
Workgroup: HTTP Working Group

Obsoletes: 7234 (if approved)

Published: 12 July 2020

Intended Status: Standards Track

Expires: 13 January 2021

Authors: R. Fielding, Ed.

Adobe

M. Nottingham, Ed.

Fastly

J. F. Reschke, Ed.

greenbytes

HTTP Caching

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information

systems. This document defines HTTP caches and the associated header

fields that control cache behavior or indicate cacheable response

messages.

This document obsoletes RFC 7234.

Editorial Note

This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at <https://

lists.w3.org/Archives/Public/ietf-http-wg/>.

Working Group information can be found at <https://httpwg.org/>;

source code and issues list for this draft can be found at <https://

github.com/httpwg/http-core>.

The changes in this draft are summarized in Appendix C.11.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7234
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-core
https://github.com/httpwg/http-core
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 13 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

1.1. Requirements Notation

1.2. Syntax Notation

1.3. Delta Seconds

2. Overview of Cache Operation

3. Storing Responses in Caches

3.1. Storing Header and Trailer Fields

3.2. Storing Incomplete Responses

3.3. Storing Responses to Authenticated Requests

3.4. Combining Partial Content

4. Constructing Responses from Caches

4.1. Calculating Cache Keys with Vary

4.2. Freshness

4.2.1. Calculating Freshness Lifetime

4.2.2. Calculating Heuristic Freshness

4.2.3. Calculating Age

4.2.4. Serving Stale Responses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

4.3. Validation

4.3.1. Sending a Validation Request

4.3.2. Handling a Received Validation Request

4.3.3. Handling a Validation Response

4.3.4. Freshening Stored Responses upon Validation

4.3.5. Freshening Responses with HEAD

4.4. Invalidation

5. Field Definitions

5.1. Age

5.2. Cache-Control

5.2.1. Request Cache-Control Directives

5.2.1.1. max-age

5.2.1.2. max-stale

5.2.1.3. min-fresh

5.2.1.4. no-cache

5.2.1.5. no-store

5.2.1.6. no-transform

5.2.1.7. only-if-cached

5.2.2. Response Cache-Control Directives

5.2.2.1. must-revalidate

5.2.2.2. must-understand

5.2.2.3. no-cache

5.2.2.4. no-store

5.2.2.5. no-transform

5.2.2.6. public

5.2.2.7. private

5.2.2.8. proxy-revalidate

5.2.2.9. max-age

5.2.2.10. s-maxage

5.2.3. Cache Control Extensions

5.2.4. Cache Directive Registry

5.3. Expires

5.4. Pragma

5.5. Warning

6. Relationship to Applications

7. Security Considerations

7.1. Cache Poisoning

7.2. Timing Attacks

7.3. Caching of Sensitive Information

8. IANA Considerations

8.1. Field Registration

8.2. Cache Directive Registration

8.3. Warn Code Registry

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Collected ABNF

Appendix B. Changes from RFC 7234

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix C. Change Log

C.1. Between RFC7234 and draft 00

C.2. Since draft-ietf-httpbis-cache-00

C.3. Since draft-ietf-httpbis-cache-01

C.4. Since draft-ietf-httpbis-cache-02

C.5. Since draft-ietf-httpbis-cache-03

C.6. Since draft-ietf-httpbis-cache-04

C.7. Since draft-ietf-httpbis-cache-05

C.8. Since draft-ietf-httpbis-cache-06

C.9. Since draft-ietf-httpbis-cache-07

C.10. Since draft-ietf-httpbis-cache-08

C.11. Since draft-ietf-httpbis-cache-09

Acknowledgments

Authors' Addresses

1. Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level request/response protocol that uses extensible semantics and

self-descriptive messages for flexible interaction with network-

based hypertext information systems. HTTP is defined by a series of

documents that collectively form the HTTP/1.1 specification:

"HTTP Semantics" [Semantics]

"HTTP Caching" (this document)

"HTTP/1.1 Messaging" [Messaging]

HTTP is typically used for distributed information systems, where

performance can be improved by the use of response caches. This

document defines aspects of HTTP related to caching and reusing

response messages.

An HTTP cache is a local store of response messages and the

subsystem that controls storage, retrieval, and deletion of messages

in it. A cache stores cacheable responses in order to reduce the

response time and network bandwidth consumption on future,

equivalent requests. Any client or server MAY employ a cache, though

a cache cannot be used by a server that is acting as a tunnel.

A shared cache is a cache that stores responses to be reused by more

than one user; shared caches are usually (but not always) deployed

as a part of an intermediary. A private cache, in contrast, is

dedicated to a single user; often, they are deployed as a component

of a user agent.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

The goal of caching in HTTP is to significantly improve performance

by reusing a prior response message to satisfy a current request. A

stored response is considered "fresh", as defined in Section 4.2, if

the response can be reused without "validation" (checking with the

origin server to see if the cached response remains valid for this

request). A fresh response can therefore reduce both latency and

network overhead each time it is reused. When a cached response is

not fresh, it might still be reusable if it can be freshened by

validation (Section 4.3) or if the origin is unavailable (Section

4.2.4).

This document obsoletes RFC 7234, with the changes being summarized

in Appendix B.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Conformance criteria and considerations regarding error handling are

defined in Section 3 of [Semantics].

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF)

notation of [RFC5234], extended with the notation for case-

sensitivity in strings defined in [RFC7405].

It also uses a list extension, defined in Section 5.5 of

[Semantics], that allows for compact definition of comma-separated

lists using a '#' operator (similar to how the '*' operator

indicates repetition). Appendix A shows the collected grammar with

all list operators expanded to standard ABNF notation.

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line

feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR

(any visible [USASCII] character).

The rules below are defined in [Semantics]:

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#conformance
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#abnf.extension
https://rfc-editor.org/rfc/rfc5234#appendix-B.1

 HTTP-date = <HTTP-date, see [Semantics], Section 5.4.1.5>

 OWS = <OWS, see [Semantics], Section 1.2.1>

 field-name = <field-name, see [Semantics], Section 5.3>

 quoted-string = <quoted-string, see [Semantics], Section 5.4.1.2>

 token = <token, see [Semantics], Section 5.4.1.1>

1.3. Delta Seconds

The delta-seconds rule specifies a non-negative integer,

representing time in seconds.

 delta-seconds = 1*DIGIT

A recipient parsing a delta-seconds value and converting it to

binary form ought to use an arithmetic type of at least 31 bits of

non-negative integer range. If a cache receives a delta-seconds

value greater than the greatest integer it can represent, or if any

of its subsequent calculations overflows, the cache MUST consider

the value to be either 2147483648 (2^31) or the greatest positive

integer it can conveniently represent.

Note: The value 2147483648 is here for historical reasons,

effectively represents infinity (over 68 years), and does not need

to be stored in binary form; an implementation could produce it as a

canned string if any overflow occurs, even if the calculations are

performed with an arithmetic type incapable of directly representing

that number. What matters here is that an overflow be detected and

not treated as a negative value in later calculations.

2. Overview of Cache Operation

Proper cache operation preserves the semantics of HTTP transfers

([Semantics]) while reducing the transfer of information already

held in the cache. Although caching is an entirely OPTIONAL feature

of HTTP, it can be assumed that reusing a cached response is

desirable and that such reuse is the default behavior when no

requirement or local configuration prevents it. Therefore, HTTP

cache requirements are focused on preventing a cache from either

storing a non-reusable response or reusing a stored response

inappropriately, rather than mandating that caches always store and

reuse particular responses.

¶

¶

¶

¶

¶

¶

The base cache key consists of the request method and target URI

used to retrieve the stored response; the method determines under

which circumstances that response can be used to satisfy a request.

However, many HTTP caches in common use today only cache GET

responses, and therefore only use the URI as the cache key,

forwarding other methods.

If a request target is subject to content negotiation, the cache

might store multiple responses for it. Caches differentiate these

responses by incorporating values of the original request's

selecting header fields into the cache key as well, as per Section

4.1.

Furthermore, caches might incorporate additional material into the

cache key. For example, user agent caches might include the

referring site's identity, thereby "double keying" the cache to

avoid some privacy risks (see Section 7.2).

Most commonly, caches store the successful result of a retrieval

request: i.e., a 200 (OK) response to a GET request, which contains

a representation of the target resource (Section 8.3.1 of

[Semantics]). However, it is also possible to store redirects,

negative results (e.g., 404 (Not Found)), incomplete results (e.g.,

206 (Partial Content)), and responses to methods other than GET if

the method's definition allows such caching and defines something

suitable for use as a cache key.

