
Network Working Group K. Oku
Internet-Draft DeNA Co, Ltd.
Intended status: Standards Track M. Nottingham
Expires: January 10, 2017 July 9, 2016

Cache Digests for HTTP/2
draft-ietf-httpbis-cache-digest-00

Abstract

 This specification defines a HTTP/2 frame type to allow clients to
 inform the server of their cache's contents. Servers can then use
 this to inform their choices of what to push to clients.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ .

 Working Group information can be found at http://httpwg.github.io/ ;
 source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/cache-digest .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 10, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Oku & Nottingham Expires January 10, 2017 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
http://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/cache-digest
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Cache Digests for HTTP/2 July 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The CACHE_DIGEST Frame 3
2.1. Client Behavior . 3
2.1.1. Computing the Digest-Value 4
2.1.2. Computing a Hash Value 6

2.2. Server Behavior . 6
2.2.1. Querying the Digest for a Value 7

3. IANA Considerations . 8
4. Security Considerations 8
5. References . 8
5.1. Normative References 8
5.2. Informative References 9

Appendix A. Acknowledgements 9
 Authors' Addresses . 10

1. Introduction

 HTTP/2 [RFC7540] allows a server to "push" synthetic request/response
 pairs into a client's cache optimistically. While there is strong
 interest in using this facility to improve perceived Web browsing
 performance, it is sometimes counterproductive because the client
 might already have cached the "pushed" response.

 When this is the case, the bandwidth used to "push" the response is
 effectively wasted, and represents opportunity cost, because it could
 be used by other, more relevant responses. HTTP/2 allows a stream to
 be cancelled by a client using a RST_STREAM frame in this situation,
 but there is still at least one round trip of potentially wasted
 capacity even then.

 This specification defines a HTTP/2 frame type to allow clients to
 inform the server of their cache's contents using a Golumb-Rice Coded
 Set. Servers can then use this to inform their choices of what to
 push to clients.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7540

Oku & Nottingham Expires January 10, 2017 [Page 2]

Internet-Draft Cache Digests for HTTP/2 July 2016

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The CACHE_DIGEST Frame

 The CACHE_DIGEST frame type is 0xf1. NOTE: This is an experimental
 value; if standardised, a permanent value will be assigned.

 +---+
 | Digest-Value? (*) ...
 +---+

 The CACHE_DIGEST frame payload has the following fields:

 o *Digest-Value*: A sequence of octets containing the digest as
 computed in Section 2.1.1.

 The CACHE_DIGEST frame defines the following flags:

 o *RESET* (0x1): When set, indicates that any and all cache digests
 for the applicable origin held by the recipient MUST be considered
 invalid.

 o *COMPLETE* (0x2): When set, indicates that the currently valid set
 of cache digests held by the server constitutes a complete
 representation of the cache's state regarding that origin, for the
 type of cached response indicated by the "STALE" flag.

 o *VALIDATORS* (0x4): When set, indicates that the "validators"
 boolean in Section 2.1.1 is true.

 o *STALE* (0x8): When set, indicates that all cached responses
 represented in the digest-value are stale [RFC7234] at the point
 in them that the digest was generated; otherwise, all are fresh.

2.1. Client Behavior

 A CACHE_DIGEST frame can be sent from a client to a server on any
 stream in the "open" state, and conveys a digest of the contents of
 the client's cache for associated stream.

 In typical use, a client will send one or more CACHE_DIGESTs
 immediately after the first request on a connection for a given
 origin, on the same stream, because there is usually a short period

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7234

Oku & Nottingham Expires January 10, 2017 [Page 3]

Internet-Draft Cache Digests for HTTP/2 July 2016

 of inactivity then, and servers can benefit most when they understand
 the state of the cache before they begin pushing associated assets
 (e.g., CSS, JavaScript and images). Clients MAY send CACHE_DIGEST at
 other times.

 If the cache's state is cleared, lost, or the client otherwise wishes
 the server to stop using previously sent CACHE_DIGESTs, it can send a
 CACHE_DIGEST with the RESET flag set.

 When generating CACHE_DIGEST, a client MUST NOT include cached
 responses whose URLs do not share origins [RFC6454] with the request
 of the stream that the frame is sent upon.

 CACHE_DIGEST allows the client to indicate whether the set of URLs
 used to compute the digest represent fresh or stale stored responses,
 using the STALE flag. Clients MAY decide whether to only sent
 CACHE_DIGEST frames representing their fresh stored responses, their
 stale stored responses, or both.

