
HTTP Working Group R. Fielding, Ed.
Internet-Draft Adobe
Obsoletes: 7234 (if approved) M. Nottingham, Ed.
Intended status: Standards Track Fastly
Expires: May 7, 2020 J. Reschke, Ed.
 greenbytes
 November 4, 2019

HTTP Caching
draft-ietf-httpbis-cache-06

Abstract

 The Hypertext Transfer Protocol (HTTP) is a stateless application-
 level protocol for distributed, collaborative, hypertext information
 systems. This document defines HTTP caches and the associated header
 fields that control cache behavior or indicate cacheable response
 messages.

 This document obsoletes RFC 7234.

Editorial Note

 This note is to be removed before publishing as an RFC.

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <https://lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information can be found at <https://httpwg.org/>;
 source code and issues list for this draft can be found at
 <https://github.com/httpwg/http-core>.

 The changes in this draft are summarized in Appendix C.7.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Fielding, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-core
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Caching November 2019

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 4
1.1. Requirements Notation 5
1.2. Syntax Notation . 5
1.3. Delta Seconds . 6

2. Overview of Cache Operation 6
3. Storing Responses in Caches 7
3.1. Storing Incomplete Responses 8
3.2. Storing Responses to Authenticated Requests 9
3.3. Combining Partial Content 9

4. Constructing Responses from Caches 9
4.1. Calculating Cache Keys with Vary 10
4.2. Freshness . 12
4.2.1. Calculating Freshness Lifetime 13
4.2.2. Calculating Heuristic Freshness 14

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Fielding, et al. Expires May 7, 2020 [Page 2]

Internet-Draft HTTP Caching November 2019

4.2.3. Calculating Age 14
4.2.4. Serving Stale Responses 16

4.3. Validation . 16
4.3.1. Sending a Validation Request 16
4.3.2. Handling a Received Validation Request 17
4.3.3. Handling a Validation Response 19
4.3.4. Freshening Stored Responses upon Validation 19
4.3.5. Freshening Responses with HEAD 20

4.4. Invalidation . 20
5. Header Field Definitions 21
5.1. Age . 21
5.2. Cache-Control . 22
5.2.1. Request Cache-Control Directives 23
5.2.1.1. max-age . 23
5.2.1.2. max-stale . 23
5.2.1.3. min-fresh . 24
5.2.1.4. no-cache . 24
5.2.1.5. no-store . 24
5.2.1.6. no-transform 25
5.2.1.7. only-if-cached 25

5.2.2. Response Cache-Control Directives 25
5.2.2.1. must-revalidate 25
5.2.2.2. no-cache . 26
5.2.2.3. no-store . 26
5.2.2.4. no-transform 27
5.2.2.5. public . 27
5.2.2.6. private . 27
5.2.2.7. proxy-revalidate 28
5.2.2.8. max-age . 28
5.2.2.9. s-maxage . 28

5.2.3. Cache Control Extensions 29
5.2.4. Cache Directive Registry 30

5.3. Expires . 30
5.4. Pragma . 31
5.5. Warning . 31

6. Relationship to Applications 31
7. Security Considerations 32
7.1. Cache Poisoning . 32
7.2. Timing Attacks . 32
7.3. Caching of Sensitive Information 33

8. IANA Considerations . 33
8.1. Header Field Registration 33
8.2. Cache Directive Registration 33
8.3. Warn Code Registry 33

9. References . 33
9.1. Normative References 33
9.2. Informative References 34

Appendix A. Collected ABNF 36

Fielding, et al. Expires May 7, 2020 [Page 3]

Internet-Draft HTTP Caching November 2019

Appendix B. Changes from RFC 7234 36
Appendix C. Change Log . 36
C.1. Between RFC7234 and draft 00 36
C.2. Since draft-ietf-httpbis-cache-00 37
C.3. Since draft-ietf-httpbis-cache-01 37
C.4. Since draft-ietf-httpbis-cache-02 37
C.5. Since draft-ietf-httpbis-cache-03 38
C.6. Since draft-ietf-httpbis-cache-04 38
C.7. Since draft-ietf-httpbis-cache-05 38

 Index . 39
 Acknowledgments . 40
 Authors' Addresses . 40

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a stateless application-
 level request/response protocol that uses extensible semantics and
 self-descriptive messages for flexible interaction with network-based
 hypertext information systems. HTTP is defined by a series of
 documents that collectively form the HTTP/1.1 specification:

 o "HTTP Semantics" [Semantics]

 o "HTTP Caching" (this document)

 o "HTTP/1.1 Messaging" [Messaging]

 HTTP is typically used for distributed information systems, where
 performance can be improved by the use of response caches. This
 document defines aspects of HTTP related to caching and reusing
 response messages.

 An HTTP cache is a local store of response messages and the subsystem
 that controls storage, retrieval, and deletion of messages in it. A
 cache stores cacheable responses in order to reduce the response time
 and network bandwidth consumption on future, equivalent requests.
 Any client or server MAY employ a cache, though a cache cannot be
 used by a server that is acting as a tunnel.

 A shared cache is a cache that stores responses to be reused by more
 than one user; shared caches are usually (but not always) deployed as
 a part of an intermediary. A private cache, in contrast, is
 dedicated to a single user; often, they are deployed as a component
 of a user agent.

 The goal of caching in HTTP is to significantly improve performance
 by reusing a prior response message to satisfy a current request. A
 stored response is considered "fresh", as defined in Section 4.2, if

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-05

Fielding, et al. Expires May 7, 2020 [Page 4]

Internet-Draft HTTP Caching November 2019

 the response can be reused without "validation" (checking with the
 origin server to see if the cached response remains valid for this
 request). A fresh response can therefore reduce both latency and
 network overhead each time it is reused. When a cached response is
 not fresh, it might still be reusable if it can be freshened by
 validation (Section 4.3) or if the origin is unavailable
 (Section 4.2.4).

 This document obsoletes RFC 7234, with the changes being summarized
 in Appendix B.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Conformance criteria and considerations regarding error handling are
 defined in Section 3 of [Semantics].

1.2. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234], extended with the notation for case-
 sensitivity in strings defined in [RFC7405].

 It also uses a list extension, defined in Section 12 of [Semantics],
 that allows for compact definition of comma-separated lists using a
 '#' operator (similar to how the '*' operator indicates repetition).

Appendix A shows the collected grammar with all list operators
 expanded to standard ABNF notation.

 The following core rules are included by reference, as defined in
[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

 (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line
 feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR (any
 visible [USASCII] character).

 The rules below are defined in [Semantics]:

 HTTP-date = <HTTP-date, see [Semantics], Section 10.1.1.1>
 OWS = <OWS, see [Semantics], Section 11.1>
 field-name = <field-name, see [Semantics], Section 4.1>
 quoted-string = <quoted-string, see [Semantics], Section 4.2.3.2>
 token = <token, see [Semantics], Section 4.2.3.1>

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1

Fielding, et al. Expires May 7, 2020 [Page 5]

Internet-Draft HTTP Caching November 2019

1.3. Delta Seconds

 The delta-seconds rule specifies a non-negative integer, representing
 time in seconds.

 delta-seconds = 1*DIGIT

 A recipient parsing a delta-seconds value and converting it to binary
 form ought to use an arithmetic type of at least 31 bits of non-
 negative integer range. If a cache receives a delta-seconds value
 greater than the greatest integer it can represent, or if any of its
 subsequent calculations overflows, the cache MUST consider the value
 to be either 2147483648 (2^31) or the greatest positive integer it
 can conveniently represent.

 Note: The value 2147483648 is here for historical reasons,
 effectively represents infinity (over 68 years), and does not need
 to be stored in binary form; an implementation could produce it as
 a canned string if any overflow occurs, even if the calculations
 are performed with an arithmetic type incapable of directly
 representing that number. What matters here is that an overflow
 be detected and not treated as a negative value in later
 calculations.

2. Overview of Cache Operation

 Proper cache operation preserves the semantics of HTTP transfers
 ([Semantics]) while reducing the transfer of information already held
 in the cache. Although caching is an entirely OPTIONAL feature of
 HTTP, it can be assumed that reusing a cached response is desirable
 and that such reuse is the default behavior when no requirement or
 local configuration prevents it. Therefore, HTTP cache requirements
 are focused on preventing a cache from either storing a non-reusable
 response or reusing a stored response inappropriately, rather than
 mandating that caches always store and reuse particular responses.