A cache is disconnected when it cannot contact the origin server or

otherwise find a forward path for a given request. A disconnected

cache can serve stale responses in some circumstances (Section

4.2.4).

3. Storing Responses in Caches

A cache MUST NOT store a response to a request unless:

the request method is understood by the cache;

the response status code is final (see Section 10 of

[Semantics]);

if the response status code is 206 or 304, or the "must-

understand" cache directive (see Section 5.2) is present: the

cache understands the response status code;

the "no-store" cache directive is not present in the response

(see Section 5.2);

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#GET
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.codes

if the cache is shared: the "private" response directive is

either not present or allows a modified response to be stored by

a shared cache; see Section 5.2.2.7);

if the cache is shared: the Authorization header field is not

present in the request (see Section 9.5.3 of [Semantics]) or a

response directive is present that explicitly allows shared

caching (see Section 3.3); and,

the response contains at least one of:

a public response directive (see Section 5.2.2.6);

a private response directive, if the cache is not shared (see

Section 5.2.2.7);

an Expires header field (see Section 5.3);

a max-age response directive (see Section 5.2.2.9);

if the cache is shared, an s-maxage response directive (see

Section 5.2.2.10);

a Cache Control Extension that allows it to be cached (see

Section 5.2.3); or,

a status code that is defined as heuristically cacheable (see

Section 4.2.2).

Note that any of the requirements listed above can be overridden by

a cache-control extension; see Section 5.2.3.

In this context, a cache has "understood" a request method or a

response status code if it recognizes it and implements all

specified caching-related behavior.

Note that, in normal operation, some caches will not store a

response that has neither a cache validator nor an explicit

expiration time, as such responses are not usually useful to store.

However, caches are not prohibited from storing such responses.

3.1. Storing Header and Trailer Fields

Caches MUST include all received header fields - including

unrecognised ones - when storing a response; this assures that new

HTTP header fields can be successfully deployed. However, the

following exceptions are made:

The Connection header field and fields whose names are listed in

it are required by Section 9.1 of [Messaging] to be removed

*

¶

*

¶

* ¶

- ¶

-

¶

- ¶

- ¶

-

¶

-

¶

-

¶

¶

¶

¶

¶

*

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.authorization
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.connection

before forwarding the message. This MAY be implemented by doing

so before storage.

Likewise, some fields' semantics require them to be removed

before forwarding the message, and this MAY be implemented by

doing so before storage; see Section 9.1 of [Messaging] for some

examples.

Header fields that are specific to a client's proxy configuration

MUST NOT be stored, unless the cache incorporates the identity of

the proxy into the cache key. Effectively, this is limited to

Proxy-Authenticate (Section 11.3.2 of [Semantics]), Proxy-

Authentication-Info (Section 11.3.4 of [Semantics]), and Proxy-

Authorization (Section 9.5.4 of [Semantics]).

Caches MAY either store trailer fields separately from header

fields, or discard them. Caches MUST NOT combine trailer fields with

header fields.

3.2. Storing Incomplete Responses

If the request method is GET, the response status code is 200 (OK),

and the entire response header section has been received, a cache

MAY store a response body that is not complete (Section 2.1 of

[Semantics]) if the stored response is recorded as being incomplete.

Likewise, a 206 (Partial Content) response MAY be stored as if it

were an incomplete 200 (OK) response. However, a cache MUST NOT

store incomplete or partial-content responses if it does not support

the Range and Content-Range header fields or if it does not

understand the range units used in those fields.

A cache MAY complete a stored incomplete response by making a

subsequent range request (Section 9.3 of [Semantics]) and combining

the successful response with the stored response, as defined in

Section 3.4. A cache MUST NOT use an incomplete response to answer

requests unless the response has been made complete or the request

is partial and specifies a range that is wholly within the

incomplete response. A cache MUST NOT send a partial response to a

client without explicitly marking it as such using the 206 (Partial

Content) status code.

3.3. Storing Responses to Authenticated Requests

A shared cache MUST NOT use a cached response to a request with an

Authorization header field (Section 9.5.3 of [Semantics]) to satisfy

any subsequent request unless the response contains a Cache-Control

field with a response directive (Section 5.2.2) that allows it to be

stored by a shared cache and the cache conforms to the requirements

of that directive for that response.

¶

*

¶

*

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.connection
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.proxy-authenticate
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.proxy-authentication-info
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.proxy-authorization
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#operation
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.range
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.authorization

In this specification, the following response directives have such

an effect: must-revalidate (Section 5.2.2.1), public (Section

5.2.2.6), and s-maxage (Section 5.2.2.10).

3.4. Combining Partial Content

A response might transfer only a partial representation if the

connection closed prematurely or if the request used one or more

Range specifiers (Section 9.3 of [Semantics]). After several such

transfers, a cache might have received several ranges of the same

representation. A cache MAY combine these ranges into a single

stored response, and reuse that response to satisfy later requests,

if they all share the same strong validator and the cache complies

with the client requirements in Section 10.3.7.3 of [Semantics].

When combining the new response with one or more stored responses, a

cache MUST use the header fields provided in the new response, aside

from Content-Range, to replace all instances of the corresponding

header fields in the stored response.

4. Constructing Responses from Caches

When presented with a request, a cache MUST NOT reuse a stored

response, unless:

The presented target URI (Section 6.1 of [Semantics]) and that of

the stored response match, and

the request method associated with the stored response allows it

to be used for the presented request, and

selecting header fields nominated by the stored response (if any)

match those presented (see Section 4.1), and

the stored response does not contain the no-cache cache directive

(Section 5.2.2.3), unless it is successfully validated (Section

4.3), and

the stored response is either:

fresh (see Section 4.2), or

allowed to be served stale (see Section 4.2.4), or

successfully validated (see Section 4.3).

Note that any of the requirements listed above can be overridden by

a cache-control extension; see Section 5.2.3.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

- ¶

- ¶

- ¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.range
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#combining.byte.ranges
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#target.resource

When a stored response is used to satisfy a request without

validation, a cache MUST generate an Age header field (Section 5.1),

replacing any present in the response with a value equal to the

stored response's current_age; see Section 4.2.3.

A cache MUST write through requests with methods that are unsafe

(Section 8.2.1 of [Semantics]) to the origin server; i.e., a cache

is not allowed to generate a reply to such a request before having

forwarded the request and having received a corresponding response.

Also, note that unsafe requests might invalidate already-stored

responses; see Section 4.4.

When more than one suitable response is stored, a cache MUST use the

most recent one (as determined by the Date header field). It can

also forward the request with "Cache-Control: max-age=0" or "Cache-

Control: no-cache" to disambiguate which response to use.

A cache that does not have a clock available MUST NOT use stored

responses without revalidating them upon every use.

4.1. Calculating Cache Keys with Vary

When a cache receives a request that can be satisfied by a stored

response that has a Vary header field (Section 11.1.4 of

[Semantics]), it MUST NOT use that response unless all of the

selecting header fields nominated by the Vary header field match in

both the original request (i.e., that associated with the stored

response), and the presented request.

The selecting header fields from two requests are defined to match

if and only if those in the first request can be transformed to

those in the second request by applying any of the following:

adding or removing whitespace, where allowed in the header

field's syntax

combining multiple header fields with the same field name (see

Section 5.4 of [Semantics])

normalizing both header field values in a way that is known to

have identical semantics, according to the header field's

specification (e.g., reordering field values when order is not

significant; case-normalization, where values are defined to be

case-insensitive)

If (after any normalization that might take place) a header field is

absent from a request, it can only match another request if it is

also absent there.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#safe.methods
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.vary
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.values

A Vary header field value containing a member "*" always fails to

match.

The stored response with matching selecting header fields is known

as the selected response.

If multiple selected responses are available (potentially including

responses without a Vary header field), the cache will need to

choose one to use. When a selecting header field has a known

mechanism for doing so (e.g., qvalues on Accept and similar request

header fields), that mechanism MAY be used to select preferred

responses; of the remainder, the most recent response (as determined

by the Date header field) is used, as per Section 4.

Note that in practice, some resources might send the Vary header

field on responses inconsistently. When a cache has multiple

responses for a given target URI, and one or more omits the Vary

header field, it SHOULD use the most recent non-empty value

available to select an appropriate response for the request.

If no selected response is available, the cache cannot satisfy the

presented request. Typically, it is forwarded to the origin server

in a (possibly conditional; see Section 4.3) request.

4.2. Freshness

A fresh response is one whose age has not yet exceeded its freshness

lifetime. Conversely, a stale response is one where it has.