 Clients can choose to only send a subset of the suitable stored
 responses of each type (fresh or stale). However, when the
 CACHE_DIGEST frames sent represent the complete set of stored
 responses of a given type, the last such frame SHOULD have a COMPLETE
 flag set, to indicate to the server that it has all relevant state of
 that type. Note that for the purposes of COMPLETE, responses cached
 since the beginning of the connection or the last RESET flag on a
 CACHE_DIGEST frame need not be included.

 CACHE_DIGEST can be computed to include cached responses' ETags, as
 indicated by the VALIDATORS flag. This information can be used by
 servers to decide what kinds of responses to push to clients; for
 example, a stale response that hasn't changed could be refreshed with
 a 304 (Not Modified) response; one that has changed can be replaced
 with a 200 (OK) response, whether the cached response was fresh or
 stale.

 CACHE_DIGEST has no defined meaning when sent from servers, and
 SHOULD be ignored by clients.

2.1.1. Computing the Digest-Value

 Given the following inputs:

 o "validators", a boolean indicating whether validators ([RFC7232])
 are to be included in the digest;

 o "URLs'", an array of (string "URL", string "ETag") tuples, each
 corresponding to the Effective Request URI ([RFC7230],

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7230

Oku & Nottingham Expires January 10, 2017 [Page 4]

Internet-Draft Cache Digests for HTTP/2 July 2016

Section 5.5) of a cached response [RFC7234] and its entity-tag
 [RFC7232] (if "validators" is true and if the ETag is available;
 otherwise, null);

 o "P", an integer that MUST be a power of 2 smaller than 2**32, that
 indicates the probability of a false positive that is acceptable,
 expressed as "1/P".

 "digest-value" can be computed using the following algorithm:

 1. Let N be the count of "URLs"' members, rounded to the nearest
 power of 2 smaller than 2**32.

 2. Let "hash-values" be an empty array of integers.

 3. For each ("URL", "ETag") in "URLs", compute a hash value
 (Section 2.1.2) and append the result to "hash-values".

 4. Sort "hash-values" in ascending order.

 5. Let "digest-value" be an empty array of bits.

 6. Write log base 2 of "N" to "digest-value" using 5 bits.

 7. Write log base 2 of "P" to "digest-value" using 5 bits.

 8. Let "C" be -1.

 9. For each "V" in "hash-values":

 1. If "V" is equal to "C", continue to the next "V".

 2. Let "D" be the result of "V - C - 1".

 3. Let "Q" be the integer result of "D / P".

 4. Let "R" be the result of "D modulo P".

 5. Write "Q" '0' bits to "digest-value".

 6. Write 1 '1' bit to "digest-value".

 7. Write "R" to "digest-value" as binary, using log2("P") bits.

 8. Let "C" be "V"

 10. If the length of "digest-value" is not a multiple of 8, pad it
 with 0s until it is.

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7232

Oku & Nottingham Expires January 10, 2017 [Page 5]

Internet-Draft Cache Digests for HTTP/2 July 2016

2.1.2. Computing a Hash Value

 Given:

 o "URL", an array of characters

 o "ETag", an array of characters

 o "validators", a boolean

 o "N", an integer

 o "P", an integer

 "hash-value" can be computed using the following algorithm:

 1. Let "key" be "URL" converted to an ASCII string by percent-
 encoding as appropriate [RFC3986].

 2. If "validators" is true and "ETag" is not null:

 1. Append "ETag" to "key" as an ASCII string, including both the
 "weak" indicator (if present) and double quotes, as per

[RFC7232] Section 2.3.

 3. Let "hash-value" be the SHA-256 message digest [RFC6234] of
 "key", expressed as an integer.

 4. Truncate "hash-value" to log2("N" * "P") bits.

2.2. Server Behavior

 In typical use, a server will query (as per Section 2.2.1) the
 CACHE_DIGESTs received on a given connection to inform what it pushes
 to that client;

 o If a given URL has a match in a current CACHE_DIGEST with the
 STALE flag unset, it need not be pushed, because it is fresh in
 cache;

 o If a given URL and ETag combination has a match in a current
 CACHE_DIGEST with the STALE flag set, the client has a stale copy
 in cache, and a validating response can be pushed;

 o If a given URL has no match in any current CACHE_DIGEST, the
 client does not have a cached copy, and a complete response can be
 pushed.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7232#section-2.3
https://datatracker.ietf.org/doc/html/rfc6234

Oku & Nottingham Expires January 10, 2017 [Page 6]

Internet-Draft Cache Digests for HTTP/2 July 2016

 Servers MAY use all CACHE_DIGESTs received for a given origin as
 current, as long as they do not have the RESET flag set; a
 CACHE_DIGEST frame with the RESET flag set MUST clear any previously
 stored CACHE_DIGESTs for its origin. Servers MUST treat an empty
 Digest-Value with a RESET flag set as effectively clearing all stored
 digests for that origin.