 The base cache key consists of the request method and target URI used
 to retrieve the stored response; the method determines under which
 circumstances that response can be used to satisfy a request.
 However, many HTTP caches in common use today only cache GET
 responses, and therefore only use the URI as the cache key,
 forwarding other methods.

 If a request target is subject to content negotiation, the cache
 might store multiple responses for it. Caches differentiate these
 responses by incorporating values of the original request's selecting
 header fields into the cache key as well, as per Section 4.1.

Fielding, et al. Expires May 7, 2020 [Page 6]

Internet-Draft HTTP Caching November 2019

 Furthermore, caches might incorporate additional material into the
 cache key. For example, user agent caches might include the
 referring site's identity, thereby "double keying" the cache to avoid
 some privacy risks (see Section 7.2).

 Most commonly, caches store the successful result of a retrieval
 request: i.e., a 200 (OK) response to a GET request, which contains a
 representation of the resource identified by the request target
 (Section 7.3.1 of [Semantics]). However, it is also possible to
 store redirects, negative results (e.g., 404 (Not Found)), incomplete
 results (e.g., 206 (Partial Content)), and responses to methods other
 than GET if the method's definition allows such caching and defines
 something suitable for use as a cache key.

 A cache is disconnected when it cannot contact the origin server or
 otherwise find a forward path for a given request. A disconnected
 cache can serve stale responses in some circumstances
 (Section 4.2.4).

3. Storing Responses in Caches

 A cache MUST NOT store a response to any request, unless:

 o The request method is understood by the cache, and

 o the response status code is final (see Section 9.3 of
 [Messaging]), and

 o the response status code is understood by the cache, and

 o the "no-store" cache directive (see Section 5.2) does not appear
 in the response, and

 o the "private" response directive (see Section 5.2.2.6) does not
 appear in the response, if the cache is shared, and

 o the Authorization header field (see Section 8.5.3 of [Semantics])
 does not appear in the request, if the cache is shared, unless the
 response explicitly allows it (see Section 3.2), and

 o the response either:

 * contains an Expires header field (see Section 5.3), or

 * contains a max-age response directive (see Section 5.2.2.8), or

Fielding, et al. Expires May 7, 2020 [Page 7]

Internet-Draft HTTP Caching November 2019

 * contains a s-maxage response directive (see Section 5.2.2.9)
 and the cache is shared, or

 * contains a Cache Control Extension (see Section 5.2.3) that
 allows it to be cached, or

 * has a status code that is defined as heuristically cacheable
 (see Section 4.2.2), or

 * contains a public response directive (see Section 5.2.2.5).

 Note that any of the requirements listed above can be overridden by a
 cache-control extension; see Section 5.2.3.

 In this context, a cache has "understood" a request method or a
 response status code if it recognizes it and implements all specified
 caching-related behavior.

 Note that, in normal operation, some caches will not store a response
 that has neither a cache validator nor an explicit expiration time,
 as such responses are not usually useful to store. However, caches
 are not prohibited from storing such responses.

3.1. Storing Incomplete Responses

 A response message is considered complete when all of the octets
 indicated by its framing are available. Note that, when no explicit
 framing is provided, a response message that is ended by the
 connection's close is considered complete even though it might be
 indistinguishable from an incomplete response (see [Messaging],
 Section 6.3). A cache SHOULD consider a close-terminated response
 incomplete if the connection termination is detected to be an error.
 A server that wishes to avoid premature termination resulting in an
 incorrect cached response SHOULD send the response with explicit
 framing.

 If the request method is GET, the response status code is 200 (OK),
 and the entire response header section has been received, a cache MAY
 store an incomplete response message body if the stored response is
 recorded as incomplete. Likewise, a 206 (Partial Content) response
 MAY be stored as if it were an incomplete 200 (OK) response.
 However, a cache MUST NOT store incomplete or partial-content
 responses if it does not support the Range and Content-Range header
 fields or if it does not understand the range units used in those
 fields.

Fielding, et al. Expires May 7, 2020 [Page 8]

Internet-Draft HTTP Caching November 2019

 A cache MAY complete a stored incomplete response by making a
 subsequent range request (Section 8.3 of [Semantics]) and combining
 the successful response with the stored response, as defined in

Section 3.3. A cache MUST NOT use an incomplete response to answer
 requests unless the response has been made complete or the request is
 partial and specifies a range that is wholly within the incomplete
 response. A cache MUST NOT send a partial response to a client
 without explicitly marking it as such using the 206 (Partial Content)
 status code.

3.2. Storing Responses to Authenticated Requests

 A shared cache MUST NOT use a cached response to a request with an
 Authorization header field (Section 8.5.3 of [Semantics]) to satisfy
 any subsequent request unless a response directive that allows such
 responses to be stored is present.

 In this specification, the following Cache-Control response
 directives (Section 5.2.2) have such an effect: must-revalidate,
 public, and s-maxage.

3.3. Combining Partial Content

 A response might transfer only a partial representation if the
 connection closed prematurely or if the request used one or more
 Range specifiers (Section 8.3 of [Semantics]). After several such
 transfers, a cache might have received several ranges of the same
 representation. A cache MAY combine these ranges into a single
 stored response, and reuse that response to satisfy later requests,
 if they all share the same strong validator and the cache complies
 with the client requirements in Section 9.3.7.3 of [Semantics].

 When combining the new response with one or more stored responses, a
 cache MUST use the header fields provided in the new response, aside
 from Content-Range, to replace all instances of the corresponding
 header fields in the stored response.

4. Constructing Responses from Caches

 When presented with a request, a cache MUST NOT reuse a stored
 response, unless:

 o The presented effective request URI (Section 5.3 of [Semantics])
 and that of the stored response match, and

 o the request method associated with the stored response allows it
 to be used for the presented request, and

Fielding, et al. Expires May 7, 2020 [Page 9]

Internet-Draft HTTP Caching November 2019

 o selecting header fields nominated by the stored response (if any)
 match those presented (see Section 4.1), and

 o the stored response does not contain the no-cache cache directive
 (Section 5.2.2.2), unless it is successfully validated
 (Section 4.3), and

 o the stored response is either:

 * fresh (see Section 4.2), or

 * allowed to be served stale (see Section 4.2.4), or

 * successfully validated (see Section 4.3).

 Note that any of the requirements listed above can be overridden by a
 cache-control extension; see Section 5.2.3.

 When a stored response is used to satisfy a request without
 validation, a cache MUST generate an Age header field (Section 5.1),
 replacing any present in the response with a value equal to the
 stored response's current_age; see Section 4.2.3.

 A cache MUST write through requests with methods that are unsafe
 (Section 7.2.1 of [Semantics]) to the origin server; i.e., a cache is
 not allowed to generate a reply to such a request before having
 forwarded the request and having received a corresponding response.

 Also, note that unsafe requests might invalidate already-stored
 responses; see Section 4.4.

 When more than one suitable response is stored, a cache MUST use the
 most recent one (as determined by the Date header field). It can
 also forward the request with "Cache-Control: max-age=0" or "Cache-
 Control: no-cache" to disambiguate which response to use.

 A cache that does not have a clock available MUST NOT use stored
 responses without revalidating them upon every use.

4.1. Calculating Cache Keys with Vary

 When a cache receives a request that can be satisfied by a stored
 response that has a Vary header field (Section 10.1.4 of
 [Semantics]), it MUST NOT use that response unless all of the

Fielding, et al. Expires May 7, 2020 [Page 10]

Internet-Draft HTTP Caching November 2019

 selecting header fields nominated by the Vary header field match in
 both the original request (i.e., that associated with the stored
 response), and the presented request.

 The selecting header fields from two requests are defined to match if
 and only if those in the first request can be transformed to those in
 the second request by applying any of the following:

 o adding or removing whitespace, where allowed in the header field's
 syntax

 o combining multiple header fields with the same field name (see
 Section 4.2 of [Semantics])

 o normalizing both header field values in a way that is known to
 have identical semantics, according to the header field's
 specification (e.g., reordering field values when order is not
 significant; case-normalization, where values are defined to be
 case-insensitive)

 If (after any normalization that might take place) a header field is
 absent from a request, it can only match another request if it is
 also absent there.