A response's freshness lifetime is the length of time between its

generation by the origin server and its expiration time. An explicit

expiration time is the time at which the origin server intends that

a stored response can no longer be used by a cache without further

validation, whereas a heuristic expiration time is assigned by a

cache when no explicit expiration time is available.

A response's age is the time that has passed since it was generated

by, or successfully validated with, the origin server.

When a response is "fresh" in the cache, it can be used to satisfy

subsequent requests without contacting the origin server, thereby

improving efficiency.

The primary mechanism for determining freshness is for an origin

server to provide an explicit expiration time in the future, using

either the Expires header field (Section 5.3) or the max-age

response directive (Section 5.2.2.9). Generally, origin servers will

¶

¶

¶

¶

¶

¶

¶

¶

¶

assign future explicit expiration times to responses in the belief

that the representation is not likely to change in a semantically

significant way before the expiration time is reached.

If an origin server wishes to force a cache to validate every

request, it can assign an explicit expiration time in the past to

indicate that the response is already stale. Compliant caches will

normally validate a stale cached response before reusing it for

subsequent requests (see Section 4.2.4).

Since origin servers do not always provide explicit expiration

times, caches are also allowed to use a heuristic to determine an

expiration time under certain circumstances (see Section 4.2.2).

The calculation to determine if a response is fresh is:

freshness_lifetime is defined in Section 4.2.1; current_age is

defined in Section 4.2.3.

Clients can send the max-age or min-fresh request directives

(Section 5.2.1) to constrain or relax freshness calculations for the

corresponding response. However, caches are not required to honor

them.

When calculating freshness, to avoid common problems in date

parsing:

Although all date formats are specified to be case-sensitive, a

cache recipient SHOULD match day, week, and time-zone names case-

insensitively.

If a cache recipient's internal implementation of time has less

resolution than the value of an HTTP-date, the recipient MUST

internally represent a parsed Expires date as the nearest time

equal to or earlier than the received value.

A cache recipient MUST NOT allow local time zones to influence

the calculation or comparison of an age or expiration time.

A cache recipient SHOULD consider a date with a zone abbreviation

other than GMT or UTC to be invalid for calculating expiration.

Note that freshness applies only to cache operation; it cannot be

used to force a user agent to refresh its display or reload a

resource. See Section 6 for an explanation of the difference between

caches and history mechanisms.

¶

¶

¶

¶

 response_is_fresh = (freshness_lifetime > current_age)¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

4.2.1. Calculating Freshness Lifetime

A cache can calculate the freshness lifetime (denoted as

freshness_lifetime) of a response by using the first match of the

following:

If the cache is shared and the s-maxage response directive

(Section 5.2.2.10) is present, use its value, or

If the max-age response directive (Section 5.2.2.9) is present,

use its value, or

If the Expires response header field (Section 5.3) is present,

use its value minus the value of the Date response header field,

or

Otherwise, no explicit expiration time is present in the

response. A heuristic freshness lifetime might be applicable; see

Section 4.2.2.

Note that this calculation is not vulnerable to clock skew, since

all of the information comes from the origin server.

When there is more than one value present for a given directive

(e.g., two Expires header fields, multiple Cache-Control: max-age

directives), the directive's value is considered invalid. Caches are

encouraged to consider responses that have invalid freshness

information to be stale.

4.2.2. Calculating Heuristic Freshness

Since origin servers do not always provide explicit expiration

times, a cache MAY assign a heuristic expiration time when an

explicit time is not specified, employing algorithms that use other

header field values (such as the Last-Modified time) to estimate a

plausible expiration time. This specification does not provide

specific algorithms, but does impose worst-case constraints on their

results.

A cache MUST NOT use heuristics to determine freshness when an

explicit expiration time is present in the stored response. Because

of the requirements in Section 3, this means that, effectively,

heuristics can only be used on responses without explicit freshness

whose status codes are defined as "heuristically cacheable" (e.g.,

see Section 10.1 of [Semantics]), and those responses without

explicit freshness that have been marked as explicitly cacheable

(e.g., with a "public" response directive).

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#overview.of.status.codes

age_value

date_value

now

request_time

response_time

Note that in previous specifications heuristically cacheable

response status codes were called "cacheable by default."

If the response has a Last-Modified header field (Section 11.2.2 of

[Semantics]), caches are encouraged to use a heuristic expiration

value that is no more than some fraction of the interval since that

time. A typical setting of this fraction might be 10%.

Note: Section 13.9 of [RFC2616] prohibited caches from calculating

heuristic freshness for URIs with query components (i.e., those

containing '?'). In practice, this has not been widely implemented.

Therefore, origin servers are encouraged to send explicit directives

(e.g., Cache-Control: no-cache) if they wish to preclude caching.

4.2.3. Calculating Age

The Age header field is used to convey an estimated age of the

response message when obtained from a cache. The Age field value is

the cache's estimate of the number of seconds since the response was

generated or validated by the origin server. In essence, the Age

value is the sum of the time that the response has been resident in

each of the caches along the path from the origin server, plus the

amount of time it has been in transit along network paths.

The following data is used for the age calculation:

The term "age_value" denotes the value of the Age header

field (Section 5.1), in a form appropriate for arithmetic

operation; or 0, if not available.

The term "date_value" denotes the value of the Date

header field, in a form appropriate for arithmetic operations.

See Section 11.1.1 of [Semantics] for the definition of the Date

header field, and for requirements regarding responses without

it.

The term "now" means "the current value of the clock at the

host performing the calculation". A host ought to use NTP

([RFC5905]) or some similar protocol to synchronize its clocks to

Coordinated Universal Time.

The current value of the clock at the host at the time

the request resulting in the stored response was made.

The current value of the clock at the host at the

time the response was received.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.last-modified
https://rfc-editor.org/rfc/rfc2616#section-13.9
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.date

A response's age can be calculated in two entirely independent ways:

the "apparent_age": response_time minus date_value, if the

local clock is reasonably well synchronized to the origin

server's clock. If the result is negative, the result is

replaced by zero.

the "corrected_age_value", if all of the caches along the

response path implement HTTP/1.1 or greater. A cache MUST

interpret this value relative to the time the request was

initiated, not the time that the response was received.

These are combined as

unless the cache is confident in the value of the Age header field

(e.g., because there are no HTTP/1.0 hops in the Via header field),

in which case the corrected_age_value MAY be used as the

corrected_initial_age.

The current_age of a stored response can then be calculated by

adding the amount of time (in seconds) since the stored response was

last validated by the origin server to the corrected_initial_age.

4.2.4. Serving Stale Responses

A "stale" response is one that either has explicit expiry

information or is allowed to have heuristic expiry calculated, but

is not fresh according to the calculations in Section 4.2.

A cache MUST NOT generate a stale response if it is prohibited by an

explicit in-protocol directive (e.g., by a "no-store" or "no-cache"

cache directive, a "must-revalidate" cache-response-directive, or an

applicable "s-maxage" or "proxy-revalidate" cache-response-

directive; see Section 5.2.2).

A cache MUST NOT generate a stale response unless it is disconnected

or doing so is explicitly permitted by the client or origin server

(e.g., by the max-stale request directive in Section 5.2.1, by

extension directives such as those defined in [RFC5861], or by

configuration in accordance with an out-of-band contract).

¶

1.

¶

2.

¶

 apparent_age = max(0, response_time - date_value);

 response_delay = response_time - request_time;

 corrected_age_value = age_value + response_delay;

¶

¶

 corrected_initial_age = max(apparent_age, corrected_age_value);¶

¶

¶

 resident_time = now - response_time;

 current_age = corrected_initial_age + resident_time;

¶

¶

¶

¶

4.3. Validation

When a cache has one or more stored responses for a requested URI,

but cannot serve any of them (e.g., because they are not fresh, or

one cannot be selected; see Section 4.1), it can use the conditional

request mechanism Section 9.2 of [Semantics] in the forwarded

request to give the next inbound server an opportunity to select a

valid stored response to use, updating the stored metadata in the

process, or to replace the stored response(s) with a new response.

This process is known as "validating" or "revalidating" the stored

response.

4.3.1. Sending a Validation Request

When generating a conditional request for validation, a cache starts

with either a request it is attempting to satisfy, or - if it is

initiating the request independently - it synthesises a request

using a stored response by copying the method, target URI, and

request header fields identified by the Vary header field Section

4.1.

It then updates that request with one or more precondition header

fields. These contain validator metadata sourced from stored

response(s) that have the same cache key.