 Clients are not likely to send updates to CACHE_DIGEST over the
 lifetime of a connection; it is expected that servers will separately
 track what cacheable responses have been sent previously on the same
 connection, using that knowledge in conjunction with that provided by
 CACHE_DIGEST.

2.2.1. Querying the Digest for a Value

 Given:

 o "digest-value", an array of bits

 o "URL", an array of characters

 o "ETag", an array of characters

 o "validators", a boolean

 we can determine whether there is a match in the digest using the
 following algorithm:

 1. Read the first 5 bits of "digest-value" as an integer; let "N"
 be two raised to the power of that value.

 2. Read the next 5 bits of "digest-value" as an integer; let "P" be
 two raised to the power of that value.

 3. Let "hash-value" be the result of computing a hash value
 (Section 2.1.2).

 4. Let "C" be -1.

 5. Read '0' bits from "digest-value" until a '1' bit is found; let
 "Q" bit the number of '0' bits. Discard the '1'.

 6. Read log2("P") bits from "digest-value" after the '1' as an
 integer; let "R" be its value.

 7. Let "D" be "Q" * "P" + "R".

 8. Increment "C" by "D" + 1.

Oku & Nottingham Expires January 10, 2017 [Page 7]

Internet-Draft Cache Digests for HTTP/2 July 2016

 9. If "C" is equal to "hash-value", return 'true'.

 10. Otherwise, return to step 5 and continue processing; if no match
 is found before "digest-value" is exhausted, return 'false'.

3. IANA Considerations

 This draft currently has no requirements for IANA. If the
 CACHE_DIGEST frame is standardised, it will need to be assigned a
 frame type.

4. Security Considerations

 The contents of a User Agent's cache can be used to re-identify or
 "fingerprint" the user over time, even when other identifiers (e.g.,
 Cookies [RFC6265]) are cleared.

 CACHE_DIGEST allows such cache-based fingerprinting to become
 passive, since it allows the server to discover the state of the
 client's cache without any visible change in server behaviour.

 As a result, clients MUST mitigate for this threat when the user
 attempts to remove identifiers (e.g., "clearing cookies"). This
 could be achieved in a number of ways; for example: by clearing the
 cache, by changing one or both of N and P, or by adding new,
 synthetic entries to the digest to change its contents.

 TODO: discuss how effective the suggested mitigations actually would
 be.

 Additionally, User Agents SHOULD NOT send CACHE_DIGEST when in
 "privacy mode."

5. References

5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986

Oku & Nottingham Expires January 10, 2017 [Page 8]

Internet-Draft Cache Digests for HTTP/2 July 2016

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI
 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454, DOI
 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232, DOI
 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

5.2. Informative References

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

Appendix A. Acknowledgements

 Thanks to Adam Langley and Giovanni Bajo for their explorations of
 Golumb-coded sets. In particular, see

http://giovanni.bajo.it/post/47119962313/golomb-coded-sets-smaller-
than-bloom-filters , which refers to sample code.

 Thanks to Stefan Eissing for his suggestions.

https://datatracker.ietf.org/doc/html/rfc6234
http://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc6454
http://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7232
http://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc6265
http://www.rfc-editor.org/info/rfc6265
http://giovanni.bajo.it/post/47119962313/golomb-coded-sets-smaller-than-bloom-filters
http://giovanni.bajo.it/post/47119962313/golomb-coded-sets-smaller-than-bloom-filters

Oku & Nottingham Expires January 10, 2017 [Page 9]

Internet-Draft Cache Digests for HTTP/2 July 2016

Authors' Addresses

 Kazuho Oku
 DeNA Co, Ltd.

 Email: kazuhooku@gmail.com

 Mark Nottingham

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

Oku & Nottingham Expires January 10, 2017 [Page 10]

https://www.mnot.net/