 A Vary header field-value of "*" always fails to match.

 The stored response with matching selecting header fields is known as
 the selected response.

 If multiple selected responses are available (potentially including
 responses without a Vary header field), the cache will need to choose
 one to use. When a selecting header field has a known mechanism for
 doing so (e.g., qvalues on Accept and similar request header fields),
 that mechanism MAY be used to select preferred responses; of the
 remainder, the most recent response (as determined by the Date header
 field) is used, as per Section 4.

 Note that in practice, some resources might send the Vary header
 field on responses inconsistently. When a cache has multiple
 responses for a given target URI, and one or more omits the Vary
 header field, it SHOULD use the most recent non-empty value available
 to select an appropriate response for the request.

 If no selected response is available, the cache cannot satisfy the
 presented request. Typically, it is forwarded to the origin server
 in a (possibly conditional; see Section 4.3) request.

Fielding, et al. Expires May 7, 2020 [Page 11]

Internet-Draft HTTP Caching November 2019

4.2. Freshness

 A fresh response is one whose age has not yet exceeded its freshness
 lifetime. Conversely, a stale response is one where it has.

 A response's freshness lifetime is the length of time between its
 generation by the origin server and its expiration time. An explicit
 expiration time is the time at which the origin server intends that a
 stored response can no longer be used by a cache without further
 validation, whereas a heuristic expiration time is assigned by a
 cache when no explicit expiration time is available.

 A response's age is the time that has passed since it was generated
 by, or successfully validated with, the origin server.

 When a response is "fresh" in the cache, it can be used to satisfy
 subsequent requests without contacting the origin server, thereby
 improving efficiency.

 The primary mechanism for determining freshness is for an origin
 server to provide an explicit expiration time in the future, using
 either the Expires header field (Section 5.3) or the max-age response
 directive (Section 5.2.2.8). Generally, origin servers will assign
 future explicit expiration times to responses in the belief that the
 representation is not likely to change in a semantically significant
 way before the expiration time is reached.

 If an origin server wishes to force a cache to validate every
 request, it can assign an explicit expiration time in the past to
 indicate that the response is already stale. Compliant caches will
 normally validate a stale cached response before reusing it for
 subsequent requests (see Section 4.2.4).

 Since origin servers do not always provide explicit expiration times,
 caches are also allowed to use a heuristic to determine an expiration
 time under certain circumstances (see Section 4.2.2).

 The calculation to determine if a response is fresh is:

 response_is_fresh = (freshness_lifetime > current_age)

 freshness_lifetime is defined in Section 4.2.1; current_age is
 defined in Section 4.2.3.

 Clients can send the max-age or min-fresh request directives
 (Section 5.2.1) to constrain or relax freshness calculations for the
 corresponding response. However, caches are not required to honor
 them.

Fielding, et al. Expires May 7, 2020 [Page 12]

Internet-Draft HTTP Caching November 2019

 When calculating freshness, to avoid common problems in date parsing:

 o Although all date formats are specified to be case-sensitive, a
 cache recipient SHOULD match day, week, and time-zone names case-
 insensitively.

 o If a cache recipient's internal implementation of time has less
 resolution than the value of an HTTP-date, the recipient MUST
 internally represent a parsed Expires date as the nearest time
 equal to or earlier than the received value.

 o A cache recipient MUST NOT allow local time zones to influence the
 calculation or comparison of an age or expiration time.

 o A cache recipient SHOULD consider a date with a zone abbreviation
 other than GMT or UTC to be invalid for calculating expiration.

 Note that freshness applies only to cache operation; it cannot be
 used to force a user agent to refresh its display or reload a
 resource. See Section 6 for an explanation of the difference between
 caches and history mechanisms.

4.2.1. Calculating Freshness Lifetime

 A cache can calculate the freshness lifetime (denoted as
 freshness_lifetime) of a response by using the first match of the
 following:

 o If the cache is shared and the s-maxage response directive
 (Section 5.2.2.9) is present, use its value, or

 o If the max-age response directive (Section 5.2.2.8) is present,
 use its value, or

 o If the Expires response header field (Section 5.3) is present, use
 its value minus the value of the Date response header field, or

 o Otherwise, no explicit expiration time is present in the response.
 A heuristic freshness lifetime might be applicable; see

Section 4.2.2.

 Note that this calculation is not vulnerable to clock skew, since all
 of the information comes from the origin server.

 When there is more than one value present for a given directive
 (e.g., two Expires header fields, multiple Cache-Control: max-age
 directives), the directive's value is considered invalid. Caches are

Fielding, et al. Expires May 7, 2020 [Page 13]

Internet-Draft HTTP Caching November 2019

 encouraged to consider responses that have invalid freshness
 information to be stale.

4.2.2. Calculating Heuristic Freshness

 Since origin servers do not always provide explicit expiration times,
 a cache MAY assign a heuristic expiration time when an explicit time
 is not specified, employing algorithms that use other header field
 values (such as the Last-Modified time) to estimate a plausible
 expiration time. This specification does not provide specific
 algorithms, but does impose worst-case constraints on their results.

 A cache MUST NOT use heuristics to determine freshness when an
 explicit expiration time is present in the stored response. Because
 of the requirements in Section 3, this means that, effectively,
 heuristics can only be used on responses without explicit freshness
 whose status codes are defined as "heuristically cacheable" (e.g.,
 see Section 9.1 of [Semantics]), and those responses without explicit
 freshness that have been marked as explicitly cacheable (e.g., with a
 "public" response directive).

 Note that in previous specifications heuristically cacheable response
 status codes were called "cacheable by default."

 If the response has a Last-Modified header field (Section 10.2.2 of
 [Semantics]), caches are encouraged to use a heuristic expiration
 value that is no more than some fraction of the interval since that
 time. A typical setting of this fraction might be 10%.

 Note: Section 13.9 of [RFC2616] prohibited caches from calculating
 heuristic freshness for URIs with query components (i.e., those
 containing '?'). In practice, this has not been widely
 implemented. Therefore, origin servers are encouraged to send
 explicit directives (e.g., Cache-Control: no-cache) if they wish
 to preclude caching.

4.2.3. Calculating Age

 The Age header field is used to convey an estimated age of the
 response message when obtained from a cache. The Age field value is
 the cache's estimate of the number of seconds since the response was
 generated or validated by the origin server. In essence, the Age
 value is the sum of the time that the response has been resident in
 each of the caches along the path from the origin server, plus the
 amount of time it has been in transit along network paths.

 The following data is used for the age calculation:

https://datatracker.ietf.org/doc/html/rfc2616#section-13.9

Fielding, et al. Expires May 7, 2020 [Page 14]

Internet-Draft HTTP Caching November 2019

 age_value The term "age_value" denotes the value of the Age header
 field (Section 5.1), in a form appropriate for arithmetic
 operation; or 0, if not available.

 date_value The term "date_value" denotes the value of the Date
 header field, in a form appropriate for arithmetic operations.
 See Section 10.1.1.2 of [Semantics] for the definition of the Date
 header field, and for requirements regarding responses without it.

 now The term "now" means "the current value of the clock at the host
 performing the calculation". A host ought to use NTP ([RFC5905])
 or some similar protocol to synchronize its clocks to Coordinated
 Universal Time.

 request_time The current value of the clock at the host at the time
 the request resulting in the stored response was made.

 response_time The current value of the clock at the host at the time
 the response was received.

 A response's age can be calculated in two entirely independent ways:

 1. the "apparent_age": response_time minus date_value, if the local
 clock is reasonably well synchronized to the origin server's
 clock. If the result is negative, the result is replaced by
 zero.

 2. the "corrected_age_value", if all of the caches along the
 response path implement HTTP/1.1 or greater. A cache MUST
 interpret this value relative to the time the request was
 initiated, not the time that the response was received.

 apparent_age = max(0, response_time - date_value);

 response_delay = response_time - request_time;
 corrected_age_value = age_value + response_delay;

 These are combined as

 corrected_initial_age = max(apparent_age, corrected_age_value);

 unless the cache is confident in the value of the Age header field
 (e.g., because there are no HTTP/1.0 hops in the Via header field),
 in which case the corrected_age_value MAY be used as the
 corrected_initial_age.

https://datatracker.ietf.org/doc/html/rfc5905

Fielding, et al. Expires May 7, 2020 [Page 15]

Internet-Draft HTTP Caching November 2019

 The current_age of a stored response can then be calculated by adding
 the amount of time (in seconds) since the stored response was last
 validated by the origin server to the corrected_initial_age.

 resident_time = now - response_time;
 current_age = corrected_initial_age + resident_time;

4.2.4. Serving Stale Responses

 A "stale" response is one that either has explicit expiry information
 or is allowed to have heuristic expiry calculated, but is not fresh
 according to the calculations in Section 4.2.