The precondition header fields are then compared by recipients to

determine whether any stored response is equivalent to a current

representation of the resource.

One such validator is the timestamp given in a Last-Modified header

field (Section 11.2.2 of [Semantics]), which can be used in an If-

Modified-Since header field for response validation, or in an If-

Unmodified-Since or If-Range header field for representation

selection (i.e., the client is referring specifically to a

previously obtained representation with that timestamp).

Another validator is the entity-tag given in an ETag field

(Section 11.2.3 of [Semantics]). One or more entity-tags, indicating

one or more stored responses, can be used in an If-None-Match header

field for response validation, or in an If-Match or If-Range header

field for representation selection (i.e., the client is referring

specifically to one or more previously obtained representations with

the listed entity-tags).

4.3.2. Handling a Received Validation Request

Each client in the request chain may have its own cache, so it is

common for a cache at an intermediary to receive conditional

requests from other (outbound) caches. Likewise, some user agents

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#preconditions
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.last-modified
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.etag

make use of conditional requests to limit data transfers to recently

modified representations or to complete the transfer of a partially

retrieved representation.

If a cache receives a request that can be satisfied by reusing one

of its stored 200 (OK) or 206 (Partial Content) responses, the cache

SHOULD evaluate any applicable conditional header field

preconditions received in that request with respect to the

corresponding validators contained within the selected response. A

cache MUST NOT evaluate conditional header fields that are only

applicable to an origin server, found in a request with semantics

that cannot be satisfied with a cached response, or applied to a

target resource for which it has no stored responses; such

preconditions are likely intended for some other (inbound) server.

The proper evaluation of conditional requests by a cache depends on

the received precondition header fields and their precedence, as

defined in Section 9.2.2 of [Semantics]. The If-Match and If-

Unmodified-Since conditional header fields are not applicable to a

cache.

A request containing an If-None-Match header field (Section 9.2.4 of

[Semantics]) indicates that the client wants to validate one or more

of its own stored responses in comparison to whichever stored

response is selected by the cache. If the field value is "*", or if

the field value is a list of entity-tags and at least one of them

matches the entity-tag of the selected stored response, a cache

recipient SHOULD generate a 304 (Not Modified) response (using the

metadata of the selected stored response) instead of sending that

stored response.

When a cache decides to revalidate its own stored responses for a

request that contains an If-None-Match list of entity-tags, the

cache MAY combine the received list with a list of entity-tags from

its own stored set of responses (fresh or stale) and send the union

of the two lists as a replacement If-None-Match header field value

in the forwarded request. If a stored response contains only partial

content, the cache MUST NOT include its entity-tag in the union

unless the request is for a range that would be fully satisfied by

that partial stored response. If the response to the forwarded

request is 304 (Not Modified) and has an ETag field value with an

entity-tag that is not in the client's list, the cache MUST generate

a 200 (OK) response for the client by reusing its corresponding

stored response, as updated by the 304 response metadata (Section

4.3.4).

If an If-None-Match header field is not present, a request

containing an If-Modified-Since header field (Section 9.2.5 of

[Semantics]) indicates that the client wants to validate one or more

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#precedence
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.if-none-match
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.if-modified-since

of its own stored responses by modification date. A cache recipient

SHOULD generate a 304 (Not Modified) response (using the metadata of

the selected stored response) if one of the following cases is true:

1) the selected stored response has a Last-Modified field value that

is earlier than or equal to the conditional timestamp; 2) no Last-

Modified field is present in the selected stored response, but it

has a Date field value that is earlier than or equal to the

conditional timestamp; or, 3) neither Last-Modified nor Date is

present in the selected stored response, but the cache recorded it

as having been received at a time earlier than or equal to the

conditional timestamp.

A cache that implements partial responses to range requests, as

defined in Section 9.3 of [Semantics], also needs to evaluate a

received If-Range header field (Section 9.2.7 of [Semantics]) with

respect to its selected stored response.

4.3.3. Handling a Validation Response

Cache handling of a response to a conditional request is dependent

upon its status code:

A 304 (Not Modified) response status code indicates that the

stored response can be updated and reused; see Section 4.3.4.

A full response (i.e., one with a payload body) indicates that

none of the stored responses nominated in the conditional request

is suitable. Instead, the cache MUST use the full response to

satisfy the request and MAY replace the stored response(s).

However, if a cache receives a 5xx (Server Error) response while

attempting to validate a response, it can either forward this

response to the requesting client, or act as if the server failed

to respond. In the latter case, the cache MAY send a previously

stored response (see Section 4.2.4).

4.3.4. Freshening Stored Responses upon Validation

When a cache receives a 304 (Not Modified) response and already has

one or more stored 200 (OK) responses for the applicable cache key,

the cache needs to identify which (if any) are to be updated by the

new information provided, and then do so.

The stored response(s) to update are identified by using the first

match (if any) of the following:

If the new response contains a strong validator (see

Section 11.2.1 of [Semantics]), then that strong validator

identifies the selected representation for update. All of the

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.range
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.if-range
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#weak.and.strong.validators

stored responses with the same strong validator are identified

for update. If none of the stored responses contain the same

strong validator, then the cache MUST NOT use the new response to

update any stored responses.

If the new response contains a weak validator and that validator

corresponds to one of the cache's stored responses, then the most

recent of those matching stored responses is identified for

update.

If the new response does not include any form of validator (such

as in the case where a client generates an If-Modified-Since

request from a source other than the Last-Modified response

header field), and there is only one stored response, and that

stored response also lacks a validator, then that stored response

is identified for update.

For each stored response identified for update, the cache MUST use

the header fields provided in the 304 (Not Modified) response to

replace all instances of the corresponding header fields in the

stored response, with the following exceptions:

The exceptions to header field storage in Section 3.1 also apply

to header field updates.

Caches MUST NOT update the following header fields: Content-

Encoding, Content-Length, Content-MD5 (Section 14.15 of

[RFC2616]), Content-Range, ETag.

4.3.5. Freshening Responses with HEAD

A response to the HEAD method is identical to what an equivalent

request made with a GET would have been, except it lacks a body.

This property of HEAD responses can be used to invalidate or update

a cached GET response if the more efficient conditional GET request

mechanism is not available (due to no validators being present in

the stored response) or if transmission of the representation body

is not desired even if it has changed.

When a cache makes an inbound HEAD request for a given target URI

and receives a 200 (OK) response, the cache SHOULD update or

invalidate each of its stored GET responses that could have been

selected for that request (see Section 4.1).

For each of the stored responses that could have been selected, if

the stored response and HEAD response have matching values for any

received validator fields (ETag and Last-Modified) and, if the HEAD

response has a Content-Length header field, the value of Content-

Length matches that of the stored response, the cache SHOULD update

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc2616#section-14.15

the stored response as described below; otherwise, the cache SHOULD

consider the stored response to be stale.

If a cache updates a stored response with the metadata provided in a

HEAD response, the cache MUST use the header fields provided in the

HEAD response to replace all instances of the corresponding header

fields in the stored response (subject to the exceptions in Section

4.3.4) and append new header fields to the stored response's header

section unless otherwise restricted by the Cache-Control header

field.

4.4. Invalidation

Because unsafe request methods (Section 8.2.1 of [Semantics]) such

as PUT, POST or DELETE have the potential for changing state on the

origin server, intervening caches are required to invalidate stored

responses to keep their contents up to date. Invalidate means that

the cache will either remove all stored responses whose target URI

matches the given URI, or will mark them as "invalid" and in need of

a mandatory validation before they can be sent in response to a

subsequent request.

Note that this does not guarantee that all appropriate responses are

invalidated globally; a state-changing request would only invalidate

responses in the caches that it travels through.

A cache MUST invalidate the target URI (Section 6.1 of [Semantics])

as well as the URI(s) in the Location and Content-Location response

header fields (if present) when a non-error status code is received

in response to an unsafe request method.

However, a cache MUST NOT invalidate a URI from a Location or

Content-Location response header field if the host part of that URI

differs from the host part in the target URI (Section 6.1 of

[Semantics]). This helps prevent denial-of-service attacks.

A cache MUST invalidate the target URI (Section 6.1 of [Semantics])

when it receives a non-error response to a request with a method

whose safety is unknown.

Here, a "non-error response" is one with a 2xx (Successful) or 3xx

(Redirection) status code.

5. Field Definitions

This section defines the syntax and semantics of HTTP fields related

to caching.

