth, SASL and
 Kitten WG mailing lists. The authors would like to specially thank
 co-authors of [RFC5802] from which lots of text was copied.

 Special thank you to Tony Hansen for doing an early implementation
 and providing extensive comments on the draft.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5802

Melnikov Expires January 5, 2015 [Page 16]

Internet-Draft HTTP SCRAM July 2014

10. Design Motivations

 The following design goals shaped this document. Note that some of
 the goals have changed since the initial version of the document.

 o The HTTP authentication mechanism has all modern features: support
 for internationalized usernames and passwords, support for channel
 bindings.

 o The protocol supports mutual authentication.

 o The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies),
 unless such other servers allow SCRAM authentication and use the
 same salt and iteration count for the user.

 o The mechanism is extensible, but [hopefully] not overengineered in
 this respect.

 o Easier to implement than HTTP Digest in both clients and servers.

11. Open Issues

 It should be possible to construct a quick reauthentication version
 of the mechanism that uses fewer round-trips (similar to what Digest
 has).

12. Internet-Draft Change History

 (RFC Editor: Please delete this section and all subsections.)

 Changes since -00

 o

13. References

13.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Melnikov Expires January 5, 2015 [Page 17]

Internet-Draft HTTP SCRAM July 2014

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

13.2. Informative References

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC

2865, June 2000.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
RFC 2945, September 2000.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510, June
 2006.

https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4510

Melnikov Expires January 5, 2015 [Page 18]

Internet-Draft HTTP SCRAM July 2014

 [RFC4616] Zeilenga, K., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616, August 2006.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802, July 2010.

 [RFC5803] Melnikov, A., "Lightweight Directory Access Protocol
 (LDAP) Schema for Storing Salted Challenge Response
 Authentication Mechanism (SCRAM) Secrets", RFC 5803, July
 2010.

 [tls-server-end-point]
 Zhu, L., , "Registration of TLS server end-point channel
 bindings", IANA http://www.iana.org/assignments/

channel-binding-types/tls-server-end-point, July 2008.

Author's Address

 Alexey Melnikov
 Isode Ltd

 Email: Alexey.Melnikov@isode.com

https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5803
http://www.iana.org/assignments/channel-binding-types/tls-server-end-point
http://www.iana.org/assignments/channel-binding-types/tls-server-end-point

Melnikov Expires January 5, 2015 [Page 19]