 A cache MUST NOT generate a stale response if it is prohibited by an
 explicit in-protocol directive (e.g., by a "no-store" or "no-cache"
 cache directive, a "must-revalidate" cache-response-directive, or an
 applicable "s-maxage" or "proxy-revalidate" cache-response-directive;
 see Section 5.2.2).

 A cache MUST NOT generate a stale response unless it is disconnected
 or doing so is explicitly permitted by the client or origin server
 (e.g., by the max-stale request directive in Section 5.2.1, by
 extension directives such as those defined in [RFC5861], or by
 configuration in accordance with an out-of-band contract).

4.3. Validation

 When a cache has one or more stored responses for a requested URI,
 but cannot serve any of them (e.g., because they are not fresh, or
 one cannot be selected; see Section 4.1), it can use the conditional
 request mechanism Section 8.2 of [Semantics] in the forwarded request
 to give the next inbound server an opportunity to select a valid
 stored response to use, updating the stored metadata in the process,
 or to replace the stored response(s) with a new response. This
 process is known as "validating" or "revalidating" the stored
 response.

4.3.1. Sending a Validation Request

 When generating a conditional request for validation, a cache starts
 with either a request it is attempting to satisfy, or -- if it is
 initiating the request independently -- it synthesises a request
 using a stored response by copying the method, request-target, and
 request header fields identified by the Vary header field

Section 4.1.

https://datatracker.ietf.org/doc/html/rfc5861

Fielding, et al. Expires May 7, 2020 [Page 16]

Internet-Draft HTTP Caching November 2019

 It then updates that request with one or more precondition header
 fields. These contain validator metadata sourced from stored
 response(s) that have the same cache key.

 The precondition header fields are then compared by recipients to
 determine whether any stored response is equivalent to a current
 representation of the resource.

 One such validator is the timestamp given in a Last-Modified header
 field (Section 10.2.2 of [Semantics]), which can be used in an If-
 Modified-Since header field for response validation, or in an If-
 Unmodified-Since or If-Range header field for representation
 selection (i.e., the client is referring specifically to a previously
 obtained representation with that timestamp).

 Another validator is the entity-tag given in an ETag header field
 (Section 10.2.3 of [Semantics]). One or more entity-tags, indicating
 one or more stored responses, can be used in an If-None-Match header
 field for response validation, or in an If-Match or If-Range header
 field for representation selection (i.e., the client is referring
 specifically to one or more previously obtained representations with
 the listed entity-tags).

4.3.2. Handling a Received Validation Request

 Each client in the request chain may have its own cache, so it is
 common for a cache at an intermediary to receive conditional requests
 from other (outbound) caches. Likewise, some user agents make use of
 conditional requests to limit data transfers to recently modified
 representations or to complete the transfer of a partially retrieved
 representation.

 If a cache receives a request that can be satisfied by reusing one of
 its stored 200 (OK) or 206 (Partial Content) responses, the cache
 SHOULD evaluate any applicable conditional header field preconditions
 received in that request with respect to the corresponding validators
 contained within the selected response. A cache MUST NOT evaluate
 conditional header fields that are only applicable to an origin
 server, found in a request with semantics that cannot be satisfied
 with a cached response, or applied to a target resource for which it
 has no stored responses; such preconditions are likely intended for
 some other (inbound) server.

 The proper evaluation of conditional requests by a cache depends on
 the received precondition header fields and their precedence, as
 defined in Section 8.2.2 of [Semantics]. The If-Match and If-
 Unmodified-Since conditional header fields are not applicable to a
 cache.

Fielding, et al. Expires May 7, 2020 [Page 17]

Internet-Draft HTTP Caching November 2019

 A request containing an If-None-Match header field (Section 8.2.4 of
 [Semantics]) indicates that the client wants to validate one or more
 of its own stored responses in comparison to whichever stored
 response is selected by the cache. If the field-value is "*", or if
 the field-value is a list of entity-tags and at least one of them
 matches the entity-tag of the selected stored response, a cache
 recipient SHOULD generate a 304 (Not Modified) response (using the
 metadata of the selected stored response) instead of sending that
 stored response.

 When a cache decides to revalidate its own stored responses for a
 request that contains an If-None-Match list of entity-tags, the cache
 MAY combine the received list with a list of entity-tags from its own
 stored set of responses (fresh or stale) and send the union of the
 two lists as a replacement If-None-Match header field value in the
 forwarded request. If a stored response contains only partial
 content, the cache MUST NOT include its entity-tag in the union
 unless the request is for a range that would be fully satisfied by
 that partial stored response. If the response to the forwarded
 request is 304 (Not Modified) and has an ETag header field value with
 an entity-tag that is not in the client's list, the cache MUST
 generate a 200 (OK) response for the client by reusing its
 corresponding stored response, as updated by the 304 response
 metadata (Section 4.3.4).

 If an If-None-Match header field is not present, a request containing
 an If-Modified-Since header field (Section 8.2.5 of [Semantics])
 indicates that the client wants to validate one or more of its own
 stored responses by modification date. A cache recipient SHOULD
 generate a 304 (Not Modified) response (using the metadata of the
 selected stored response) if one of the following cases is true: 1)
 the selected stored response has a Last-Modified field-value that is
 earlier than or equal to the conditional timestamp; 2) no Last-
 Modified field is present in the selected stored response, but it has
 a Date field-value that is earlier than or equal to the conditional
 timestamp; or, 3) neither Last-Modified nor Date is present in the
 selected stored response, but the cache recorded it as having been
 received at a time earlier than or equal to the conditional
 timestamp.

 A cache that implements partial responses to range requests, as
 defined in Section 8.3 of [Semantics], also needs to evaluate a
 received If-Range header field (Section 8.2.7 of [Semantics]) with
 respect to its selected stored response.

Fielding, et al. Expires May 7, 2020 [Page 18]

Internet-Draft HTTP Caching November 2019

4.3.3. Handling a Validation Response

 Cache handling of a response to a conditional request is dependent
 upon its status code:

 o A 304 (Not Modified) response status code indicates that the
 stored response can be updated and reused; see Section 4.3.4.

 o A full response (i.e., one with a payload body) indicates that
 none of the stored responses nominated in the conditional request
 is suitable. Instead, the cache MUST use the full response to
 satisfy the request and MAY replace the stored response(s).

 o However, if a cache receives a 5xx (Server Error) response while
 attempting to validate a response, it can either forward this
 response to the requesting client, or act as if the server failed
 to respond. In the latter case, the cache MAY send a previously
 stored response (see Section 4.2.4).

4.3.4. Freshening Stored Responses upon Validation

 When a cache receives a 304 (Not Modified) response and already has
 one or more stored 200 (OK) responses for the applicable cache key,
 the cache needs to identify which (if any) are to be updated by the
 new information provided, and then do so.

 The stored response(s) to update are identified by using the first
 match (if any) of the following:

 o If the new response contains a strong validator (see
 Section 10.2.1 of [Semantics]), then that strong validator
 identifies the selected representation for update. All of the
 stored responses with the same strong validator are identified for
 update. If none of the stored responses contain the same strong
 validator, then the cache MUST NOT use the new response to update
 any stored responses.

 o If the new response contains a weak validator and that validator
 corresponds to one of the cache's stored responses, then the most
 recent of those matching stored responses is identified for
 update.

 o If the new response does not include any form of validator (such
 as in the case where a client generates an If-Modified-Since
 request from a source other than the Last-Modified response header
 field), and there is only one stored response, and that stored
 response also lacks a validator, then that stored response is
 identified for update.

Fielding, et al. Expires May 7, 2020 [Page 19]

Internet-Draft HTTP Caching November 2019

 For each stored response identified for update, the cache MUST use
 the header fields provided in the 304 (Not Modified) response to
 replace all instances of the corresponding header fields in the
 stored response.