Field Name Status Reference

Age standard Section 5.1

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#safe.methods
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#target.resource
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#target.resource
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#target.resource

Field Name Status Reference

Cache-Control standard Section 5.2

Expires standard Section 5.3

Pragma standard Section 5.4

Warning obsoleted Section 5.5

Table 1

5.1. Age

The "Age" header field conveys the sender's estimate of the amount

of time since the response was generated or successfully validated

at the origin server. Age values are calculated as specified in

Section 4.2.3.

 Age = delta-seconds

The Age field value is a non-negative integer, representing time in

seconds (see Section 1.3).

The presence of an Age header field implies that the response was

not generated or validated by the origin server for this request.

However, lack of an Age header field does not imply the origin was

contacted, since the response might have been received from an HTTP/

1.0 cache that does not implement Age.

5.2. Cache-Control

The "Cache-Control" header field is used to list directives for

caches along the request/response chain. Such cache directives are

unidirectional in that the presence of a directive in a request does

not imply that the same directive is present in the response, or to

be repeated in it.

See Section 5.2.3 for information about how Cache-Control directives

defined elsewhere are handled.

Note: Some HTTP/1.0 caches might not implement Cache-Control.

A proxy, whether or not it implements a cache, MUST pass cache

directives through in forwarded messages, regardless of their

significance to that application, since the directives might be

applicable to all recipients along the request/response chain. It is

not possible to target a directive to a specific cache.

¶

¶

¶

¶

¶

¶

¶

¶

Cache directives are identified by a token, to be compared case-

insensitively, and have an optional argument, that can use both

token and quoted-string syntax. For the directives defined below

that define arguments, recipients ought to accept both forms, even

if a specific form is required for generation.

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

For the cache directives defined below, no argument is defined (nor

allowed) unless stated otherwise.

Cache Directive Reference

max-age Section 5.2.1.1, Section 5.2.2.9

max-stale Section 5.2.1.2

min-fresh Section 5.2.1.3

must-revalidate Section 5.2.2.1

must-understand Section 5.2.2.2

no-cache Section 5.2.1.4, Section 5.2.2.3

no-store Section 5.2.1.5, Section 5.2.2.4

no-transform Section 5.2.1.6, Section 5.2.2.5

only-if-cached Section 5.2.1.7

private Section 5.2.2.7

proxy-revalidate Section 5.2.2.8

public Section 5.2.2.6

s-maxage Section 5.2.2.10

Table 2

5.2.1. Request Cache-Control Directives

This section defines cache request directives. They are advisory;

caches MAY implement them, but are not required to.

5.2.1.1. max-age

Argument syntax:

delta-seconds (see Section 1.3)

The "max-age" request directive indicates that the client prefers a

response whose age is less than or equal to the specified number of

seconds. Unless the max-stale request directive is also present, the

client does not wish to receive a stale response.

¶

¶

¶

¶

¶

¶

¶

This directive uses the token form of the argument syntax: e.g.,

'max-age=5' not 'max-age="5"'. A sender MUST NOT generate the

quoted-string form.

5.2.1.2. max-stale

Argument syntax:

delta-seconds (see Section 1.3)

The "max-stale" request directive indicates that the client is

willing to accept a response that has exceeded its freshness

lifetime. If a value is present, then the client is willing to

accept a response that has exceeded its freshness lifetime by no

more than the specified number of seconds. If no value is assigned

to max-stale, then the client is willing to accept a stale response

of any age.

This directive uses the token form of the argument syntax: e.g.,

'max-stale=10' not 'max-stale="10"'. A sender MUST NOT generate the

quoted-string form.

5.2.1.3. min-fresh

Argument syntax:

delta-seconds (see Section 1.3)

The "min-fresh" request directive indicates that the client prefers

a response whose freshness lifetime is no less than its current age

plus the specified time in seconds. That is, the client wants a

response that will still be fresh for at least the specified number

of seconds.

This directive uses the token form of the argument syntax: e.g.,

'min-fresh=20' not 'min-fresh="20"'. A sender MUST NOT generate the

quoted-string form.

5.2.1.4. no-cache

The "no-cache" request directive indicates that the client prefers

stored response not be used to satisfy the request without

successful validation on the origin server.

5.2.1.5. no-store

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The "no-store" request directive indicates that a cache MUST NOT

store any part of either this request or any response to it. This

directive applies to both private and shared caches. "MUST NOT

store" in this context means that the cache MUST NOT intentionally

store the information in non-volatile storage, and MUST make a best-

effort attempt to remove the information from volatile storage as

promptly as possible after forwarding it.

This directive is NOT a reliable or sufficient mechanism for

ensuring privacy. In particular, malicious or compromised caches

might not recognize or obey this directive, and communications

networks might be vulnerable to eavesdropping.

Note that if a request containing this directive is satisfied from a

cache, the no-store request directive does not apply to the already

stored response.

5.2.1.6. no-transform

The "no-transform" request directive indicates that the client is

asking for intermediares (whether or not they implement a cache) to

avoid transforming the payload, as defined in Section 6.7.2 of

[Semantics].

5.2.1.7. only-if-cached

The "only-if-cached" request directive indicates that the client

only wishes to obtain a stored response. Caches that honor this

request directive SHOULD, upon receiving it, either respond using a

stored response that is consistent with the other constraints of the

request, or respond with a 504 (Gateway Timeout) status code.

5.2.2. Response Cache-Control Directives

This section defines cache response directives. A cache MUST obey

the requirements of the Cache-Control directives defined in this

section.

5.2.2.1. must-revalidate

The "must-revalidate" response directive indicates that once the

response has become stale, a cache MUST NOT reuse that response to

satisfy another request until it has been successfully validated by

the origin, as defined by Section 4.3.

The must-revalidate directive is necessary to support reliable

operation for certain protocol features. In all circumstances a

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#message.transformations

cache MUST obey the must-revalidate directive; in particular, if a

cache is disconnected, the cache MUST generate a 504 (Gateway

Timeout) response rather than reuse the stale response.

The must-revalidate directive ought to be used by servers if and

only if failure to validate a request on the representation could

result in incorrect operation, such as a silently unexecuted

financial transaction.

The must-revalidate directive also permits a shared cache to reuse a

response to a request containing an Authorization header field,

subject to the above requirement on revalidation (Section 3.3).

5.2.2.2. must-understand

The "must-understand" response directive limits caching of the

response to a cache that understands and conforms to the

requirements for that response's status code. A cache MUST NOT store

a response containing the must-understand directive if the cache

does not understand the response status code.

5.2.2.3. no-cache

Argument syntax:

#field-name

The "no-cache" response directive, in its unqualified form (without

an argument), indicates that the response MUST NOT be used to

satisfy any other request without forwarding it for validation and

receiving a successful response; see Section 4.3.

This allows an origin server to prevent a cache from using the

response to satisfy a request without contacting it, even by caches

that have been configured to send stale responses.

The qualified form of no-cache response directive, with an argument

that lists one or more field names, indicates that a cache MAY use

the response to satisfy a subsequent request, subject to any other

restrictions on caching, if the listed header fields are excluded

from the subsequent response or the subsequent response has been

successfully revalidated with the origin server (updating or

removing those fields). This allows an origin server to prevent the

re-use of certain header fields in a response, while still allowing

caching of the rest of the response.

The field names given are not limited to the set of header fields

defined by this specification. Field names are case-insensitive.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This directive uses the quoted-string form of the argument syntax. A

sender SHOULD NOT generate the token form (even if quoting appears

not to be needed for single-entry lists).

Note: Although it has been back-ported to many implementations, some

HTTP/1.0 caches will not recognize or obey this directive. Also, the

qualified form of the directive is often handled by caches as if an

unqualified no-cache directive was received; i.e., the special

handling for the qualified form is not widely implemented.

5.2.2.4. no-store

The "no-store" response directive indicates that a cache MUST NOT

store any part of either the immediate request or response, and MUST

NOT use the response to satisfy any other request.

This directive applies to both private and shared caches. "MUST NOT

store" in this context means that the cache MUST NOT intentionally

store the information in non-volatile storage, and MUST make a best-

effort attempt to remove the information from volatile storage as

promptly as possible after forwarding it.

This directive is NOT a reliable or sufficient mechanism for

ensuring privacy. In particular, malicious or compromised caches

might not recognize or obey this directive, and communications

networks might be vulnerable to eavesdropping.

5.2.2.5. no-transform

The "no-transform" response directive indicates that an intermediary

(regardless of whether it implements a cache) MUST NOT transform the

payload, as defined in Section 6.7.2 of [Semantics].