4.3.5. Freshening Responses with HEAD

 A response to the HEAD method is identical to what an equivalent
 request made with a GET would have been, except it lacks a body.
 This property of HEAD responses can be used to invalidate or update a
 cached GET response if the more efficient conditional GET request
 mechanism is not available (due to no validators being present in the
 stored response) or if transmission of the representation body is not
 desired even if it has changed.

 When a cache makes an inbound HEAD request for a given request target
 and receives a 200 (OK) response, the cache SHOULD update or
 invalidate each of its stored GET responses that could have been
 selected for that request (see Section 4.1).

 For each of the stored responses that could have been selected, if
 the stored response and HEAD response have matching values for any
 received validator fields (ETag and Last-Modified) and, if the HEAD
 response has a Content-Length header field, the value of Content-
 Length matches that of the stored response, the cache SHOULD update
 the stored response as described below; otherwise, the cache SHOULD
 consider the stored response to be stale.

 If a cache updates a stored response with the metadata provided in a
 HEAD response, the cache MUST use the header fields provided in the
 HEAD response to replace all instances of the corresponding header
 fields in the stored response and append new header fields to the
 stored response's header section unless otherwise restricted by the
 Cache-Control header field.

4.4. Invalidation

 Because unsafe request methods (Section 7.2.1 of [Semantics]) such as
 PUT, POST or DELETE have the potential for changing state on the
 origin server, intervening caches can use them to keep their contents
 up to date.

 A cache MUST invalidate the effective Request URI (Section 5.3 of
 [Semantics]) as well as the URI(s) in the Location and Content-
 Location response header fields (if present) when a non-error status
 code is received in response to an unsafe request method.

Fielding, et al. Expires May 7, 2020 [Page 20]

Internet-Draft HTTP Caching November 2019

 However, a cache MUST NOT invalidate a URI from a Location or
 Content-Location response header field if the host part of that URI
 differs from the host part in the effective request URI (Section 5.3
 of [Semantics]). This helps prevent denial-of-service attacks.

 A cache MUST invalidate the effective request URI (Section 5.3 of
 [Semantics]) when it receives a non-error response to a request with
 a method whose safety is unknown.

 Here, a "non-error response" is one with a 2xx (Successful) or 3xx
 (Redirection) status code. "Invalidate" means that the cache will
 either remove all stored responses related to the effective request
 URI or will mark these as "invalid" and in need of a mandatory
 validation before they can be sent in response to a subsequent
 request.

 Note that this does not guarantee that all appropriate responses are
 invalidated. For example, a state-changing request might invalidate
 responses in the caches it travels through, but relevant responses
 still might be stored in other caches that it has not.

5. Header Field Definitions

 This section defines the syntax and semantics of HTTP header fields
 related to caching.

 +-------------------+-----------+--------------+
 | Header Field Name | Status | Reference |
 +-------------------+-----------+--------------+
Age	standard	Section 5.1
Cache-Control	standard	Section 5.2
Expires	standard	Section 5.3
Pragma	standard	Section 5.4
Warning	obsoleted	Section 5.5
 +-------------------+-----------+--------------+

 Table 1

5.1. Age

 The "Age" header field conveys the sender's estimate of the amount of
 time since the response was generated or successfully validated at
 the origin server. Age values are calculated as specified in

Section 4.2.3.

 Age = delta-seconds

Fielding, et al. Expires May 7, 2020 [Page 21]

Internet-Draft HTTP Caching November 2019

 The Age field-value is a non-negative integer, representing time in
 seconds (see Section 1.3).

 The presence of an Age header field implies that the response was not
 generated or validated by the origin server for this request.
 However, lack of an Age header field does not imply the origin was
 contacted, since the response might have been received from an
 HTTP/1.0 cache that does not implement Age.

5.2. Cache-Control

 The "Cache-Control" header field is used to specify directives for
 caches along the request/response chain. Such cache directives are
 unidirectional in that the presence of a directive in a request does
 not imply that the same directive is present in the response, or to
 be repeated in it.

 See Section 5.2.3 for information about how Cache-Control directives
 defined elsewhere are handled.

 Note: Some HTTP/1.0 caches might not implement Cache-Control.

 A proxy, whether or not it implements a cache, MUST pass cache
 directives through in forwarded messages, regardless of their
 significance to that application, since the directives might be
 applicable to all recipients along the request/response chain. It is
 not possible to target a directive to a specific cache.

 Cache directives are identified by a token, to be compared case-
 insensitively, and have an optional argument, that can use both token
 and quoted-string syntax. For the directives defined below that
 define arguments, recipients ought to accept both forms, even if one
 is documented to be preferred. For any directive not defined by this
 specification, a recipient MUST accept both forms.

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

 For the cache directives defined below, no argument is defined (nor
 allowed) unless stated otherwise.

Fielding, et al. Expires May 7, 2020 [Page 22]

Internet-Draft HTTP Caching November 2019

 +------------------+-----------------------------------+
 | Cache Directive | Reference |
 +------------------+-----------------------------------+
max-age	Section 5.2.1.1, Section 5.2.2.8
max-stale	Section 5.2.1.2
min-fresh	Section 5.2.1.3
must-revalidate	Section 5.2.2.1
no-cache	Section 5.2.1.4, Section 5.2.2.2
no-store	Section 5.2.1.5, Section 5.2.2.3
no-transform	Section 5.2.1.6, Section 5.2.2.4
only-if-cached	Section 5.2.1.7
private	Section 5.2.2.6
proxy-revalidate	Section 5.2.2.7
public	Section 5.2.2.5
s-maxage	Section 5.2.2.9
 +------------------+-----------------------------------+

 Table 2

5.2.1. Request Cache-Control Directives

 This section defines cache request directives. They are advisory;
 caches MAY implement them, but are not required to.

5.2.1.1. max-age

 Argument syntax:

 delta-seconds (see Section 1.3)

 The "max-age" request directive indicates that the client prefers a
 response whose age is less than or equal to the specified number of
 seconds. Unless the max-stale request directive is also present, the
 client does not wish to receive a stale response.

 This directive uses the token form of the argument syntax: e.g.,
 'max-age=5' not 'max-age="5"'. A sender SHOULD NOT generate the
 quoted-string form.

5.2.1.2. max-stale

 Argument syntax:

 delta-seconds (see Section 1.3)

 The "max-stale" request directive indicates that the client is
 willing to accept a response that has exceeded its freshness
 lifetime. If a value is present, then the client is willing to

Fielding, et al. Expires May 7, 2020 [Page 23]

Internet-Draft HTTP Caching November 2019

 accept a response that has exceeded its freshness lifetime by no more
 than the specified number of seconds. If no value is assigned to
 max-stale, then the client is willing to accept a stale response of
 any age.

 This directive uses the token form of the argument syntax: e.g.,
 'max-stale=10' not 'max-stale="10"'. A sender SHOULD NOT generate
 the quoted-string form.

5.2.1.3. min-fresh

 Argument syntax:

 delta-seconds (see Section 1.3)

 The "min-fresh" request directive indicates that the client prefers a
 response whose freshness lifetime is no less than its current age
 plus the specified time in seconds. That is, the client wants a
 response that will still be fresh for at least the specified number
 of seconds.

 This directive uses the token form of the argument syntax: e.g.,
 'min-fresh=20' not 'min-fresh="20"'. A sender SHOULD NOT generate
 the quoted-string form.

5.2.1.4. no-cache

 The "no-cache" request directive indicates that the client prefers
 stored response not be used to satisfy the request without successful
 validation on the origin server.

5.2.1.5. no-store

 The "no-store" request directive indicates that a cache MUST NOT
 store any part of either this request or any response to it. This
 directive applies to both private and shared caches. "MUST NOT
 store" in this context means that the cache MUST NOT intentionally
 store the information in non-volatile storage, and MUST make a best-
 effort attempt to remove the information from volatile storage as
 promptly as possible after forwarding it.

 This directive is NOT a reliable or sufficient mechanism for ensuring
 privacy. In particular, malicious or compromised caches might not
 recognize or obey this directive, and communications networks might
 be vulnerable to eavesdropping.

Fielding, et al. Expires May 7, 2020 [Page 24]

Internet-Draft HTTP Caching November 2019

 Note that if a request containing this directive is satisfied from a
 cache, the no-store request directive does not apply to the already
 stored response.

5.2.1.6. no-transform

 The "no-transform" request directive indicates that the client is
 asking for intermediares (whether or not they implement a cache) to
 avoid transforming the payload, as defined in Section 5.5.2 of
 [Semantics].

5.2.1.7. only-if-cached

 The "only-if-cached" request directive indicates that the client only
 wishes to obtain a stored response. Caches that honor this request
 directive SHOULD, upon receiving it, either respond using a stored
 response that is consistent with the other constraints of the
 request, or respond with a 504 (Gateway Timeout) status code.

5.2.2. Response Cache-Control Directives

 This section defines cache response directives. A cache MUST obey
 the requirements of the Cache-Control directives defined in this
 section.

5.2.2.1. must-revalidate

 The "must-revalidate" response directive indicates that once it has
 become stale, the response MUST NOT be used to satisfy any other
 request without forwarding it for validation and receiving a
 successful response; see Section 4.3.

 The must-revalidate directive is necessary to support reliable
 operation for certain protocol features. In all circumstances a
 cache MUST obey the must-revalidate directive; in particular, if a
 cache is disconnected, it MUST generate a 504 (Gateway Timeout)
 response.

 The must-revalidate directive ought to be used by servers if and only
 if failure to validate a request on the representation could result
 in incorrect operation, such as a silently unexecuted financial
 transaction.

 The must-revalidate directive also has the effect of allowing a
 stored response to be used to satisfy a request with an Authorization
 header field; see Section 3.2.

Fielding, et al. Expires May 7, 2020 [Page 25]

Internet-Draft HTTP Caching November 2019

5.2.2.2. no-cache

 Argument syntax:

 #field-name

 The "no-cache" response directive indicates that the response MUST
 NOT be used to satisfy any other request without forwarding it for
 validation and receiving a successful response; see Section 4.3.

 This allows an origin server to prevent a cache from using it to
 satisfy a request without contacting it, even by caches that have
 been configured to send stale responses.

 If the no-cache response directive specifies one or more field-names,
 then a cache MAY use the response to satisfy a subsequent request,
 subject to any other restrictions on caching. However, any header
 fields in the response that have the field-name(s) listed MUST NOT be
 sent in the response to a subsequent request without successful
 revalidation with the origin server. This allows an origin server to
 prevent the re-use of certain header fields in a response, while
 still allowing caching of the rest of the response.

 The field-names given are not limited to the set of header fields
 defined by this specification. Field names are case-insensitive.

 This directive uses the quoted-string form of the argument syntax. A
 sender SHOULD NOT generate the token form (even if quoting appears
 not to be needed for single-entry lists).

 Note: Although it has been back-ported to many implementations, some
 HTTP/1.0 caches will not recognize or obey this directive. Also, no-
 cache response directives with field-names are often handled by
 caches as if an unqualified no-cache directive was received; i.e.,
 the special handling for the qualified form is not widely
 implemented.

5.2.2.3. no-store

 The "no-store" response directive indicates that a cache MUST NOT
 store any part of either the immediate request or response, and MUST
 NOT use the response to satisfy any other request.

 This directive applies to both private and shared caches. "MUST NOT
 store" in this context means that the cache MUST NOT intentionally
 store the information in non-volatile storage, and MUST make a best-
 effort attempt to remove the information from volatile storage as
 promptly as possible after forwarding it.

Fielding, et al. Expires May 7, 2020 [Page 26]

Internet-Draft HTTP Caching November 2019

 This directive is NOT a reliable or sufficient mechanism for ensuring
 privacy. In particular, malicious or compromised caches might not
 recognize or obey this directive, and communications networks might
 be vulnerable to eavesdropping.

5.2.2.4. no-transform

 The "no-transform" response directive indicates that an intermediary
 (regardless of whether it implements a cache) MUST NOT transform the
 payload, as defined in Section 5.5.2 of [Semantics].

5.2.2.5. public

 The "public" response directive indicates that any cache MAY store
 the response, even if the response would normally be non-cacheable or
 cacheable only within a private cache. (See Section 3.2 for
 additional details related to the use of public in response to a
 request containing Authorization, and Section 3 for details of how
 public affects responses that would normally not be stored, due to
 their status codes not being defined as heuristically cacheable; see

Section 4.2.2.)

5.2.2.6. private

 Argument syntax:

 #field-name

 The "private" response directive indicates that the response message
 is intended for a single user and MUST NOT be stored by a shared
 cache. A private cache MAY store the response and reuse it for later
 requests, even if the response would normally be non-cacheable.

 If the private response directive specifies one or more field-names,
 this requirement is limited to the field-values associated with the
 listed response header fields. That is, a shared cache MUST NOT
 store the specified field-names(s), whereas it MAY store the
 remainder of the response message.

 The field-names given are not limited to the set of header fields
 defined by this specification. Field names are case-insensitive.

 This directive uses the quoted-string form of the argument syntax. A
 sender SHOULD NOT generate the token form (even if quoting appears
 not to be needed for single-entry lists).

 Note: This usage of the word "private" only controls where the
 response can be stored; it cannot ensure the privacy of the message

Fielding, et al. Expires May 7, 2020 [Page 27]

Internet-Draft HTTP Caching November 2019

 content. Also, private response directives with field-names are
 often handled by caches as if an unqualified private directive was
 received; i.e., the special handling for the qualified form is not
 widely implemented.

5.2.2.7. proxy-revalidate

 The "proxy-revalidate" response directive has the same meaning as the
 must-revalidate response directive, except that it does not apply to
 private caches.

5.2.2.8. max-age

 Argument syntax:

 delta-seconds (see Section 1.3)

 The "max-age" response directive indicates that the response is to be
 considered stale after its age is greater than the specified number
 of seconds.

 This directive uses the token form of the argument syntax: e.g.,
 'max-age=5' not 'max-age="5"'. A sender SHOULD NOT generate the
 quoted-string form.

5.2.2.9. s-maxage

 Argument syntax:

 delta-seconds (see Section 1.3)

 The "s-maxage" response directive indicates that, in shared caches,
 the maximum age specified by this directive overrides the maximum age
 specified by either the max-age directive or the Expires header
 field. The s-maxage directive also implies the semantics of the
 proxy-revalidate response directive.

 The must-revalidate directive also has the effect of allowing a
 stored response to be used to satisfy a request with an Authorization
 header field; see Section 3.2.

 This directive uses the token form of the argument syntax: e.g.,
 's-maxage=10' not 's-maxage="10"'. A sender SHOULD NOT generate the
 quoted-string form.

Fielding, et al. Expires May 7, 2020 [Page 28]

Internet-Draft HTTP Caching November 2019

5.2.3. Cache Control Extensions

 The Cache-Control header field can be extended through the use of one
 or more cache-extension tokens, each with an optional value. A cache
 MUST ignore unrecognized cache directives.

 Informational extensions (those that do not require a change in cache
 behavior) can be added without changing the semantics of other
 directives.

 Behavioral extensions are designed to work by acting as modifiers to
 the existing base of cache directives. Both the new directive and
 the old directive are supplied, such that applications that do not
 understand the new directive will default to the behavior specified
 by the old directive, and those that understand the new directive
 will recognize it as modifying the requirements associated with the
 old directive. In this way, extensions to the existing cache-control
 directives can be made without breaking deployed caches.

 For example, consider a hypothetical new response directive called
 "community" that acts as a modifier to the private directive: in
 addition to private caches, any cache that is shared only by members
 of the named community is allowed to cache the response. An origin
 server wishing to allow the UCI community to use an otherwise private
 response in their shared cache(s) could do so by including

 Cache-Control: private, community="UCI"

 A cache that recognizes such a community cache-extension could
 broaden its behavior in accordance with that extension. A cache that
 does not recognize the community cache-extension would ignore it and
 adhere to the private directive.

 New extension directives ought to consider defining:

 o What it means for a directive to be specified multiple times,

 o When the directive does not take an argument, what it means when
 an argument is present,

 o When the directive requires an argument, what it means when it is
 missing,

 o Whether the directive is specific to requests, responses, or able
 to be used in either.