5.2.2.6. public

The "public" response directive indicates that a cache MAY store the

response even if it would otherwise be prohibited, subject to the

constraints defined in Section 3. In other words, public explicitly

marks the response as cacheable. For example, public permits a

shared cache to reuse a response to a request containing an

Authorization header field (Section 3.3).

Note that it is not necessary to add the public directive to a

response that is already cacheable according to Section 3.

If no explicit freshness information is provided on a response with

the public directive, it is heuristically cacheable (Section 4.2.2).

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#message.transformations

5.2.2.7. private

Argument syntax:

#field-name

The unqualified "private" response directive indicates that a shared

cache MUST NOT store the response (i.e., the response is intended

for a single user). It also indicates that a private cache MAY store

the response, subject the constraints defined in Section 3, even if

the response would not otherwise be heuristically cacheable by a

private cache.

If a qualified private response directive is present, with an

argument that lists one or more field names, then only the listed

fields are limited to a single user: a shared cache MUST NOT store

the listed fields if they are present in the original response, but

MAY store the remainder of the response message without those

fields, subject the constraints defined in Section 3.

The field names given are not limited to the set of header fields

defined by this specification. Field names are case-insensitive.

This directive uses the quoted-string form of the argument syntax. A

sender SHOULD NOT generate the token form (even if quoting appears

not to be needed for single-entry lists).

Note: This usage of the word "private" only controls where the

response can be stored; it cannot ensure the privacy of the message

content. Also, the qualified form of the directive is often handled

by caches as if an unqualified private directive was received; i.e.,

the special handling for the qualified form is not widely

implemented.

5.2.2.8. proxy-revalidate

The "proxy-revalidate" response directive indicates that once the

response has become stale, a shared cache MUST NOT reuse that

response to satisfy another request until it has been successfully

validated by the origin, as defined by Section 4.3. This is

analogous to must-revalidate (Section 5.2.2.1), except that proxy-

revalidate does not apply to private caches.

Note that "proxy-revalidate" on its own does not imply that a

response is cacheable. For example, it might be combined with the

public directive (Section 5.2.2.6), allowing the response to be

cached while requiring only a shared cache to revalidate when stale.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2.2.9. max-age

Argument syntax:

delta-seconds (see Section 1.3)

The "max-age" response directive indicates that the response is to

be considered stale after its age is greater than the specified

number of seconds.

This directive uses the token form of the argument syntax: e.g.,

'max-age=5' not 'max-age="5"'. A sender MUST NOT generate the

quoted-string form.

5.2.2.10. s-maxage

Argument syntax:

delta-seconds (see Section 1.3)

The "s-maxage" response directive indicates that, for a shared

cache, the maximum age specified by this directive overrides the

maximum age specified by either the max-age directive or the Expires

header field.

The s-maxage directive incorporates the proxy-revalidate (Section

5.2.2.8) response directive's semantics for a shared cache. A shared

cache MUST NOT reuse a stale response with s-maxage to satisfy

another request until it has been successfully validated by the

origin, as defined by Section 4.3. This directive also permits a

shared cache to reuse a response to a request containing an

Authorization header field, subject to the above requirements on

maximum age and revalidation (Section 3.3).

This directive uses the token form of the argument syntax: e.g., 's-

maxage=10' not 's-maxage="10"'. A sender MUST NOT generate the

quoted-string form.

5.2.3. Cache Control Extensions

The Cache-Control header field can be extended through the use of

one or more cache-extension tokens, each with an optional value. A

cache MUST ignore unrecognized cache directives.

Informational extensions (those that do not require a change in

cache behavior) can be added without changing the semantics of other

directives.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Behavioral extensions are designed to work by acting as modifiers to

the existing base of cache directives. Both the new directive and

the old directive are supplied, such that applications that do not

understand the new directive will default to the behavior specified

by the old directive, and those that understand the new directive

will recognize it as modifying the requirements associated with the

old directive. In this way, extensions to the existing cache-control

directives can be made without breaking deployed caches.

For example, consider a hypothetical new response directive called

"community" that acts as a modifier to the private directive: in

addition to private caches, any cache that is shared only by members

of the named community is allowed to cache the response. An origin

server wishing to allow the UCI community to use an otherwise

private response in their shared cache(s) could do so by including

A cache that recognizes such a community cache-extension could

broaden its behavior in accordance with that extension. A cache that

does not recognize the community cache-extension would ignore it and

adhere to the private directive.

New extension directives ought to consider defining:

What it means for a directive to be specified multiple times,

When the directive does not take an argument, what it means when

an argument is present,

When the directive requires an argument, what it means when it is

missing,

Whether the directive is specific to requests, responses, or able

to be used in either.

5.2.4. Cache Directive Registry

The "Hypertext Transfer Protocol (HTTP) Cache Directive Registry"

defines the namespace for the cache directives. It has been created

and is now maintained at <https://www.iana.org/assignments/http-

cache-directives>.

A registration MUST include the following fields:

Cache Directive Name

Pointer to specification text

¶

¶

 Cache-Control: private, community="UCI"¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

https://www.iana.org/assignments/http-cache-directives
https://www.iana.org/assignments/http-cache-directives

Values to be added to this namespace require IETF Review (see

[RFC8126], Section 4.8).

5.3. Expires

The "Expires" header field gives the date/time after which the

response is considered stale. See Section 4.2 for further discussion

of the freshness model.

The presence of an Expires field does not imply that the original

resource will change or cease to exist at, before, or after that

time.

The Expires value is an HTTP-date timestamp, as defined in

Section 5.4.1.5 of [Semantics].

 Expires = HTTP-date

For example

A cache recipient MUST interpret invalid date formats, especially

the value "0", as representing a time in the past (i.e., "already

expired").

If a response includes a Cache-Control field with the max-age

directive (Section 5.2.2.9), a recipient MUST ignore the Expires

field. Likewise, if a response includes the s-maxage directive

(Section 5.2.2.10), a shared cache recipient MUST ignore the Expires

field. In both these cases, the value in Expires is only intended

for recipients that have not yet implemented the Cache-Control

field.

An origin server without a clock MUST NOT generate an Expires field

unless its value represents a fixed time in the past (always

expired) or its value has been associated with the resource by a

system or user with a reliable clock.

Historically, HTTP required the Expires field value to be no more

than a year in the future. While longer freshness lifetimes are no

longer prohibited, extremely large values have been demonstrated to

cause problems (e.g., clock overflows due to use of 32-bit integers

for time values), and many caches will evict a response far sooner

than that.

¶

¶

¶

¶

¶

¶

 Expires: Thu, 01 Dec 1994 16:00:00 GMT¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.8
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#http.date

5.4. Pragma

The "Pragma" header field was defined for HTTP/1.0 caches, so that

clients could specify a "no-cache" request (as Cache-Control was not

defined until HTTP/1.1).

However, support for Cache-Control is now widespread. As a result,

this specification deprecates Pragma.

Note: Because the meaning of "Pragma: no-cache" in responses was

never specified, it does not provide a reliable replacement for

"Cache-Control: no-cache" in them.

5.5. Warning

The "Warning" header field was used to carry additional information

about the status or transformation of a message that might not be

reflected in the status code. This specification obsoletes it, as it

is not widely generated or surfaced to users. The information it

carried can be gleaned from examining other header fields, such as

Age.

6. Relationship to Applications

Applications using HTTP often specify additional forms of caching.

For example, Web browsers often have history mechanisms such as

"Back" buttons that can be used to redisplay a representation

retrieved earlier in a session.

Likewise, some Web browsers implement caching of images and other

assets within a page view; they may or may not honor HTTP caching

semantics.

The requirements in this specification do not necessarily apply to

how applications use data after it is retrieved from a HTTP cache.

That is, a history mechanism can display a previous representation

even if it has expired, and an application can use cached data in

other ways beyond its freshness lifetime.

This does not prohibit the application from taking HTTP caching into

account; for example, a history mechanism might tell the user that a

view is stale, or it might honor cache directives (e.g., Cache-

Control: no-store).

7. Security Considerations

This section is meant to inform developers, information providers,

and users of known security concerns specific to HTTP caching. More

¶

¶

¶

¶

¶

¶

¶

¶

general security considerations are addressed in HTTP messaging

[Messaging] and semantics [Semantics].

Caches expose additional potential vulnerabilities, since the

contents of the cache represent an attractive target for malicious

exploitation. Because cache contents persist after an HTTP request

is complete, an attack on the cache can reveal information long

after a user believes that the information has been removed from the

network. Therefore, cache contents need to be protected as sensitive

information.