Fielding, et al. Expires May 7, 2020 [Page 29]

Internet-Draft HTTP Caching November 2019

5.2.4. Cache Directive Registry

 The "Hypertext Transfer Protocol (HTTP) Cache Directive Registry"
 defines the namespace for the cache directives. It has been created
 and is now maintained at <https://www.iana.org/assignments/http-

cache-directives>.

 A registration MUST include the following fields:

 o Cache Directive Name

 o Pointer to specification text

 Values to be added to this namespace require IETF Review (see
[RFC8126], Section 4.8).

5.3. Expires

 The "Expires" header field gives the date/time after which the
 response is considered stale. See Section 4.2 for further discussion
 of the freshness model.

 The presence of an Expires field does not imply that the original
 resource will change or cease to exist at, before, or after that
 time.

 The Expires value is an HTTP-date timestamp, as defined in
 Section 10.1.1.1 of [Semantics].

 Expires = HTTP-date

 For example

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

 A cache recipient MUST interpret invalid date formats, especially the
 value "0", as representing a time in the past (i.e., "already
 expired").

 If a response includes a Cache-Control field with the max-age
 directive (Section 5.2.2.8), a recipient MUST ignore the Expires
 field. Likewise, if a response includes the s-maxage directive
 (Section 5.2.2.9), a shared cache recipient MUST ignore the Expires
 field. In both these cases, the value in Expires is only intended
 for recipients that have not yet implemented the Cache-Control field.

 An origin server without a clock MUST NOT generate an Expires field
 unless its value represents a fixed time in the past (always expired)

https://www.iana.org/assignments/http-cache-directives
https://www.iana.org/assignments/http-cache-directives
https://datatracker.ietf.org/doc/html/rfc8126#section-4.8

Fielding, et al. Expires May 7, 2020 [Page 30]

Internet-Draft HTTP Caching November 2019

 or its value has been associated with the resource by a system or
 user with a reliable clock.

 Historically, HTTP required the Expires field-value to be no more
 than a year in the future. While longer freshness lifetimes are no
 longer prohibited, extremely large values have been demonstrated to
 cause problems (e.g., clock overflows due to use of 32-bit integers
 for time values), and many caches will evict a response far sooner
 than that.

5.4. Pragma

 The "Pragma" header field was defined for HTTP/1.0 caches, so that
 clients could specify a "no-cache" request (as Cache-Control was not
 defined until HTTP/1.1).

 However, support for Cache-Control is now widespread. As a result,
 this specification deprecates Pragma.

 Note: Because the meaning of "Pragma: no-cache" in responses was
 never specified, it does not provide a reliable replacement for
 "Cache-Control: no-cache" in them.

5.5. Warning

 The "Warning" header field was used to carry additional information
 about the status or transformation of a message that might not be
 reflected in the status code. This specification obsoletes it, as it
 is not widely generated or surfaced to users. The information it
 carried can be gleaned from examining other header fields, such as
 Age.

6. Relationship to Applications

 Applications using HTTP often specify additional forms of caching.
 For example, Web browsers often have history mechanisms such as
 "Back" buttons that can be used to redisplay a representation
 retrieved earlier in a session.

 Likewise, some Web browsers implement caching of images and other
 assets within a page view; they may or may not honor HTTP caching
 semantics.

 The requirements in this specification do not necessarily apply to
 how applications use data after it is retrieved from a HTTP cache.
 That is, a history mechanism can display a previous representation
 even if it has expired, and an application can use cached data in
 other ways beyond its freshness lifetime.

Fielding, et al. Expires May 7, 2020 [Page 31]

Internet-Draft HTTP Caching November 2019

 This does not prohibit the application from taking HTTP caching into
 account; for example, a history mechanism might tell the user that a
 view is stale, or it might honor cache directives (e.g., Cache-
 Control: no-store).

7. Security Considerations

 This section is meant to inform developers, information providers,
 and users of known security concerns specific to HTTP caching. More
 general security considerations are addressed in HTTP messaging
 [Messaging] and semantics [Semantics].

 Caches expose additional potential vulnerabilities, since the
 contents of the cache represent an attractive target for malicious
 exploitation. Because cache contents persist after an HTTP request
 is complete, an attack on the cache can reveal information long after
 a user believes that the information has been removed from the
 network. Therefore, cache contents need to be protected as sensitive
 information.

7.1. Cache Poisoning

 Various attacks might be amplified by being stored in a shared cache.
 Such "cache poisoning" attacks use the cache to distribute a
 malicious payload to many clients, and are especially effective when
 an attacker can use implementation flaws, elevated privileges, or
 other techniques to insert such a response into a cache.

 One common attack vector for cache poisoning is to exploit
 differences in message parsing on proxies and in user agents; see
 Section 6.3 of [Messaging] for the relevant requirements regarding
 HTTP/1.1.

7.2. Timing Attacks

 Because one of the primary uses of a cache is to optimise
 performance, its use can "leak" information about what resources have
 been previously requested.

 For example, if a user visits a site and their browser caches some of
 its responses, and then navigates to a second site, that site can
 attempt to load responses that it knows exists on the first site. If
 they load very quickly, it can be assumed that the user has visited
 that site, or even a specific page on it.

 Such "timing attacks" can be mitigated by adding more information to
 the cache key, such as the identity of the referring site (to prevent

Fielding, et al. Expires May 7, 2020 [Page 32]

Internet-Draft HTTP Caching November 2019

 the attack described above). This is sometimes called "double
 keying."

7.3. Caching of Sensitive Information

 Implementation and deployment flaws (as well as misunderstanding of
 cache operation) might lead to caching of sensitive information
 (e.g., authentication credentials) that is thought to be private,
 exposing it to unauthorized parties.

 Note that the Set-Cookie response header field [RFC6265] does not
 inhibit caching; a cacheable response with a Set-Cookie header field
 can be (and often is) used to satisfy subsequent requests to caches.
 Servers who wish to control caching of these responses are encouraged
 to emit appropriate Cache-Control response header fields.

8. IANA Considerations

 The change controller for the following registrations is: "IETF
 (iesg@ietf.org) - Internet Engineering Task Force".

8.1. Header Field Registration

 Please update the "Hypertext Transfer Protocol (HTTP) Header Field
 Registry" registry at <https://www.iana.org/assignments/http-headers>
 with the header field names listed in the two tables of Section 5.

8.2. Cache Directive Registration

 Please update the "Hypertext Transfer Protocol (HTTP) Cache Directive
 Registry" at <https://www.iana.org/assignments/http-cache-directives>
 with the registration procedure of Section 5.2.4 and the cache
 directive names summarized in the table of Section 5.2.

8.3. Warn Code Registry

 Please add a note to the "Hypertext Transfer Protocol (HTTP) Warn
 Codes" registry at <https://www.iana.org/assignments/http-warn-codes>
 to the effect that Warning is obsoleted.

9. References

9.1. Normative References

 [Messaging]
 Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP/1.1 Messaging", draft-ietf-httpbis-messaging-06
 (work in progress), November 2019.

https://datatracker.ietf.org/doc/html/rfc6265
https://www.iana.org/assignments/http-headers
https://www.iana.org/assignments/http-cache-directives
https://www.iana.org/assignments/http-warn-codes
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-06

Fielding, et al. Expires May 7, 2020 [Page 33]

Internet-Draft HTTP Caching November 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DOI 10.17487/RFC7405, December 2014,

 <https://www.rfc-editor.org/info/rfc7405>.

 [Semantics]
 Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", draft-ietf-httpbis-semantics-06
 (work in progress), November 2019.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

9.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

 [RFC5861] Nottingham, M., "HTTP Cache-Control Extensions for Stale
 Content", RFC 5861, DOI 10.17487/RFC5861, April 2010,
 <https://www.rfc-editor.org/info/rfc5861>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-06
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc5861
https://www.rfc-editor.org/info/rfc5861
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265

Fielding, et al. Expires May 7, 2020 [Page 34]

Internet-Draft HTTP Caching November 2019

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Fielding, et al. Expires May 7, 2020 [Page 35]

https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126

Internet-Draft HTTP Caching November 2019

Appendix A. Collected ABNF

 In the collected ABNF below, list rules are expanded as per
 Section 12 of [Semantics].

 Age = delta-seconds

 Cache-Control = [cache-directive] *(OWS "," OWS [cache-directive
])

 Expires = HTTP-date

 HTTP-date = <HTTP-date, see [Semantics], Section 10.1.1.1>

 OWS = <OWS, see [Semantics], Section 4.3>

 cache-directive = token ["=" (token / quoted-string)]

 delta-seconds = 1*DIGIT

 field-name = <field-name, see [Semantics], Section 4.2>

 quoted-string = <quoted-string, see [Semantics], Section 4.2.3>

 token = <token, see [Semantics], Section 4.2.3>

Appendix B. Changes from RFC 7234

 The Warning response header was obsoleted. Much of the information
 supported by Warning could be gleaned by examining the response), and
 the remaining warn-codes -- although potentially useful -- were
 entirely advisory, and in practice were not added by caches or
 intermediaries. (Section 5.5)

Appendix C. Change Log

 This section is to be removed before publishing as an RFC.

C.1. Between RFC7234 and draft 00

 The changes were purely editorial:

 o Change boilerplate and abstract to indicate the "draft" status,
 and update references to ancestor specifications.

 o Remove version "1.1" from document title, indicating that this
 specification applies to all HTTP versions.

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234

Fielding, et al. Expires May 7, 2020 [Page 36]

Internet-Draft HTTP Caching November 2019

 o Adjust historical notes.

 o Update links to sibling specifications.

 o Replace sections listing changes from RFC 2616 by new empty
 sections referring to RFC 723x.

 o Remove acknowledgements specific to RFC 723x.

 o Move "Acknowledgements" to the very end and make them unnumbered.

C.2. Since draft-ietf-httpbis-cache-00

 The changes are purely editorial:

 o Moved all extensibility tips, registration procedures, and
 registry tables from the IANA considerations to normative
 sections, reducing the IANA considerations to just instructions
 that will be removed prior to publication as an RFC.

C.3. Since draft-ietf-httpbis-cache-01

 o Cite RFC 8126 instead of RFC 5226 (<https://github.com/httpwg/
http-core/issues/75>)

 o In Section 5.4, misleading statement about the relation between
 Pragma and Cache-Control (<https://github.com/httpwg/http-core/

issues/92>, <https://www.rfc-editor.org/errata/eid4674>)

C.4. Since draft-ietf-httpbis-cache-02

 o In Section 3, explain that only final responses are cacheable
 (<https://github.com/httpwg/http-core/issues/29>)

 o In Section 5.2.2, clarify what responses various directives apply
 to (<https://github.com/httpwg/http-core/issues/52>)

 o In Section 4.3.1, clarify the source of validators in conditional
 requests (<https://github.com/httpwg/http-core/issues/110>)

 o Revise Section 6 to apply to more than just History Lists
 (<https://github.com/httpwg/http-core/issues/126>)

 o In Section 5.5, deprecated "Warning" header field
 (<https://github.com/httpwg/http-core/issues/139>)

 o In Section 3.2, remove a spurious note
 (<https://github.com/httpwg/http-core/issues/141>)

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-01
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc5226
https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/92
https://github.com/httpwg/http-core/issues/92
https://www.rfc-editor.org/errata/eid4674
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-02
https://github.com/httpwg/http-core/issues/29
https://github.com/httpwg/http-core/issues/52
https://github.com/httpwg/http-core/issues/110
https://github.com/httpwg/http-core/issues/126
https://github.com/httpwg/http-core/issues/139
https://github.com/httpwg/http-core/issues/141

Fielding, et al. Expires May 7, 2020 [Page 37]

Internet-Draft HTTP Caching November 2019

C.5. Since draft-ietf-httpbis-cache-03

 o In Section 2, define what a disconnected cache is
 (<https://github.com/httpwg/http-core/issues/5>)

 o In Section 4, clarify language around how to select a response
 when more than one matches (<https://github.com/httpwg/http-core/

issues/23>)

 o in Section 4.2.4, mention stale-while-revalidate and stale-if-
 error (<https://github.com/httpwg/http-core/issues/122>)

 o Remove requirements around cache request directives
 (<https://github.com/httpwg/http-core/issues/129>)

 o Deprecate Pragma (<https://github.com/httpwg/http-core/
issues/140>)

 o In Section 3.2 and Section 5.2.2, note effect of some directives
 on authenticated requests (<https://github.com/httpwg/http-core/

issues/161>)

C.6. Since draft-ietf-httpbis-cache-04

 o In Section 5.2, remove the registrations for stale-if-error and
 stale-while-revalidate which happened in RFC 7234
 (<https://github.com/httpwg/http-core/issues/207>)

C.7. Since draft-ietf-httpbis-cache-05

 o In Section 3.1, clarify how weakly framed content is considered
 for purposes of completeness (<https://github.com/httpwg/http-

core/issues/25>)

 o Througout, describe Vary and cache key operations more clearly
 (<https://github.com/httpwg/http-core/issues/28>)

 o In Section 3, remove concept of "cacheable methods" in favor of
 prose (<https://github.com/httpwg/http-core/issues/54>)

 o Refactored Section 7, and added a section on timing attacks
 (<https://github.com/httpwg/http-core/issues/233>)

 o Changed "cacheable by default" to "heuristically cacheable"
 throughout (<https://github.com/httpwg/http-core/issues/242>)

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-03
https://github.com/httpwg/http-core/issues/5
https://github.com/httpwg/http-core/issues/23
https://github.com/httpwg/http-core/issues/23
https://github.com/httpwg/http-core/issues/122
https://github.com/httpwg/http-core/issues/129
https://github.com/httpwg/http-core/issues/140
https://github.com/httpwg/http-core/issues/140
https://github.com/httpwg/http-core/issues/161
https://github.com/httpwg/http-core/issues/161
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-04
https://datatracker.ietf.org/doc/html/rfc7234
https://github.com/httpwg/http-core/issues/207
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-05
https://github.com/httpwg/http-core/issues/25
https://github.com/httpwg/http-core/issues/25
https://github.com/httpwg/http-core/issues/28
https://github.com/httpwg/http-core/issues/54
https://github.com/httpwg/http-core/issues/233
https://github.com/httpwg/http-core/issues/242

Fielding, et al. Expires May 7, 2020 [Page 38]

Internet-Draft HTTP Caching November 2019

Index

 A
 Age header field 21
 age 12

 C
 Cache-Control header field 22
 cache 4
 cache key 6

 E
 Expires header field 30
 explicit expiration time 12

 F
 fresh 12
 freshness lifetime 12

 G
 Grammar
 Age 21
 ALPHA 5
 Cache-Control 22
 cache-directive 22
 CR 5
 CRLF 5
 CTL 5
 delta-seconds 6
 DIGIT 5
 DQUOTE 5
 Expires 30
 HEXDIG 5
 HTAB 5
 LF 5
 OCTET 5
 SP 5
 VCHAR 5

 H
 heuristic expiration time 12
 heuristically cacheable 14

 M
 max-age (cache directive) 23, 28
 max-stale (cache directive) 23
 min-fresh (cache directive) 24
 must-revalidate (cache directive) 25

Fielding, et al. Expires May 7, 2020 [Page 39]

Internet-Draft HTTP Caching November 2019

 N
 no-cache (cache directive) 24, 26
 no-store (cache directive) 24, 26
 no-transform (cache directive) 25, 27

 O
 only-if-cached (cache directive) 25

 P
 Pragma header field 31
 private (cache directive) 27
 private cache 4
 proxy-revalidate (cache directive) 28
 public (cache directive) 27

 S
 s-maxage (cache directive) 28
 shared cache 4
 stale 12
 strong validator 19

 V
 validator 16

 W
 Warning header field 31

Acknowledgments

 See Appendix "Acknowledgments" of [Semantics].

Authors' Addresses

 Roy T. Fielding (editor)
 Adobe
 345 Park Ave
 San Jose, CA 95110
 United States of America

 EMail: fielding@gbiv.com
 URI: https://roy.gbiv.com/

 Mark Nottingham (editor)
 Fastly

 EMail: mnot@mnot.net
 URI: https://www.mnot.net/

https://roy.gbiv.com/
https://www.mnot.net/

Fielding, et al. Expires May 7, 2020 [Page 40]

Internet-Draft HTTP Caching November 2019

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster 48155
 Germany

 EMail: julian.reschke@greenbytes.de
 URI: https://greenbytes.de/tech/webdav/

Fielding, et al. Expires May 7, 2020 [Page 41]

https://greenbytes.de/tech/webdav/