7.1. Cache Poisoning

Various attacks might be amplified by being stored in a shared

cache. Such "cache poisoning" attacks use the cache to distribute a

malicious payload to many clients, and are especially effective when

an attacker can use implementation flaws, elevated privileges, or

other techniques to insert such a response into a cache.

One common attack vector for cache poisoning is to exploit

differences in message parsing on proxies and in user agents; see

Section 6.3 of [Messaging] for the relevant requirements regarding

HTTP/1.1.

7.2. Timing Attacks

Because one of the primary uses of a cache is to optimise

performance, its use can "leak" information about what resources

have been previously requested.

For example, if a user visits a site and their browser caches some

of its responses, and then navigates to a second site, that site can

attempt to load responses that it knows exists on the first site. If

they load very quickly, it can be assumed that the user has visited

that site, or even a specific page on it.

Such "timing attacks" can be mitigated by adding more information to

the cache key, such as the identity of the referring site (to

prevent the attack described above). This is sometimes called

"double keying."

7.3. Caching of Sensitive Information

Implementation and deployment flaws (as well as misunderstanding of

cache operation) might lead to caching of sensitive information

(e.g., authentication credentials) that is thought to be private,

exposing it to unauthorized parties.

Note that the Set-Cookie response header field [RFC6265] does not

inhibit caching; a cacheable response with a Set-Cookie header field

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#message.body.length

[Messaging]

[RFC2119]

[RFC3986]

[RFC5234]

can be (and often is) used to satisfy subsequent requests to caches.

Servers who wish to control caching of these responses are

encouraged to emit appropriate Cache-Control response header fields.

8. IANA Considerations

The change controller for the following registrations is: "IETF

(iesg@ietf.org) - Internet Engineering Task Force".

8.1. Field Registration

Please update the "Hypertext Transfer Protocol (HTTP) Field Name

Registry" at <https://www.iana.org/assignments/http-fields> with the

field names listed in the two tables of Section 5.

8.2. Cache Directive Registration

Please update the "Hypertext Transfer Protocol (HTTP) Cache

Directive Registry" at <https://www.iana.org/assignments/http-cache-

directives> with the registration procedure of Section 5.2.4 and the

cache directive names summarized in the table of Section 5.2.

8.3. Warn Code Registry

Please add a note to the "Hypertext Transfer Protocol (HTTP) Warn

Codes" registry at <https://www.iana.org/assignments/http-warn-

codes> to the effect that Warning is obsoleted.

9. References

9.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP/1.1 Messaging", Work in Progress,

Internet-Draft, draft-ietf-httpbis-messaging-10, 12 July

2020, <https://tools.ietf.org/html/draft-ietf-httpbis-

messaging-10>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-fields
https://www.iana.org/assignments/http-cache-directives
https://www.iana.org/assignments/http-cache-directives
https://www.iana.org/assignments/http-warn-codes
https://www.iana.org/assignments/http-warn-codes
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[RFC7405]

[RFC8174]

[Semantics]

[USASCII]

[RFC2616]

[RFC5861]

[RFC5905]

[RFC6265]

[RFC7234]

[RFC8126]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP Semantics", Work in Progress,

Internet-Draft, draft-ietf-httpbis-semantics-10, 12 July

2020, <https://tools.ietf.org/html/draft-ietf-httpbis-

semantics-10>.

American National Standards Institute, "Coded Character

Set -- 7-bit American Standard Code for Information

Interchange", ANSI X3.4, 1986.

9.2. Informative References

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999, <https://www.rfc-editor.org/info/

rfc2616>.

Nottingham, M., "HTTP Cache-Control Extensions for Stale

Content", RFC 5861, DOI 10.17487/RFC5861, April 2010,

<https://www.rfc-editor.org/info/rfc5861>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "Hypertext Transfer Protocol (HTTP):

Caching", RFC 7234, DOI 10.17487/RFC7234, June 2014,

<https://www.rfc-editor.org/info/rfc7234>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc5861
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc7234

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Appendix A. Collected ABNF

In the collected ABNF below, list rules are expanded as per

Section 5.5.1 of [Semantics].

Age = delta-seconds

Cache-Control = cache-directive *(OWS "," OWS cache-directive)

Expires = HTTP-date

HTTP-date = <HTTP-date, see [Semantics], Section 5.4.1.5>

OWS = <OWS, see [Semantics], Section 1.2.1>

cache-directive = token ["=" (token / quoted-string)]

delta-seconds = 1*DIGIT

field-name = <field-name, see [Semantics], Section 5.3>

quoted-string = <quoted-string, see [Semantics], Section 5.4.1.2>

token = <token, see [Semantics], Section 5.4.1.1>

Appendix B. Changes from RFC 7234

Some cache directives defined by this specification now have

stronger prohibitions against generating the quoted form of their

values, since this has been found to create interoperability

problems. Consumers of extension cache directives are no longer

required to accept both token and quoted-string forms, but they

still need to properly parse them for unknown extensions. (Section

5.2)

The "public" and "private" cache directives were clarified, so that

they do not make responses reusable under any condition. (Section

5.2.2)

The "must-understand" cache directive was introduced; caches are no

longer required to understand the semantics of new response status

codes unless it is present. (Section 5.2.2.2)

The Warning response header was obsoleted. Much of the information

supported by Warning could be gleaned by examining the response, and

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#abnf.extension.sender

the remaining warn-codes - although potentially useful - were

entirely advisory. In practice, Warning was not added by caches or

intermediaries. (Section 5.5)

Appendix C. Change Log

This section is to be removed before publishing as an RFC.

C.1. Between RFC7234 and draft 00

The changes were purely editorial:

Change boilerplate and abstract to indicate the "draft" status,

and update references to ancestor specifications.

Remove version "1.1" from document title, indicating that this

specification applies to all HTTP versions.

Adjust historical notes.

Update links to sibling specifications.

Replace sections listing changes from RFC 2616 by new empty

sections referring to RFC 723x.

Remove acknowledgements specific to RFC 723x.

Move "Acknowledgements" to the very end and make them unnumbered.

C.2. Since draft-ietf-httpbis-cache-00

The changes are purely editorial:

Moved all extensibility tips, registration procedures, and

registry tables from the IANA considerations to normative

sections, reducing the IANA considerations to just instructions

that will be removed prior to publication as an RFC.

C.3. Since draft-ietf-httpbis-cache-01

Cite RFC 8126 instead of RFC 5226 (<https://github.com/httpwg/

http-core/issues/75>)

In Section 5.4, misleading statement about the relation between

Pragma and Cache-Control (<https://github.com/httpwg/http-core/

issues/92>, <https://www.rfc-editor.org/errata/eid4674>)

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/92
https://github.com/httpwg/http-core/issues/92
https://www.rfc-editor.org/errata/eid4674

C.4. Since draft-ietf-httpbis-cache-02

In Section 3, explain that only final responses are cacheable

(<https://github.com/httpwg/http-core/issues/29>)

In Section 5.2.2, clarify what responses various directives apply

to (<https://github.com/httpwg/http-core/issues/52>)

In Section 4.3.1, clarify the source of validators in conditional

requests (<https://github.com/httpwg/http-core/issues/110>)

Revise Section 6 to apply to more than just History Lists

(<https://github.com/httpwg/http-core/issues/126>)

In Section 5.5, deprecated "Warning" header field (<https://

github.com/httpwg/http-core/issues/139>)

In Section 3.3, remove a spurious note (<https://github.com/

httpwg/http-core/issues/141>)

C.5. Since draft-ietf-httpbis-cache-03

In Section 2, define what a disconnected cache is (<https://

github.com/httpwg/http-core/issues/5>)

In Section 4, clarify language around how to select a response

when more than one matches (<https://github.com/httpwg/http-core/

issues/23>)

in Section 4.2.4, mention stale-while-revalidate and stale-if-

error (<https://github.com/httpwg/http-core/issues/122>)

Remove requirements around cache request directives (<https://

github.com/httpwg/http-core/issues/129>)

Deprecate Pragma (<https://github.com/httpwg/http-core/issues/

140>)

In Section 3.3 and Section 5.2.2, note effect of some directives

on authenticated requests (<https://github.com/httpwg/http-core/

issues/161>)

C.6. Since draft-ietf-httpbis-cache-04

In Section 5.2, remove the registrations for stale-if-error and

stale-while-revalidate which happened in RFC 7234 (<https://

github.com/httpwg/http-core/issues/207>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/29
https://github.com/httpwg/http-core/issues/52
https://github.com/httpwg/http-core/issues/110
https://github.com/httpwg/http-core/issues/126
https://github.com/httpwg/http-core/issues/139
https://github.com/httpwg/http-core/issues/139
https://github.com/httpwg/http-core/issues/141
https://github.com/httpwg/http-core/issues/141
https://github.com/httpwg/http-core/issues/5
https://github.com/httpwg/http-core/issues/5
https://github.com/httpwg/http-core/issues/23
https://github.com/httpwg/http-core/issues/23
https://github.com/httpwg/http-core/issues/122
https://github.com/httpwg/http-core/issues/129
https://github.com/httpwg/http-core/issues/129
https://github.com/httpwg/http-core/issues/140
https://github.com/httpwg/http-core/issues/140
https://github.com/httpwg/http-core/issues/161
https://github.com/httpwg/http-core/issues/161
https://github.com/httpwg/http-core/issues/207
https://github.com/httpwg/http-core/issues/207

C.7. Since draft-ietf-httpbis-cache-05

In Section 3.2, clarify how weakly framed content is considered

for purposes of completeness (<https://github.com/httpwg/http-

core/issues/25>)

Throughout, describe Vary and cache key operations more clearly

(<https://github.com/httpwg/http-core/issues/28>)

In Section 3, remove concept of "cacheable methods" in favor of

prose (<https://github.com/httpwg/http-core/issues/54>, <https://

www.rfc-editor.org/errata/eid5300>)

Refactored Section 7, and added a section on timing attacks

(<https://github.com/httpwg/http-core/issues/233>)

Changed "cacheable by default" to "heuristically cacheable"

throughout (<https://github.com/httpwg/http-core/issues/242>)

C.8. Since draft-ietf-httpbis-cache-06

In Section 3 and Section 5.2.2.2, change response cacheability to

only require understanding the response status code if the must-

understand cache directive is present (<https://github.com/

httpwg/http-core/issues/120>)

Change requirements for handling different forms of cache

directives in Section 5.2 (<https://github.com/httpwg/http-core/

issues/128>)

Fix typo in Section 5.2.2.10 (<https://github.com/httpwg/http-

core/issues/264>)

In Section 5.2.2.6 and Section 5.2.2.7, clarify "private" and

"public" so that they do not override all other cache directives

(<https://github.com/httpwg/http-core/issues/268>)

In Section 3, distinguish between private with and without

qualifying headers (<https://github.com/httpwg/http-core/issues/

270>)

In Section 4.1, clarify that any "*" as a member of Vary will

disable caching (<https://github.com/httpwg/http-core/issues/

286>)

In Section 1.1, reference RFC 8174 as well (<https://github.com/

httpwg/http-core/issues/303>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/25
https://github.com/httpwg/http-core/issues/25
https://github.com/httpwg/http-core/issues/28
https://github.com/httpwg/http-core/issues/54
https://www.rfc-editor.org/errata/eid5300
https://www.rfc-editor.org/errata/eid5300
https://github.com/httpwg/http-core/issues/233
https://github.com/httpwg/http-core/issues/242
https://github.com/httpwg/http-core/issues/120
https://github.com/httpwg/http-core/issues/120
https://github.com/httpwg/http-core/issues/128
https://github.com/httpwg/http-core/issues/128
https://github.com/httpwg/http-core/issues/264
https://github.com/httpwg/http-core/issues/264
https://github.com/httpwg/http-core/issues/268
https://github.com/httpwg/http-core/issues/270
https://github.com/httpwg/http-core/issues/270
https://github.com/httpwg/http-core/issues/286
https://github.com/httpwg/http-core/issues/286
https://github.com/httpwg/http-core/issues/303
https://github.com/httpwg/http-core/issues/303

C.9. Since draft-ietf-httpbis-cache-07

Throughout, replace "effective request URI", "request-target" and

similar with "target URI" (<https://github.com/httpwg/http-core/

issues/259>)

In Section 5.2.2.6 and Section 5.2.2.7, make it clear that these

directives do not ignore other requirements for caching

(<https://github.com/httpwg/http-core/issues/320>)

In Section 3.2, move definition of "complete" into semantics

(<https://github.com/httpwg/http-core/issues/334>)

C.10. Since draft-ietf-httpbis-cache-08

Appendix A now uses the sender variant of the "#" list expansion

(<https://github.com/httpwg/http-core/issues/192>)

C.11. Since draft-ietf-httpbis-cache-09

Switch to xml2rfc v3 mode for draft generation (<https://

github.com/httpwg/http-core/issues/394>)

Acknowledgments

See Appendix "Acknowledgments" of [Semantics].

Authors' Addresses

Roy T. Fielding (editor)

Adobe

345 Park Ave

San Jose, CA 95110

United States of America

Email: fielding@gbiv.com

URI: https://roy.gbiv.com/

Mark Nottingham (editor)

Fastly

Email: mnot@mnot.net

URI: https://www.mnot.net/

Julian F. Reschke (editor)

greenbytes GmbH

Hafenweg 16

48155 Münster

Germany

*

¶

*

¶

*

¶

*

¶

*

¶

¶

https://github.com/httpwg/http-core/issues/259
https://github.com/httpwg/http-core/issues/259
https://github.com/httpwg/http-core/issues/320
https://github.com/httpwg/http-core/issues/334
https://github.com/httpwg/http-core/issues/192
https://github.com/httpwg/http-core/issues/394
https://github.com/httpwg/http-core/issues/394
mailto:fielding@gbiv.com
https://roy.gbiv.com/
mailto:mnot@mnot.net
https://www.mnot.net/

Email: julian.reschke@greenbytes.de

URI: https://greenbytes.de/tech/webdav/

mailto:julian.reschke@greenbytes.de
https://greenbytes.de/tech/webdav/

	HTTP Caching
	Abstract
	Editorial Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation
	1.2. Syntax Notation
	1.3. Delta Seconds

	2. Overview of Cache Operation
	3. Storing Responses in Caches
	3.1. Storing Header and Trailer Fields
	3.2. Storing Incomplete Responses
	3.3. Storing Responses to Authenticated Requests
	3.4. Combining Partial Content

	4. Constructing Responses from Caches
	4.1. Calculating Cache Keys with Vary
	4.2. Freshness
	4.2.1. Calculating Freshness Lifetime
	4.2.2. Calculating Heuristic Freshness
	4.2.3. Calculating Age
	4.2.4. Serving Stale Responses

	4.3. Validation
	4.3.1. Sending a Validation Request
	4.3.2. Handling a Received Validation Request
	4.3.3. Handling a Validation Response
	4.3.4. Freshening Stored Responses upon Validation
	4.3.5. Freshening Responses with HEAD

	4.4. Invalidation

	5. Field Definitions
	5.1. Age
	5.2. Cache-Control
	5.2.1. Request Cache-Control Directives
	5.2.1.1. max-age
	5.2.1.2. max-stale
	5.2.1.3. min-fresh
	5.2.1.4. no-cache
	5.2.1.5. no-store
	5.2.1.6. no-transform
	5.2.1.7. only-if-cached

	5.2.2. Response Cache-Control Directives
	5.2.2.1. must-revalidate
	5.2.2.2. must-understand
	5.2.2.3. no-cache
	5.2.2.4. no-store
	5.2.2.5. no-transform
	5.2.2.6. public
	5.2.2.7. private
	5.2.2.8. proxy-revalidate
	5.2.2.9. max-age
	5.2.2.10. s-maxage

	5.2.3. Cache Control Extensions
	5.2.4. Cache Directive Registry

	5.3. Expires
	5.4. Pragma
	5.5. Warning

	6. Relationship to Applications
	7. Security Considerations
	7.1. Cache Poisoning
	7.2. Timing Attacks
	7.3. Caching of Sensitive Information

	8. IANA Considerations
	8.1. Field Registration
	8.2. Cache Directive Registration
	8.3. Warn Code Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Collected ABNF
	Appendix B. Changes from RFC 7234
	Appendix C. Change Log
	C.1. Between RFC7234 and draft 00
	C.2. Since draft-ietf-httpbis-cache-00
	C.3. Since draft-ietf-httpbis-cache-01
	C.4. Since draft-ietf-httpbis-cache-02
	C.5. Since draft-ietf-httpbis-cache-03
	C.6. Since draft-ietf-httpbis-cache-04
	C.7. Since draft-ietf-httpbis-cache-05
	C.8. Since draft-ietf-httpbis-cache-06
	C.9. Since draft-ietf-httpbis-cache-07
	C.10. Since draft-ietf-httpbis-cache-08
	C.11. Since draft-ietf-httpbis-cache-09
	Acknowledgments
	Authors' Addresses

